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Abstract: Cell-based therapies have the potential to revolutionize current treatments for diseases with
high prevalence and related economic and social burden. Unfortunately, clinical trials have made
only modest improvements in restoring normal function to degenerating tissues. This limitation
is due, at least in part, to the death of transplanted cells within a few hours after transplant due
to a combination of mechanical, cellular, and host factors. In particular, mechanical stress during
implantation, extracellular matrix loss upon delivery, nutrient and oxygen deprivation at the recipient
site, and host inflammatory response are detrimental factors limiting long-term transplanted cell
survival. The beneficial effect of cell therapy for regenerative medicine ultimately depends on
the number of administered cells reaching the target tissue, their viability, and their promotion of
tissue regeneration. Therefore, strategies aiming at improving viable cell engraftment are crucial for
regenerative medicine. Here we review the major factors that hamper successful cell engraftment
and the strategies that have been studied to enhance the beneficial effects of cell therapy. Moreover,
we provide a perspective on whether mesenchymal stromal cell-derived extracellular vesicle delivery,
as a cell-free regenerative approach, may circumvent current cell therapy limitations.

Keywords: anoikis; cell survival; cell therapy; cell transplantation; extracellular vesicles; hypoxia;
mesenchymal stromal cells; regenerative medicine

1. Introduction

Preclinical investigations have encouraged the development of novel cell therapy approaches to
promote tissue regeneration [1]. However, translational studies have demonstrated mixed results [2].
The moderate benefit seen in clinical trials is, at least in part, due to the limited viability of the
transplanted cells, regardless of the origin of the donor cells and the degenerative disease under
investigation. In fact, up to 99% of grafted cells may die within the first few hours after transplantation,
due to the rigors of the microenvironment they encounter upon transplant [3,4]. The cause of rapid
death of the transplanted cells is likely to be a combination of different environmental stresses cells
face both before and after transplantation and implantation.

Here we review the major obstacles to long-term cell survival at the implantation site that are
slowing progress and translational clinical research in the cell therapy field. Moreover, we discuss
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the multiple strategies that have been used to attempt to enhance cell therapy’s beneficial effects in
regenerative medicine, with particular emphasis on mesenchymal stromal cell therapy.

2. Challenges to Successful Mesenchymal Stromal Cell Transplantation

Nearly 600 cell therapy clinical studies involving mesenchymal stromal cells (MSCs) are recorded
in the National Institutes of Health (NIH) clinical trial registry (Available online: www.clinicaltrials.
gov). MSCs have been used for their ability to promote tissue repair and wound healing [5],
for immunomodulation [6], and as a vehicle for targeted cancer therapies for their tumor homing
properties [7–9].

Age and pathological conditions are among the factors affecting the therapeutic potential of
cell therapy [10]. In fact, aging and disease are linked to perturbations at the genomic, epigenomic,
and proteomic levels [11], which negatively influence MSCs’ functional activities [12]. Cell proliferation
and differentiation, paracrine signaling, and the ability to promote injury repair can be deteriorated
in MSCs isolated from older subjects, in patients affected by diabetes, obesity, and cardiovascular
disorders [10,13–15]. Equally, age and disease cause changes in the recipient site in which the cells
are administered, possibly attenuating the efficacy of both autologous and allogeneic cell based
therapies [16].

The limited success of the majority of the completed protocols underscores the need to minimize
massive MSC death after transplant for improving the efficacy of cell transplantation procedures.
During the transplantation procedure, MSCs undergo different processes that can potentially
affect their performance and be responsible for the high attrition of donor cells upon transplant.
In particular, transplanted cell survival may be affected by: (1) anoikis, due to the need to detach
anchorage-dependent cells from their substrate for injection and to cellular tensegrity loss after
implantation; (2) mechanical stress during the implantation procedure; (3) oxygen and nutrient
deprivation, due to low diffusion into poorly vascularized environments; and (4) inflammation-related
factors, linked to the possible activation of the host immune response.

2.1. Cell–Extracellular Matrix Interactions

Clinical applications of MSCs are based on single cell suspension, in which interactions between
cells and the extracellular matrix (ECM) are lost and adhesion signals are downregulated with
consequent apoptosis, better defined as anoikis. Such cell death could be limited by preserving
cell–cell–ECM contact, as demonstrated by He and colleagues [17]. In this work, embryonic stem
cells cultured in Matrigel regained the adhesion molecules, illustrating a long-term engraftment in
a murine myocardial ischemia model. These results suggest that ECM not only acts as a spatial and
mechanical scaffold but also supports cell adhesion and engraftment. Moreover, there is evidence that
cell behavior is the result of a network of extracellular signals, where ECM-released soluble factors can
play a pivotal role in either self-renewal or lineage commitment [18–20].

Cross-talk among cells, growth factors, and ECM is required for successful tissue regeneration.
Manipulating the biological signals produced by ECM mimicking the natural regenerative process
could improve the outcome of stem-cell-based therapy, as demonstrated by using hydrogel ECM [21]
or adding growth factors with high affinity for ECM [22,23]. In these studies, wound healing was
enhanced (see also Section 3.1).

2.2. Mechanical Stress

In most cell therapy procedures, cells are re-suspended into a low-viscosity solution, such as saline
solution, and then administered topically or systemically using a syringe needle or a catheter [24].
During injection cells are exposed to mechanical stresses, in particular to stretching and shearing
forces generated by the extensional and linear flow into the syringe needle or catheter, causing cellular
membrane disruption. Some studies estimated that up to 40% of cells are damaged during the injection
procedure [25], while others reported a negligible effect [26]. This discrepancy may depend on the cell
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type and on the method of analysis [27]. Nonetheless, it is conceivable that injected cell viability and
function could be significantly improved by optimization of the delivery protocols [28].

2.3. Hypoxia and Nutritional Stress

Administration site is of critical importance for the subsequent survival of transplanted cells.
Cell based therapies are under investigation for the treatment of pathological conditions such as
cardiovascular diseases and wound healing. Consequently, transplantation sites are often characterized
by a pro-inflammatory status, reduced pH, and oxidative stress, caused both by inflammation and by
the reduction of the arterial blood supply due to damage, constriction, or blocking of blood vessels.

One of the major reasons for early implanted cell death is the lack of oxygenation resulting from
delayed revascularization at the site of implantation. Oxygen passive diffusion supports cells at
a distance of up to 200 microns from the oxygen source [29]. The usual technique of implantation,
consisting of direct injection into a damaged tissue of the maximal number of cells delivered in the
minimal number of sites to reduce trauma, results in prolonged exposure of the transplanted cells to
hypoxia, further exacerbated by poor oxygen diffusion within the injected cell clump. Transplanted
cells are hence subjected to a dramatic transition from the in vitro culture condition, generally
characterized by ~20% O2, to the anoxic state they face upon transplant [30]. Analogously, after
implantation and before vascularization of the transplant may occur, implanted cells rely only on
diffusion for nutrient support. Therefore, implanted cells face severe oxidative, acidic, and nutritional
stresses upon transplant [31].

The benefits of cell transplantation could be improved by modifying donor cells before transplant
to enhance their resistance to hypoxic stress (donor cell preconditioning, refer to Section 3.3) [32,33].
Alternatively, the harsh condition at the site of injection can be adapted in order to support transplanted
cell survival (host tissue preconditioning, see Section 3.4) [34].

2.4. Immune Response

The vast majority of cell-based therapies apply MSCs, mainly derived from either bone marrow
or adipose tissue. The intrinsic low immunogenicity of MSCs, in addition to their immunosuppressive
properties, results in reduced immune response after implantation of both autologous and allogeneic
MSCs. Nonetheless, to achieve clinically relevant numbers of cells suitable for cell therapy procedures
in humans, MSCs need to be expanded in vitro before transplantation. The use of xenobiotic
components in tissue culture medium augments the risk of antigen contaminations in cell preparations,
with consequent potential activation of the innate immune response leading to acute rejection of
transplanted cells [35]. Moreover, MSC systemic administration may trigger an instant blood-mediated
inflammatory reaction [36] and complement activation [37] that compromise donor cell survival and
function after infusion. Allogeneic MSCs promote a specific cytotoxic T cell response in vitro and
the production of antibodies triggering complement-mediated lysis in vivo [38]. In addition, both
allogeneic and autologous MSCs can be lysed by activated NK cells [39].

3. Strategies for Successful Stem Cell Transplantation

How cell therapy exerts its beneficial effects in regenerative medicine procedures has not
yet been precisely elucidated. It is likely that transplanted cells promote tissue regeneration
through a combination of tissue repopulation and paracrine actions. In any case, the therapeutic
effect of cell therapy can be improved by increasing the number of transplanted cells remaining
viable and consequently able to promote tissue regeneration at the site of implantation. Therefore,
several strategies aiming at counteracting the stress suffered by the cells during the transplantation
procedures have been developed [40], as schematically represented in Figure 1 and reviewed in the
following sections.
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both by exogenous and resident cells [42,43]. Using material-based approaches, it is possible to 
protect cells from death due to anoikis or inflammatory cell attack, and modulate MSCs’ 
regeneration abilities. The choice of specific carriers can also strongly affect the performance of 
MSCs in some applications, because they can help direct the multipotent stromal cell fate towards 
the desired phenotype [44]. Recently, Ansari and colleagues demonstrated that both the porosity 
and the elasticity of the hydrogel biomaterial play an important role in dental-derived 
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resident liver stem cells [46]. 

Biologic scaffolds, such as decellularized tissues, can also enhance MSC engraftment and 
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incorporate or mimic ECM function and enhance the survival and differentiation of transplanted 
cells. In bone regeneration, developing a smooth and open pore scaffold is necessary to enhance 
MSC adhesion, survival, and function [47,48]. Moreover, biomaterials, in synergy with implanted 
MSCs, can also promote angiogenesis and enhance tissue-resident progenitor cells proliferation and 
regeneration by cytokine expression with subsequent activation of macrophages, fibroblasts, and 
smooth muscle cells [49]. 

3.1.1. Cell-Assisted Lipotransfer 

Cell-assisted lipotransfer, consisting of fat grafts supplementation with adipose tissue-derived 
MSCs [50] before transplantation, has been developed to promote long-term graft retention in 
regenerative procedures [51]. As MSCs support adipose tissue graft, mixing cells with lipoaspirate 
might restore a more supporting niche promoting cell survival [52]. 

Figure 1. Schematic representation of the major factors limiting cell survival during the transplantation
procedure and possible strategies to improve cell-based therapies. Abbreviations: ECM: extracellular
matrix; ROS: reactive oxygen species.

3.1. Tissue Engineering: Co-Delivery of Extracellular Matrix Molecules

Interventions and preconditioning enhancing transplanted cell survival and improving cell
retention, include co-delivery of extracellular matrix molecules [41]. The tissue engineering approach
aims to enhance the survival of exogenous cells, allowing their homing and adaptation before starting
their regenerative activity in the transplanted organ. Biomaterial approaches use suitable carriers,
serving as synthetic analogs or biologic-derived ECM, to provide a substrate for MSC adhesion,
to control cell localization in vivo, and to serve as a scaffold for tissue repair exerted both by exogenous
and resident cells [42,43]. Using material-based approaches, it is possible to protect cells from death due
to anoikis or inflammatory cell attack, and modulate MSCs’ regeneration abilities. The choice of specific
carriers can also strongly affect the performance of MSCs in some applications, because they can help
direct the multipotent stromal cell fate towards the desired phenotype [44]. Recently, Ansari and
colleagues demonstrated that both the porosity and the elasticity of the hydrogel biomaterial play an
important role in dental-derived MSC–immune cell interplay and, therefore, in MSC viability and
differentiation. In their work, hydrogel physical properties and microarchitecture regulated the in vivo
permeation of pro-inflammatory cytokines and T-lymphocytes, as well as the osteogenic differentiation
of MSCs [45]. Similarly, it has been demonstrated that substrate stiffness affects the differentiation
process of resident liver stem cells [46].

Biologic scaffolds, such as decellularized tissues, can also enhance MSC engraftment and
transplant efficiency by providing a more physiological environment for the cells. Biomaterials
can incorporate or mimic ECM function and enhance the survival and differentiation of transplanted
cells. In bone regeneration, developing a smooth and open pore scaffold is necessary to enhance
MSC adhesion, survival, and function [47,48]. Moreover, biomaterials, in synergy with implanted
MSCs, can also promote angiogenesis and enhance tissue-resident progenitor cells proliferation
and regeneration by cytokine expression with subsequent activation of macrophages, fibroblasts,
and smooth muscle cells [49].

Cell-Assisted Lipotransfer

Cell-assisted lipotransfer, consisting of fat grafts supplementation with adipose tissue-derived
MSCs [50] before transplantation, has been developed to promote long-term graft retention in
regenerative procedures [51]. As MSCs support adipose tissue graft, mixing cells with lipoaspirate
might restore a more supporting niche promoting cell survival [52].
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3.2. Hydrogel Microcarriers to Reduce Mechanical Stress During Cell Administration

Significant MSC loss has been associated with syringe-based administration, due to mechanical
stress leading to cell membrane damage, induction of apoptosis, and retention in the delivery
device [27]. Moreover, during the procedure, cells may undergo to phenotypic expression changes.
Natural and synthetic hydrogels may help to increase the viscosity of the cell suspension during
injection, reducing the mechanical forces applied in the procedure [53,54]. An alternative approach to
improve cell viability upon injection is represented by cell encapsidation into hydrogels to shield them
and reduce damage [25,55].

3.3. Preconditioning to Improve Cell Resistance to Stressful Stimuli

Several strategies for preconditioning have been developed to make transplanted cells more
resistant to death stimuli following transplantation [56–58]. One strategy consists in promoting a broad
pro-survival response, through cell exposure to a physical or environmental shock, such as high
temperature, hypoxia, anoxia, acidosis, or nutrient deprivation [59] (Table 1). In fact, exposure to
sub-lethal conditions allows cells to gradually adapt to changes in their environment, mounting
an anti-stress response that activates pro-survival pathways [60]. A more specific approach uses
pharmacological modulators of targeted molecules to confer cytoprotective function [61] (Table 2).

Table 1. Methods of physical and environmental cell preconditioning.

Conditioning Method Reference

Thermal [62,63]
Hypoxic [32,64]
Anoxic [65]
Acidic [66]

Nutrient deprivation [67]

3.3.1. Thermal Preconditioning

Heat shock, consisting of incubating the cells at 42 ◦C for 1–2 h before transplant, has been proven
to promote cell survival in transplantation procedures performed in rodents [62,63,68]. This effect
is associated with an induction of the expression of heat shock proteins that directly counteract the
increased levels of unfolded or denatured proteins working as molecular chaperones and indirectly
promoting cell survival by inhibiting apoptotic pathways. Mild heat exposure confers to the cells
the transient ability to not only tolerate otherwise lethal temperature elevations, but also to be more
resistant to other stress stimuli such as oxidative stress and nutrient withdrawal.

3.3.2. Hypoxic Preconditioning

During the transplantation procedure, cells are exposed to different O2 concentrations. MSCs for
clinical procedures are conveniently isolated either from the bone marrow or adipose tissue. Oxygen
tension in the bone marrow MSC niche is approximately 1–7%, while in adipose tissue it is in the
10–15% range [30]. The first stress occurs when cells are expanded in vitro, generally cultured in
~21% O2 atmosphere. Then, after transplantation, MSCs face a hypoxic/anoxic microenvironment
due to poor vascularization at the transplant site. Thus, it has been suggested that mitigation of
the oxygen shock may enhance the efficacy of hematopoietic stem cell transplant [69]. Consistently,
strategies aimed at promoting defense mechanisms against oxidative stress have been developed [70].
For instance, cultivation of MSCs in low oxygen (0.5–3%) may promote increased engraftment via the
activation of anti-apoptotic genes including Akt, Bcl-2, and HIF-1α and the upregulation of chemokine
receptors such as CXCR4 and CX3CR1 [32,64,71–73]. Even anoxic preconditioning has been considered
to promote the survival of transplanted MSCs [65]. In addition, preconditioning of MSCs with a low
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concentration of H2O2 for a short period has been shown to have a protective effect against more
severe and prolonged oxidative stress [74].

Table 2. Pharmacologic mesenchymal cell preconditioning.

Drug Name Drug Function Reference

Trimetazidine Cytoprotective, anti-ischemic [78,79]
Isoflurane Cytoprotective [80]

Erythropoietin Anti-apoptotic [77]
Deferoxamine: HIF-1α stabilizer [81,82]

Dimethyloxalylglycine HIF-1α stabilizer [83]
Antimycin Mitochondrial inhibitor [75]
Oxytocin Anti-oxidant [84]
Celastrol Anti-oxidant [85]

Melatonin Anti-oxidant [86,87]
Nicorandil K+ channel activator [88]
Diazoxide K+ channel activator [76]

Lipopolysaccharide TRL4 agonist [89]
Pioglitazone PPAR-γ agonists [90]

NaHS H2S donor [91]

Abbreviations: HIF-1α: hypoxia inducible factor; PPRA-γ: peroxisome proliferator-activated receptor;
TRL4: toll-like receptor.

3.3.3. Acidic Preconditioning

Ex vivo preconditioning of bone marrow-derived ckit+ cells in an acidic (pH 7.0) medium for
24 h prior to transplant was associated with induction of stromal-derived factor-1 (SDF-1) expression,
leading to enhancement of therapeutic potential in a mouse model of hindlimb ischemia [66].

3.3.4. Nutrient Deprivation Preconditioning

Cell therapy procedures typically require the administration of a large number of cells [3].
Therefore, before transplantation, MSCs need to be expanded in vitro. To promote cell proliferation
and metabolism in vitro, the culture media contain amino acids, vitamins, inorganic salts, glucose,
and serum. However, the microenvironment cells encounter after implantation is characterized by
poor nutrient support. Diminishing the energy supply before transplant may help cells to gradually
adapt to the low energy environment they face after transplant. In fact, reducing metabolic demand
by cultivating MSCs in a serum-depleted medium before transplant has been proven to be a simple
strategy to induce cellular quiescence [67]. Quiescent MSCs are able to withstand prolonged periods
of hypoxia and glucose deprivation in vitro and have enhanced the engraftment rate in vivo after
subcutaneous implantation in mice [67].

3.3.5. Pharmacologic Cell Preconditioning

Pharmacologic preconditioning of cells before transplantation is a promising strategy to curtail
the massive death of cells after transplantation [61]. Several substances targeting different biological
pathways have been used to treat cells before transplantation, in order to increment cell survival
in vitro and in vivo. Articles that demonstrate an enhanced cell engraftment in vivo in numerous
animal models by different pharmacologic preconditioning strategies have been included in Table 2.
Some drugs, such as antioxidants and HIF-1α stabilizers, help cells to cope with increased oxidative
stress. Mitochondrial electron transport inhibitors, such as antimycin, have been used to block
the activation of mitochondrial death pathways [75]. Other pharmacologic compounds, such as
anti-ischemic drugs and K+ channel activators [76], have been used to mimic ischemic conditioning.
The use of anti-apoptotic drugs has also been described to promote cell survival [77].
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3.4. Tissue Preconditioning to Make Recipient Site More Receptive to Donor Cells

Tissue preconditioning is a method complementary to donor cell preconditioning. In tissue
preconditioning the recipient site of the transplant, instead of the donor cells, is treated before cell
administration in order to make the environment more favorable for engraftment [34]. Accordingly,
pharmacological modulation by vasodilatory drugs in the recipient site of transplant has been used to
enhance therapeutic delivery of adipose tissue-derived MSCs in a mouse model of cardiac repair [92].
Environmental tissue preconditioning can also be performed using physical methods such as the
application of a high dose of ultrasounds to the recipient site. For instance, in a clinical trial of
bone marrow-derived mononuclear cells transplant in patients with heart failure, significant, albeit
modest, benefits have been described when pretreating the recipient site with a low-energy shock
wave treatment to promote transplanted cell homing [93]. Viral-mediated gene transfer has also been
used to reduce the harsh microenvironment at the site of transplantation, promoting angiogenesis
before cell transplant [94]. Moreover, reversible ischemia and reperfusion injury in the liver [95] and
heart [96] could increase engraftment, enhancing homing of transplanted MSCs into the ischemic zone.

3.5. Cell Co-Transplantation with Active Biomaterials for Oxidative Stress Protection

Cell encapsidation into an injectable anti-oxidant hydrogel [97,98] and the use of hydrogels
producing oxygen in a controlled way [99] have been recently designed and proven to reduce cell
necrosis induced by hypoxia. This type of biomaterial can, therefore, be used to improve the hostile
hypoxic conditions for cell therapy procedures.

3.6. Genetic Engineering to Improve Cell Survival

MSCs can be efficiently transduced using both viral and non-viral gene transfer methods [100,101].
Ex vivo genetic manipulation represents an option to reinforce donor cells before transplant [102].
For instance, gene transfer of pro-survival or anti-apoptotic genes, such as protein kinase B (Akt/PBK),
B-cell lymphoma-2 (Bcl-2), survivin, and hepatocyte growth factor (HGF) enhanced the survival of MSC
in vivo (Table 3). Also, concomitant expression of a pro-survival gene (Akt) and a pro-angiogenic gene
(Ang-1) has been proven to promote enhanced cell survival in a mouse model of cardiac injury [103].
Moreover, gene therapy vehicles have been used to promote the expression of some proteins involved in
cell adaptation to environmental stress such as heat shock protein 27 [104], or superoxide dismutase 2 to
improve oxidative stress resistance [105]. Clearly, both the short- and long-term effects of such genetic
manipulations should be carefully evaluated in view of a possibly increased risk of tumorigenesis.

In order to counteract anoikis triggered by extracellular matrix detachment, transplanted cells
have been engineered to express genes promoting cell adhesion such as transglutaminase [106] and
integrin-linked kinase [107,108].

The therapeutic effect of cell-based therapy for regenerative disorders depends on the number
of administered cells reaching the target tissue [109]. MSCs express low levels of molecules such as
the homing factor SDF-1 and the CXCR4 and CCR1 receptors, which play a pivotal role in homing.
Therefore, strategies to promote the expression in donor cells of proteins involved in homing have
been used to enhance the therapeutic efficacy of cell-based therapies [110–113].

Also, miRNA overexpression has been described as promoting MSCs survival [114–116]. In fact,
a single miRNA is able to regulate several hundred mRNAs, modulating the gene networks involved
in most of the cellular process, including cell survival.

Taken together, several studies have demonstrated that a combination of gene and cell therapy
may represent a strategic development in regenerative medicine (Table 3), although confirmation in
the clinical setting is required [100].
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Table 3. Genetic engineering approach.

Cell Type Gene Name Gene Function Reference

MSC

Akt Anti-apoptotic [117]
HGF Anti-apoptotic [118]

Akt and Ang-1 Anti-apoptotic/angiogenesis [103]
FGF-2 Pro-survival [119]
Hsp27 Pro-survival [104]

Survivin Pro-survival [120]
HO-1 Anti-oxidant [121]
SOD-2 Anti-oxidant [105]

tTG Promote cell adhesion [106]
CCR-1 Promote cell homing [112]
CXCR4 Promote cell homing [113]
SDF-1 Promote cell homing [110]
TERT Telomerase [122]

miR-21, -24, -221 Pro-survival [115]
miR-133a Pro-survival [114]
miR-210 Pro-survival [116]

CM; SMCs; HEP Bcl-2 Anti-apoptotic [33,123,124]

SMC IGF-1 Pro-survival [125]

EPC ILK-1 Promote cell adhesion [107]

CPC Pim-1 Anti-apoptotic [126]

Abbreviations: Akt: protein kinase B; Ang-1: angiotensin; CM: cardiomyoblasts; CCR-1: C–C chemokine receptor
type 1; CPCs: cardiac progenitor cells; CXCR4: CXC chemokine receptor 4; EPCs: endothelial progenitor cells;
FGF-2: fibroblast growth factor; HEP: hepatocytes; HGF: hepatocyte growth factor; Hsp: heat-shock protein;
IGF-1 insulin growth factor-1; ILK-1: integrin-linked kinase; OH-1: heme oxygenase; SDF-1: stromal cell-derived
factor-1; SMCs: smooth muscle cells; SOD-2: superoxide dismutase; TERT: telomerase; tTG: tissue transglutaminase.

3.7. Providing Nutrient Support to Transplanted Cells

After transplantation, MSCs encounter a progressive and extensive depletion of both oxygen
and nutrients. MSCs can survive severe and prolonged hypoxia, as long as an adequate glucose
supply is provided [31]. Therefore, supplying nutrients to transplanted cells may reduce the serious
metabolic deficit that hinders successful engraftment. As multiple processes seem to be responsible for
transplanted cell death, simultaneous targeting of key components of cell survival pathways may be
needed. For instance, a pro-survival cocktail containing several factors, including Matrigel to prevent
anoikis, inhibitors of mitochondrial death pathways, a K+ channel activator, IGF-1, and a caspase
inhibitor, has been used to limit cardiomyocyte death after transplantation [127]. In a similar manner,
a better engraftment of myogenically converted dermal fibroblasts was obtained using a cocktail
containing a combination of pro-survival and anti-apoptotic agents [128]. An alternative approach is
represented by co-transplantation of MSCs and platelet-rich plasma, already used in clinical therapy for
its high content of growth factors and secreted proteins able to induce the recruitment and proliferation
of cells involved in wound healing and tissue regeneration [129].

Also, when loaded into scaffolds, transplanted cells exhibit poor vascularization. Consequently,
they are exposed to gradiented nutrient concentrations, mostly limited to the ones present within the
scaffold during implantation. Therefore, biomaterials able to sequester and release exogenously added
and endogenously produced growth factors have been developed to make trophic support available to
transplanted cells [130].

3.8. Ex Vivo Expansion in Xeno-Free Media to Reduce the Risk of Immunological Reaction

Although MSCs do not seem to be immunogenic per se, cells expanded in culture media containing
xenobiotics may produce immune reactions in patients receiving cell transplant, due to the presence of
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immunogenic contaminations [131]. Therefore, culture conditions need to be optimized, developing
alternative culture protocols for in vitro MSCs expansion in xeno-free media before transplant [35].

3.9. Counteracting Complementary Activation

Systemic administration of MSCs has been associated with innate immune response mediated by
complement activation that may lead to serious donor cell damage and rejection [36,37]. Therefore,
preventing complement induction could improve transplanted cell survival. Accordingly, treatments
with complement inhibitors, such as factor H or heparin, have been proposed to locally reduce
complement activation on MSCs surface [132,133]. As an alternative approach, transfer into MSCs of
the gene encoding for the human cytomegalovirus US2 protein, which is involved in the evasion of
cellular antiviral immunity, resulted in protection against lysis induced by complement [134].

3.10. The Alternative Approach of Cell-Free Therapy

MSCs exert many of their effects via paracrine signaling [135–139]. Therefore, several investigators
are exploring the possibility of replacing the cells with their secretome for therapeutic applications [140].
Bioactive signals produced by MSCs can be secreted as soluble molecules or packed into more
complex structures named extracellular vesicles (EVs). EVs are a heterogeneous family of nanoparticles
composed of a lipid bilayer and enclosing cytoplasmic components [141–143]. EVs are able to transmit
signals to target cells by interacting at the cell surface, by internalization, or by fusion with the cell
membrane. The EV cargo, including proteins, nucleic acids and lipids, is influenced by cell culture
conditions and can be engineered to enhance the expression of desired activities or introduce specific
effector molecules [144–147].

MSC-derived EVs can reproduce some immunomodulatory functions exhibited by their cells of
origin, and more recent data suggest that these particles may even exert some distinct and possibly
more reproducible immune regulatory effects. In summary, MSC-EVs inhibit both the proliferation and
the differentiation of activated B cells, suppressing antibody production [148], and induce the apoptosis
of activated T cells while increasing the proliferation of regulatory T cells (Treg) [149]. MSC-EVs also
suppress innate immunity, including the activation of NK cells [150] and monocytes [151]. Several
preclinical studies in animal models showed that MSC-EVs convey many of the pro-regenerative
effects exhibited by their cells of origin. MSC-EVs were able to accelerate skin wound healing [151],
improve kidney histology and function following a variety of injuries [152,153], reduce infarct area in
ischemic cardiac injury [154,155], and improve brain function following hypoxic-ischemic injury [156].

Since EVs are efficient conveyors of molecular signals that can target specific cell populations, they
are being explored as drug carriers for the treatment of cancer and several other diseases [157–159].
In particular, the EVs ability to transfer functional mRNA and microRNA allows us to manipulate
both the phenotype and the metabolic activity of recipient cells [160,161]. Such novel biological tools
could thus be exploited to improve the viability and direct the function of MSCs by conditioning the
cells before transplantation.

Some recent reviews discuss in more detail the biology and possible clinical applications of
MSC-EVs [162–166]. However, several hurdles need to be addressed in the clinical translation of this
potentially new therapeutic tool. First, the classification of the cell secretome as a whole should be
defined at the regulatory level. Second, the method of administration is critical, since the systemic
distribution of a (somewhat undefined) mixture of bioactive molecules can generate multiple adverse
events. Indeed, to our knowledge clinical translation so far has been limited to local applications,
such as intradermal injections for the treatment of hair loss [167]. In this respect, EVs could be a
more promising therapeutic tool, since they represent a physically distinct fraction of the secretome
and seem to convey a definite set of signals with more limited and predictable effects. The good
manufacturing practices (GMP) production and release of EVs is less complex compared to living cells,
resulting in reduced costs, thus circumventing a major barrier in the diffusion of these innovative
treatments [168]. However, EVs are complex biological machines whose function is still largely
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unknown. The isolation procedures of these nanoparticles are still unsatisfactory, both because current
preparations include a significant proportion of contaminants from culture media and because the
different classes of EVs (likely conveying different biological activities) are difficult to separate from
each other [169,170]. As a result, despite increasing evidence of efficacy in several animal models of
disease, clinical applications of MSC-EVs have been limited to a single patient with GVHD [171] and
a preliminary trial in patients with kidney failure [172]. Of note, in both cases the EV preparation
was not GMP-compliant. Therefore, a series of gaps still needs to be filled to bring these potential
therapeutic tools from bench to bedside.

4. Conclusions

Cell therapy may represent an attractive strategy for regenerative medicine. However, poor cell
survival after transplantation, which is due to a combination of mechanical, cellular, and host factors,
limits cell therapy efficacy. We reviewed several strategies that have been developed in preclinical
studies to promote the survival of MSCs after transplant. However, before successful translation
to the clinic, additional studies should be conducted to more precisely understand whether and
how such strategies may affect the in vivo biological activity of transplanted cells. The delivery of
MSCs secretome, in particular of extracellular vesicles produced by MSCs, seems to recapitulate the
therapeutic benefits observed in MSC-based transplantation. In this context, EVs administration may
represent an alternative and innovative strategy for cell-free cell therapy that may circumvent the
current limitations associated with poor cell survival upon transplantation.
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