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drug delivery
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ABSTRACT
To prolong the circulation time of drug, PEGylation has been widely used via the enhanced permeabil-
ity and retention (EPR) effect, thereby providing new hope for better treatment. However, PEGylation
also brings the "PEG dilemma", which is difficult for the cellular absorption of drugs and subsequent
endosomal escape. As a result, the activity of drugs is inevitably lost after PEG modification. To achieve
successful drug delivery for effective treatment, the crucial issue associated with the use of PEG-lipids,
that is, “PEG dilemma” must be addressed. In this paper, we introduced the development and applica-
tion of nanocarriers with cleavable PEGylation, and discussed various strategies for overcoming the
PEG dilemma. Compared to the traditional ones, the vehicle systems with different environmental-sen-
sitive PEG-lipids were discussed, which cleavage can be achieved in response to the intracellular as
well as the tumor microenvironment. This smart cleavable PEGylation provides us an efficient strategy
to overcome “PEG dilemma”, thereby may be a good candidate for the cancer treatment in future.
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Introduction

In drug delivery system, the application of nanocarriers which
are modified by PEG-lipids has made a great progress
(Oberoi et al., 2016). The PEG-lipids have been incorporated
to the nanocarriers which include liposomes (Zhang et al.,
2016), polymer micelles (Kim et al., 2011), polymer nanopar-
ticles (Li et al., 2012b), solid lipid nanoparticles (Yuan et al.,
2013), and so on. The PEG-lipids can prolong the circulation
time of drugs in vivo and promote their permeability and
function (Hatakeyama et al., 2007; Maeda, 2012). However, a
lot of new problems are brought after the PEGylation
(Hatakeyama et al., 2013), which not only affect the inter-
action between nanocarriers and drugs, but also influence
the interaction between nanocarries and cells (Bian et al.,
2010). Therefore, how to solve these problems is highly on
demand. Based on the mentioned problems, this paper intro-
duces corresponding strategies to minimize the PEGylation
dilemma while ensuring the advantages of the PEGylated
nanocarriers.

The new cleavable PEG derivatives are characterized as
environmentally sensitive, which bonds are easy to break
under physiological and pathological conditions. They can
not only extend the cycle time of drugs, but also ensure that
the PEG detached from the surface of nanocarriers in the tar-
get position so as to facilitate the penetration of drugs into
cells. This paper summarizes various PEG derivatives with
cleavable bonds for overcoming PEGylation dilemma, includ-
ing peptide bonds (Kulkarni et al., 2014; Lin et al., 2015),

disulfide keys (Yan et al., 2014; Wu & Yan, 2015), vinyl ether
bonds, hydrazone bonds (Kelly et al., 2016), and ester bonds
(Xu et al., 2008). The cleavage of PEG derivatives from carriers
was achieved in response to the extracellular as well as intra-
cellular environment, which facilitates the cellular uptake and
endosomal escape.

PEGylation dilemma

Challenges in development of PEGylated nanocarriers

With the application of PEG-lipids in the nanocarriers,
PEGylation dilemma has brought a serious challenge to the
development of PEGylated nanocarriers. After PEGylation,
nanocarriers cannot be effectively receptor-mediated endo-
cytosis in cancer cells of carcinoma tissue (Song et al., 2002;
Mishra et al., 2004; Magarkar et al., 2012). PEGylation inevit-
ably brings the following problems. First, the steric hindrance
of PEG chains hinders target cells to uptake drugs (Vance &
Marr, 2015). To prevent the recognition of opsonins and sub-
sequent phagocytosis by reticuloendothelial system (RES), a
dense hydrophilic PEG shielding are often needed. But these
long polymer chains may block the targeting ligands of
nanocarriers from binding to the corresponding receptors on
cell surface (Hatakeyama et al., 2013). Moreover, the PEG
layer may also interfere with the release of drugs from the
vehicles (Sanchez et al., 2017).

Second, PEGylation strongly hinders endosomal escape of
nano-vehicles, leading to significant loss of activity of the
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delivery system (Tagalakis et al., 2014). It is well known that
endocytosis is the major route for the cellular transport of
nanomedicine (Shete et al., 2014). Upon clathrin-mediated
internalization at the plasma membrane, the endocytosed
cargos are first delivered into early endosomes, where the
internal pH value is around 5.0-6.5. Then the early endo-
somes mature into late endosomes that subsequently fuse
with intracellular organelles called lysosomes, which lumen's
pH value (4.5–5.0) is optimal for the enzymes involved in
hydrolysis. Thus, a limiting step in achieving an effective
delivery is to facilitate the endosomal escape and ensure
cytosolic delivery of the therapeutics (Paliwal et al., 2015).

Third, accelerated blood clearance (ABC) phenomenon will
be produced in after repeated injections of PEGylated lipo-
somes (Xu et al., 2014, Kierstead et al., 2015, Wang et al.,
2015). Both anti-PEG immunoglobulin M and complement
system can trigger the ABC phenomenon (Li et al., 2012a,
Shimizu et al., 2015). This is an unexpected pharmacokinetic
change resulted from a second dose of conventional
PEGylated liposomes. Moreover, other nanocarriers with
PEGylation have also been found with this phenomenon after
treated by the second dose. With this phenomenon, repeat-
edly administered PEGylated nanocarriers would be rapidly
cleared from systemic circulation due to the accelerated
accumulation in the macrophage system (Lila et al., 2013).
Among the possible considerations to alleviate the induction
of the phenomenon, such as changing the administration
regimen (Saadati et al., 2013), reducing the density of PEG on
liposome surface and using alternative polymers (Ishihara
et al., 2010; Wang et al., 2017), cleavable PEGylation provide
us a promising alternative. These cleavable PEG-lipid deriva-
tives could lessen or eliminate the ABC phenomenon pro-
duced by repeated injection of PEGylated liposomes or
vesicles (Xu et al., 2010; Chen et al., 2011). In addition, the
factors that influence vesicles internalization involve non-
cleavable chemical bond (He et al., 2014; Zeng et al., 2014),
conformation cloud (Yoshino et al., 2012), and hydration film
(Basile et al., 2012) . The presence of PEG suppressed the
fusion between liposomes and the cellular and endosomal
membranes (Felber et al., 2012). These are a series of nega-
tive effects known as the “PEG predicament” or “PEG
dilemma” (Wei et al., 2012). Therefore, a successful drug
delivery system for effective treatment requires a rational
strategy and the design of carrier systems to overcome the
issues associated with the use of PEG-lipids. Based on the
dilemma, cleavable PEG derivatives will be summarized in
this paper.

Traditional PEG-lipids-modified nanocarriers

It is well known that conventional nanocarriers without sur-
face modification are very unstable in plasma and fail to
effectively deliver their contents to the target tissues or cells.
Therefore, improving their stability has become a key issue.
(Lankveld et al., 2011). In order to obtain a longer cycle time
in vivo, PEG derivatives are used as the coating layer of nano-
materials to increase their surface hydrophilicity and steric
hindrance, thereby extending their circulation time in vivo. It

has attracted attention of many researchers (Wang et al.,
2010a; Wang et al., 2012). The chemical bonds between con-
ventional PEG-lipids are usually amide (Zhang et al., 2004) or
ether bonds (He et al., 2014), which have high chemical sta-
bility and thus are difficult to be removed from the carriers.
The steric effect of PEG-lipids would be resistant to degrad-
ation of the PEGylated nanocarriers in vivo, preventing inter-
actions between nanocarriers and target cells (Maeda &
Fujimoto, 2006). Therefore, the traditional PEG-lipid materials
can hinder cellular uptake and subsequent endosomal escape
of the drug (Romberg et al., 2008). To solve the PEG
dilemma, this article presents various solutions for the trad-
itional PEG-lipids.

Discrepancies between non-cleavable and cleavable
PEG-lipids

Both traditional and cleavable PEG-lipids-modified carriers
can extend the drug circulation time in vivo. In general, the
non-cleavable PEG-lipids are incorporated to carriers by cova-
lently linked via amide or ether bonds, which are insensitive
to the environment (Maeda & Fujimoto, 2006). To achieve
more efficient drug delivery efficiency, new PEG-lipid deriva-
tives are used to bind with carriers and release drugs under
certain conditions (Mercadal et al., 2000; Ghigo et al., 2006;
Hatakeyama et al., 2009). The use of cleavable carriers is
expected to increase the cycle time and improve drug
absorption in vivo. But because of the steric effect of PEG-lip-
ids, the non-cleavable PEG-lipids will hinder the drug from
cellular uptake and subsequent endosomal escape (Romberg
et al., 2008). In order to overcome these shortcomings, nano-
carriers with cleavable bonds are put forward and studied by
many researchers. Upon stimulation from the intracellular
and extracellular microenvironment of cancer cells, the PEG-
lipids can fall off from the surface of carriers. There are struc-
tural differences between these two types of nanocarriers,
mainly in the aspect of non-cleavable bonds (traditional
nanocarriers) and cleavable bonds (smart nanocarries). The
difference of effect is that the traditional PEGylation brings
“PEG dilemma”, while the cleavable PEGylation can not only
prolong the circulation time of drugs, but also increase their
absorption. Based on these differences between structures
and efficacy, studies have shown that the key is to enable
carriers cleavable.

Strategies for overcoming the “PEG Dilemma”

Action mechanisms of cleavable PEG-lipids

To overcome PEGylation dilemma, various carriers with PEG
moiety cleaving systems have been developed that release
drugs when they were exposed to the appropriate stimulus
at the target site. Once stimulated appropriately, cleavable
PEG-lipids can escape from the surface of the nanocomposite
and the loaded drugs can be taken up by the cancer cells.
Most of the cleavable PEG derivatives have been designed to
be cleaved in response to the extracellular or intracellular
microenvironment, such as temperature, pH, specific enzyme,
reductive conditions, and so on. For example, pH-sensitive
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liposomes can release drugs by the breaking of hydrazone
bonds in the acidic environment of tumor tissues (Sawant
et al., 2006; Dong et al., 2013). Liposomes containing the
peptide bonds achieve the desired effects after bonds cleav-
age under the action of matrix metalloproteinases (MMPs) in
the body (Koutroumanis et al., 2013; Wang et al., 2014). PEG
derivatives conjugated with disulfide bonds can be cleaved
in the cell by the glutathione-mediated reduction environ-
ment via thiol-disulfide exchange reactions (Wang et al.,
2014). In addition, carries with vinyl ether bonds and ester
bonds can also be cleaved under acidic or oxidative condi-
tions (Terada et al., 2006). These cleavable PEG-lipids have
corresponding fracture mechanisms, so the application of
them can achieve long-term circulation and promote drug
absorption at a specific location. The cleavable mechanisms
(taking solid lipid nanoparticle as an example) are shown in
the Figure 1.

Vinyl ether bond and its application

Because the vinyl ether bond must be non-oxidative and
either neutral or basic, the bond is labile under acidic or oxi-
dative conditions. Shin et al. synthesized four structurally
related acid-labile PEG-lipids, which are linked via vinyl ether
bond (Shin et al., 2003). Acid-catalyzed hydrolysis of the vinyl
ether bond destabilized liposomes by removal of the steric-
ally stabilizing PEG layer, thereby promoting contents release
on the hours timescale at pH <5. To mitigate the limitations
of PEG-modified carriers, a light triggered liposome was
developed which was modified by cholesterol derivatives via
a cleavable vinyl ether linkage so that the PEGylated coatings
can be efficiently removed by photosensitiser-generated

reactive singlet oxygen. After the cleavage of the PEG moiety,
the intracellular uptake of the liposome improved signifi-
cantly (Komeda et al., 2013). Shin et al. synthetized four
structurally related materials, which are composed of acid-
labile PEG-conjugated vinyl ether lipids and used to stabilize
dioleoylphosphatidyl ethanolamine (DOPE) liposomes. Acid-
catalyzed hydrolysis of the vinyl ether bond destabilized
these liposomes by removal of the sterically stabilizing PEG
layer, thereby promoting contents release on the hours time-
scale at pH <5. Structure-property correlations of these com-
pounds suggested that single vinyl ether linkages between
the PEG headgroup and the lipid backbone produce faster
leakage rates than others (Shin et al., 2003).

Hydrazone bond and its application

When using the PEG-lipid nanocomposites, the issue of how
to achieve rapid and effective release of the drugs is very
important. In addition to the vinyl ether bond, hydrazone
bonds are other typical acid-labile ones. This linker was first
used to couple monoclonal antibody and chemotherapeutic
drugs to the PEG chains (Hansen et al., 1995; Rodrigues et al.,
1999). The resulted acid-sensitive PEG conjugates showed
improved activity against cancer cells in vitro. Their triggering
mechanism in acid environment, as shown in Figure 2, is well
correlated with the extracellular pH of cancer tissue.
Furthermore, it is shown that the application of acid-sensitive
liposomes in the treatment of tumor is reasonable and effect-
ive (Lee et al., 2005).

It is well known that doxorubicin (DOX) is widely used in
the treatment of a wide variety of tumors, including hemato-
logical malignancies, many types of carcinoma, and soft

Figure 1. The bonds are cleaved in the target site.
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tissue sarcomas (Danquah et al., 2011). However, high tox-
icity, short half-life, poor water solubility, and multi-drug
resistance limit its therapeutic efficacy (Hu et al., 2009; Cuong
et al., 2010). Therefore, a novel cleavable micelles, which
structure is shown in Figure 3, was developed (Prabaharan
et al., 2009; Jiang et al., 2013). In this study, DOX was cova-
lently conjugated onto the hydrophobic segments of the
amphiphilic block copolymer via a hydra pH-sensitive hydra-
zone bond. The in vitro release profiles of the DOX from the
micelles showed a strong dependence on the environmental
pH values. The increased drug release rate in the acidic
medium attributes to the acid-cleavable hydrazone linkage
between the DOX and micelles(Bae & Kataoka, 2009). Under
acidic conditions (especially pH 5.3), pH-dependent hydra-
zone bonds are susceptible to hydrolysis and cleavage, which
makes it possible to achieve an effective concentration of
DOX in a short period of time (Prabaharan et al., 2009).
When conjugated to the micellar carriers via pH-sensitive
hydrazone linkage along with PEG chain, the anticancer drug
of DOX showed a strong dependence on the environmental
pH values. (Etrych et al., 2011; Zhou et al., 2011). It was char-
acterized as stable under physiological conditions as well as
accelerated releasing in the acidic medium due to the acid-
cleavable hydrazone linkage between the DOX and micelles,
thereby providing higher cytotoxicity against cancer cells
(Patil et al., 2012). These showed that cleavable PEG-modified
nanocarriers may be more effective than traditional nanocar-
riers in tumor therapy.

In another typical example, a multifunctional nanocarrier
with PEGylated TATp-modified pH-sensitive liposomes was
designed in which pH-labile hydrazone bond was inserted

between PEG and PE (PEG-Hz-PE) (Sawant et al., 2006; Kale &
Torchilin, 2007b). TAT-p is a kind of cell-penetrating peptide
which can pass through the cell membrane directly, and thus
make the carriers enter the cancer cells more quickly and
effectively. At lower pH environment of hypoxia regions,
hydrazone bond is cleaved and exposes the cell penetration
functions such as TAT peptide. For example, Kale et al. syn-
thesized a series of acid-sensitive PEG-Hz-PE conjugates hav-
ing different substituent hydrazone bonds. Their hydrolytic
stability under normal and slightly acidic conditions was eval-
uated. The results demonstrate that the hydrazone bonds
derivatized from PEG-Hz-PE-conjugated aromatic aldehydes
are very stable in both cases, but the ones from PEG-Hz-PE-
conjugated aliphatic aldehydes are easier to hydrolyze (Kale
& Torchilin, 2007a). Chen et al. not only studied the
pH-dependent degradation of mPEG-Hz-Chol complexes, but
also carried out evaluation of their modified pH-sensitive lip-
osomes in vivo (Chen et al., 2010). Pharmacokinetic studies
suggested that compared with conventional ones, the pH-
sensitive liposomes might decrease clearance rate as well as
the accumulation toxic effect in liver and spleen. Recently, a
new multifunctional immunoliposomal nanocarrier containing
pH-sensitive hydrazone bond between the long shielding
PEG chains and PE (PEG2k-Hz-PE) has been proposed and
studied (Koren et al., 2012). Under normal pH conditions,
TATp moieties are shielded by the long PEG chains.
Upon the exposure to a lower pH environment, the multi-
functional carrier suffered hydrolysis of hydrazone bond and
removal of PEG chains, thereby TATp moieties were partially
exposed. Enhanced cellular uptake of the TATp-containing
immunoliposomes was observed in vitro after pretreatment

Figure 2. The pH-sensitive liposome follows the change of pH value, which including hydrazone bond and vinyl ether bond.

Figure 3. Schematic structure of the H40-P (LA-DOX)-b-PEG-OH/FA copolymer.
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at lowered pH. Furthermore, they showed increased cellular
cytotoxicity of B16-F10, HeLa, and MCF-7 cells when pre-incu-
bated at lower pH, indicating TATp exposure and activity.
The above mentioned researches indicate that pH-responsive
nanocarriers (such as liposomes, nanoparticles, micelles) with
hydrazone bond and targeting ligand (folic acid, cell pene-
trating peptide) will achieve better therapeutic effect in the
treatment of tumor.

Composites containing acid-sensitive hydrazone bonds
also have other applications. For example, cleavable methoxy
polyethylene glycol 2000-hydrazone-cholesteryl hemisucci-
nate (mPEG-Hz-CHEMS) polymer was designed as a modified
pH-sensitive liposome that would selectively degrade under
locally acidic vaginal conditions. Under basic or neutral con-
ditions, it can be stable for a long period of time, but suf-
fered cleavage under acidic conditions (pH 5.0) (Chen et al.,
2012). For cancer cell imaging, there are also applications of
hydrazone bond in constructing pH stimuli-responsive
nanoprobe. In the designed PEG-TGA/TGH-capped CdTe
quantum dots, the hydrazide on TGH reacts with the alde-
hyde on PEG and forms a hydrazone bond. At specific pH
values, the hydrazone bond ruptured and release the quan-
tum dots, which allows the prepared pH-stimuli-responsive
nanoprobes to show fluorescence signals in the imaged can-
cer cells (Du et al., 2015). Acid-sensitive nanocomposite can
also be combined with siRNA to treat cancer, thereby achiev-
ing better therapeutic gene silencing. For example, a multi-
functional polyethyleneimine (PEI)-Hz-DOX (PHD)/PEI-PEG-
Folate (PPF)/siRNA complexes were developed in which DOX
was conjugated to PEI via a pH-responsive hydrazone link-
age. By the way of acid-triggered manner, that is, hydrazone
bond cleavage and endosome/lysosome escape, the com-
plexes release chemotherapy drugs and siRNA against can-
cerous cells (Dong et al., 2013). Nanocomposite containing
hydrazone bond is also used as protective carriers. Peptide
aldehydes, such as MG132 (Cbz-leu-leu-leucin) can inhibit
proteasome and suppress growth of cancer cells.
Nevertheless, they are easily oxidized in the aldehyde func-
tional group and lose their activity in vivo. To solve this prob-
lem, MG132 was covalently conjugated to a block copolymer
composed of PEG and polyaspartate via an acid-labile hydra-
zone bond (Quader et al., 2014). This bond is stable at
physiological condition, but hydrolytically cleavable in the
acidic compartments of cell, such as late endosomes and
lysosomes. Thus, release of MG132 from protective micelles
after the enhanced permeability and retention (EPR) effect-
mediated tumor accumulation was facilitated. In addition, the
combination of various cleavable bonds such as hydrazone
and disulfide bond was employed to design and prepare fol-
ate-PEG-coated polymeric lipid vesicles (FPPLVs), where PEG
chains and stearyl alcohol moiety were linked on the main
chain of dextran by pH-sensitive hydrazone bond and reduc-
tion-sensitive disulfide bonds, respectively. This smart pH-
and reduction-dual-responsive drug delivery system was
found to triggered drug release in response to acidic pH and
reducing environments due to the cleavage of hydrazone
bonds and disulfide bonds. (Wang et al., 2014). It has also
been demonstrated by an in vitro cellular uptake study that
the FPPLVs lose their PEG coating as well as expose the

folate in acidic conditions, which allows them to efficiently
enter tumor cells through ligand-receptor interactions. The
results show that the combination of the two kinds of bonds
has better effect as well as wider application.

Other pH-sensitive bonds and their application

Amide bond is another kind of acid-labile linkage which is
formed between primary amines and unsaturated anhydrides
like citraconic anhydride, 2,3-dimethylmaleic anhydride and
cis-aconitic anhydride. These bonds suffer cleavage upon
exposure to acidic conditions, thereby causing release of the
conjugated amine drugs. Sun et al. reported a polymeric
nanoparticle based on a bridged PEG and poly(D,L-lactide)
(PDLLA) block copolymer for improved cancer therapy. The
acid-labile copolymer, denoted as PEG-Dlinkm-PDLLA, was
synthesized by covalently connecting PEG and PDLLA seg-
ments with an acid-degradable amide bond. Upon arriving at
the tumor site, the nanoparticles will lose the PEG layer and
increase zeta potential by responding to tumor acidity, which
significantly enhances cellular uptake and improves the in
vivo tumor inhibition rate (Sun et al., 2016). Similarly, schiff
bases/imines are formed by the reaction of primary amines
and aldehydes/ketones. Zhao et al. designed a new acidly
sensitive PEGylated polyethylenimine linked by Schiff base
(PEG-s-PEI), which would render pH-sensitive PEGylation
nanoassemblies through multiple interactions with indometh-
acin and docetaxel. At extracellular pH of tumor microenvir-
onment, the nanoassemblies exhibited an excellent
performance of acid-induced cleavage, which provided an
efficient strategy to target tumor microenvironment
(Zhao et al., 2017).

Ester bond and its application

In view of the fact that ester bonds are susceptible to
hydrolysis by esterases that are widespread in the plasma
and tissues, a novel cleavable PEG-lipid, that is, mPEG2000-
CHEMS (mPEG2000-CHEMS) was developed by Xu et al.
(2008). In order to better control the release of the contents,
two PEG-lipid derivatives (mPEG-CHEMS and mPEG-CHMC)
are linked to the carriers via the ester bonds. In contrast to
conventional long circulation materials of mPEG-distearoyl
phosphatidylethandamine (DSPE) and mPEG-Chol, the two
new conjugates enabled higher degrees of PEG cleavages
from modified vesicles. In addition, because of their narrow
therapeutic window, the rapid uptake of anticancer agents
may induce liver damage. Therefore, in order to achieve bet-
ter targeting and lower toxicity, as well as assure the con-
tinuous interaction of liposomes with the target tissue, a
longer blood circulation time may be necessary. The cleav-
able PEG2000-CHEMS linked via ester bond and galactosy-
lated lipid was used to modify DOX contained liposome
(PEG-GalL). Compared with conventional PEGylated lipo-
somes, the PEG-GalL showed unique “sustained targeting”
characterized by slowed target releasing DOX and thereby
reduced peak concentrations in the liver. Moreover, the
inhibitory rate of PEG-GalL DOX to H22 tumors was
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significantly higher than that of conventional PEGylated lipo-
somes, (Wang et al., 2010b). The esterase cleavable PEG-lipid
conjugations are not only applicable to stabilizing vesicles
and prolonging their circulation time, but also providing
more efficient release of contents by the esterase-catalyzed
dePEGylation. The link is via their ester bonds for the vesicle
modifications, so the PEG-lipids can be cleaved by esterases.
Ester linkages between the PEG and lipid anchors allow the
contents to release more rapidly under suitable conditions.
PEG cleavage is related to the several factors. On the one
hand, PEG cleavage decreased as increase in the molar ratios
of the PEG-lipids to vesicles. On the other hand, PEG cleav-
age gradually increased with the increase of serum concen-
tration. However, related research reported that repeated
injection of mPEG-CHEMS liposomes would lead to a minor
ABC phenomenon which was accompanied by a slight
increase in liver uptake (Dams et al., 2000; Laverman et al.,
2001). Studies have shown that the cleavable mPEG-Hz-
CHEMS derivatives could lessen or eliminate the ABC phe-
nomenon which is induced by repeated injection of
PEGylated liposomes (Chen et al., 2011).

Peptide bond and its application

The small peptide fragments used in the connection of PEG
and lipid have the advantages of simple synthesis and
easy implement. Because these fragments are easily
degraded by some endogenous substances in the body, cut-
ting off this chain of PEG segment from carriers can be per-
formed in vivo. After surface modification with these
peptides-linked PEG, the liposomes cannot only achieve the

goal of long cycle in vivo, but also increase drug gathering in
cancerous tissue. To achieve a tumor-specific cleavable PEG
system, the enzymes specifically expressed in a tumor are
focused on, such as MMPs. MMPs are highly expressed in
tumor cells and distributed in the extracellular space, but
their expression levels are low in normal cells (Kim et al.,
2001). Normally, the concentration of MMPs in the extracellu-
lar supernatant is approximately 20 ng/ml, which is sufficient
to trigger PEG cleavage (Hatakeyama et al., 2009). Therefore,
the PEG-peptide-lipid conjugates with MMP substrate peptide
not only extended the systemic circulation time and promote
the accumulation of liposome in tumor cells by EPR effect,
but also solved the dilemma of PEG during drug delivery and
cellular transfection (Hatakeyama et al., 2007). In order to
overcome the limitations of cellular absorption and subse-
quent endosomal escape of multifunctional envelope-type
nano device (MEND) after PEGylation, Hatakeyama et al.
developed a PEG-peptide-DOPE (PPD) which can be cleaved
in the MMPs rich environment (Hatakeyama et al., 2009). The
in vitro study revealed that compared to a conventional PEG-
modified MEND, PPD modification improved both cellular
uptake and endosomal escape. During systemic administra-
tion, the optimized PPD-MEND resulted in an approximately
70% silencing activity in tumors as compared to non-treat-
ment (Hatakeyama et al., 2011). The cleavage mechanism of
the nanocarriers containing PPD is shown Figure 4.

Disulfide bond and its application

The PEG shielding layer will lead to significant steric hin-
drance, which will negatively affect cell uptake and

Figure 4. The cleavage mechanism of liposomes containing PPD (PEG-peptide-lipids).
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intracellular distribution of nanocarriers. This unexpected
effect would impair the biological effectiveness of the
encapsulated payload. In order to solve this problem, one
of the alternatives is to couple the disulfide bond to PEG,
so as to construct a disulfide-bridged cleavable PEGylation.
This linkage was first used to bridge PEGylated proteins,
by which their advanced structure and biological activity
are retained (Shaunak et al., 2006). Due to the fact that
intracellular glutathione (GSH) concentration is nearly three
orders of magnitude higher than that outside the cell, the
disulfide bond can be selectively cleaved in the tumor
environment by the significant concentration gradient of
GSH, especially in the intracellular region (Dong, et al.,
2015). In addition, extracellular low concentration of GSH
make the disulfide-linked nanocarriers highly stable before
their internalization in the target cells. (Wu et al., 2012). In
the early study of disulfide bond, To prepare reduction-
triggered liposomes, Oumzil et al. synthesized a PEG
detachable nucleotide lipid (DOU-SS-PEG2000) starting from
HS-PEG-OMe and uridine. By adding dithiothreitol (DTT) as
reducing reagent, the disulfide bond of the PEG chain was
cleaved and thus exposed the cationic surface of the lipo-
some (Oumzil et al., 2011). Compared to the common
PEGylated ones, DOU-SS-PEG2000-modified liposomes
showed improved internalization efficiency in ovarian can-
cer cells. To prepare targetable sterically stabilized immu-
noliposomes (SIL) to CD34þ cells, Mercada et al. coupling
anti-CD34 My10 mAb to PEG-liposomes containing func-
tionalized PEG-lipid anchor via a cleavable disulfide bond.
The disulfide bond was stable in cell culture medium (10%
of fetal calf serum) during 8 h and cell-bound SIL can be
released from cells by treatment with DTT as reducing
agent under mild conditions (Mercadal et al., 2000). For
the detachable coating, lipid of dioleoylphosphatidyletha-
nolamine (DOPE) and PEG chain were connected via a
disulfide linkage. When adding a reducing agent such as
L-cysteine, the thiolytic cleavable spacer (PEG-S-S-DOPE)
was cleaved to expose the membrane-permeable ligand
(octaarginine) on the liposome surface and thereby intern-
alization of the liposomes was significantly facilitated.
(Maeda & Fujimoto, 2006). (seen in Figure 5) Gene trans-
fection efficiency was affected by elective intracellular
uptake and sufficient circulation time. It has been found
that siRNA is readily degraded by ubiquitous RNases and is
not retained in vivo for long periods of time (Haupenthal
et al., 2006). PEGylation of gene vector has been proven

to be one of the most effective ways to prolong in vivo
circulation time of the genetic payload. In order to meet
the special needs of gene transfection, Cai et al. developed
PEG-detachable catiomers, which is composed of mPEG-SS-
PLL/DNA complexes, as non-viral gene vectors to detach
the PEG layers responsive to the intracellular reducing
environment (Cai et al., 2011, 2012). In vivo study, these
complexes showed high transfection efficiency in 293 T and
Hela cells under optimized conditions. It will indicate the
direction of the clinical application of nonviral gene
delivery.

As liposomes are mainly composed of natural chemical
components, they can control the retention of drugs,
improve the life cycle of blood circulation, and reduce the
toxicity of many drugs. Therefore, the liposomal delivery
systems have attracted much attentions (Maeda &
Fujimoto, 2006; Sawant et al., 2006; Torchilin, 2007; Wang
& Thanou, 2010). Recently, researchers have combined the
advantages of membrane-permeable ligands (such as
octaarginine) with cleavable PEG-lipids (Mei et al., 2014).
Adding a reducing agent such as L-cysteine can make the
PEG chains rupture and thus releasing R8 (arginine
octamer). PEG-modified carriers having a particle size less
than 100 nm can cross the endothelial system and accumu-
late in the tumor, without being RES uptake. When the lip-
osomes are internalized into the cytosol, disulfide bonds
can be further cleaved by the cellular glutathione, thereby
rupturing liposomes and releasing the drug. In order to
promote the intracellular delivery of drugs and genes, new
PEG-lipid containing the cleavable coating and the hidden
membrane-permeable moieties has been reported., (Maeda
and Fujimoto, 2006). Among these carriers, TAT peptide is
inserted into the PEG chain which can increase the uptake
rate of the cells (Torchilin et al., 2001, 2003; Fretz et al.,
2004; Vandenbroucke et al., 2007). The collaborative appli-
cations of TAT peptide and PEG in vitro and in vivo have
been confirmed by many literatures for improving delivery
capability of liposomes. (Maeda et al., 2004; Kuai et al.,
2010; Pappalardo et al., 2009; Torchilin, 2008). For example,
incorporation of cleavable PEG5000 into TAT peptide-conju-
gated stealth liposome (TAT-SL) led to much more tumor
accumulation and less liver distribution compared with
TAT-SL. In the presence of Cys, the delivery efficiency of
TAT-SL enhanced 30% than the SL control. It is a quite
promising drug delivery system for cancer diagnosis and
treatment in the future (Kuai et al., 2011).

Figure 5. The cleavage mechanism of disulfide bonds-linked PEGylated liposomes.
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Conclusions

The “PEG Dilemma” is one of the biggest problems currently
plaguing the development of drug delivery systems. At pre-
sent, there are many ways to solve this problem from various
angles. This article summarizes the various applications of the
PEG derivatives. The cleavable PEG-lipids overcome the short-
comings of traditional PEGylation and make a big step forward
in the treatment of cancer. Several kinds of PEG-lipids are intro-
duced, and the trigger mechanism as well as their applications
were briefly introduced. Each cleavable PEG derivative has its
own advantages and disadvantages. The mechanism of action
in vivo needs further study. But from simple assays in vitro to
study the process of cells, the triggering mechanism has
become increasingly clear. Recently, more and more research
has focused on the joint cleavable bonds and other ligands.
There are also considerable number of reports on combined
application of cleavable PEG and cell membrane permeable
peptide, which have achieved satisfactory results and thereby
broadening the scope of application. Nanocomposites com-
prising cleavable bonds may become the most effective drug
delivery system for cancer treatment in the future. The cleav-
able PEG-lipids are summarized in Table 1, which may be help-
ful to the study of the nanocomposites in the future.
Comparing the cleavable PEG derivatives listed above, we can
draw a conclusion. Most researchers chose pH-sensitive deriva-
tives, which may be related to the microenvironment of cancer
cells. In the low pH value of tumor microenvironment, hydra-
zone bond or vinyl ether bond can be broken more easily. The
cleavable PEG-nanocarriers may bring a promising strategy for
cancer treatment in future.

Expectation

Reviewing the above literatures, we can see that PEGylation
strategy has undergone the following three steps: simple
PEG surface modification, cleavable PEG conjugation, and
joint applications of multiple breakable PEG derivatives. In
this paper, we introduce the species of PEG-lipid derivatives
as well as their triggering mechanism and applications.
Cleavable PEGylation is a strategy that can overcome the
“PEG dilemma” in efficient drug delivery. With the develop-
ment of the research, there will be more and more new
cleavable PEG derivatives to be developed. At present, many
researchers have focused on the combined use of PEG and
target ligands. These may bring new ideas for the future and
provide more candidates for cancer treatment in the future.
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