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ABSTRACT

Variations in sample quality are frequently encoun-
tered in small RNA-sequencing experiments, and
pose a major challenge in a differential expression
analysis. Removal of high variation samples reduces
noise, but at a cost of reducing power, thus limiting
our ability to detect biologically meaningful changes.
Similarly, retaining these samples in the analysis
may not reveal any statistically significant changes
due to the higher noise level. A compromise is to
use all available data, but to down-weight the ob-
servations from more variable samples. We describe
a statistical approach that facilitates this by mod-
elling heterogeneity at both the sample and obser-
vational levels as part of the differential expression
analysis. At the sample level this is achieved by fit-
ting a log-linear variance model that includes com-
mon sample-specific or group-specific parameters
that are shared between genes. The estimated sam-
ple variance factors are then converted to weights
and combined with observational level weights ob-
tained from the mean–variance relationship of the
log-counts-per-million using ‘voom’. A comprehen-
sive analysis involving both simulations and experi-
mental RNA-sequencing data demonstrates that this
strategy leads to a universally more powerful anal-
ysis and fewer false discoveries when compared
to conventional approaches. This methodology has
wide application and is implemented in the open-
source ‘limma’ package.

INTRODUCTION

Second-generation sequencing technology provides re-
searchers with a high resolution and cost-effective tool
for surveying the complexity of the transcriptome in both
health and disease. RNA-sequencing (RNA-seq) is now a
routine tool for studying differential expression, alterna-
tive splicing, allele-specific expression and for discovering
novel transcripts (1). In an RNA-seq ‘differential expres-
sion’ analysis, the goal is to determine which genes, tran-
scripts or exons, show evidence for changes in expression be-
tween experimental groups relative to a realistic assessment
of both technical and biological variation. In such analyses,
the application of statistical modelling to remove systematic
biases and reduce variability via normalization (2,3), batch
correction (4,5) and subsequently prioritize changes in gene
expression between treatment groups (6,7) have each been
shown to play a key role in extracting meaningful insights
from RNA-seq data.

Variations in sample quality is another source of noise
that makes the identification of differentially expressed
(DE) genes more difficult. Sample-specific variation is often
first observed by inspecting plots from a principal compo-
nents analysis or multi-dimensional scaling (MDS). Figure
1 shows MDS plots from two RNA-seq experiments where
a particular gene (Smchd1) has been mutated. In both exper-
iments, one or more samples exhibit increased variation that
is likely to be related to RNA quality (e.g. degraded RNA
may be unavoidable in studies involving patient tissue) or
sample purity. In our experience, sample quality variation
is relatively common in RNA-seq data sets, and once iden-
tified, the researcher may choose to re-run the suspect sam-
ples or, in extreme cases, collect fresh samples. These op-
tions may not always be feasible due to resource constraints,
therefore developing analytical methods that can address
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Figure 1. RNA-seq data sets where variations in sample quality are ev-
ident. Each panel shows a multi-dimensional scaling (MDS) plot, with
samples colour-coded by experimental group. One or more samples that
exhibit higher variability than average are present in each case ((A): sam-
ple 6; (B): samples 1 and 7). In these experiments, cells carrying a mutant
allele of the gene Smchd1 were compared against wild-type cells.

this variability and make the most of the data available
would be advantageous.

There are currently no methods that can model sample-
specific variation in small-scale RNA-seq experiments in
a systematic way. One option is to remove samples with
higher variability from the analysis. This has the benefit of
reducing variation, but comes at the expense of reducing
power, which can hamper our ability to detect DE genes.
This approach assumes that samples with higher than aver-
age variation can be readily identified, which is not always
the case. The decision of whether to keep or discard a par-
ticular sample is often based on ad-hoc cut-offs and a trial
and error approach. At the other extreme, one could retain
all samples in the analysis. In this situation, our ability to
distinguish genuine differences between experimental con-
ditions from the noise will be limited by the increased varia-
tion present. An intermediate approach would be to analyse
the complete experiment but down-weight the observations
from more variable samples, thus retaining the maximum
degrees of freedom whilst discounting noisy observations.

Experience with microarray data has shown that this ap-
proach can be beneficial, with the use of quantitative quality
weights at the sample-level offering improved results (8–10).
Allowing for variations in quality between RNA samples
is particularly important when samples are difficult to ob-
tain such as when collected from human subjects or very
rare cell types (11). RNA sample quality is typically related
to the availability of tissue samples or cells and the ease of
RNA isolation, a consideration that is relevant irrespective
of whether microarray or RNA-seq is used to profile gene
expression. The approach of Ritchie et al. (2006) (9) has al-
lowed researchers to make discoveries that would otherwise
have been missed, for example in phase I trials of cancer
drugs (12).

We adapt this method to enable the use of quantitative
quality weights in RNA-seq data sets to improve the re-
sults obtained in the presence of more variable samples. We
model this variation using a combined approach that takes
into account both global intensity-dependent trends in the
variability using ‘voom’ (13) as well as sample-specific vari-
ability using a log-linear model that shares parameters be-

tween genes (9). Our new method is compared against a
number of alternatives on simulated data, a control exper-
iment where samples were mistreated to simulate increased
variability and in a gene mutation study. Across a range of
scenarios, we show that our combined observational and
sample-specific weighting approach improves power for de-
tecting known changes in gene expression and generates
fewer false positives than other methods. This approach is
widely applicable, suitable for use in most designed RNA-
seq analyses and is available in the popular R-based ‘limma’
package (14).

MATERIALS AND METHODS

Linear models for RNA-seq differential expression

The entry point for our analysis is a matrix of counts that
have been appropriately normalized and transformed into
log2 counts per million (CPM) so that they are approxi-
mately normally distributed. The work of Law et al. (2014)
(13) has shown that although the distributional assump-
tion of normality is imperfect, the log2(CPM) transforma-
tion when combined with weights that take into account the
unequal variabilities on this scale can lead to a more pow-
erful analysis compared to methods that assume RNA-seq
counts follow a negative-binomial distribution. Assuming
normality allows us to model the variances, which we will
exploit later. Variance modelling is not currently available
for RNA-seq analysis using count distributions.

We begin by assuming a linear model where the system-
atic expression effects for each gene (or exon or other ge-
nomic feature of interest) can be described as

E(yg) = Xβg, (1)

where yg = (yg1, . . . , ygJ)T is the vector of log2(CPM) values
for gene g, X is a design matrix with full column rank and
βg = (βg1,. . . , βgK)T is a gene-specific vector of regression
coefficients (15). The design matrix reflects the experimen-
tal design and choice of parameterization and the regres-
sion coefficients represent log-fold changes between RNA
sources in the experiment. This model assumes

var(ygj ) = σ 2
g /wg j , (2)

where wg j is an observational level weight derived from the
‘voom’ model (13) for gene g in sample j and σ 2

g is an un-
known factor.

If we assume that the ygj are normally distributed and that
expression values from different samples are independent,
the weighted least squares estimator of βg is

β̂g = (XT�−1
g X)−1 XT�−1

g yg, (3)

where �g = diag(wg1, ..., wg J) is the diagonal matrix of
prior weights. The moderated t-statistic for testing any par-
ticular βgk equal to zero is

tgk = β̂gk

s∗
g
√

cgk
, (4)

where s∗2
g is the shrunken residual mean square (15) from the

weighted regression and cgk is the kth diagonal element of
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(XT�−1
g X)−1. This moderated t-statistic has J − K degrees

of freedom, and allows genes to be ranked for differential
expression based on their P-values from this distribution
(adjusted for multiple testing), or testing can be performed
relative to a chosen fold-change (FC) (16).

Heteroscedastic models for genes and samples

The approach of Ritchie et al. (2006) (9) allows unknown
variance factors to depend on the sample as well as on the
gene,

var(ygj ) = σ 2
g j/wg j . (5)

The variance factors σ 2
g j reflect the fact that the genes differ

in variability and also that samples in the experiment may
differ in quality in a way that increases or decreases the vari-
ability of all or most of the genes in a particular sample. The
additive log-linear model

log σ 2
g j = δg + γ j (6)

is the simplest model that ensures variability depends mul-
tiplicatively on sample quality. The constraint

∑J
j=1 γ j = 0

gives us σ 2
g = exp δg for the gene-wise variance factors and

γ j represents the relative variability of each sample. A par-
ticular sample j will have γ j < 0 if it is relatively better qual-
ity than average or γ j > 0 if it is poorer quality than average.
For instance, a sample with expγj = 4 is four times as vari-
able as a typical sample and will be given a quarter weight
in an analysis, through the use of modified weights

w∗
g j = wg j/ exp γ̂ j (7)

in a refit of the linear model (Equation (1)), where wg j
are the observation-specific ‘voom’ weights. Figure 4B
shows sample-specific weights (1/ exp γ̂ j ) estimated from
the RNA-seq data shown in Figure 1B. As previously de-
scribed in Ritchie et al. (2006) (9), either a gene-by-gene (de-
fault) or a full residual maximum likelihood (REML) scor-
ing method can be used to fit the variance model (Equation
(6)).

We generalize this approach to allow either individual
sample-level variance factors (default setting; Figure 4C),
or for samples to be grouped together with a different γ for
each group (referred to as a ‘block’ model; Figure 4D). For
example in an experiment with six samples where the sixth
sample is more variable (Figure 1A), we allow this sample
to have a different variability (γ6) to the remaining samples
(γ1 = γ2 = γ3 = γ4 = γ5). This approach can also be used
when there is a logical grouping of samples based on ex-
perimental conditions, and the different conditions are ex-
pected to have different variabilities. For example in a study
involving tumour and normal samples, one might observe
that the tumour samples are more variable. To apply this
blocked variance modelling approach, the user must define
a design matrix Z for the variance model that reflects this
grouping structure.

Implementation

To estimate the combined weights (Equation (7)), we be-
gin by applying the ‘voom’ procedure assuming all sam-

ples are of equivalent quality, and then use this first round
of ‘voom’ weights in the variance model to obtain the
γ̂ ’s. Next, the estimated sample weights (1/ exp γ̂ j ) are ap-
plied in a second round of ‘voom’ to obtain observational
weights that take into account variations in sample qual-
ity. The variance model (Equation (6)) is then fitted a sec-
ond time and a final set of modified weights (Equation (7))
are used in the linear modelling (Equation (1)) and differ-
ential expression analysis. This approach is implemented
in the voomWithQualityWeights function in the ‘limma’
package (14). This workflow has also been implemented in
a Galaxy (17–19) tool available from the Galaxy Toolshed
(20) to facilitate use by researchers who are unfamiliar with
the R (21) programming environment.

Methods compared

Six different analysis methods were compared on the data
sets described below to determine whether particular ap-
proaches dealt better with more variable samples. These
methods are:

(i) No Weights: linear modelling on the full data set where
all observations are treated equally in the analysis (i.e.
homoscedasticity, where no weights are specified, mean-
ing that every expression measure is treated equally in the
analysis (wg j= 1 for all g and j). This is included to pro-
vide a measure of performance under a worst case sce-
nario.

(ii) Sample Weights: linear model analysis on the full data set
with sample weights (as described in Ritchie et al. 2006,
(9)) only (i.e. wg j = 1 for all g and j in Equation (7)).

(iii) Voom: linear model analysis on the full data set with ob-
servational level weights (13) only (i.e. distinct wg j for
each observation).

(iv) Voom + Sample Weights: linear modelling with ‘voom’
weights combined with sample-specific weights as de-
scribed in the previous section (Equation (7)).

(v) Voom + Block Weights: linear modelling with ‘voom’
weights and block weights as described in the previous
section (Equation (7)). This approach estimates two or
more different variabilities, one for the samples that clus-
ter well, and additional variance factors (one or more
depending on the data set) for the more variable sam-
ples. Where multiple samples with increased variation
are present, each of these is assigned a distinct γ j . This
method assumes that the researcher can identify sam-
ples that are more variable than average via visual in-
spection of the MDS plots (Figure 1) or by some other
method. An appropriate design matrix for the variance
model must be specified.

(vi) Sample Removal: discard more variable sample/(s) from
the analysis (again assumes that the analyst can iden-
tify these samples somehow in advance) and apply linear
models with ‘voom’ weights to the reduced data set (i.e.
distinct wg j for each observation in the reduced data set).

In each analysis, the linear modelling (Equation (1)) was
carried out on the normalized log2(CPM). For a given data
set, the same design matrix (Xg) was used for methods 1–5,
whilst for method 6 the design matrix was reduced by the
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Figure 2. Log2(FC) versus average log2(expression level) for simulated
data with 10 000 genes for samples with equivalent variability. (A) Null
simulation with no differential expression (FC = 0 for all genes). (B) 200
DE genes with |FC| = 1.5. (C) 200 DE genes with |FC| = 2. (D) 200 DE
genes with |FC| = 4.

outlier sample/(s). For all methods, correction for multiple
hypothesis testing was carried out using the false discovery
rate (FDR) approach (22).

Simulated RNA-seq data

Simulated data sets were generated by adapting the ap-
proach described in Law et al. (13) to include sample-level
variability. We simulated balanced two group experimental
designs where the aim is to compare gene expression be-
tween group A and group B with n = 3, 4 or 5 samples per
group and one more variable sample in group B (sample 6).
We also generated data for an unbalanced design (similar to
that in Figure 1B) with n = 3 samples in group A and n =
4 samples in group B and two more variable samples, one
in each group. Each simulation consisted of 10 000 genes of
which 200 were DE at known FCs of 1.5, 2 or 4. The more
variable samples were simulated to have increased variabil-
ity of 1.2 (120%), 1.5 (150%), 2 (200%), 3 (300%), 4 (400%)
or 8 (800%). A null simulation where all samples had equiv-
alent variability (i.e. variance inflation factor = 1) was also
simulated to provide an example of a well-behaved data set.
The library size of the more variable sample was also varied
to be 50, 60, 70, 80, 90 and 100% of the size of the other sam-
ples (2 × 107 by default). Null simulations (FC = 1 for all
genes i.e. no differential expression) for experiments with n
= 3 samples per group across the range of variabilities listed
above were also simulated (sample library size =100% for
the more variable sample).

Baseline expression values were first generated to get a
relative proportion of counts for 10 000 genes. Next the pro-

portions were converted into expected counts by multiply-
ing by library size and then multiplying by the desired FCs
(1 (non-DE), 1.5, 2 or 4) for the first 200 genes. Negative bi-
nomial distributed counts were obtained with the specified
mean and dispersion for each observation. To obtain dis-
persions, a trend was set to be ψg j with ψ

1/2
g j = 0.12 + λ

−1/2
g j

where λg j is the expected count size. Gene-wise biological
variation was generated from an inverse chi-square distri-
bution with five degrees of freedom. The individual disper-
sions were set to be φg j = ψg jδg where 5/δg ∼ χ2

5 . For the
more variable sample/s, we inflated the variability by scal-
ing the squared gene-wise dispersions φ2

g j for the particular
sample/(s) j by a factor k, where k = 1 (equivalent variabil-
ity), 1.2 (120%), 1.5 (150%), 2 (200%), 3 (300%), 4 (400%)
or 8 (800%).

Figure 2 shows example plots of log2(FC) versus average
log2(expression level) from these simulations and Figure 3
shows representative MDS plots from the 2 group setting
with n = 3 samples per group with equal library sizes for
each sample variability setting. The position of the more
variable sample (always the sixth) relative to the other sam-
ples recapitulates the separation seen in the MDS plots in
Figure 1, particularly as variability increases, indicating that
our simulation strategy is realistic.

In total there were 511 simulation settings (three differ-
ent FCs × seven different sample variabilities × six differ-
ent library sizes × four different experimental designs =
504 + seven null simulations = 511) that were each sim-
ulated 100 times. Prior to differential expression analysis,
each simulated matrix of counts underwent filtering to re-
move genes with fewer than 10 simulated counts across all
samples. Code and plots of all results are provided as ‘Sup-
plementary Materials’.

Control experiment

In order to provide a data set where the FCs would follow
a predictable dose-response, we designed a mixture experi-
ment (23,24) between two lung adenocarcinoma cell lines
(NCI-H1975 and HCC827, both obtained from ATCC).
The cell lines were chosen based on their similarity of
molecular aberrations (they both bear EGFR mutation) and
gene expression profiles compared to other lung cancer cell
lines included in the Cell Line Encyclopedia (GSE3613;
(25)). Cell lines from a range of passages (2–4) were grown
on three separate occasions in RPMI media (Gibco) sup-
plemented with Glutamax and 10% fetal calf serum to a
70% confluence. To replicate common experimental condi-
tions, cell lines were treated with 0.01% Dimethyl sulfox-
ide (Sigma), which is commonly used as a vehicle in drug
treatment experiments. After 6 h of treatment, cells were
collected, snap-frozen on dry ice and stored at −80◦C until
required. Total RNA was extracted from between half a mil-
lion and a million cells using a Total RNA Purification Kit
(Norgen Biotek) with on-column DNAse treatment accord-
ing to the kit instructions. RNA concentration for each pair
of samples to be mixed was equalized to 100 ng/�l using
Qubit RNA BR Assay Kit (Life Technologies). Replicates
were pooled in known proportions to obtain mixtures rang-
ing from pure NCI-H1975 (100:0) to pure HCC827 (0:100)
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Figure 3. MDS plots from simulated data for different variability settings for sample 6 ranging from equivalent variability (A) to 120% (B), 150% (C),
200% (D), 300% (E), 400% (F) and 800% (G) more variability than the first five samples. Results shown are from a typical simulation of 10 000 genes, 200
of which have a |FC| = 4 (highlighted in red in Figure 2D).

and intermediate mixtures ranging from 75:25 to 50:50 to
25:75.

All mixtures corresponding to the second replicate were
split into two equal aliquots. One aliquot was left intact
(we refer to this as the ‘good’ replicate), whilst the sec-
ond aliquot was degraded to increase variation by incuba-
tion at 37◦C for 7 days in a thermal cycler with a heated
lid. The RNA Integrity Number determined using TapeS-
tation RNA ScreenTape (Agilent) was below 5 for the de-
graded samples and above 8 for the intact samples. This
experimental design allowed us to perform an analysis on
the regular samples (‘good’ analysis) and compare our re-
sults to the analysis that included the degraded samples. Ten
microlitres from each replicated mixture (both good and
degraded) were used for Next Generation Sequencing li-
brary preparation using Illumina’s TruSeq Total Stranded
RNA with Ribozero according to the manufacturer’s in-
structions. Library clustering was performed on a cBot with
Illumina HiSeq SR Cluster Kit v4 cBot. Libraries were se-
quenced as single-end 100 base pair reads at the Australian
Genome Research Facility on an Illumina HiSeq 2500 with
an Illumina HiSeq SBS Kit, v4. Base calling and quality
scoring were performed using Real-Time Analysis (version
1.18.61) and FASTQ file generation and de-multiplexing
using CASAVA (version 1.8.2). Reads from FASTQ files
were aligned to the human genome (hg19) using Subread
(version 1.16.1) (26) and summarized at the gene-level us-
ing the featureCounts procedure (27) and TMM normal-
ized (3). Subsequent analysis was carried out using the
‘edgeR’ (28) and ‘limma’ (14) Bioconductor software (29).
These data are available under GEO series accession num-
ber GSE64098.

Smchd1 experiment

RNA was extracted from 1 × 106 Smchd1+/+;EμMycTg/+
and Smchd1MD1/MD1;EμMycTg/+ lymphoma cells us-
ing Qiagen RNeasy Minikit as per the manufacturers in-
structions. Libraries were prepared using Illumina’s TruSeq
RNA sample preparation kit as per the manufacturers in-
structions and submitted to the Australian Genome Re-
search Facility for quality control, library preparation and
sequencing on the Illumina HiSeq 2000 platform using
100 base, paired end or single-end reads. Base calling and
quality scoring were performed using Real-Time Analy-
sis (version 1.17.21.3) and FASTQ file generation and de-
multiplexing using CASAVA (version 1.8.2). Reads from
FASTQ files were aligned to the mouse genome (mm10) us-
ing Subread (version 1.10.5) (26) and summarized at the
gene-level using the featureCounts procedure (27). Sub-
sequent analysis was carried out using the ‘edgeR’ (28)
and ‘limma’ (14) Bioconductor software. The counts were
transformed into CPM to standardize for differences in
library-size and filtering was carried out to retain genes
with a baseline expression level of at least 0.5 CPM in
three or more samples. Data were TMM normalized (3)
and an MDS plot was generated (Figure 1B) before linear
models using various weighting strategies (described below)
were fitted to summarize over replicate samples. Moder-
ated t-statistics were used to assess differential expression
between Smchd1MD1/MD1 and Smchd1+/+ (wild-type)
samples, with genes ranked according to their FDR (22).
These data are available under GEO series accession num-
ber GSE64099.

Smchd1 has been shown to have a role in the regula-
tion of clustered protocadherins and imprinted genes in
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Figure 4. Weighting strategy where ‘voom’ weights (A) that model the
mean-variance trend in the data and down-weight low-intensity observa-
tions are combined with sample-specific weights (B) or similar to model
variability between different samples. Our default strategy is to model vari-
ability separately for each sample (C) so that each observation from a par-
ticular sample shares a common sample variance factor, which is converted
into a weight (B). A second option allows samples to be grouped together
(D) in a user-defined manner by specifying a design matrix for the variance
model. We refer to this as our ‘block’ model.

diverse tissues including whole embryo, adult brain, em-
bryonic fibroblasts, placenta and malignant and normal B
cells (30–32). We obtained gene sets for these two classes
of genes to use as true positives (TPs) in our analysis. To
identify protocadherins, we used regular expression match-
ing to look for this term in the gene name field of the
annotation of the filtered data set, which returned eight
genes (out of a total of 71 in the mouse genome). A com-
prehensive set of imprinted mouse genes was downloaded
from http://www.mousebook.org/imprinting-gene-list and
matched to the expressed genes in this data set using Gene
Symbols. In total, 46 genes out of the 150 in the original list
were matched.

RESULTS

Weighting accommodates two major sources of variability

The first level of variability we deal with is at the
observation-level and is related to the abundance of a gene
in each sample. Figure 4A shows the estimated mean–
variance trend from the normalized log2 CPM from the Sm-
chd1 data set obtained using the ‘voom’ method (13) to de-
rive observational level weights (wgj i.e. a unique weight for
each gene g in each sample j). Higher abundance observa-
tions tend to be more precise and are rewarded with higher
relative weights whilst low abundance observations which
tend to be less precise receive lower weights.

The second level of variation that we accommodate is
at the sample-level as estimated using a log-linear model
(the Materials and Methods section; Equation (6)). Unlike
observational weights, the variance factor is shared by all
genes in a given sample, meaning that a common weight
particular to a given sample j is returned for use in the lin-
ear model analysis. We allow weights to be either distinct for

each sample (default setting; Figure 4C) or to have a block
structure, where certain samples share a common variance
factor (Figure 4D). Figure 4B shows the relative sample
weights obtained for the Smchd1 experiment from a vari-
ance model parameterized to have sample-specific param-
eters. Recall from the MDS plot for this data set (Figure
1B) that samples 1 and 7 cluster less well than the other
replicate samples, so down-weighting the observations from
these samples in the differential expression analysis would
seem sensible.

The purpose of combining sample-specific weights with
‘voom’ weights is to obtain more precise estimates of the
gene expression coefficients in the linear model (Equation
(1)) and improve power to detect DE genes. To assess
whether this occurs, we compared the performance of this
method against a number of alternatives on various sim-
ulated and experimental data sets (see the Materials and
Methods section).

Combining weights delivers the lowest FDR

Simulations allow us to increase the variation of particu-
lar samples whilst also spiking in genes at known FCs to
provide us with a set of TPs. Each simulation included 200
genes out of 10 000 with particular FCs (see the Materi-
als and Methods section and Figure 2B–D) and increased
variation in particular samples (Figure 3). This configura-
tion allowed us to assess the number of false discoveries
amongst the top 200 genes identified by each method. The
methods compared all used linear models to assess differen-
tial expression, with either no weights (i.e. all observations
are treated equally in the analysis), sample weights, ‘voom’
weights (i.e. observational level weights only), ‘voom’ and
sample weights (i.e. combined observational and sample-
specific weights), ‘voom’ and block weights or an analy-
sis with ‘voom’ weights where the more variable sample
has been removed. Figure 5 shows these results for various
FCs and sample variabilities cumulatively across 100 sim-
ulated data sets of each configuration for the smallest ex-
periment (n = 3 samples per group, 10 000 genes). Over-
all the number of errors decreases for all methods as the
absolute FC of the TPs increases, which is to be expected,
as the problem of distinguishing DE genes from non-DE
genes becomes easier for larger effect sizes (see Figure 2).
Applying ‘voom’ weights in some form to the full data set
(red, orange or green lines) to try and capture the simu-
lated variability results in fewer false discoveries than ei-
ther treating all observations equally in the analysis (blue
lines), applying sample weights only (purple lines) or apply-
ing ‘voom’ weights to the reduced data set (black lines). The
no weighting option (blue lines) and the sample weighting
only method (purple lines) generally perform worst, with
many more false positives relative to methods that use ob-
servational level weights. Removing more variable samples
(black lines) guarantees a fairly constant number of false
discoveries due to the constant noise level across the simu-
lations (since the sixth sample is always removed), whilst for
all other methods, the error rate climbs as sample variability
increases. Combining ‘voom’ with sample-specific weights
(green lines) or block weights (orange lines) are the best or
equal best methods in all settings, producing very similar er-

http://www.mousebook.org/imprinting-gene-list
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Figure 5. Cumulative false discoveries across 100 simulated data sets for a two-group simulation with n = 3 samples per group. Each panel shows results
from simulations with different true positive FCs: 1.5-fold (A), 2-fold (B) and 4-fold (C). The y-axis shows the cumulative number of false positives amongst
the top 200 genes from each analysis method across 100 independent simulations of each setting. The x-axis indicates the simulated sample variability of the
sixth sample. The results from these 21 simulation settings are representative of the 511 settings explored (see ‘Supplementary Materials’ for the complete
results).

ror rates to one and other. The combined ‘voom’ and sam-
ple weighting methods perform similarly to ‘voom’ alone
when there is no increase in sample variability or the in-
crease is low (120 and 150% of the regular samples) but
beyond that level (200% and above) an analysis that com-
bines ‘voom’ with sample-specific weights offers improved
performance in terms of false discoveries, irrespective of the
size of the simulated FCs. These results are representative of
those observed for the other simulation settings examined,
where library size of the more variable sample was varied or
the overall size of the experiment increased (refer to ‘Sup-
plementary Materials’).

Combining weights increases power whilst controlling the
type I error rate

We next assess the power of each method by counting the
number of genes that pass an FDR cut-off of 0.1 in the dif-
ferent simulation settings (see the Materials and Methods
section). Figure 6 shows these results averaged over 100 data
sets for absolute FCs of 2 (panel (A)) and 4 (panel (B)),
respectively (results for an FC of 1.5 were omitted as all
methods lacked power, making no or very few discoveries
irrespective of the variability level of the sixth sample). In
almost all situations, the methods with the greatest power
are ‘voom’ combined with either sample (green lines) or
block weights (orange lines). Removing the more variable
sample (black line) is marginally more powerful for a sim-
ulated FC of 4 when the sixth sample is ≥400% more vari-
able; however, in general we see that there is a penalty to be
paid for leaving out data when the sample size is small. In
this simulation, sample removal means the data set is 1/6
(16.7%) smaller, systematically reducing power relative to
the weighted methods that make use of the full data set.
Methods that use all samples lose power as the variability
of the sixth sample increases, with no weighting (blue lines)
losing out most rapidly followed by either sample weight-

ing only (purple lines, panel (A)) or ‘voom’ only (red lines,
panel (B)).

The empirical FDRs for each method on the same data
using the same cut-off (FDR < 0.1) is also shown in Fig-
ure 6 (simulations with FCs of 2 in panel (C) and FCs of
4 in panel (D)). In most situations, fewer than 10% of the
discoveries made are errors. When the average number of
discoveries made falls below 50 in simulations where the
noise level increases as seen for the no weighting or sam-
ple weighting only options when sample variability reaches
200% (blue or purple line, panel (A)) the empirical FDR
starts to climb (panel (C)). In the case of the sample weight-
ing alternative, it rises above the level of guessing (empir-
ical FDR = 0.68 at 800%). In the scenario where remov-
ing the more variable sample offered marginal improvement
in power relative to the sample weighting methods (panel
(B), sample variability ≥400%), we see that the FDR (panel
(D)) is marginally lower for the combined ‘voom’ and sam-
ple weighting alternatives, meaning that the results obtained
from the combined weighting approach will contain fewer
errors than the results obtained from either removing the
more variable sample or applying sample weights only. Sim-
ilar results were obtained using an FDR cut-off of 0.05 (see
‘Supplementary Materials’).

We also examined how the different alternatives control
the ‘Type I’ error rate in a simulation where there is no dif-
ferential expression (i.e. FC = 1 for all genes; Figure 2A)
between the two groups (Figure 7). In this situation, the P-
values should have an approximately uniform distribution,
meaning that the expected proportion of P-values below a
certain cut-off should be less than or equal to this value.
For this analysis we use the raw P-value cut-off of 0.01 (grey
dashed line) and plot the proportion of genes that have a P-
value less than this threshold. The sample removal method
(black line) depicts results from applying ‘voom’ alone when
the noise level is constant and, as we would expect, has a
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Figure 6. Plot assessing power (A,B) and the corresponding empirical FDR (C, D) at an FDR cut-off of 0.1 averaged across 100 simulated data sets. Results
shown are for simulations where the TPs have |FC| = 2 (A, C) and |FC| = 4 (B, D) for various variabilities for the sixth sample (x-axis) for a two-group
simulation with n = 3 samples per group. In panel (C), the empirical FDR values for sample weighting only that are off the scale are 0.42 for 400% and
0.68 for 800%. For the other methods (no weighting and ‘voom’ only), points were omitted in panel (C) when the average number of discoveries (panel
(A)) was less than one gene to avoid ratios of small numbers that produce very variable FDRs. In most panels, results from combining either ‘voom’ and
sample weights or ‘voom’ and block weights are over plotted as the results are the same. Boxplots of the results for each analysis method across the 100
simulated data sets generated under each sample variability setting are provided as ‘Supplementary Materials’.

fairly constant type I error rate. Across a range of variabil-
ity inflation factors for the sixth sample, the new weight-
ing methods approximately hold their size, even when this
sample is eight times more variable than the others, being
only slightly more conservative than removing the sample
altogether. Treating all observations as equal (no weights)
or using ‘voom’ on the complete data set becomes gradu-
ally more conservative as sample variability increases, re-
porting around half as many genes than would be expected
by chance when the more variable sample is eight times as
variable as the other samples.

The results from our simulations are compelling. By com-
bining observational and sample-specific weights we make
fewer false discoveries and have greater power than apply-
ing either sample weights alone or ‘voom’ alone (on either

the full data set or on a subset of the data set after the more
variable sample has been removed). Ignoring the simulated
variability and treating all observations equally or applying
sample weights only delivers the poorest results. We there-
fore exclude these two alternatives from subsequent analy-
ses. Whilst these simulations were intended to approximate
RNA-seq data and reflect the variations observed in prac-
tice, we now shift our focus to the analysis of the ‘Control’
and the Smchd1 experiments to assess whether our mod-
elling approach is useful in practice.

Degraded samples are down-weighted by our method

To simulate variations in sample quality experimentally, we
performed a control experiment where particular samples



PAGE 9 OF 11 Nucleic Acids Research, 2015, Vol. 43, No. 15 e97

Sample variability

P
ro

po
rt

io
n 

of
 g

en
es

 w
ith

 p
−

va
lu

e 
<

 0
.0

1

1 1.2 1.5 2 3 4 8

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

�
�

� �

�
�

�

�

No Weights

Voom
Sample

Voom + Sample
Voom + Block
Sample Removal

Figure 7. Average type I error rates from null simulations (FC = 1 for all
genes) using a P-value cut-off of 0.01 from 100 data sets with n = 3 sam-
ples per group. All methods control the false discovery rate at this level, ir-
respective of the simulated variability of the sixth sample (x-axis). ‘Voom’
on the full data set (red line) and not using weights (blue line) becomes
increasingly conservative as sample variability increases.

10
0:

0 
re

p1
75

:2
5 

re
p1

50
:5

0 
re

p1
25

:7
5 

re
p1

0:
10

0 
re

p1
10

0:
0 

re
p2

75
:2

5 
re

p2
50

:5
0 

re
p2

25
:7

5 
re

p2
0:

10
0 

re
p2

10
0:

0 
re

p3
75

:2
5 

re
p3

50
:5

0 
re

p3
25

:7
5 

re
p3

0:
10

0 
re

p3

(A)

W
ei

gh
t

0.0

0.5

1.0

1.5

2.0
Good
Degraded

10
0:

0 
re

p1
75

:2
5 

re
p1

50
:5

0 
re

p1
25

:7
5 

re
p1

0:
10

0 
re

p1
10

0:
0 

re
p2

75
:2

5 
re

p2
50

:5
0 

re
p2

25
:7

5 
re

p2
0:

10
0 

re
p2

10
0:

0 
re

p3
75

:2
5 

re
p3

50
:5

0 
re

p3
25

:7
5 

re
p3

0:
10

0 
re

p3

(B)

W
ei

gh
t

0.0

0.5

1.0

1.5

2.0

Mixture (NCI-H1975:HCC827) Mixture (NCI-H1975:HCC827)

Figure 8. Degraded RNA samples (replicate 2, shaded in grey) from the
control experiment are correctly assigned lower weights by the combined
‘voom’ and sample weighting procedure (A), with an average weight of
0.70 across these five samples, compared to an average of 1.28 for the non-
degraded samples (replicates 1 and 3, shaded in blue). A similar result is
obtained for block weighting (B), with a weight of 0.71 assigned to the five
degraded samples versus 1.20 for the remaining samples. When ‘voom’ was
combined with sample weighting on the good samples, the weights were
equivalent for the replicate 2 samples (1.06) and the remaining samples
(1.07, data not shown).

were mistreated by applying temperature (37◦C for 7 days;
see the Materials and Methods section). The degraded sam-
ples were successfully detected by our combined ‘voom’
and sample-specific weighting method and down-weighted
in the analysis (Figure 8A). Applying ‘voom’ with block
weights, which allowed these samples to have a distinct
weight relative to the remaining samples, gave a similar re-
sult, with systematically lower weights assigned to these five
samples (Figure 8B).

Table 1. The number of DE genes (FDR < 0.05) for various comparisons
from the control data set

Mixture
Comparison Voom

Voom +
Sample

Voom +
Block

Sample
Removal

‘Good’
Analysis

100:0 versus
0:100

11 403
88.7%

11 872
90.4%

11 662
90.4%

10 534
82.7%

12 262

75:25 versus
0:100

9692
84.8%

10250
87.2%

9936
86.8%

8592
76.6%

10 773

50:50 versus
0:100

6924
78.1%

7441
81.5%

7152
80.8%

5650
65.6%

8212

25:75 versus
0:100

2479
64.0%

2524
64.6%

2604
67.3%

1664
44.8%

3430

Columns 2–4 show results obtained using the degraded replicate 2 samples, column
5 shows results after removing these degraded samples, and the final column shows
results from a ‘voom’ analysis using the ‘good’ samples only (i.e. non-degraded repli-
cate 2) . The percentages shown are the number of genes that overlap with the genes
identified using the good data. The highest recall % is highlighted in bold.

Table 1 summarizes the effect of applying these weights
in a differential expression analysis. The number of DE
genes and the recall of genes identified as DE in the ‘voom’
analysis of the good data set that were also identified in
the analysis based on the degraded replicate 2 samples are
presented. As the mixtures compared get more similar, the
overall number of genes detected by each method decreases,
as we would expect. The use of ‘voom’ with sample weights
(column 3) or ‘voom’ with block weights (column 4) recov-
ers more genes than competing methods, such as ‘voom’
only (column 2). The genes identified were also more con-
sistent with those recovered from the analysis based on the
good quality samples. Removing the more variable samples
(column 5) recovers fewer genes that are less concordant
with the results from analysing the good samples. This again
highlights the serious loss of power that results when we re-
move samples from a small experiment, which in this case
leaves us with only two replicates out of three (i.e. we lose
1/3 of the data) to perform inference on.

Combining weights delivers biologically meaningful results

In this second example, we analyse data from an RNA-seq
experiment that aimed to identify genes that are transcrip-
tionally regulated by Smchd1 in lymphoma cell lines. This
experiment consisted of three wild-type and four mutant
samples (see the Materials and Methods section). Table 2
summarizes the results from this analysis. Applying obser-
vational level weights (‘voom’ alone) on the full data set
gives very few DE genes (12) at an FDR cut-off of 0.05.
The removal of the two more variable samples identified
by visual inspection (samples 1 and 7; Figure 1B) followed
by ‘voom’ or applying ‘voom’ with block weights recovers
∼500 genes, whilst combining ‘voom’ with sample-specific
weights (Figure 4B) discovers the most genes with ∼1500
(i.e. three times as many as the next best alternative). It also
assigned the highest significance to Smchd1, the gene that
was mutated in this study, with an FDR of 1.98 × 10−5,
closely followed by ‘voom’ with block weights (5.14 × 10−5),
then ‘voom’ on the full data set (2.66 × 10−4) and lastly
‘voom’ after sample removal (4.28 × 10−3).

The two gene signatures that have been reported to be reg-
ulated by Smchd1 in previous studies (the Protocadherins
and a subset of Imprinted genes) (30–32) were tested for
up-regulation using the ROAST (33) gene set test, which
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Table 2. Total number of DE genes (FDR < 0.05) from different analyses
of the Smchd1 data set and P-values from ROAST gene set testing for gene
sets that are known to be regulated by Smchd1

Gene set Voom
Voom +
Sample

Voom +
Block

Sample
Removal

Protocadherins 0.0581 0.00614 0.0235 0.0707
Imprinted genes 0.0594 0.0198 0.0607 0.337
Total DE genes 12 1478 488 492

The lowest P-value is highlighted in bold.

incorporates weights as part of its testing procedure. We
test for up-regulation of all expressed Protocadherins and
imprinted genes since we are comparing samples where
Smchd1 has been lost (Smchd1MD1/MD1) against wild-
type (Smchd1+/+) samples and expect genes directly reg-
ulated by Smchd1 to increase in expression under this com-
parison. The P-values in Table 2 are from a directional
ROAST analysis for each method. The smallest P-values
for up-regulation (Table 2) are obtained through the com-
bined application of ‘voom’ and sample weights. Thus not
only does the joint modelling of observational and sample-
specific variation discover more genes, it improves the re-
covery of known gene sets regulated by Smchd1, indicat-
ing that these extra discoveries are likely to be biologically
meaningful rather than noise. We have successfully applied
this approach on a number of other RNA-seq data sets and
achieved similar results (data not shown).

DISCUSSION

We have shown that modelling heteroscedasticity at both
the observational and sample-level can enhance the results
of an RNA-seq differential expression analysis. Simulations
demonstrated that combining ‘voom’ with sample-specific
weights can lead to a more powerful analysis with a low
FDR relative to other alternatives, such as either ‘voom’ or
sample-specific weighting on their own. The analysis of data
from a specially designed control experiment and a gene
mutation study that each contained more variable samples
showed us that the extra discoveries made by our weighting
strategy were likely to be biologically meaningful, as they
were either in better agreement with the results obtained
from analysing a clean version of the same data set or bet-
ter able to recover known gene signatures. The weights de-
rived by this approach are propagated through each step of
a ‘limma’ analysis, including gene set testing.

Although we have demonstrated this approach using sim-
ple two group experimental designs with varying sample
sizes, in practice more complicated experimental designs
can be accommodated just as easily. Our method also al-
lows flexibility in the structure of the sample-level variance
model. The default sample-specific mode is recommended
in most situations as it offers excellent performance and
does not require any special input from the user. Where
more information is available, the user is free to specify
other configurations, such as a block structure where the
more variable samples are given distinct weights relative to
the remaining samples. This approach relies on the data an-
alyst being able to identify suspect samples in advance of
fitting the model, which may not always be possible. A fur-

ther possibility that this approach allows that we have yet
to explore is the modelling of group-specific differences in
variability (e.g. tumour versus normal).

We have intentionally focused on the performance of
these methods on small data sets, as these are not only the
most common in our experience, but also where the most
gains can be made by modelling the residuals ‘between’
genes to get a handle on the sample-level variation that is
present. For larger experiments, the usefulness of other ap-
proaches such as robust methods (34) that can determine
unusual observations by looking at the residuals ‘within’
each gene would be expected to come to the fore.

It is important to note that the minimum sample size
where this approach would be recommended is an experi-
ment with three or more samples per group. Theoretically,
the variance model can be fitted in smaller studies with a
minimum of two samples per group. When a block model
is fitted, the software will return block-wise weights even
when some or all of the groups have fewer than three sam-
ples. When a sample-specific model is fitted, both samples
in a group of size 2 will be assigned equal weight (i.e. equiv-
alent to block weights for that group), which may or may
not be desirable. In an experiment with three samples in one
group and two in a second, combined ‘voom’ and sample-
specific weights could be beneficial, so long as the more vari-
able sample belongs to the larger group.

One obvious consequence of a more powerful analysis
through combining ‘voom’ and sample-specific weights is
that it may result in a large number of genes passing a given
FDR cut-off. In situations where there is a need to further
refine the list of genes, we recommend the user apply a test
for a given FC cut-off using the TREAT method (16).

We anticipate that this approach may also be useful for
dealing with more variable samples in differential bind-
ing analyses for chromatin immunoprecipitation sequenc-
ing studies or single cell transcriptomic profiling experi-
ments, when the goal is to summarize over replicate samples
and look for differences between experimental groups. Fur-
ther work will be to adapt this approach for incorporation
in edgeR (28), which can also accommodate weights (34) in
its generalized linear modelling framework (7).

AVAILABILITY

The weighting methods described in this paper are im-
plemented in the voomWithQualityWeights function in
the open-source ‘limma’ package distributed as part of
the Bioconductor project (http://www.bioconductor.org/).
A Galaxy tool that includes the option to apply ‘voom’ with
sample-specific weights in an RNA-seq differential expres-
sion analysis is available from the Galaxy Toolshed at https:
//toolshed.g2.bx.psu.edu/view/shians/voom rnaseq. The R
code and plots of results for all simulation settings along
with the R code to carry out the analyses of the ‘Con-
trol’ and ‘Smchd1’ RNA-seq experiments are provided
as ‘Supplementary Materials’ at http://bioinf.wehi.edu.au/
voomWithQualityWeights/. Experimental data are accessi-
ble through GEO series accession numbers GSE64098 and
GSE64099.

http://www.bioconductor.org/
https://toolshed.g2.bx.psu.edu/view/shians/voom_rnaseq
http://bioinf.wehi.edu.au/voomWithQualityWeights/
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