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Abstract: Elicitation is a good strategy to induce physiological changes and stimulate 

defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis 

of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been 

widely investigated as bioactive compounds responsible of plant cell adaptation to the 

environment, specific organoleptic properties of foods, and protective effects in human 

cells against oxidative processes in the development of neurodegenerative and 

cardiovascular diseases and certain types of cancer. Biotic (biological origin), abiotic 

(chemical or physical origin) elicitors and phytohormones have been applied alone or in 

combinations, in hydroponic solutions or sprays, and in different selected time points of 

the plant growth or during post-harvest. Understanding how plant tissues and their specific 

secondary metabolic pathways respond to specific treatments with elicitors would be the 

basis for designing protocols to enhance the production of secondary metabolites, in order 

to produce quality and healthy fresh foods.  
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1. Introduction: Secondary Metabolites in Plants, Foods and Human Health 

Plant-based nutrients and phytochemicals present in vegetable foods include proteins, lipids, 

carbohydrates, vitamins, minerals, and bioactive compounds, including phenolic compounds and 
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glucosinolates, that confer additional advantages to plant cell adaptation capacity to the surrounding 

environment, and act as precursors of molecules involved in the plant defense systems such as 

antibiotics, antifungals, and antivirals. Therefore, secondary metabolites are able to protect plants from 

pathogens (phytoalexins) [1] and insects [2], as well as constituting important UV-radiation absorbing 

compounds, thus preventing serious leaf damage [3]. The content of secondary metabolites in 

vegetables also confers a relevant role as health-promoting compounds and therefore contributes to 

their economic importance of foods [4]. Phenolic compounds contribute significantly to imparting 

specific flavours and colours to various plants widely utilized in foods and beverages. Examples 

includes capsaicin, responsible for the pungent properties of the red peppers, alkylphenols, responsible 

for the characteristic taste and odour of clove oil, tannins, which add a distinct bitterness or astringency 

to the taste of certain foods, and the anthocyanin pigments, such as the pelargonidins, the cyanidins 

and the delphinidins (responsible for red, blue and purple colours) [5]. The glucosinolates, 

characteristic of cruciferous foods, also add bitter taste (progoitrin) and aroma intensity (total 

glucosinolates) to vegetables [6]. 

The relevance of phenolic compounds [7] and glucosinolates [8] for human consumption has been 

associated with a protective effect against oxidative processes in relation to cardiovascular and central 

nervous system health, and neurodegenerative diseases, and with a reduced risk for cancers of the 

gastrointestinal tract, lung, colon, bladder, pancreas, skin, breast and prostate [9]. Optimizing the 

composition of fruits and vegetables would be a very cost-effective method for improving nutrition 

and disease prevention, since diet-induced health improvements would not represent any added costs 

for the health sector, even more it might help to reduce these costs [10–12]. 

The phytochemical composition of plants foods vary according to genetics (family, species, 

cultivar, etc.), physiological (organ, maturity and age) and agronomical factors (photoperiod,  

saline stress or fertilization) [13–19]. These factors are grouped as biotic (genetics, physiological 

determinants, pests and diseases) and abiotic (environment and agronomical conditions) and can be 

used to enhance valuable metabolites in foods and ingredients, in a year-round production [16,17,20]. 

Specific treatments, including precursor feeding and elicitor application can be used to increase 

metabolite production in the plant and to enhance its qualitative value for fresh produce, enriched food, 

or as a raw ingredient for feed/food and pharmaceutical products [21,22]. 

2. Elicitors  

2.1. Concept and Classification 

Elicitors are substances which induce physiological changes in the plant. Plants respond to these 

stressors by activating an array of mechanisms, similar to the defense responses to pathogen infections 

or environmental stimuli, affecting the plant metabolism and enhancing the synthesis of phytochemicals. 

The first biotic elicitors were described in the early 1970s [23]. Since then, numerous publications 

have accumulated evidence for pathogen-derived compounds that induce defense responses in intact 

plants [24,25] or plant cell cultures [22,26]. The use of elicitors as a tool to enhance the phytochemical 

content in plants, applied alone or in combinations at selected time points of the vegetable growth, 
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should not be confused with those administered during the plant production cycle or pre-harvest, such 

as conventional fertilization. 

Elicitors could be classified as biotic and abiotic compounds, also plant hormones (salicylic acid 

(SA), jasmonates, etc.) may be considered as elicitors (Table 1) [27,28]. 

Table 1. Elicitor classification based on their origin. 

Biotic Elicitors 

Lipopolysaccharides [27] 
Polysaccharides: Pectin and cellulose (cell walls) [28]; chitosan [21,28], chitin and glucans  
(microorganisms) [28], alginate, arabic gum [29], guar gum, LBG [27], yeast extract [27]. 
Oligosaccharides: Galacturonides, guluronate, mannan, mannuronate [27,30]. 
Proteins: Cellulase [31], cryptogein [32], glycoproteins [27], oligandrin [27], pectolyase, fish protein 
hydrolysates[33], lactoferrin [33]. 
Complex composition: Fungal spores, mycelia cell wall, microbial cell wall [27]. 
Pathogen toxin: Coronatine [34]. 
Oregano extract [33]. 

Abiotic Elicitors 

Chemical  Physical [35] 
Acetic acid [21]  Altered gas composition  
Benzothiadiazole [36] Chilling  
Silicon [36] CO2  
Bioregulator prohexadione  Drought  
Ethanol [37] Extreme temperature shock  
Ethene [37] High pressure  
Inorganic salts: mercuric chloride (HgCl2), copper 
sulfate (CuSO4), calcium chloride (CaCl2), and 
vanadyl sulfate (VSO4) [28] 

High or low osmolarity  
UV irradiation 
Saline stress 

Metal ions: Co2+, Fe2+, Al3+, Ag2+, Ag+, Mn2+, Zn2+, 
Cu2+, Pb2+ and Cd2+ [28,38] 

Wounding  
Ozone 

Plant Hormones 

Jasmonic acid, methyl jasmonate [39], methyl salicylate, salicylic acid, ethylene [21,40], cytokinin, 
gibberellin GA3 [37]. 

Biotic elicitors (chitosan, alginate, cellulose, etc.) have biological origin, often originated as a result 

of fungi, bacteria, virus or herbivore infections (exogenous elicitors), and in some cases are released 

from the attacked plant by the action of enzymes of the pathogen (endogenous elicitors) [27]. Often 

complex biological preparations have been used as elicitors, where the molecular structure of the 

active ingredients is unknown. Examples of such elicitors are yeast extract and microbial cell-wall 

preparations [27]. Yeast extract contains several components that can elicit plant defense responses, 

including chitin, N-acetylglucosamine oligomers, β-glucan, glycopeptides and ergosterol. 

SA and jasmonates (jasmonic acid (JA), methyl jasmonate (MeJA)) are widely known to elicit a 

wide range of compounds by inducing the expression of plant genes for various biosynthetic pathways, 

and are also defined as “hormones” because they induce cellular responses at low concentrations 

distant from their site of synthesis, and can be applied to plants in a variety of ways. For instance, 

MeJA may be applied to plants as a gas in an enclosed environment, on a liquid form to a hydroponic 
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solution, or by jasmonate sprays [39]. The treatment of young red and black raspberry fruits with  

0.01 mM or 0.1 mM MeJA increased their anthocyanins and phenolic compounds [41]. Analogs of 

MeJA or JA have physiological activity. For instance, N-propyl dihydrojasmonate (PDJ) increased the 

abscisic acid (ABA) and anthocyanin content of apples [42]. Abiotic elicitors are produced by factors 

responsible for environmental stress. These factors can be of chemical (inorganic salts, metal ions and 

others which disturb the membrane integrity) [28] and physical origin (UV irradiation, wounding, 

saline stress, ozone etc.) [35] (Table 1). For instance, exposure of alfalfa, broccoli and radish 3-old-day 

sprouts to high light intensity (700 µmol·m−2 s−1 for 1 day) or chilling (4 °C and and 120 µmol·m−2 s−1 

for 1 day) resulted in higher total phenolic content and antioxidant capacity compared with controls, by 

20% in alfalfa and 40% in broccoli, and showed a 25% increase of phenolic content and 40% of higher 

antioxidant capacity in radish [43]. 

Apart from the classification of elicitors according to their nature, they can also be classified upon 

their interaction with the host plant, as “general elicitors”, such as carbohydrates, cell wall proteins, 

oligosaccharides etc., which induce non-specific mechanisms for the induction of defense response in 

different plant cultures, and “specific elicitors” from fungal, bacterial, viral or plant origin, which 

affect only a specific host cultivar since the presence of its corresponding resistance gene in the host 

plant is directly associated with the resistance against a specific gene pathogen [4,44].  

2.2. Mode of Action of Elicitors 

In plant defense systems each cell has acquired the capability to respond to pathogens and 

environmental stresses and to build up a defense response. Plant response is determined by several 

factors, mainly depending on their genetic characteristics and physiological state. In the majority of 

cases, plant resistance to diseases is known to be genetically controlled by plant resistance (R) genes 

and pathogen avirulent avirulence (Avr) genes (gene-for-gene interaction concept) [45]. However, 

triggering resistance is not always due to specific Avr products which activate defense responses in 

cultivars possessing the matching R genes but, instead, proceeds from the action of general elicitors, 

able to activate defenses in different cultivars of one or many species [45]. First step in the response of 

plant against elicitors is the stimulus perception by receptors localized in plasma membranes of the 

plant cell (Figure 1), like protein kinases, which represent one of the most important in pathogen 

perception for a number of fungal elicitors [46], or could be localized within the cell to initiate 

signaling processes that activate plant defenses, as for certain bacterial elicitors, which initiate 

signaling processes that activate plant defenses [47]. 

The elicitor signal transduction is an important subject of investigation. In this sense, several 

authors have described that plants respond to elicitors by activating an array of defense mechanisms on 

the surface of the plasma membrane (Figure 1), including induction of pathogenesis-related proteins 

and enzymes of oxidative stress protection, hypertensive responses, characterized by rapid cell death in 

the immediate vicinity of the point of exposure to the pathogen [45], the production of reactive oxygen 

species (ROS) and reactive nitrogen species (RNS), the activation of defense-related genes, changes in 

the potential of plasma membrane cell and enhanced ion fluxes (Cl− and K+ efflux and Ca2+ influx), 

rapid changes in protein phosphorylation, lipid oxidation, and structural defensive barriers, such as 

reinforcement and lignification deposition inn cell wall, etc. and the activation and the de novo 
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biosynthesis of transcription factors, which directly regulate the expression of genes involved in 

secondary metabolites production [48–50] (Figure 1).  

Figure 1. General mechanism after elicitor perception. Abbreviations: SAR (systemic 

adquired response), ISR (induced systemic resistance), ROS (Reactive oxygen species), 

RNS (reactive nitrogen species), NADPH (nicotinamide adenine dinucleotide phosphate), 

SA (salicylic acid), JA (jasmonic acid), ET (ethylene) [48–50]. 

 

2.3. Preharvest Elicitation: Priming Seeds and Edible Plants 

Preharvest elicitation could be done as seed priming [33,51], soaking seeds in a water solution with 

the elicitor, or after seedling, applying exogenous spraying treatment over the leaves [52] or in a 

hydroponic system [53].  

Elicitor nature, doses and time of treatment strongly affects the intensity of the plant response 

(Figure 2). Elicitors can stimulate different classes of secondary metabolites and affect in a different 

way the concentration of these compounds, being more dependent on plant genetics (species and 

cultivars) than on the elicitor nature. 

A MeJA elicitation, applied daily by exogenous spraying at 10 µM, resulted in a 31%, 23% and 

22% increase of total flavonoid, phenolic and glucosinolates concentration, respectively, in 7 day old 

broccoli sprouts [25]. Also a MeJA sprayed treatment (10 mM) at the beginning of veraison in grape 

(Vitis vinifera) increased anthocyanin and flavonols content up to 81% and 131%, respectively [54].  

Concentration of elicitor and interval between treatment and harvest induce different responses 

characteristic of plant species, making necessary to find the adequate effective dose and time 

empirically [4]. Radish sprouts (Raphanus sativus L.) treated with 100 mM of NaCl increased total 

glucosinolates in 5- and 7-day-old sprouts, by 50% and 127%, respectively, and the phenolic contents 

in 3- and 5-day-old sprouts, by 20% and 40%, respectively, while with a low and moderate level of salt 
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stress (10–50 mM of NaCl) reduced these contents [55]. Bodnaryk showed that JA and MeJA were 

equally effective at high doses (>5 nmol seedling−1) in increasing the concentration of 3-indolylmethyl 

glucosinolates (3-IMG), maybe because of the saturated effect of jasmonates, but at lower doses, JA 

was more potent than MeJA [56]. The dose needed to cause a doubling of the concentration of 3-IMG 

in the cotyledons of 7-day-old B. napus sprouts, in 24 hs, was 8.2 pmol for JA and 41 pmol for MeJA. 

The sulphur effect, as elicitor, in broccoli sprouts was dependent on the dosage (K2SO4 at 15, 30, and 

60 mg/L) and augmented the total glucosinolates in sprouts by 14%, 18%, and 23%, respectively,  

12 days after sowing [57]. 

Figure 2. Factors influencing bioactive compounds in plant response. 

 

Physiological conditions also play an important role in the elicitation techniques, which achieving 

better results during the exponential phase of growth of the plant, when the concentration of bioactive 

compounds is higher [58], and in the presence of growth regulators [59]. 

Different studies have reported an additive or synergistic response after combination of elicitor 

treatments, different signal transduction pathways appear to exist in response to environmental stresses 

and elicitors and these pathways could antagonize or harmonize with each other, leading to negative or 

additive interactions, respectively [58,60,61]. 

2.4. Postharvest Elicitors Applications 

Specific elicitor treatments has been used in postharvest practices to enhance the phytochemical 

content and quality composition in many fruits and vegetables, such as the application of low or high 

temperature treatments [62], ultraviolet (UV) [63,64] or gas combinations before commercialization [40]. 

In this context, it has to be mentioned that red orange fruits (Citrus sinensis) accumulated anthocyanins 

(8-fold compared to control) in their juice vesicles during cold storage at 4 °C for a period of 75 days [62]. 

An accumulation of phenolic compounds was also found in apple (Malus domestica) during cold 

storage which was coupled with increasing the phenylalanine ammonialyse (PAL) activity, a key 

enzyme in the phenylpropanoid pathway [65]. A combination of visible light and UV-B irradiation 

(380 nm) applied 12 h per day during a period of 10 days, increased the total phenolic compounds  

(127% compared to irradiation of visible light alone) in apple peel. It was assumed that UV-stress also 
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mediated the increase of PAL activity [64]. Ultraviolet irradiation can lead to grapes with enhanced 

antioxidant properties, within normal conditions of market commercialization [63]. 

On the other hand, phytohormones applied to tissues will increase phenolic concentration. For 

instance, ethylene applied to butter leaf lettuce at 10 µL·L−1 in a flow of humid air for 3 days at 5 °C, 

induced synthesis of phenolic compounds by 38%, even though wounding increased by 87% these 

compounds [40]. Furthermore, the authors observed that temperature also affected the concentration of 

phenolics, at 10 °C ethylene and wounding induced increases of 174% and 155%, respectively. The 

exogenous application of the phytohormone MeJA (170 µL spontaneously vaporized at 25 °C) over 

strawberry fruits during 7 days, induced an increase of 35%, 52% and 187%, on phenolic content, 

antioxidant capacity, and anthocyanins, respectively [66]. A longer storage, after 11 days, resulted in a 

considerable decline of total phenolic content and antioxidant capacity, detrimental of fruit quality. On 

the other hand, through elicitor practices also the quality of food products could be enhance, such as 

the improvement of the volatile profile, flavor and taste of wine after a chitosan treatment or the 

increase of phenolic compounds of peppermint resulting infusions after SA foliar application in the 

plant [67,68]. Understanding the interactions among the stressor applied and the tissue response will 

help to optimize the right application.  

Alternatively to a hierarchical response, additive or synergistic responses can be used to selectively 

target the increase of bioactive compounds [21,69]. Synergistic effects have also been found for 

postharvest elicitors, in sorghum seedlings exposed to low moderate temperatures during 24 h before a 

red light irradiation by fluorescent tubes (661 nm), resulting the optimum temperature at 20 °C for 

enhancement of red light induced anthocyanin synthesis (185%) compared that for seedlings growth at 

24 °C [70]. The use of wounding (3 mm thick disks sliced) in combination with ethylene (1000 ppm) 

and MeJA (250 ppm) in purple carrot (Daucus carota L.) increased the total phenolic content by about 

176% and 210%, respectively, compared to the separate treatments [71]. 

3. Elicitation Effects on Primary Metabolism 

Plant primary metabolism includes physical and chemical processes that fulfill the essential 

functions for the maintenance of plant life: survival, growth and reproduction. Photosynthesis, respiration, 

nutrient uptake, transport and partitioning, protein synthesis, tissue differentiation, biosynthesis of 

carbohydrates, lipids and the proteins involved in these processes or in structural parts are all chemical 

processes belonging to the primary metabolism. Biotic and abiotic stresses (variation in agronomical 

conditions, such as plant organ, plant competition, fertilization, pH, season, climate, water availability, 

light, and CO2 [9]) are expressed in plants by a series of morphological, physiological, biochemical 

and molecular changes that adversely affect plant growth and productivity [72]. 

Gómez et al., studied MeJA spray application (0.5 mM) to the foliage of tomato plants for 4 h. 

There was a significant decrease in the fixation of CO2 (20%) and an increase in the export of newly 

acquired carbon and nitrogen (1-fold) out of MeJA-treated leaves [73]. These results showed a change 

in the allocation of resources after MeJA application, this may reduce the chance of resources being 

lost to herbivores and act as a buffer to biotic stress by increasing the potential for plant regrowth and 

survival after the attack. 



Molecules 2014, 19 13548 

 

 

The effects on the germination of alfalfa and broccoli seeds stimulated by dry smoke (by the 

complete combustion of Artemisia vulgaris) during 30 and 45 min, respectively, and aspirin solution 

(0.145 g/100 mL in pure water) during 10 and 30 min, respectively, showed higher growth ratio than 

control group (>112%) [74].  

A treatment of chitosan (28 kDa), a deacetylated derivative of chitin, at 0.5% dissolved in 0.5% 

lactic acid, increased the total weight (12.9%), germination rate (16%) and total isoflavone content 

(11.8%) of sunflower sprouts [51], while a treatment in soybean sprouts with 0.05% chitosan (493 kDa) 

in 0.05% acetic acid solution increased the total weight (26%) and vitamin C content (14%) compared 

with that of the control [51,75].  

Baenas et al., showed an increase in biomass weight of 5 different Brassicaceae sprouts after  

5-days spray elicitation with sucrose (146 mM), as a supply of carbon source for cell growth, and  

DL-methionine (5 mM), enhancing the overexpression of some genes [52]. 

4. Elicitors Affecting the Content of Bioactive Compounds  

The most actively pursued strategies to increase the production of target natural products in plants, 

are the applications of chemical elicitors and the study of the signal transduction pathways and 

transcription factors required for the expression of genes, involved in the biosynthesis of specific 

bioactive phytochemicals [50].  

Much effort has been put into cloning biosynthetic genes, identifying transcription factors, 

revealing the signal transduction steps underlying elicitor activation of plant secondary metabolism 

and also into the manipulation of regulatory and biosynthetic genes, to engineer plant cells and 

enhance the production of target secondary metabolites [76]. It is expected that a better understanding 

of the signal transduction pathways, linking plant cell stimulation and biosynthesis of natural 

compounds may help to develop new strategies to alter the production of target compounds, by either 

activation or suppression of certain metabolic pathways [48]. As a consequence, in plant tissues is 

observed the production of antioxidant molecules, compounds of technological interest in healthy 

foods [48]. Hao et al., showed a feasible strategy to combine MeJA and SA treatment with transgenic 

technology for the enhancement of tanshinone, an active diterpene which is widely used in the 

treatment of cardiovascular diseases, in Salvia miltiorrhiza hairy roots [77], also SA was reported to 

enhance anti-inflammatory activity of Aloe vera by increasing its anthraquinones [78]. 

4.1. Phenolic Compounds 

Phenolic compounds (more than 8,000 in Nature), can be classified based on the number and 

arrangement of their carbon atoms in flavonoids (flavonols, flavones, flavan-3-ols, anthocyanidins, 

flavanones, isoflavones and others) and non-flavonoids (phenolic acids, hydroxycinnamates, stilbenes 

and others) and they are commonly found conjugated to sugars and organic acids. 

Phenolic compound contents have been associated with flavour and colour characteristics of  

fruits and vegetables. These compounds have additional multiple roles in plants, including attracting 

insects for seed dispersion and pollination and being part of the natural defense system [79]. Moreover, 

in recent years, phenolic compounds have been intensively investigated because of their potential 

health-promoting effects, such as anti-inflammatory [80], antimicrobial [81], antiallergic [82], vascular [83] 
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and cytotoxic antitumor activity [84], but the most cited biological activity is based on their 

antioxidant capacity, related with its chemical structure that confers them redox properties [85,86]. The 

accepted wide range of beneficial effects of phenolic compounds initiated, attempts to stimulate their 

accumulation in crop plants by agricultural technologies. Several reviews summarized the advantages 

of targeted pre- and post-harvest elicitor treatments to obtain fruits and vegetables enriched with 

beneficial phytochemicals [87–89]. Alfalfa three-day-old sprouts subjected to high-light (700 µmol·m−2 s−1 

for 1 day) and chilling (a growth chamber at 4 °C with a light intensity of 120 µmol·m−2 s−1 for 1 day) 

accumulated about 2.0 and 1.5 times, respectively, significantly higher concentration of ferulic acid. 

Therefore, high-light seems to elicit a stronger response than chilling in enhancing the phytochemical 

content [43]. The largest accumulation of sinapic acid (by 83% more compared to untreated control) 

occurred following high-light treatment (700 µmol·m−2 s−1 for 1 day) in broccoli sprouts, similar to 

ferulic acid in alfalfa, however, chilling did not seem to have any effect on the sinapic acid content in 

broccoli sprouts [43]. Examples of biotic and abiotic elicitors affecting different groups of phenolic 

compounds are listed in Table 2. 

Table 2. Phenolic compounds increased by elicitors. 

Plant Food Elicitor Treatment Application 
Target Compounds 
Class and Increase 

Reference 

“Fuji” apples Ethephon  
(2-chloroethyl 
phosphonic acid)  
(100 mg/L) 

Sprayed for 4 weeks 
before commercial 
harvest 

Anthocyanins (8-fold), 
and flavonols (2-fold) 
during fruit maturation 

[90] 

Grape berry fruits Ethanol  
(5 g/100 mL) 

Sprayed for 8–9 weeks 
after anthesis 

Anthocyanins  
(3-fold) 

[91] 

Butter Lettuce JA 1 µM Sprayed after 21 days of 
germination 

Total phenolics (280%)  
Flavonoids (133%)  
Phenolic acids (360%) 

[92] 

Lettuce cv. 
“Lollo Rosso” 

UV-full range  
(UV-A and UV-B) 

Radiation during 
cultivation 

Flavonoids (130%) and 
phenolic acids (200%) 

[93] 

Purple-flesh 
potatoes 

Wounding  
(vegetable slicer) 

After harvest Total phenolics (60%) [94] 

Strawberry fruits CO2  
(ambient + 600 µmol) 

28 months Anthocyanin and 
flavonols (30%–50%) 

[95] 

Sweet basil MeJA 0.5 mM Sprayed when the plants 
had five or six leaves 

Rosmarinic acid (50%) 
and caffeic acid (38%) 

[96] 

Greek oregano Chitosan 
oligosaccharides  
(50 and 200 mg/L) 

Sprayed for 2 weeks 
prior to the anticipated 
flowering time 

Phenolic acids and 
flavonoids (30%) 

[97] 

Pea sprouts Folin acid (50 µM) 
and vitamin C  
(500 µM) solutions 

Soaking seeds  
for 12–48 h 

Total phenolic 
compounds (20%) 

[98] 
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Table 2. Cont. 

Plant Food Elicitor Treatment Application 
Target Compounds 
Class and Increase 

Reference 

Pea sprouts Folin acid (50 µM) 
and vitamin C  
(500 µM) solutions 

Soaking seeds  
for 12–48 h 

Total phenolic 
compounds (20%) 

[98] 

Olive trees 
organs 

Nutrient solution 
“Brotomax”  
(0.3 g/100 mL) (urea 
nitrogen, copper, 
manganese and zinc) 

Sprayed for 120 days 
after anthesis 

Tyrosol, catechin, and 
oleuropein (20%) 

[99] 

Radish sprouts NaCl (100 mM) In 0.5% agar media for 
3, 5 and 7 days after 
sowing seeds 

Total phenolics  
(30% and 50% in 5 and 
7-days-old sprouts, 
respectively) 

[100] 

Radish, chinese 
kale and pak choi 
3-day-old sprouts 

Glucose (5 g/100 mL) Hydroponic system  
for 3 days after  
sowing seeds 

Total phenolics  
(20%) 

[53] 

Broccoli  
7-day-old sprouts 

Sucrose, fructose and 
glucose (146 mM) 

In 0.5% agar media  
for 5 days after  
sowing seeds 

Total anthocyanins 
(10%) 

[55] 

Broccoli  
7-day-old sprouts 

Sucrose and mannitol  
(176 mM) 

Hydroponic system  
for 5 days after  
sowing seeds 

Total anthocyanins  
(40%) and  
phenolics (50%) 

[101] 

Elicitors also have been applied as a complementary treatment to fungicides, such as the exogenous 

application of benzothiadiazole and MeJA, increasing, at the same time, the flavonoids content 

(anthocyanin, flavonol, and proanthocyanidin) in grapes and showing higher color intensity and total 

phenolic content in wines [54]. 

4.2. Glucosinolates 

Glucosinolates (GLS) comprise a relatively small but diverse group of over 130 nitrogen and 

sulfur-containing natural products found almost exclusively in cruciferous plants [102]. The 

glucosinolate core structure comprises a β-thioglucoside N-hydroxysulphate, containing a side chain 

and a β-D-glucopyranose moiety [14]. The structure of the side chain is highly variable and determines 

the glucosinolate classification as aliphatic, indolic, or aromatic [103,104] according to whether their 

amino acid precursor is methionine, tryptophan, or an aromatic amino acid (tyrosine or phenylalanine), 

respectively [14]. Glucosinolates are plant defense compounds against various pathogens and pests, 

and are accumulated preferentially in the organs that contribute most to the growth cycle of the plant [102]. 

Besides, these compounds have a potential benefit to protect humans against certain cancers, 

particularly lung and those of the gastrointestinal tract, and also in the reduction of risks for 

cardiovascular diseases [9,105,106]. However, there are still many areas that need further research to 

avail the full health benefits of these compounds [107]. Glucosinolates are also responsible of 

organoleptic properties in some plants, such as cauliflower and mustards [108].  
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Glucosinolates profiles can be altered by treatments with elicitors [21,109]. Exogenous application 

of SA, JA and MeJA have been widely studied because of the results in expression of large number of 

genes involved in resistance responses, among these are genes related to biosynthesis of phytochemicals 

in plants [110]. SA, JA and MeJA serve as signaling molecules induced by pathogen infestation [24] 

and mechanical wounding [56]. Treatment of Brassicaceae plants with these elicitors can stimulate  

the increase of glucosinolate content. Baenas et al., (2014), reported that MeJA elicitor (25 µM) was 

highly effective to increase the total glucosinolates in 5 different 8-day-old Brassica and Raphanus 

sprouts, specially, the concentration of the health-promoting glucoraphanin and glucoraphenin  

by 50% [52].  

The individual classes of glucosinolates respond differently to the elicitor treatment. Treatment 

with SA and MeJA increased the total amount of glucosinolates, particularly levels of aromatic and 

indole glucosinolates, in secondary roots of turnip, in contrast, SA or MeJA either reduced or did not 

affect the levels of aliphatic glucosinolates [111]. Kiddle et al. reported that JA induces mainly indole 

glucosinolates in leaves, and the intensity of this “induction” depended on the JA concentration 

applied and the age of the leaf, retaining developing leaves higher levels than mature leaves [112]. 

Examples of biotic and abiotic elicitors affecting glucosinolates are showed in Table 3. 

Table 3. Glucosinolates increased by elicitors. 

Plant Food Elicitor Treatment Application 
Target Compounds 
Class and Fold Increase 

Reference 

Brassica  
7-day-old sprouts 
cotyledons and 
leaves 

JA spray (5 nmol) Topically 3-indolylmethyl GLS  
(6-fold) in B. napus;  
4-hydroxy-3-indolylmethyl 
GLS (9-fold) in B. rapa; 
both indole GLS  
(2-fold) in B. juncea 

[56] 

Turnip root 
exudates 

MeJa (130 μM) Added in the 
hydroponic system 
for 10 days 

Indole GLS (4-fold) [113] 

Broccoli sprouts Sucrose (146 mM) In 0.5% agar 
media for 5 days 
after sowing seeds 

Total GLS (2-fold) [55] 

Broccoli  
7-day-old sprouts 

1. Methionine (5 mM) 
2. Tryptophan (10 mM) 
3. SA (100 μM) 
4. MeJA (25 μM) 

Daily exogenous 
spraying during  
3, 5 and 7 days 

1. Aliphatic GLS (30%) 
2. Indole GLS (80%) 
3. Indole GLS (30%) 
4. Indole GLS (50%) 

[25] 

Radish, chinese 
kale and pak choi 
3-day-old sprouts 

Glucose (5 g/100 mL) Hydroponic 
system for 3 days 
after sowing seeds 

Gluconapin (150% and 
60% in Chinese kale and 
pak choi, respectively)  
Glucobrassicanapin  
(110-fold in pak choi) 

[53] 
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Table 3. Cont. 

Plant Food Elicitor Treatment Application 
Target Compounds 
Class and Fold Increase 

Reference 

Sauerkraut  
(B. oleracea L. 
var. capitata) 

0.5% NaCl and 0.3 mg 
of sodium selenite/kg 

Added to fresh 
cabbage before 
fermentation 

Indole GLS hydrolysis 
products (indole-3-
carbinol and indole-3-
acetonitrile in 70% and 
10%, respectively) 

[114] 

Radish sprouts NaCl (100 mM) In 0.5% agar 
media for 3, 5 and 
7 days after 
sowing seeds 

Total GLS (50% and 
120% in 5 and 7-days-old 
sprouts, respectively) 

[100] 

Brassica  
8-day-old 
sprotuts 

MeJA (25 µM)  
JA (150 µM)  
Sucrose (146 mM) 

Sprayed for 5 days 
before harvest 

Total GLS 
Broccoli: >50% 
Turnip: >20% 
Rutabaga: >100% 

[52] 

Raphanus  
8-day-old 
sprotuts 

MeJA (25 µM)  
SA (100 µM)  
Glucose (277 mM) 

Sprayed for 5 days 
before harvest 

Total GLS: > 20% [52] 

Broccoli  
7-day-old  
sprouts 

Sucrose and mannitol 
(176 mM) 

Hydroponic 
system for 5 days 
after sowing seeds 

Total GLS: > 50% [101] 

Broccoli florets Ethanol evaporated  
(500 μL/L) 

6 h after harvested Total GLS: > 50% [115] 

Broccoli florets MeJA spray (250 µM) Aerial portions 
twice per week 
from flowering to 
head formation 

Indolyl GLS: > 30% [91,116] 

4.3. Carotenoids and Betalains 

Over the past few years, there has been a surge in interest in fat-soluble compounds, such a 

carotenoids, and water-soluble compounds, such as betalains, due to their beneficial effects on human 

health [117]. Carotenoids were initially described as playing a role in the protection against photo-

oxidative processes, and they have been extensively studied for the prevention of cancers and 

cardiovascular diseases and for their photoprotective properties [118].  

Tomato fruits cv. Liberto were subjected to UV-B radiation before harvest with an UV-B 

dosage of 0.075 and 0.15 Wh m−2 after different adaptation times of 22 and 44 h, the concentrations of 

carotenoids, lycopene and β-carotene, in ripe tomato fruits were higher increased by an UV-B dosage 

of 0.075 Wh m−2 after 22 h of adaptation time [119].  

Betacyanins (red-violet pigments) and betaxanthins (yellow pigments) are a group of chromoalkaloids 

known as betalains presents in Caryophyllales. Interest in betalains is determined by their antiradical 

activity and their use as additives for food, drugs and cosmetic products. Hydrogen peroxide treatment 

(sprayed and infliltrated with 0.1%, 0.33% and 1% H2O2) led to a significant betacyanin accumulation 

in Suaeda salsa L. sprouts, the oxidative stress signal leading to betacyanin production, may be 
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perceived by roots initially, then was transferred to leaves and the signal transduction was performed 

as betacyanin accumulation induced in leaves [120]. The increase in the microelement Co2+ from  

1–5 μM also resulted in an 60% increment on the production of betalains, however, Mo2+, Fe2+ and 

Cu2+ presented a positive (10% increment) but less marked effect, while the increase of Mn2+ did not 

show effects on the production of betalains compared to control medium [121].  

4.4. Nutrients with Biological Activity 

Elicitation of plants has been studied not only to improve the nutraceutical potential of low-processed 

food, but also the nutritional value (content of vitamins, bioactive peptides and carbohydrates). Vitamins 

are vital nutrients required by organisms. Vitamin A is essential for normal cell growth, immunological 

functions and vision, and is found in foods in the form of provitamin-A [122]. Vitamin E, with the  

α-tocopherol form being the most active in humans, is considered to be one of the most potent lipid-

soluble antioxidants in vivo [123]. Folate (a collective term used for folic acid and its derivatives) is an 

important component of vitamin B, which is involved in a number of cellular metabolic processes, 

mainly playing a role as co-factor in the synthesis of nucleic acids, amino acids, pantothenate and 

formyl methionine-transfer RNAs [124]. Most recent evidence from a population-based cohort study in 

Europe lends further support to the notion that an increased intake of folate from food sources, may be 

associated with a lower risk of pancreatic cancer [125]. Vitamin C, including ascorbic acid and 

dehydroascorbic acid, is one of the most important nutritional quality factors in many horticultural 

crops and has many biological activities in the human body, such as the prevention of scurvy, 

reduction of plasma cholesterol level and as antioxidant, reportedly reduces the risk of arteriosclerosis, 

cardiovascular diseases and some forms of cancer [126]. Therefore, there is an increasing interest in 

fortifying many foods with vitamins. 

The content of vitamins in fruits and vegetables can be influenced by various factors such as 

genotypic differences, pre-harvest climatic conditions and cultural practices, maturity and harvesting 

methods, and postharvest handling procedures [26,127]. Special treatments, including precursor 

feeding and elicitor application can be used to increase metabolite production. Foliar application (250 µM) 

of MeJA and SA caused rapid 2-fold increase of folate in coriander (Coriandrum sativum) foliage, as 

well as, treated plants presented higher stability of folates than untreated foliage, during processing and 

storage [124]. The application of 200, 300 µM of SA and 0.01% chitosan induced increases, by 26%, 

18% and 54%, respectively in the content of vitamin C in 5 days old broccoli sprouts [25]. Higher 

levels of ascorbic acid (in comparison with controls) have been found in 4-day-old lentil sprouts after 

elicitation with temperature stresses (4 °C and 40 °C for 1 h) [128]. Broccoli sprouts grown in an 

environment chamber with a 16 h light/8 h dark cycle were found to have much higher concentrations 

of vitamin C (by 83%) than those grown in the dark [19]. A considerable enhancement on the 

production of α-tocopherol was observed after the administration of 5 µM JA or by hypoxic conditions 

both in sunflower and Arabidopsis thaliana cell cultures [26]. Folic acid and vitamin C have been also 

used as exogenous growth enhancers to elicit pea (Pisum sativum) seedling vigour and phenolic 

content. Concentration of 50 μM folic acid and 500 μM vitamin C were optimum to both agronomic 

and biochemical seed vigour parameters, as well as, the levels of enhanced phenolic content, which 

were highest on days 8 and 10 of germinating seeds [98]. 
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The starch content has been influenced in lentil sprouts after different germination conditions 

(elicitation by solution with 100 and 300 mM NaCl), being reduced by 50%, as well as the in vitro 

digestibility and predicted glycemic index of sprouts [129]. Also a decrease in total starch, high 

content of resistant starch and low starch bioaccessibility, a decrease in protein content and subsequent 

elevation of non-protein nitrogen fraction was reported in lentil sprouts after a elicitation treatment 

with H2O2 [130]. 

Food-derived bioactive peptides may have regulatory functions in the human system beyond normal 

and adequate nutrition (such as antimicrobial properties, blood pressure-lowering (ACE inhibitory) 

effects, cholesterol-lowering ability, antioxidant activities, etc.) [131]. As an example, some soy peptides 

induced the expression of defense genes implicated in phytoalexin production and pathogen defense 

after treatment of the aerial portion of soybean plants with hormones involved in elicitation [132]. 

Mineral content also could be affected by elicitation. Salicylic acid (0.5 mM) completely alleviated 

the negative effects of mustard plants growth under NaCl stress, increasing the uptake of major 

nutrients such as nitrogen, phosphorus, potassium and calcium [133]. The use of elicitation, based on 

natural defence mechanisms of plants, allowed the differentiation of food products and production of 

directed food designed for specific consumer groups (e.g., diabetics, the overweight, Alzheimer’s and 

cardiovascular disease sufferers, among others). 

5. Future Trends 

The controlled short-time elicitation stresses, during the pre-harvest and post-harvest period, can be 

used as a tool by the fresh produce industry to obtain healthier products by enhancing their 

nutraceutical content. Similarly, controlled treatments can be utilized by the food processing and 

dietary supplement industry as tools to enhance the extractable yields of specific active compounds 

that have nutraceutical or other functional properties. 

Interest in functional foods has been growing over the last decade as consumers become 

increasingly concerned with diet and nutrition. The industry continues to seek new and unique 

ingredient and health claims, making the idea of developing more functional food quite compelling. A 

special emphasis is placed on the biologically active compounds or groups of compounds responsible 

for the therapeutic applications, and their action mechanisms. Also, the quality and safety regulation of 

functional products should be established in food industry. Thus, elicitors may be a complementary 

strategy to breeding programs, production management, or genetic engineering activities. Understanding 

the interaction among stressors will make possible to find practical applications.  

On the other hand, studying elicitor-activated signaling pathways with the purpose of identified 

signaling components, should be an efficient strategy for activating defense responses in the plant,  

in order to replace or reduce chemical applications to protect crops [45,110]. . 

For new or enhanced plant products, it would be appropriate and unavailable the evaluation of 

functional properties to demonstrate the potential to obtain safe and effective non-pharmacological 

alternatives for human health. This may provide a new approach for disease prevention and population 

wellbeing monitored in clinical trials [134]. 
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6. Conclusions 

Understanding how plant tissues and their specific secondary metabolic pathways respond to 

different abiotic and biotic stresses, applied alone or in combinations, would be the basis for designing 

strategies to enhance phytochemicals in foods. The accurate determination of the effect, driven by the 

use of the distinct elicitors applied in selected time points of the plant growth, may allow strategies and 

tools to obtain tailored foods with enhanced health-promoting phytochemicals [69]. The resulting 

products and ingredients could be considered for functional foods or nutraceutical development that 

will provide benefits beyond basic nutrition and/or claims for health benefits.  
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