PHILOSOPHICAL
TRANSACTIONS

—OF
THE ROYAL
SOCIETY

Phil. Trans. R. Soc. B (2010) 365, 185-205
d0i:10.1098/rstb.2009.0219

Review

Genome-wide scans for footprints
of natural selection

Taras K. Oleksyk!:%*, Michael W. Smith? and Stephen J. O’Brien®*

! Biology Department, University of Puerto Rico at Mayaguez, Mayaguez 00681, Puerto Rico
2Laboratory of Genomic Diversity, National Cancer Institute ar Frederick, and >Core Genotyping Facility,
Advanced Technology Program, SAIC-Frederick, National Cancer Institute at Frederick,
Frederick, MD 21702, USA

Detecting recent selected ‘genomic footprints’ applies directly to the discovery of disease genes and
in the imputation of the formative events that molded modern population genetic structure. The
imprints of historic selection/adaptation episodes left in human and animal genomes allow one to
interpret modern and ancestral gene origins and modifications. Current approaches to reveal
selected regions applied in genome-wide selection scans (GWSSs) fall into eight principal cat-
egories: (I) phylogenetic footprinting, (II) detecting increased rates of functional mutations, (III)
evaluating divergence versus polymorphism, (IV) detecting extended segments of linkage disequili-
brium, (V) evaluating local reduction in genetic variation, (VI) detecting changes in the shape of the
frequency distribution (spectrum) of genetic variation, (VII) assessing differentiating between popu-
lations (Fst), and (VIII) detecting excess or decrease in admixture contribution from one
population. Here, we review and compare these approaches using available human genome-wide
datasets to provide independent verification (or not) of regions found by different methods and
using different populations. The lessons learned from GWSSs will be applied to identify genome
signatures of historic selective pressures on genes and gene regions in other species with emerging
genome sequences. This would offer considerable potential for genome annotation in functional,
developmental and evolutionary contexts.
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1. INTRODUCTION

Celebrating the 350th anniversary of the Royal Society,
and perhaps more importantly the beginning of recorded
publication of science, reminds us that discerning the
reason and rationale for biological activities is an ancient
though honourable and cumulative process. As the
science giants atop whose shoulders we gaze to the
future imputed from observations, empiricism and
reasoning, today our students face a deluge of digital
DNA sequence information, more than we can absorb
or interpret very competently. Yet, while our scientific
forefathers forged new approaches through deduction,
today’s genomics scientists mine sequence patterns and
perturbations with numerical approaches and compu-
tational algorithms. The evolutionary paradigm of
adaptation by natural selection of endemic gene variation
among individuals is also celebrating an anniversary—
150 years since Charles Darwin published the timeless
‘On the Origin of Species’. In this chapter, we shall
look forward from a time now when a few dozen
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mammal species enjoy a published whole genome
sequence after the first, human, was deposited in a
public database in 2001 (Lander er al. 2001). We are
slowly learning the exercise of annotating a genome
sequence—identifying genes, paralogues, repeats, single
nucleotide polymorphisms (SNPs), gene synteny, micro-
RNAs, transcriptome, extended haplotypes and other
genome features. Geneticists are learning to resolve the
functionality, history and beginnings of genome pattern-
ing, but we still have much to learn. Here, we explore
the sequence motifs and variances that evolutionary
experts have proposed and applied to uncover evidence
of historic selection in populations, notably humankind.
Genomic variation develops from a combination of
evolutionary influences that consist of successes and
failures of genes on a backdrop of neutral variation
shaped by genome instability, mutation process and
demographic history. In truth, a challenge of genome
analysis is to determine whether patterns of nucleotide
variation can be explained by random drift versus
selection pressures. Aspects of selection signatures
depend on type, age and strength of selection events.
Natural selection acts in at least three modes: positive,
purifying (also called stabilizing or negative, eliminating
a damaging allele) and balancing selection (including
heterozygote advantage and frequency-dependent
selection). Each of these selection modes is a response
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to the external pressure, and each operates to change
allele frequencies; yet, each leaves a specific mark on
genome variation and architecture. For instance, posi-
tive selection decreases genetic variation by favouring
an advantageous allele, while purifying selection
maintains the integrity of functional sequences by
eliminating deleterious mutations. In contrast,
balancing selection acts to maintain polymorphism:
overdominant selection favours heterozygotes, while
frequency-dependent selection and selection in local
environments can cause different alleles to be favoured
in different localities, and at different times. Discern-
ing selective signatures can become complicated
when alternate selection modes act upon the same
chromosomal regions, simultaneously or during dis-
tinct periods of a population’s evolutionary history.

Traditionally, most tests for selection have concen-
trated on comparing a specific set of variable markers
within a gene region against neutral expectations, empiri-
cally or from computer simulations. Recently, selection
methods have been applied to newly available genome-
wide SNP datasets. Genome-wide scans for evidence of
historic selection events use either resequencing data
from one or more species (Bustamante ez al. 2005), or
large collections of SNP polymorphisms from popu-
lations, e.g. the human HapMap populations
(Altshuler er al. 2005; Frazer et al. 2007), to search for
statistical departure from population genetic equilibrium
(neutral) expectations as an indicator of a selected
chromosomal region (Oleksyk ez al. 2008). We list eight
recently applied approaches to detect selection in
genome-wide selection scans (GWSSs) in table 1 and
illustrate them with examples in figures 1-8.

Computational analytical approaches to genome-
wide scans for selection can be divided into methods
using sequence divergence and diversity patterns
between species and methods that consider genetic
variation from populations (table 1). Generally,
between-species comparisons are used to identify
older events, while population-based methods reveal
more recent episodes of selection (table 1). Discovery
of the same selected gene regions using alternative
approaches can provide cogent evidence for selective
influences in the region. However, the success of one
test and the failure of a second does not preclude selec-
tion in a genomic region because different methods
will track different intervals of a population’s history
(Sabeti ez al. 2006; Kelley & Swanson 2008) (table 1).

In this review, we describe eight distinctive signa-
tures of selection that capture different evolutionary
mechanisms and relative time scales (table 1). We
then describe good examples of genes where selection
has been demonstrated. Finally, we compare various
approaches from different GWSSs applied to human
genome-wide datasets and assess independent replica-
tion of putative regions found by different methods
and study populations.

2. DETECTING SELECTIVE SWEEPS USING
BETWEEN-SPECIES COMPARISONS

(a) Divergence rate and phylogenetic shadowing
In contrast to the demographic processes acting upon
the entire ensemble of genomic diversity, natural
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selection targets primarily functional elements in
specific gene regions. While mutation and recombina-
tion restore variation in the adjacent sites, selected
non-synonymous changes persist in the genome, chan-
ging the overall pattern of divergence and/or diversity.
Selection signatures can be observed by plotting the
between-species divergence of homologous segments
and comparing it with the genome-wide average: phy-
logenetic shadowing (Mayor et al. 2000; Ovcharenko
et al. 2004). The less-variable segments can be inter-
preted as either purifying selection, or past actions of
positive selection. Divergence rates can also be evalu-
ated by comparing homologous sequences using a
third species as an outgroup (Tajima 1993).

Phylogenetic shadowing quantifies the amount of
divergence among homologous sequences between
two or more species (Mayor ez al. 2000). Using parsi-
mony, the rate of substitution can be considered on a
phylogenetic tree (Blanchette er al. 2002). Regions
affected by purifying selection are significantly less
divergent than the genome-wide means. Phylogenetic
shadowing has been particularly useful in identifying
putative regulatory elements in non-coding DNA
(Blanchette et al. 2002). The advantage of phyloge-
netic shadowing is that it takes into consideration the
underlying evolutionary context, although assessment
is difficult when confident alignment of regions
between species decays.

Predictions for positive selection detected by looking
at the relative rates of divergence between homologous
species are not clear at this time, and more effort is
needed to develop appropriate statistical approaches
to formally incorporate phylogenetic shadowing for
identifying different types of selection. However, these
methods can detect parts of a genome sequence being
conserved by the action of purifying selection among
different species (Zhang & Gerstein 2003), and this
approach has been incorporated into computational
algorithms (Mayor ez al. 2000).

(b) Increased function-altering mutation rates
The rates at which non-synonymous mutations are
retained in a population indicate the presence and
strength of selection in a coding gene. An unusually
high number of function-altering (non-synonymous)
changes from a comparison between two homologous
sequences can point to the genomic regions where past
episodes of positive selection may have taken place
(figure 2). The rate of mutation is expressed as the
number of substitutions per non-synonymous site
(AN or Ka) or the number of substitutions per
synonymous site (dS or Ks). In neutrally evolving
sequences, no difference should be observed between
the two measures, or dAN = dS. Positive selection in a
region results in an increase in the number of non-
synonymous mutations, such as dN > dS (or Ka > Ks)
(see example in figure 2). Conversely, if functional
mutations are constantly removed from a population by
purifying selection, the opposite trend can be expected:
dN <dS (or Ka<Ks). The ratio (w=dN/dS) is
evaluated among different coding regions.

dN/dS tests have been used extensively. Typically,
they contrast likelihood ratio of data under the null
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Table 1. General approaches and timing of detecting selection in genome-wide selection studies.

number  approaches

signatures

scope of the
comparison

selection
detected

time frame
(years)?

comparative, species-based

1 divergence rate and
phylogenetic
shadowing

II increased function-
altering mutation
rates

111 interspecies divergence
versus intraspecies
polymorphism

population-based
v local reduction in
genetic variation

\% changes in the shape of
the frequency
distribution
(spectrum) of genetic
variation

VI differentiating between
populations (Fst)

VII extended LD segments

VIII elevated admixture
contribution from
one population
(MALD)

reduction in the interspecific
sequence divergence around
a selected region relative to
divergence of homologous
regions genome-wide
(Mayor et al. 2000,
Ovcharenko ez al. 2004) or
when compared with a third
species (Tajima 1993)

elevated ratio of non-
synonymous (N) to
synonymous (S) changes
(dN/dS) in coding regions
of selected genes compared
with other genes evolving
under the assumed
neutrality (Nielsen & Yang
1998; Yang & Nielsen
1998)

reduction in the ratio of
intraspecific diversity to
interspecific divergence
(Hudson ez al. 1987;
McDonald & Kreitman
1991)

a significant decrease in
genetic variation (often
measured as heterozygosity)
around the selected site
relative to its chromosomal
neighbourhood or genome-
wide (Oleksyk ez al. 2008)

a relative increase in the
proportion of either low- or
high-frequency mutations in
the selected region (Tajima
1989; Fu & Li 1993; Fay &
Wu 2000)

an increase or decrease in
population differentiation in
genomic regions under
selection relative to the rest
of the genome (Beaumont &
Nichols 1996; Akey et al.
2002; Beaumont & Balding
2004)

extended LD producing
remarkably long haplotypes
around the beneficial SNP
(Tishkoff et al. 2001; Sabeti
et al. 2002; Voight er al.
2006)

detecting a relative excess or
decrease in admixture
contribution within a
selected region by one of
the populations (Tang er al.
2007)

between species

within a species

between species

within a
population

within a
population

between
populations

within a
population

in a population

after admixture

positive,
purifying

positive

positive

positive

positive,
balancing

positive,
balancing

positive

positive

greater than
1 000 000

greater than
1 000 000

greater than
1 000 000

less than
200 000

less than
200 000

less than
80 000

less than
30 000

less than
500

#The times for I-II are based on the date of human—chimpanzee divergence (5 Myr ago). Time estimates for III-VII are from Sabeti et al.
(2005). Time estimates for VII are based on the assumptions outlined in Smith & O’Brien (2005). All estimates are for the human

lineage.
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Figure 1. Strategies for detection of the genome-wide selection signatures in table 1. Consider a small gene region that displays
SNP variation at 17 adjacent sites (vertical columns in all panels). (a) Eight individuals in species 1 (human) carry alternative
white and green alleles (synonymous variants) and also a codon-altering non-synonymous allele (red and white). A related
species (chimpanzee), examined at the same SNP sites, displays a divergence pattern from the index (human species); positive
selection of one SNP allele alters the random distribution pattern when examining non-synonymous alleles only (red and
white). Graphs on right plot departure of genome-wide average for parameter (measured by the seven selection tests described
in table 1). (@) Comparing sequence divergence between species (table 1, I-III). Gene regions with past actions of selection
show an altered sequence organization that can be revealed by comparing changes between homologous sequences by three
different approaches. (I) Phylogenetic shadowing: comparing divergence of orthologous sequences across the genome. The
genome segments with low divergence between species compared with the genome-wide averages can indicate purifying selec-
tion or positive selection. (I) Increased function-altering mutation rates: comparing the ratio of non-synonymous (dN: left
panel; changes indicated in red) to synonymous changes (dS: right panel; changes in green). This comparison could be accom-
plished by (i) comparing the dN/dS ratio between the candidate gene of interest and the genome-wide average for other genes
and (ii) comparing diversity with divergence ratio for dN versus dS for homologous sequences. (III) Interspecies divergence
versus intraspecies polymorphism: comparing intraspecific divergence (e.g. between chimpanzee and human) with inter-
specific polymorphism (within the human species). Selection decreases variation within an affected species (dark orange),
and the scope of this decrease can be assessed by contrasting with divergence between species sequences (light orange)
unaffected by the species-specific adaptation. (b) Comparing sequence variation patterns within a species (table 1,
IV-VIII). Positive selection results in an elevated frequency of haplotypes carrying the advantageous allele at the expense of
the others in the process called ‘selective sweep’ (Maynard Smith & Haigh 1974), followed by the gradual incorporation
of derived variation seen as a skewed ‘frequency spectrum’. These signatures can all be revealed by comparing sequences
within or between populations of the same species. Five tests (described in table 1) include: (IV) Local reduction in genetic
variation: comparison of levels of polymorphism in and around the selected locus to the estimated neutral expectation or to the
genome-wide averages (left panel; ancestral alleles are in blue or light blue). (V) Changes in the shape of the frequency dis-
tribution: identifying an excess of derived alleles, low-frequency polymorphic sites or singletons. Generations after the
selective sweep, new (derived) mutations (yellow) are slowly introduced back into the recently selected region, and most
appear at low frequencies expected under mutation/drift equilibrium, resulting in a skewed frequency distribution

(Caprion continued opposite.)
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Figure 2. Increased number of function-altering mutations indicates a positively selected domain in TRIM5« protein that med-
iates retroviral restriction (signature II). The tight clustering of humans versus rhesus non-synonymous changes in TRIMS5a gene
indicates a SPRY domain subjected to positive selection with an average dIN/dS ratio of greater than four (Sawyer ez al. 2005).

hypothesis, assuming neutrality to various alternative
hypotheses. A twofold difference between the log like-
lihoods follows a x* distribution, and if the value is
found in a critical region, neutrality can be rejected
and selection is inferred (Nielsen & Yang 1998;
Yang & Nielsen 1998).

(c) Interspecies divergence versus

intraspecies polymorphism

Under the assumption of selective neutrality, the pro-
portion of synonymous (dS) and non-synonymous
(dN) changes should be the same for polymorphism
within the species as for divergence between species
(figure la). Conversely, purifying selection removes
non-synonymous mutations faster, causing a lower dN
value between, rather than within species. Two main
tests that compare dN and dS between and within
species have been used to detect selected regions: (i)
the McDonald—Kreitman (MK) test that contrasts
synonymous and non-synonymous sites of a gene
segment within and between species (McDonald &
Kreitman 1991) and (i) the Hudson—Kreitman—
Aguade (HKA) test that contrasts polymorphism and
divergence among multiple loci (Hudson er al. 1987).
The latter is an extension of the former and is based
on the assumption that under neutrality, polymorphism
and divergence are the same for all neutrally evolving
genes. Therefore, a candidate gene compared with
one or multiple putatively neutral loci, and the devi-
ation in the ratio of polymorphism to divergence can
be evaluated. A low ratio of intraspecies diversity
versus between-species divergence in and around a can-
didate gene can be interpreted as signature of positive
selection (see examples in figures 1(III), 2 and 3),

whereas a decreased divergence could be interpreted
as the action of purifying selection.

Between-species genomics tests (I-III) can be used
to identify very old selections (table 1); however, they
require many site changes to exceed the background of
mutational drift over long intervals of species differen-
tiation and have limited ability to narrow the time
when selection occurred. In addition, they cannot pre-
cisely identify a single selected site allele. By contrast,
studies based on the population data can be used to
detect recent selection, to estimate the time interval
of selection events and, in some cases, to identify
selection acting on a single nucleotide.

3. DETECTING SELECTIVE SWEEPS FROM
POPULATION DATA

(a) Local reduction in genetic variation

An important genomic indicator of a selective sweep
involves local reduction in variation within a selected
gene and in adjacent SNP variants (Maynard Smith &
Haigh 1974) (see example in figure 4). Local reduction
in genetic diversity can persist for a long time, and
indicate selection across a long genomic region; i.e. if
an allele with a selective advantage of one per cent
will generate a homozygous region of an estimated
600 kb (Mikkelsen ez al. 2005), this selection makes
finding an actual selected gene more difficult.

While scans for diminished polymorphism are easily
implemented, several caveats can influence their
interpretation. First, this signature may be difficult to
distinguish from the effects of demographic history
because population bottlenecks or recent founder
effects can reduce polymorphism across the genome
of derivative populations. SNP analyses of

Figure 1. (Caption continued.) (spectrum) of polymorphisms (left panel). (VI) Differentiating between populations: identifying
regions of unusually high population divergence. Local reduction of genomic variation in a selected population (left panel,
middle) results in a local increase in genomic differentiation between sequences (unaffected population is not shown in the
figure but can be approximated by the population before selection: left panel, top). Comparisons can be made for levels of
differentiation calculated as Fst around the selected loci to the neutral expectations, to a set of neutral loci or to the
genome-wide averages. (VII) Extended LD segments: comparing the relative length and frequency of selected haplotypes.
Positive selection results in an elevated frequency of haplotypes carrying the advantageous allele at the expense of the
others. Owing to the generations of recombination, long haplotypes are also rare. However, selection sweep creates haplotypes
that are both long and frequent in a population (red and light red: right panel, middle and bottom). These methods are used to
identify relatively recent and incomplete sweeps. (VIII) Elevated admixture contribution from one population: identifying sec-
tions of the genome with unusually high or low ancestry in a mixed population using MALD. Similar to VII, when two
populations meet, one may carry a beneficial allele that can be later detected as a regional increase in ancestry, using
a genome-wide map of highly differentiating population markers, and evaluated against the genome-wide expectation.
I-VIII: blue line, genome-wide average.

Phil. Trans. R. Soc. B (2010)
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Figure 3. Reduced diversity to divergence ratio around the
selected 5 NTR variant of 7b! gene found in maize that
causes the plant to carry ears instead of tassels (signature
III). In the process of domestication, the 5’ NTR lost its vari-
ation, compared with the wild teosinte and the domesticated
maize (Wang et al. 1999). Consistent with the selection
hypothesis, the sliding window shows low polymorphism,
but a high diversity in the region, evaluated as a signature
of positive selection by the HKA test (Hudson et al. 1987).
Yellow lines, maize; green lines, teosinte.

domestic dogs and cats both show long stretches of
alternating heterozygous and homozygous regions as
a consequence of domestication and breed develop-
ment, masking any gene-based selection in their
recent past (Lindblad-Toh et al. 2005; Pontius ez al.
2007). However, in most outbred species, a selected
region would display local SNP homozygosity, com-
pared with abundant polymorphism elsewhere in the
genome (Oleksyk ez al. 2008).

(b) Changes in the shape of the frequency
distribution (spectrum) of genetic variation
After a selective sweep reduces variability around a
selected site, new mutations will gradually appear.
These mutations would initially occur at low frequen-
cies because their chances of increasing in a population
under neutral drift are very low, and it takes some time
after the sweep to restore a more typical distribution of
mutation frequencies in a region (a frequency spec-
trum) that is consistent with the action of neutral
forces. This shift to a low-frequency spectrum of poly-
morphism constitutes a signature of positive selection
(Tajima 1989). Alternatively, balancing selection
maintains a high proportion of the high-frequency
polymorphisms, thereby shifting the spectrum to the
intermediate frequencies.

A shift in frequency spectrum is used in selection
tests in one of two distinct ways: (i) changes in the
spectrum (i.e. clustering of rare alleles in a region)
and (ii) changes in the occurrence of ancestral and
derived alleles. The former approach is captured by
Tajima’s D test, which compares the mean pair-wise
difference between sequences in a population sample
(m) with the number of differences estimated
using the number of polymorphic sites (s) (figure 5).
Tajima’s D equals zero for neutral variation, is positive

Phil. Trans. R. Soc. B (2010)
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Figure 4. Reduced polymorphism around the SLC24A45 gene
involved in skin pigmentation indicates an episode of selec-
tion in the European population (signature IV). A region
of decreased heterozygosity in Europeans (CEU) compared
with Nigerian Yoruba (YRI), Chinese (CHB) and Japanese
(JPT) people on chromosome 15 near the SLC24A5 gene
is significant when (a) compared across the genome in
CEU samples and (b) plotted as averages in 10 kb intervals
in the 300 kb vicinity of the gene, with heterozygosity for
four HapMap populations (Lamason ez al. 2005). Black
lines, YRI; green lines, CHB; blue lines, JPT; orange lines,
CEU.

when an excess of rare polymorphism indicates
positive selection and is negative in the excess of
high-frequency variants, indicating balancing selection
(Tajima 1989). The second approach exploits the fact
that polymorphism within the selective sweep leaves
excess derived alleles that hitchhike on selected haplo-
types. Derived alleles arise by mutation, and are
expected to have lower allele frequencies than their
ancestral counterparts because of their relatively
younger age. A selective sweep creates a situation
where too many derived alleles are found at high
frequencies. There are several examples of tests using
the derived allele approach. For example, Fu and
Li’s F test counts the number of derived alleles
observed only once and compares it with the average
pair-wise difference between species (Fu & Li 1993),
while Fay and Wu’s H test compares the number of
derived alleles either at low or high frequencies with
the number of variants at the intermediate frequencies
(Fay & Wu 2000).

Tests based on the frequency spectrum of rare or
derived mutations have been implemented in studies
of human and non-human species (Hughes & Yeager
1998; Seltsam ez al. 2003; Bersaglieri er al. 2004;
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Figure 5. Example of a skewed frequency spectrum in the human CLSPN gene region indicating a positive selection signature
in Europeans but not in Africans (signature V). A shift in frequency spectrum in the recently selected region is caused by the
emergence of new low-frequency mutations. (a) Tajima’s D values plotted across the CLSPN CRTR from the UCSC genome
browser shows a region of negative values consistent with the sweep seen in (), the visual genotype in the ED population
adopted from Carlson et al. (2005). Each row corresponds to an individual, and each column corresponds to a polymorphic
site in a visual genotype for 1.5 Mbp spanning the CLSPN CRTR in the Perlegen data. Common allele homozygotes are shown
in blue, heterozygotes are shown in red, rare allele homozygotes are shown in yellow and missing data are shown in grey. The
top 24 samples are African (AD); the bottom 23 samples are of European descent (ED). ED samples show much less variation,
most of which comes as singleton mutations.

Stajich & Hahn 2005; Civetta ez al. 2006; de Meaux previously discovered variants, an ascertainment bias
et al. 2008; Ojeda et al. 2008). The next challenge is for enrichment of high-frequency polymorphisms and
to apply them to genome-wide data. However, as avail- paucity of low-frequency variants arises, biasing the
able SNP datasets were obtained by genotyping performance of these tests (Nielsen er al. 2005).
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Figure 6. High population differentiation in IL4, a cytokine
involved in immunity, may be attributed to positive selection
(signature VI): a non-neutral pattern of differentiation at the
IL4 gene is demonstrated by evaluating the Fgt value at the
IL4 —524 locus against the same measure in a set of neutral
loci elsewhere in the genome: (a) Fst at —524 is higher,
compared with 17 out of 18 neutral markers in a global dis-
tribution. (b) Pairwise Fgr at —524 between loci from China
and India populations is dramatically elevated (adapted from
Rockman ez al. 2003).

Attempts to rectify this situation have been made by
incorporating information from the genotyping proto-
cols into selection tests (Nielsen & Signorovitch 2003;
Nielsen er al. 2005). In addition, some human geno-
mic datasets such as HapMap are being expanded
with an effort to control for the ascertainment
(Frazer er al. 2007). Unfortunately, for non-human
species, relief from an ascertainment bias will not
soon be readily available, and genome-wide scans for
selection using the frequency spectrum will continue
to suffer from this problem until reliable and inexpen-
sive data from the next-generation whole genome
sequencers become available.

Demographic processes change genome-wide
patterns of genetic variation by altering effective popu-
lation size independently of natural selection. Various
demographic events can interfere with the selection
signal detected by these methods. Population
expansion could increase the proportion of low-
frequency variants, mimicking the effect of selection
sweep identified by the spectrum methods described
in §3b6 (Nielsen ez al. 2005). A population bottleneck
could produce an excess of intermediate frequency
variants, resulting in a spectrum close to that produced
by balancing selection.

Tests based on derived allele frequencies seem to be
less sensitive to the demographic events than those
based either on a reduced amount of polymorphism
or on finding a shift in the rare/common allele
frequency. Yet, these signatures seem to be relatively
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short-lived as derived alleles are lost, and also suffer
from population subdivision (Przeworski 2002).
Identification of derived alleles requires phylogenetic
knowledge of the ancestral states that are determined
by aligning sequences between closely related species.
In humans, determination of ancestral states is cur-
rently facilitated by the availability of whole genome
sequence from great apes. Soon, the ancestral state
will be inferred by comparison with the Neanderthal
genome or even genomes of other human populations,
given the improved knowledge of human population
history. However, for non-human species, the ances-
tral allele information may not be so easily available
until related genome sequences become available.

(¢) Differentiating between populations (Fsr)
Variation of local conditions imposes differential selec-
tion pressures shaping variable adaptive landscapes
(Wright 1951). Recent adaptations in populations
often reflect the peculiarities of local environments.
Local conditions are different from one locality to
another and differ considerably between ecosystems.
In some instances, given enough geographical isolation
restricting gene flow, selection signatures could differ
considerably between populations. Consequently,
regions experiencing selective sweeps, in addition to
the decreased variation within the population, should
also display increased levels of population differen-
tiation, a measure commonly denoted as Fsr
(Wright 1951).

Tests that look for population differentiation are
based on the premise that natural selection can
change the amount of differentiation between different
populations of a species. Unless a selective sweep has
already spread to all populations, the amount of gen-
etic differentiation within the region that includes
selected locus will increase. Therefore, if genetic
differentiation in the genomic region is greater
than the level expected under neutrality, this differen-
tiation may be a consequence of natural selection
(see example in figure 6).

The Lewontin—Krakauer test represented the ear-
liest effort to incorporate interpopulation differences:
it compared the level of genetic differentiation
among populations with that predicted by a specific
neutral model using a standard variance ratio test
(Lewontin & Krakauer 1973, 1975). This approach
was criticized as unreliable (Nei & Maruyama 1975),
but in the past decade it has been revisited several
times. One approach generated a distribution of Fgr
under a neutral model of population structure to
build an expected distribution conditioned on the
initial allele frequencies. Outliers identified by com-
paring observed values with this conditioned
distribution exhibit signatures of selection (Bowcock
et al. 1991). This approach has been extended to use
a coalescent model to generate an expected distri-
bution of Fgst conditional on heterozygosity
(Beaumont & Nichols 1996), and to use a Bayesian
model implemented through Markov Chain Monte
Carlo simulations (Beaumont & Balding 2004). Alter-
natively, some studies rely on sampling a large number
of loci across the genome: these resampling-based tests
compare the levels of genetic differentiation of one or
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Figure 7. Unusual pattern of LD surrounding alleles indicates recent independent adaptations for post-adolescence lactase
persistence: (@) LCT-C —14010 in Africans (red) and (b) LCT-T —13910 (green) in Eurasians (signature VII). Haplotypes,
shown for each individual as parallel lines, are extended around the recently selected alleles, while the alternative alleles are
enclosed by relatively short LD segments. In this example, haplotypes that surround lactase persistence (red and green) in
Eurasians are much longer than the haplotypes that contain the alternative alleles (blue and orange). While the lactase-
persistence alleles are different in the two populations, both are found in high frequencies and located on unusually long

haplotypes (Tishkoff ez al. 2007).
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Figure 8. An excess of African and deficiency of European
ancestry, as identified by admixture mapping (MALD) in
Puerto Ricans, is evident in the region encompassing
the HLA superlocus that contains diverse antigens essential
in human immune function (signature VIII). Deviation in
admixture proportion from three founder populations
(African, European and Amerindian are represented by
red, green and blue curves, respectively) is plotted along
the physical location on chromosome 6 of Puerto Ricans.
The y-axis indicates the excess/deficiency in ancestry at the
corresponding SNP, averaged for 192 individuals (Tang
et al. 2007). Orange lines, African; green lines, Native
American; blue lines, European.

more loci with the genome-wide (or chromosome-
wide) distribution of Fgt (Akey er al. 2002; Oleksyk
et al. 2008). The outliers found in this manner can
be compared with the outliers found by other
approaches (table 1). Those regions showing both sig-
natures are more likely to harbour multiple selection
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signatures than those showing only the increased
levels of Fgt (Oleksyk er al. 2008).

Considerable differences in the Fgt values around
the selected site could be affected by polymorphism
frequency at the onset of positive selection. For
instance, those variants present on the beneficial hap-
lotype displaying high heterozygosity values would
accumulate little differentiation between a population
selected for that haplotype and a population lacking
the selection pressure. Those selected variants initially
at low frequencies could lead to large differences
between populations, under the condition that the
chromosomal region initially has enough variation in
the flanking sites, so the resulting differentiation
could be detected.

Differentiation among the populations is also sensitive
to demographic factors, including both migration and
genetic drift. To avoid this problem, recent scans started
to take advantage of large-population datasets, and com-
pare outlier loci with the empirical distribution of
population differentiation across the genomes of com-
pared populations (Oleksyk ez al. 2008). Alternatively,
some scans use computer simulations employing realistic
demographic conditions to obtain values of population
differentiation expected under the assumption of
neutrality (Beaumont & Balding 2004).

(d) Extended linkage disequilibrium segments

Historic selective sweeps in population data are appar-
ent because of a hitchhiking effect described by
Maynard Smith & Haigh (1974). As selection acts
not on genotypes but on individuals carrying adaptive
phenotypes that gain reproductive advantage, ben-
eficial mutations, along with the entire genomes, are
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selected. However, independent assortment and
recombination reshuffle chromosomes and regions
distal to a selected beneficial variant.

A selective sweep region would contain many neu-
tral variants tightly linked to the beneficial mutation
on haplotypes limited in length by a combination of
selection strength and recombination rate. The
extent of this association depends on the recombina-
tion distance, so persistence of a frequent, unusually
long haplotype indicates strong, recent or ongoing
selection, especially if that haplotype has risen to
high frequency. Over many generations, haplotype
size becomes smaller owing to recombination with
other haplotypes (see example in figure 7).

Extended linkage disequilibrium (LLD) tests are
useful for detecting partial selective sweeps, with allele
frequencies as low as approximately 10 per cent
(Sabeti ez al. 2002; Voight et al. 2006), and they are rela-
tively robust to the choice of genetic markers used or
ascertainment bias (Sabeti er al. 2002). An unusual
LD pattern is detected in three selection tests. First,
the extent of haplotype diversity (SNP variant within
a haplotype-defined region) can be assessed by compar-
ing the diversity of haplotypes carrying the selected
variant with all the allelic haplotypes that carry the
other SNP alleles. Haplotypes carrying a selected
allele are expected to display lower diversity as they all
originate from a subset of chromosomes carrying the
beneficial variant (Tishkoff ez al. 2001). Second, the
extended haplotype homozygosity (EHH) test evalu-
ates length and frequency of haplotypes in a
population (Sabeti ez al. 2002). As it takes a long time
to reach high frequency by genetic drift alone,
the frequent older haplotypes experience more recom-
bination, and decrease in length. In contrast, younger
alleles tend to be longer, but at lower frequencies.
Alleles that have both high-frequency and long-range
LD with other alleles (long-range haplotype homozyg-
osity) are evidence for a selective sweep. The relative
extended haplotype homozygosity (REHH) test
computes EHH of a single haplotype to the EHH of
allelic haplotypes in the same genomic region (Sabeti
et al. 2002). Third, the integrated haplotype score
(iHs) test compares the EHH decay around ancestral
and derived alleles (Voight er al. 2006).

LD extension tests are the most useful for the
identification of recent, incomplete sweeps (Sabeti
et al. 2006), but they require genetic phase data to
define the haplotypes explicitly. In addition, to be
robust, LD-based GWSSs would require precise con-
trol for regional variation in the recombination rate,
as ‘cold spots’ for recombination not under selection
can mimic extended haplotypes. After 30 000 years,
a typical human chromosome will have undergone
more than one crossover per 100 kb (Sabeti ez al.
2002). The remaining short fragments may be too
short to detect selection by an LD test.

(e) Excess or decrease in admixture contribution
Jfrom one population mapping by admixture
linkage disequilibrium

Admixture mapping, also called mapping by
admixture linkage disequilibrium (MALD) is a novel
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method that aims to localize disease-causing genetic
variants that differ in frequency across populations
(Smith & O’Brien 2005). It is most useful in admixed
populations such as in African-Americans (Smith
et al. 2004), Latinos (Price ez al. 2007) and Puerto
Ricans (Choudhry ez al. 2008), i.e. modern popu-
lations that descended from a recent mix of
ancestral groups that had been geographically isolated
for long evolutionary time. The approach considers
that a genomic region of a disease-causing gene
would show a higher percentage of detectable geno-
mic ancestry from the parent population that has
greater risk for the disease (Chakraborty & Weiss
1988; Briscoe er al. 1994; Smith & O’Brien 2005).
For example, Puerto Ricans carry an excess of African
admixture in an HLA region of chromosome 6, an
excess of Native American admixture in two other
regions (on chromosomes 8 and 11) and a corre-
sponding deficiency in European admixture at the
same genomic locations, suggesting an historic adap-
tive advantage for these regions during admixture
(Tang er al. 2007) (figure 8). While there has been a
discussion whether or not the long range LD can
potentially confound signals of selection in admix-
tured populations like the one used in this study
(Price er al. 2008; Tang et al. 2008), it remains to
be seen whether such recent selection signatures can
be found in other admixed populations.

4. EXAMPLES OF SELECTED REGIONS
DISCERNED FROM CANDIDATE GENE STUDIES
Table 2 lists 30 examples of genes under selection based
upon various approaches reviewed above. We discuss five
of these selected genes (LCT, MCIR, CCR5, FY and
G6PD) in detail because they have been well represented
in the literature and give a good representation of
evidence, mechanisms and evolutionary time scale for
instances of human selection.

(a) Lactase (LCT) gene and post-adolescence
lactase expression persistence

The lactase enzyme is encoded by a single gene (Boll
et al. 1991) on chromosome 2q21 (Harvey er al.
1993). In Europe, three common LCT haplotypes
(A, B and C) were identified encompassing the gene.
Haplotype A is the most common in northern
Europe (86%) where lactase expression persistence
after adolescence is common, but less common in
Southern Europe, as well as in other world populations
such as in India, Africa and Asia, where lactase
expression persistence past adolescence is rare
(Hollox ez al. 2001).

It has been hypothesized that a derived T variant of
the adjacent MCM6 gene at position —13910 (A/T) in
the A haplotype is responsible for lactase persistence in
Eurasia (Enattah ez al. 2002; Poulter ez al. 2003). This
MCMG6-T variant is absent or extremely rare in most
African populations (Mulcare er al. 2004). Several
i vizro studies indicate that MCMG6 acts as a cis-
regulatory element that upregulates a promoter
region of the LCT gene (Olds & Sibley 2003; Troelsen
et al. 2003; Lewinsky er al. 2005). However, it has
been suggested that a different variant (C), located
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at —14010 (G/C), is responsible for lactase persistence
in Africans (Tishkoff er al. 2007). If these inferences
are affirmed, then lactose persistence evolved indepen-
dently as a response to selective pressures in different
parts of the world (figure 7).

Recent selection about the LCT locus is supported by
several tests. There was an excess of high Fgt values for
the 99 flanking DNA sites on either side of the LCT
locus (Bersaglieri er al. 2004). Signatures of selection
were present when interpopulation differentiation was
corrected using P.y..s: @ measure that reflects the rise
in frequency of the flanking variants relative to their
original value derived from its distribution in popu-
lations that did not experience selection at the same
variant (Bersaglieri er al. 2004). This, in effect, is an
equivalent to the reduction in local variation. Finally,
REHH was estimated to be extremely high (13.2), indi-
cating that the lactase-persistence haplotype displayed
homozygosity over more than 800 kb, much longer
than that displayed by the lactase non-persistent haplo-
types (Bersaglieri ez al. 2004). The —14010 C allele for
lactase-persistence alleles was included in the analysis;
it was also at a high frequency and found on a long hap-
lotype in African populations (Tishkoff ez al. 2007).
Consequently, selection in the LCT locus is evidenced
both by high population differentiation and a local
decrease in genetic variation, and by the unusual pattern
of LD. All three signatures of selection are consistent
with the current hypothesis of the multiple origins of
lactase persistence in the very recent (less than 7000
years) human evolutionary history, probably associated
with the origins of human agricultural development
(Enattah er al. 2005; Tishkoff et al. 2007).

(b) Melanocyte receptor gene and skin colour
The melanocyte receptor (MCIR) gene is located at
chromosomal position 16q24.3 in humans. A recent
genome-wide association scan confirmed the role of
MCIR SNPs in hair, eye and skin pigmentation
(Sulem er al. 2007). This gene was thought to consist
of a single exon until a possibility of alternative splicing
was suggested (Tan ez al. 1999). Consequently, the
gene may have another exon at the 3’ end encoding
65 amino acids, but its function is unknown. MCIR
is a switch that determines the relative proportion of
pigment produced by a melanocyte. The active form
of the gene produces eumelanin (dark pigment). The
inactive form results in a prevalence of pheomelanin
(light pigment). Thus, loss-of-function mutations at
MCIR could result in a spectrum of pigment variation:
from light brown to yellow (Robbins ez al. 1993).
MCIR is also associated with red hair phenotypes
(Healy ez al. 2001), and a characteristic of a homozy-
gous MCIR null individual is red hair and fair skin
(Beaumont ez al. 2008). In non-human species, del-
etions in the MCIR gene are implicated in light and
melanistic phenotypes in domestic and wild species
(Barsh 1996; Marklund ez al. 1996; Kijas ez al. 1998;
Newton et al. 2000; Eizirik et al. 2003).

While MCI1R is a small gene, it is highly variant, often
with phenotypic consequences (Garcia-Borron et al.
2005). Specific mutations also link MCIR to different
forms of skin cancer, including melanoma (Smith

Phil. Trans. R. Soc. B (2010)

et al. 1998; Kanetsky ez al. 2006; Fernandez er al.
2007). MCIR coding SNPs in human populations in
Africa are predominantly synonymous: eight synon-
ymous versus three non-synonymous (Harding ez al.
2000), and non-synonymous changes are absent out-
side of South Africa (John ez al. 2003). By contrast,
European polymorphisms are largely non-synonymous:
two synonymous versus 10 non-synonymous (Harding
et al. 2000). Recently, 20 more non-synonymous
changes have been identified in Europeans (Makova &
Norton 2005). Fewer MCIR variants occur in Africa,
compared with non-African populations, which sharply
contrasts with African populations showing greater
genome-wide diversity than the non-African ethnicities
(Gerstenblith etz al. 2007).

Selection signatures around MCIR are complex.
The dN/dS ratio for MCIR between humans and
chimpanzees is unusually high (0.63), compared with
the genomic background of approximately 0.25. The
evolutionary transition may have evolved from light
skin covered with hair (as in forest-dwelling chimpan-
zees) to dark skin in early humans (Rogers ez al. 2004).
Based on the pattern of variation at MCIR, most
studies agree that natural selection in Africa is of a pur-
ifying nature (Rana ez al. 1999; Harding er al. 2000).
This may be explained by individuals with fair skin
experiencing selective disadvantage in the African
environment with its intense sunlight: fair-skinned
individuals are at higher risk of several types of skin
cancer (Rogers et al. 2004).

Outside of Africa, the MCIR gene experienced an
adaptive differentiation: large Fst values exist for the
non-African populations, particularly between Asians
and all other populations (Savage er al. 2008).
Controversy exists as to whether the non-African popu-
lations experienced relaxation of the purifying selective
constraint still acting in Africa (Harding er al. 2000), or
whether those dark-skinned individuals living in high-
latitude regions are at higher risk for diseases caused by
deficient or insufficient vitamin D levels, resulting in
the diversifying mode of selection (Rana er al. 1999;
Parra 2007). The hypothesis of relaxed pressure on
MCM6 outside Africa is supported by the evidence
based on MK and HKA tests (Harding ez al. 2000;
John er al. 2003). The alternative hypothesis of vitamin
D deficiency in Europe has been supported by the evi-
dence from the tests evaluating the frequency spectrum
of mutations (Tajima’s D) (Harding ez al. 2000; Savage
et al. 2008). The difference between the evolutionary
time scale of these tests (greater than 200 000 to less
than 200 000 years; table 1) may reflect a shift in alter-
nate selection modes in Europe. Particularly, positive
selection may operate in Southern Europeans, specifi-
cally in Greeks, Italians and Spanish, based on
significant Tajima’s D values (Savage er al. 2008). Finally,
some degree of weak positive selection may even be
present in northern European populations, possibly
reflecting an adaptation to vitamin D deficiency
(Sulem et al. 2007; Savage er al. 2008).

(c) Duffy blood group (FY) gene and malaria
The FY gene (chromosome 1p21-q22) encodes the
Duffy antigen chemokine receptor (DARC), which is
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expressed on the membrane of erythrocytes and other
lymphoid tissues. While the normal physiological
function of the DARC is unclear, the malarial parasite
(Plasmodium vivax) requires DARC to gain entry into
a cell (Livingstone 1984; Hadley & Peiper 1997). The
resistance allele (FY*0) has been localized to a single
nucleotide base substitution (T/C) of the ancestral
allele (FY*B) at nucleotide —46 of the promoter
region (Chaudhuri er al. 1995; Tournamille er al.
1995; Seixas er al. 2002). This change eliminates the
receptor in erythrocytes only, while other cells carrying
it remain unaffected (Hadley & Peiper 1997). Malaria
resistance was suggested as an explanation for the elev-
ated frequencies of the Duffy FY*0 allele in African
populations. As the highest frequencies of FY*0 are
found in the regions where P vivax is either completely
absent or present at low frequencies, Livingstone
(1984) suggested further that a different agent may
have increased FY*0 frequencies some time before
malaria, creating a pre-adaptation that prevented P
vivax from becoming endemic in those areas. Plasmo-
dium vivax is closely related to Asian primate malaria
vectors, and Mu er al. (2005) have speculated that
the pathogen may have emerged from Macaca to
humans 53 000-265 000 years ago, and entered
Africa afterwards.

Available data for the FY-Duffy locus situation pre-
sents a compelling case for a gene affected by selection
owing to the extreme differentiation between popu-
lations (Fst) from different continents (Lautenberger
et al. 2000). Recent evidence shows that Fgt values
are the greatest for the polymorphic sites nearest to
the presumed selected variant, but diminish in the
flanking regions (Hamblin ez al. 2002). However,
detecting additional selection evidence has not been
straightforward. For example, the Duffy region shows
a skew towards rare variants in African populations,
indicating a possibility of positive selection, but the
Tajima’s D values have not been significant (Hamblin
et al. 2002). Compared with the European population,
Africans display a two- to threefold decrease in genetic
variation, including the upstream region (Hamblin &
Di Rienzo 2000). In addition, positive selection was
supported by the HKA tests comparing polymorphism
at the FY locus with presumably neutral and unlinked
loci (Hamblin & Di Rienzo 2000). Finally, there is
evidence of positive selection in the excess of the
high-frequency-derived variants measured by Fay
and Wu’s tests (Fay & Wu 2000; Hamblin er al
2002). The time frame for selection at FY has been
estimated to 6500-97 000 years (Hamblin &
Di Rienzo 2000). This is both consistent with the
time frame of selection approaches involved (table 1,
III-VI) and overlaps with the date for the switch of
the malaria parasite from a primate to a human host
(Mu ez al. 2005).

(d) Glucose-6-phosphate dehydrogenase
(G6PD) gene and malaria

The G6PD gene is located at the telomeric region of
the X chromosome localized to 28, and it consists
of 13 exons spanning 18 kb. Mutants showing
100 per cent deficiency in the G6PD enzyme have
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gross deletions, nonsense or frame-shifting mutations
that are incompatible with life (Beutler 1994). Chim-
panzees have several amino-acid variants, and the
overall variation pattern at G6PD in primates in gen-
eral can be explained by recent purifying selection as
well as by a strong functional constraint dating back
to at least tens of millions of years. In that context,
the recent signature of positive selection at G6PD in
humans is interesting (Verrelli ez al. 2006).

The endemic spread of malaria, especially the var-
iety caused by Plasmodium falciparum, generally
associated with the spread of agriculture 10 000
years ago, is generally regarded as one of the strongest
known selective pressures in the recent human evol-
ution.  Plasmodium  falciparum  breaks  down
haemoglobin, and this process releases potentially
toxic by-products, including iron, which is a source
of oxidative stress. Deficiency in G6PD, a pivotal
enzyme in the pentose phosphate metabolic pathway
that protects against oxidative stress, simultaneously
increases the resistance to malaria (Kwiatkowski
2005). Not surprisingly, geographical distribution of
G6PD deficiency has been shown to be consistent
with the action of selection for malarial resistance
(Ganczakowski er al. 1995).

The overall level of nucleotide heterozygosity at
G6PD is typical of other genes on the X chromosome,
compatible with the neutral expectation (Saunders
et al. 2002). However, selection has affected genetic
variability over long distances along the flanking
chromosome, creating an extended LD around the
protective mutation detected by EHH (Sabeti ez al.
2002). Selection evidence for G6PD is generally con-
sistent with the hypothesis of recent positive
selection. One of the haplotypes (A-allele) arose
within the past 3840-11 760 years, and the other
(Med allele) arose within the past 1600—6640 years
(Tishkoff et al. 2001).

(e) Chemokine receptor 5 (CCRS5) gene and
infectious diseases

The chemokine receptor 5 (CCRY) gene is localized on
chromosome 3p21 and contains four exons but only
two introns, spanning approximately 6 kb. The gene
is expressed predominantly in T cells, dendritic cells,
microglia and macrophages and is likely to be involved
in the inflammatory responses to infection (O’Brien &
Nelson 2004). The most notable polymorphism in the
CCR5-A32 blocks HIV-1 infection (Dean er al. 1996;
Carrington etz al. 1999), but HIV-1 susceptibility and
time to progression to AIDS have been associated
with other CCR5 polymorphisms, many of them
located in the 5’ cis-regulatory region of the gene
(Carrington er al. 1997; Mummidi er al. 1997;
Martin er al. 1998).

While HIV has emerged on the global scale only
recently, population genetic data strongly suggest
that A32 has been under selection pressure for a long
time (Stephens ez al. 1998; Bamshad er al. 2002;
Novembre ez al. 2005). The A32 variant is highly loca-
lized in the northern European population, where
frequencies are as high as 16 per cent in Scandinavian
populations, and gradually decreases across Eurasia;
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results are very high, with Fgt estimated between
populations of continental origins (O’Brien & Moore
2000; Gonzalez et al. 2001; Novembre ez al. 2005).
This geographical cline has attracted the attention of
several studies, and the CCRS5 variants have been pro-
posed for involvement in several infections, including
bubonic plague (Stephens er al. 1998), smallpox
(Galvani & Slatkin 2003) and West Nile disease
(Glass et al. 2006). The A32 mutation has been esti-
mated to have occurred recently, between 700 and
5000 years ago (Stephens er al. 1998; Slatkin 2001;
Hummel ez al. 2005; Sabeti ez al. 2005), and then to
have increased rapidly in frequency because of its
strong selective advantage (Libert ez al. 1998;
Stephens ez al. 1998). The genealogy of CCR5 haplo-
types has deep branch Ilengths despite little
differentiation among populations. Variation within
the CCRS5 gene is much higher than expected and
characterized by an excess of non-synonymous substi-
tutions (less than 80%; Carrington ez al. 1997, 1999).
This finding suggested a deviation from neutrality not
accounted for by population structure, which was con-
firmed by tests for natural selection (Bamshad ez al.
2002).

Recently, Sabeti ez al. (2005) concluded that while
the possibility that some selection could not be ruled
out at CCRS5, the EHH estimates about CCR5-A32
did not exceed neutral expectations. However, the
CCRS5-A32-bearing haplotype has been estimated by
several authors to extend as far as 950-1000 kb or
60-fold longer than the HapMap average of 15 kb
(Stephens er al. 1998; Bamshad ez al. 2002; Sabeti
et al. 2005; Frazer et al. 2007). Actually, the failure
of the EHH test by Sabeti ez al. (2005) is likely due
to the occurrence of equally long adaptive CCR-+-
(not the CCRS5-A32)-bearing haplotypes, which
diminish  the @ CCR5-A32-bearing  haplotypes’
apparent influence. There is extensive evidence for
elevated dN/dS within CCR5 in African and Asian
populations, where CCR5-A32 is absent, implying
that alternative extended CCRS5-+ haplotypes result-
ing from selection of different pathogens become
evident (Carrington et al. 1997, 1999; Bamshad
et al. 2002).

5. HUMAN GENOME-WIDE SCANS

FOR SELECTION

Large human genotyping databases have been
assembled (HapMap), and sequencing genomes of
entire populations will soon become routine. As the
amount of genome-wide SNP genotyping has accumu-
lated, selection tests across human genomes have been
attempted (table 3). One study represented compara-
tive methods (Bustamante ez al. 2005); four studies
looked for gene neighbourhoods exhibiting extended
LD (Huttley er al. 1999; Voight et al. 2006; Wang
et al. 2006; Frazer et al. 2007); two studies looked
for diminished polymorphism (Altshuler ez al. 2005;
Oleksyk ez al. 2008); two studies looked for an aberrant
frequency spectrum (Carlson et al. 2005; Nielsen ez al.
2005); and two studies looked at the high values of
local genomic divergence either alone (Akey er al.
2002), or in combination with diminished
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heterozygosity (Oleksyk ez al. 2008). Finally, Tang
et al. (2007) used admixture mapping in Puerto
Ricans and found strong statistical evidence of recent
selection in three chromosomal regions, including
the human leucocyte antigen region on chromosome
6p (figure 7), chromosome 8q and chromosome 11q.
Two of these regions harbour genes for olfactory
receptors and all three exhibited deficiencies in the
European-ancestry proportion.

6. A SYNTHESIS OF SCANS ACROSS

THE GENOME

In table 3, we compared several scans to find sites of
replication among different studies (see also Oleksyk
et al. 2008). We adjusted for the locality of selection
by subdividing putatively selected regions into three
categories: (i) those discovered in European or
European-American populations, (ii) those discovered
in African or African-American populations, and (iii)
those discovered in Asian populations. Comparisons
between 11 selection scans in the three groups of
populations are shown in table 3. A human genome
map of overlapping sites, along with their coordinates,
can be found in our earlier study (Oleksyk ez al. 2008).
Comparisons between studies have been attempted
earlier, using gene names (Biswas & Akey 2006;
Nielsen er al. 2007), but never by comparing coordi-
nates among multiple GWSSs.

A comparison of 11 GWSSs using different datasets
and methodologies provides a comprehensive sum-
mary of reported selection signatures across the
genome. As different selection methods target differ-
ent time periods, they can complement each other by
pointing to different selection episodes during the
evolutionary history of a species. Correspondingly,
different scans that use similar methods should point
to similar coordinates of selection regions. Scans
should validate candidate genes that were discovered
by similar methods. The analytical approaches to
GWSSs described here also allow testing specific
hypotheses involving candidate loci. So far, the cover-
age of candidate genes is modest. Of the 30 candidate
genes previously reported to be selected (table 2), only
nine (LCT, CCR5, ADHIB, CYP3A45, FOXP2,
MCPHI1, DK5RAP2, SLC24A5 and TTL.6) were ver-
ified in one of the 11 GWSSs reviewed (table 2). Seven
other genes (HBB, CENPY, FY, 1l13, 114, HFE and
TRPV6) were within 200 kb from one selected
region. Remarkably, only two of these gene regions
were verified by two or more studies (LCT and
CYP3A45), and four more were positioned within a
selected region in one study, but less than 200 kb
away from at least one region in other GWSSs
(CCR5, ADHI1B and SLC24A5; table 2).

Finding a candidate gene using one of the tests
(table 1) does not assure that it will be found in the
GWSS, even if the GWSS incorporates the same test
used in the initial analysis of the selection signature.
For instance, G6PD and TNSF5 genes have been
shown to be under a strong selection in Africans
(Sabeti er al. 2002), but did not make the list of
selected regions found in the GWSS by the same
EHH methodology (Altshuler ez al. 2005; Frazer
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Table 3. Comparison between GWSSs reported in 11 different studies.

Europeans® Africans? Asians®
all sites
approaches number reported replicated reported replicated  reported replicated

study?® used® reported regions (hits)f regions (hits) regions (hits)

Huttley ez al. VII 10 10 9 (27) — — — —
(1999)

Akey er al. VI 153 141 15 (18) 105 9 (9 43 5 (7)
(2002)

Altshuler ez al. v, VI 213 72 25 (38) 75 24 (32) 87 23 (41)
(2005,
HapMap)

Bustamante I 61 61 3 (3) 61 4 (4) 61 4 (4)
et al. (2005)

Carlson ez al. v 59 23 9 (19) 7 4 (11) 29 12 (28)
(2005)

Nielsen et al. A% 23 23 9 (14) 23 2(3) — —
(2005)

Voight ez al. VII 776 256 49 (52) 271 37 (42) 249 43 (48)
(2006)

Wang et al. VII 117 117 19 (24) 117 14 (16) 117 11 (16)
(2006)

Frazer ez al. VII 19 16 9 (27) 9 4 4) 9 3 (4)
(2007,
HapMap II)

Sabeti ez al. VI, VII 42 23 9 (9) — — 22 9 (13)
(2007)

Oleksyk ez al. v, VI 179 161 36 (53) 102 (26) 10 (13) (76) 8 (8)
(2008)

total 1652 903 192 (284) 770 108 (134) 617 118 (169)

#Comparisons have been made by lifting genome coordinates for all the reported regions to that of hgl8 (March 2006) using LiftOver
executable within the UCSC genome browser. Gene coordinates were obtained by searching for their chromosome positions in NCBI
using bioDBnet conversion tool (http:/biodbnet.abcc.ncifcrf.gov).

®See table 1.

“European, European-American or the worldwide populations (local population not specified, or selection reported for two and more
populations in the same region). Numbers of regions exclusive to each of the three populations are presented in the electronic

supplementary material, figure S2.
dAfrican, African-American or worldwide population.
“Asians or the worldwide population.

The number outside of the parentheses represents the number of regions verified by other studies, while the number inside the
parentheses represents the total number of times these regions have been verified by other studies. For example, Huttley ez al. (1999)
published 10 studies, nine of which were verified by a total of 27 different regions from 10 other genome-wide scans for selection.

et al. 2007; Sabeti et al. 2007) (table 2). Similarly, long
haplotypes around a rare CCR5-A32 deletion in CCR5
have been shown to be a more common feature in the
genome than was previously thought (Sabeti et al.
2005). This can be explained either by the insufficient
power of the tests employed, or by the insufficient
coverage in the scanned datasets; or this may
indicate their relatively modest selective effect, com-
pared with the other candidate genes included in the
list (Sabeti er al. 2006). Similarly, the LCT gene that
has become a hallmark of recent selection testing
(Bersaglieri er al. 2004; Nielsen ez al. 2005; Voight
et al. 2006) has not been found by other studies
(Huttley ez al. 1999; Akey et al. 2002; Altshuler et al.
2005; Bustamante et al. 2005; Carlson et al. 2005;
Nielsen er al. 2005; Voight et al. 2006; Wang et al.
2006; Oleksyk er al. 2008).

Historically, most of the candidate regions in the list
were discovered by methods that identify older selec-
tion (table 1, I-V). Methodology for detecting
recent selection has improved in the recent decade,
specifically by incorporating LD methods (Sabeti
et al. 2002; Voight er al. 2006; Wang er al. 20006).
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As the number of dense genotyped sets increases
with improved genotyping technology and next-
generation sequencing, we should see an increased
precision of selection events documented. These new
GWSSs should incorporate a multi-layer approach by
including several tests capturing maximum information
from different selection signatures. Bottlenecks and
population expansion create a problem for other
methods: they alter LD pattern and frequency spec-
trum, reduce heterozygosity and change admixture
contribution. However, as most of the GWSSs include
hundreds of thousands of loci, and as demographic
events impact loci genome-wide, it is possible to
account for genome-wide effects by comparing regional
statistics directly.

7. CONCLUSIONS

We have attempted in this review to summarize the
new approaches, findings and implications of genome
GWSSs to probe for perturbations that result from
selective episodes that afflicted our ancestors.
Though theoretically appealing, a puzzlement arises
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when we inspect how modest is the replication for dis-
covery of different genomic regions between
algorithmic approaches or between different studies
(tables 2 and 3). Several possible explanations contrib-
ute to this disconnect, but two are worth mentioning.
First, as even the strongest strong selective episodes are
temporary, the entropy of subsequent mutational/
recombination events rapidly diminish the intensity
of selective footprints for which we search. As genomic
selection footprints decay at different rates for different
algorithms, a negative result does not necessarily mean
that selection did not happen there. Second, there are
likely false-positive signals that do not reflect historic
selection at all; rather they arise from local genomic
differences in DNA repair, mutation rate differential,
recombination difference, sequence stability, and the
statistical outlier effects of multiple genome-wide tests
for significance. Nonetheless, as we scroll though
DNA sequences of human and available mammals
(Lewin er al. in press), we are beginning to uncover sig-
nals that make sense (see examples in §3a—e¢), ones that
we can interpret in the context of human history, cul-
ture, geography and archaeology. In some ways, these
imputations will preview similar creative approaches to
connecting gene organization in a holistic systems
biology context, ones that promise to inform life scien-
tists of how genome codes specify individual and
species development and one day soon nearly all
things biological. Genome sequences of non-traditional
species will quickly appear with the advancing faster
and cheaper next-generation sequencing technologies
projecting some 10 000 vertebrate species genome
sequences assessed in the next decade (G1KCOS
in press). With these available genome sequences com-
plemented by powerful informatics routines to assemble
and annotate the data, numerous anticipated discov-
eries will be revealed in both the comparative and
population diversity context in a way that expands bio-
logical enquiry in dimensions across geographical
populations, among related species, to higher taxa,
and, importantly, back though the formative evolution-
ary history of humankind and those modern species
with which we share our planet.
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