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Abstract: Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a 

base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored 

biodegradation rate (depending on the molecular weight and copolymer ratio);  

(iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); 

(iv) potential to modify surface properties to provide better interaction with biological 

materials; and (v) suitability for export to countries and cultures where implantation of 

animal-derived products is unpopular. This paper critically reviews the scientific challenge of 

manufacturing PLGA-based materials with suitable properties and shapes for specific 

biomedical applications, with special emphasis on bone tissue engineering. The analysis of 

the state of the art in the field reveals the presence of current innovative techniques for 

scaffolds and material manufacturing that are currently opening the way to prepare 

biomimetic PLGA substrates able to modulate cell interaction for improved substitution, 

restoration, or enhancement of bone tissue function. 

Keywords: bone; composite; PLGA; scaffolds; tissue engineering 

 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 3641 

 

 

1. Introduction 

Bone tissue engineering is a research field with many clinical applications, such as bone 

replacement in the case of orthopaedic defects, bone neoplasia and tumours, pseudoarthrosis treatment, 

stabilization of spinal segments, as well as in maxillofacial, craniofacial, orthopaedic, reconstructive, 

trauma, and neck and head surgery [1–4]. For healing diseased or damaged bone tissue, the strategy of 

designing synthetic bone substitutes, called scaffolds, is a promising alternative to the use of allografts, 

autografts, and xenografts [5]. Scaffolds for bone repair should be based on biomaterials with  

adequate properties, such as biocompatibility, bioactivity, osteoconduction, osteoinduction, and 

biodegradation [5,6]. Among the materials, metals are suitable for load-bearing applications due to 

their favourable mechanical properties, whereas ceramics exhibit excellent biocompatibility as a  

result of their chemical composition that resembles the mineral phase of bone tissue. However, both 

metals and ceramics are generally poorly degradable [7]. In contrast, biodegradable polymers present 

appropriate characteristics, in terms of physico-chemical and biological properties, suitable to  

fabricate scaffolds for tissue engineering (TE) [8]. They can be classified as natural or synthetic. 

Natural polymers, such as proteins and polysaccharides, exhibit several benefits, such as degradability 

and negligible toxicity. However, a number of advantages are reported for synthetic polymers as 

compared with natural polymers, including the highly controlled and consistent degradation properties 

and excellent reproducible mechanical and physical properties such as tensile strength, elastic modulus 

and degradation rate [9]. Possible risks, such as toxicity, immunogenicity and favouring of infections, 

are lower for pure synthetic polymers with constituent monomeric units having a well-known and 

simple structure [10]. 

The most commonly used biodegradable synthetic polymers for three-dimensional (3D) scaffolds  

in tissue engineering are saturated poly(α-hydroxy esters), including poly(lactic acid) (PLA) and 

poly(glycolic acid) (PGA), as well as poly(lactic-co-glycolide) (PLGA) copolymers [11,12]. The 

chemical properties of these polymers allow hydrolytic degradation through de-esterification. Once 

degraded, the monomeric components of each polymer are removed by natural pathways. PGA is 

converted to metabolites or eliminated by other mechanisms, and PLA can be cleared through the 

tricarboxylic acid cycle. Due to these properties PLA and PGA have been used in biomedical products 

and devices, such as degradable sutures which have been approved by the US Food and Drug 

Administration as reported in Table 1 [13]. PGA is a hydrophilic and highly crystalline polymer  

with a relatively fast degradation rate. Although structurally very similar to PGA, PLA exhibits 

different chemical, physical, and mechanical properties because of the presence of a pendant  

methyl group on the alpha carbon. Generally, the co-polymer PLGA is preferred compared with its 

constituent homopolymers for the fabrication of bone substitute constructs, as PLGA offers superior 

control compared with degradation properties by varying the ratio between its monomers. PLGA,  

for instance, has a wide range of degradation rates, governed by the composition of chains, both 

hydrophobic/hydrophilic balance and crystallinity (Table 1) [14]. However, despite being biocompatible, 

clinical application of pure PLGA for bone regeneration is hampered by poor osteoconductivity and 

exhibits suboptimal mechanical properties for use as load-bearing applications. Therefore, PLGA is 

often used in combination with other materials, such as ceramics, bioactive glass, or it is opportunely 

modified in order to render PLGA more biomimetic and able to enhance bone regeneration [15]. 
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In this review, the different applications of constructs based on PLGA for bone regeneration will  

be described, allowing a selection of the most promising solutions, as a base for future research in  

the bone tissue engineering field. Therefore, PLGA-based bone substitutes have been categorized 

according to its application forms: scaffolds, fibres, hydrogels or injectable microspheres. However, 

due to the wide variety of forms, the review will describe only composite constructs, based on PLGA 

and hydroxyapatite (HA), an inorganic filler largely used in bone tissue engineering due to its  

non-toxicity, bioactivity and osteoconductivity, and similarity to natural bone minerals [16]. Finally, 

the current trends in the development of functionalized PLGA constructs will be also reviewed, 

implying the use of conventional and innovative technique of functionalization. 

2. Chemistry 

2.1. Synthesis 

PLGA is a linear copolymer that can be prepared at different ratios between its constituent 

monomers, lactic (LA) and glycolic acid (GA) (Figure 1). 

Figure 1. Chemical structure of poly(lactic-co-glycolic acid) and its monomers. 

 

Depending on the ratio of lactide to glycolide used for the polymerization, different forms of  

PLGA can be obtained: these are usually identified in regard to the monomers’ ratio used (i.e., PLGA 

75:25 identifies a copolymer consisted of 75% lactic acid and 25% glycolic acid). Different  

synthesis mechanisms are used to obtain PLGA and the process parameters influence strongly the 

physico-chemical characteristics of the end product. Among them, the solution poly-condensation of 

LA and GA at temperatures above 120 °C under water-removal conditions allows the synthesis of 

PLGA with low molecular weight (MW < 10 kDa) [17,18]. Ajioka et al. [19,20] reported a simple  

one-step method, a direct polycondensation from LA and GA, carried out in the azeotropical solvent 

diphenyl ether, characterized by a high boiling point. However, this solvent introduces higher levels of 

complexity of both process control and purification of the end product, and thus the resultant polymers 

are very expensive to produce. In 2001, Moon and Takahashi developed a new melt and melt/solid 

polycondensation process, without any azeotropical solvents, to overcome these drawbacks [21,22]. 

Moreover, high molecular weight PLGA could be obtained by ring opening polymerization, of  
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lactide with glycolide using metal catalysts at high temperatures (130–220 °C), including tin (II)  

2-ethylhexanoate, tin (II) alkoxides, or aluminum isopropoxide. Among these catalysts, the stannous 

octoate (SnOct2) is a highly efficient commercial catalyst and a food additive permitted in numerous 

countries [23,24]. An additional mechanism is represented by the enzymatic polymerization that 

appears as an alternative technique to obtaining aliphatic polyesters uncontaminated with possible 

toxic metallic residues, that is an essential prerogative for a synthesized material for biomedical 

applications. This mechanism of enzymatic ring-opening (i.e., by lipase) occurs under mild reaction 

conditions (temperature, pH and pressure), but it needs a long reaction time, producing PLGA with a 

low molecular weight [25]. Usually, by the cited ring-opening polymerization technique, randomly 

distributed atactic or syndiotactic PLGA is obtained as reported in detail by Dechy-Cabaret [26], 

depending both on the monomer involved and on the course of the polymerization reaction.  

As known from literature, the PLGA sequence influences dramatically the degradation rate,  

because random PLGA degrades quicker than analog-sequenced PLGAs, prepared by ring-opening 

polymerization. Recently, a new method to obtain repeating-sequence PLGA copolymers with 

different tacticities has been proposed by Li et al. [27], using 1,3 diispropylcarbodiimide (DIC) and  

4-(dimethylamino)pyridinium p-toluenesulfonate (DPTS) as catalysts. In this work, PLGAs with a 

high control over sequence and stereochemistry were produced, allowing for the tailoring and decrease 

of the hydrolysis rate. These results may be considered promising for the use of sequenced PLGA in 

biomedical applications, i.e., in drug delivery applications, where the drug/biomolecule kinetic release 

is dramatically influenced by the polymeric degradation rate. 

2.2. Physico-Chemical Properties 

Unlike pure polylactic and polyglycolic acid show poor solubilities, PLGA can be dissolved by a 

wide range of common solvents, including chlorinated solvents, tetrahydrofuran, acetone or ethyl 

acetate [28] and it can be processed into any shape and size, and can encapsulate biomolecules of any 

size. Physical properties of PLGA have been shown to depend on different factors, including the initial 

molecular weight of the monomers, the LA:GA ratio, the exposure time to water and the storage 

temperature [29]. Table 1 show the physico-chemical properties and the field of application of 

different PLGA materials characterized by different LA:GA ratio. 

As two enantiomeric isomers of lactide exist (e.g., D and L, according to the position of pendant 

methyl group on the alpha carbon of PLA), PLGA is available as D-, L-, and D,L-isomers. Although 

GA glycolic acid lacks the methyl side group (in contrast to LA), making it highly crystalline, PLGA 

copolymers are amorphous. 

PLGA degrades by hydrolysis of its ester linkages, through bulk or heterogeneous erosion, in 

aqueous environments. In details, four steps can be described during its degradation: (i) hydration: 

water penetrates into the amorphous region and disrupts the van der Waals forces and hydrogen bonds, 

causing a decrease in the glass transition temperature (Tg); (ii) initial degradation: cleavage of covalent 

bonds, with a decrease in the molecular weight; (iii) constant degradation: carboxylic end groups 

autocatalyze the degradation process, and mass loss begins by massive cleavage of the backbone 

covalent bonds, resulting in loss of integrity; (iv) solubilization: the fragments are further cleaved to 

molecules that are soluble in the aqueous environment [30]. 
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Table 1. Properties and fabrication of biodegradable polymer materials. 

Polymer 
Modulus 

(GPa) 
Elongation 

(%) 
Solvent 

Cristallinity 
(%) 

Degradation Time 
(Weeks) 

Applications Reference 

Polyglycolide/ 
Polyglactine 

7.0 15–20 Hexafluoroispropanol 45–55 6–12 
Suture anchors, meniscus 
repair, medical devices, 

drug delivery, orbital floor 
[31–33] 

Poly(L-lactide) 2.7 - Benzene, THF, dioxane 37 12–18 
Fracture fixation, 

interference screws, suture 
anchors, meniscus repair 

[33–35] 

Poly(D,L-lactide) - 3–10 Methanol, DMF Amorphous 11–15 
Orthopaedic implants,  

drug delivery 
[32,33,36] 

Poly(D,L-lactide-co-
glycolide) 85/15 

2.0 3–10 
Ethyl acetate, 

chloroform, acetone, 
THF 

Amorphous 5–6 
Interference screws, suture 

anchors, ACL 
reconstruction 

[33,34,37,38] 

Poly(D,L-lactide-co-
glycolide) 75/25 

2.0 3–10 
Ethyl acetate, 

chloroform, acetone, 
DMF, THF 

Amorphous 4–5 
Plates, mesh, screws, tack, 

drug delivery 
[32,33,36] 

Poly(D,L-lactide-co-
glycolide) 50/50 

2.0 3–10 
Ethyl acetate, 

chloroform, acetone, 
DMF, THF 

Amorphous 1–2 
Orthopaedic implants,  

drug delivery 
[36,38] 

Poly (L-lactide-
co-glycolide) 10/90 

-      [39,40] 
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After the degradation, LA and GA are formed as by-products. The degradation rates can be 

influenced by different parameters: (i) the molecular weight: increasing the molecular weight of 

conventional PLGAs from 10–20 to 100 kDa, degradation rates were reported to range from several 

weeks to several months; (ii) the ratio of GA to LA: PLGA with a higher content of LA are less 

hydrophilic, absorb less water and subsequently degrade more slowly, as a consequence of the 

presence of methyl side groups in PLA making it more hydrophobic than PGA. An exception to this 

rule is the copolymer 50:50 which exhibits the faster degradation; (iii) stereochemistry: mixtures of  

D and L lactic acid monomers are most commonly used for PLGA fabrication, as the rate of water 

penetration is higher in amorphous D,L regions, leading to accelerated PLGA degradation; and  

(iv) end-group functionalization: polymers that are end-capped with esters (as opposed to the free 

carboxylic acid) demonstrate longer degradation half-lives [41,42]. Moreover, the shape of the device 

strongly affects PLGA degradation behaviour depending on the accessibility of water. In addition, 

acidic surrounding media accelerate PLGA degradation due to autocatalysis [43]. 

Finally, the Tg of the PLGA is reported to be above 37 °C and, hence, PLGA has a glassy 

behaviour in nature, showing fairly rigid chain structure. Furthermore, it has been described that  

Tg decreases with a decrease of LA content in the copolymer and with a decrease in the  

molecular weight [44]. 

3. Applications in Bone Tissue Engineering 

For biomedical applications, PLGA has been used in a wide variety of forms, such as films, porous 

scaffolds, hydrogels, or microspheres that will be described in detail in the following paragraphs. 

3.1. Porous PLGA-HA Scaffolds 

Several techniques have been used to produce 3D porous scaffolds in the past decades, such as 

porogen leaching [45], gas foaming [46], phase separation [47], and solid freeform fabrication 

technologies [48]. Among these procedures, the porogen leaching has been taken by many groups, 

having the advantages of easy operation and providing an effective control of pore size and porosity, 

simply by varying the size and the amount of the porogens. Several papers in the literature concern the 

preparation of composite scaffolds, by particulate leaching, consisting of PLGA and bioceramic 

particles [49,50]. However, different disadvantages were reported: (i) the solvent removal by 

evaporation may be incomplete; (ii) it is more suited to producing thin scaffolds (up to 2 mm in 

thickness); and (iii) lack of interconnectivity and open-pore structure in scaffolds requiring a low 

porosity [51]. Kim et al. [52] described a novel method for fabricating a polymeric/nano-HA 

composite scaffold by gas forming and particulate leaching (GF/PL) without the use of organic 

solvents. The GF/PL method exposed HA nanoparticles at the scaffold surface significantly more than 

the conventional solvent casting/particulate leaching (SC/PL) method does. The GF/PL scaffolds 

showed highly porous structures, exhibited enhanced mechanical properties and significantly higher 

cell growth, alkaline phosphatase activity, and mineralization scaffolds in vitro compared to scaffolds 

fabricated by the SC/PL method. Moreover, different strategies were developed to allow the 

fabrication of 3D scaffold with a more complicated shape, combining the porogen leaching and the 

moulding technique together, avoiding high temperature of process, in order to reduce the degradation 
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of PLGA during the processing. Cui et al. [53] reported a combination of the porogen leaching and 

melt-moulding, obtaining simultaneously an internal interconnected pore structure and an external 

complicated anatomical shape of the porous scaffolds. In their work, a PLGA, sodium chloride (NaCl) 

particle solutions, containing different amounts of HA, were first prepared by the conventional solvent 

casting, and then compressively moulded in a specially designed flexible-rigid combined mould, able 

to produce complicated scaffolds in shape. The composite solutions were then moulded under 10 MPa 

pressure at 150 °C (above the glass transition temperature but below the flow temperature of PLGA) 

for 5 min, and cooled to room temperature. Despite particulate leaching having been used in 

combination with other techniques, the lack of interconnectivity remained the major limitation [41]. 

Thermally induced phase separation (TIPS), based on changes in thermal energy to induce the  

de-mixing of a homogeneous polymer solution into a two or multi-phase system domain, has gained 

significant attention from a scientific and practical point of view. Currently, the TIPS technique is 

applied in the fabrication of microporous membranes or microcellular foams from medicine to the 

chemical industry, scaffolds for tissue engineering, and as a drug carrier for controlled release [54,55]. 

In 2011, Ebrahimian-Hosseinabadi prepared a biomimetic scaffold by TIPS at 60 °C, based on PLGA 

and a nano-biphasic component (nBCP), consisting of HA and β-tricalcium phosphate powders as 

reinforcement material. The authors described in detail the observed mechanical properties, showing 

that the composite with 20%–30% (w/w) of nBCP showed the highest and optimum value of yield 

strength and Young’s modulus among the scaffolds. Furthermore, it was observed that the 

agglomeration of reinforcing particles at higher percentages caused a reduction in mechanical 

properties [56]. Recent studies involved the solid freeform fabrication (SFF) technology to fabricate 

3D scaffolds with a controlled internal/external micro-architecture, good accuracy, intricate internal 

pores, and complex geometries [57,58]. Among these techniques, evaluating the different process 

parameters and the physical properties of PLGA, the selective laser sintering (SLS) was found to be 

advantageous for TE scaffold fabrication, due to its ability to process a wide range of biocompatible 

and biodegradable materials [59]. In 2013, Shaui reported the preparation of PLGA/nano-HA 

composite porous scaffolds, with well-controlled pore architectures as well as high exposure of the 

bioactive ceramics to the scaffold surface, via selective laser sintering (Figure 2) [60]. The effect of  

nano-HA content on the microstructure and mechanical properties was investigated. The results 

showed that the compressive strength and modulus of the scaffolds were highly enhanced when  

the nano-HA content reached from 0 to 20% (w/w), while the mechanical properties decreased 

dramatically with an increased nano-HA amount [60]. 
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Figure 2. Porous scaffolds: (a,b) neat PLGA scaffold (top view and front view);  

(c,d) PLGA/nano-HA scaffold (top view and front view) [60]. 

 

3.2. Fibrous Scaffolds 

The combination of enhanced mechanical properties, biocompatibility, and fibrous formability of 

the scaffolds is believed to have great potential for bone tissue regeneration. Different fibre-forming 

techniques were proposed in literature to fabricate micro- and nano-fibrous composite scaffolds [61]. 

The wet-spinning method was used by Morgan to obtain hollow fibres, as a scaffold, used in 

combination with human bone marrow stromal cells (HBMSCs) to initiate natural bone repair  

and regeneration [62]. The authors prepared a 20% (w/w) solution of PLGA (75:25) in  

1-methyl-2-pyrrolidinone at 20 °C. Then, the polymer solution was passed through a spinneret (needle 

0.3 mm outer diameter) and precipitated into a water coagulation bath, forming fibres with a diameter 

of the outer and inner walls around 770 and 500 μm, respectively. However, nanofibrous structures are 

more similar to that of the natural bone extracellular matrix (ECM), and may bring additional stimuli 

to the cultured cells. Electrospinning process represents a simple and versatile technology for 

producing ultrathin non-woven fibres with a diameter ranging from few nanometers to microns [63]. 

The electrospun nanofibres possess a lot of advantages, such as an extremely high surface-to-volume 

ratio, a small interfibrous pore size with tunable porosity, as well as wide possibilities for achieving 

desirable properties and functionalities [64]. Furthermore, in bone regeneration electrospun fibres  

are hypothesized as playing a role in sustaining mechanical properties, as well as allowing for 

biodegradability, and acting as an actual osteoconductive scaffold after addition or being coated by 

ceramic particles [65–67]. 

Several papers are present in literature, concerning the preparation of nanocomposite random 

fibrous scaffolds, in which HA has been added to the PLGA solution before spinning. Moreover, 

different process parameters were considered, such as the solvent (i.e., dicloromethane, tetrahydrofuran, 

acetone), the polymeric concentration (from 15 to 25 w/w), the distance nozzle-collector (ranging from 

10 to 25 cm), and, finally, the voltage (from 10 to 30 kV) [63,68,69]. The addition of an amphiphilic 
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surfactant into the composite solution may reduce the agglomerate problems associated with the 

hydrophilic bioceramic powders within hydrophobic PLGA [70,71]. The physico-chemical properties 

of PLGA/HA electrospun scaffolds were carefully evaluated, considering different amounts of  

nano-HA. As reported in literature, Jose et al. [72] prepared aligned nanofibrous scaffolds based on 

PLGA and nano-hydroxyapatite (Figure 3), in which the inorganic filler concentration led to an 

increase in the glass transition temperature, causing a lower chain mobility, useful to prevent shrinkage. 

Figure 3. CLSM image showing dispersion of HA particles in PLGA fibres (Scale 10 μm) [72]. 

 

Furthermore, nano-HA influenced strongly the mechanical properties, showing that the addition of 

nano-HA at 20% (w/w) influenced strongly the Young’s modulus of the electrospun composite 

meshes. However, the modulus decreased when the nano-HA concentration was increased from  

20 wt %. The decrease in modulus may be due to poor interfacial properties between the particles and 

the polymer. 

Recently, different research groups synthesized aligned nanofibrous scaffolds with promising 

results. Yun et al. [73] attempted to characterize the gene expression pattern during osteogenic 

differentiation of various stem cells on PLGA/nano-HA nanofibrous scaffolds (PLGA and nano-HA in 

a 5:1 blending ratio). They cultured primary adipose tissue-derived stem cells (hADSCs) and bone 

marrow cells (MSCs) from human in order to evaluate the biocompatibility of the scaffolds. The 

results showed that osteogenic differentiation and mineralization of stem cells cultured on the 

PLGA/HA nanofibre occurred. These results were confirmed by both an alkaline phosphatase activity 

(ALP) and a calcium assay. Moreover, they investigated whether osteogenic differentiation of stem 

cells affected the expression of osteogenic genes (osteocalcin, collagen type I). These gene mRNA and 

protein levels were found to increase in a time-dependent manner as confirmed by RT-PCR and 

Western blotting analysis. 
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3.3. Hydrogels 

Hydrogels are another class of scaffolds that are commonly used for tissue engineering applications. 

Hydrogels, such as fibrin, hyaluronic acid and Pluronic F127, have shown promise for effective growth 

factor delivery [74]. As reported by Dhillon et al. [75], blending PLGA with a plasticizer, such as 

poly(ethylene glycol) (PEG), allows the production of temperature-sensitive material with a reduced 

Tg of 37 °C. When the PLGA/PEG particles are mixed with a carrier solution at room temperature, a 

formulation is created that can be moulded or pasted at room temperature and, subsequently, hardens 

into a scaffold at 37 °C. The scaffold formation process starts with the particles becoming soft and 

cohesive when they reach their Tg, which causes them to adhere to each other. At this stage, the 

hydrophilic PEG component begins to leach out of the particles. This decrease in PEG content causes 

the Tg of the particles to increase, which results in them resolidifying. Strong adhesion bridges are 

formed between the fused particles, which create the PLGA/PEG scaffold structure. This scaffold 

system has recently been demonstrated to assist bone repair in vivo in a murine calvarial defect  

model [76]. However, there are drawbacks to use hydrogels for bone regeneration as they have low 

mechanical strength, which can hinder their individual use as bone replacements [77]. To overcome 

this issue, the combination of hydrogels and calcium phosphate particles is emerging as a  

well-established trend for bone substitutes. Besides acting as binders for the inorganic phase, hydrogels 

within these hybrid materials can modulate cell colonization physically and biologically [78].  

Lin et al. [79] designed composites consisting of HA and a poly(ethylene glycol) (PEG) copolymer, 

namely PLGA-g-PEG (Figure 4). Interestingly, this was the only article reporting the viscoelastic 

profile as function of temperature. Concentrations of 30% w/w of hydrogel with different amounts of 

HA were analyzed. The results revealed that hydrogel composites preserved their sol-gel transition 

properties in the presence of HA. For all the formulations tested, the storage modulus displayed a 

maximum at 24 °C, dropping to values of <20 Pa at 37 °C. Moreover, the acidic pH environment of 

the hydrogel was neutralized by HA, both representing great advantages over the hydrogel alone. 

Scanning electron micrographs showed that HA particles were well dispersed and distributed within 

the hydrogel matrix. The composites showed a sustained release of a small molecule model dye for up 

to two weeks with slight increase of release with addition of HA. 

Figure 4. PLGA-g-PEG (30% w/w) hydrogel–HA composite containing 10% (w/w) HA 

was sol at 4 °C (left) and gel at 37 °C (right) [79]. 
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3.4. Injectable Microspheres 

Amorphous PLGA copolymers are suitable for biomedical applications, as provides a more 

homogeneous dispersion of the active species in the polymer matrix [80]. Due to the hydrolysis of 

PLGA, the effect of physico-chemical properties, such as the glass transition temperature (Tg), 

moisture content and molecular weight, on the rate of drug release from biodegradable polymeric 

matrices has been widely studied. The biodegradation properties of PLGA microparticles can be 

tailored from a few weeks to several months by varying the amount of poly(lactic acid) to 

poly(glycolic acid), influencing the release and degradation rates of incorporated drug molecules. The 

PLGA microspheres were fabricated by conventional oil/water emulsification method and different 

methods were proposed to obtain biomimetic injectable microspheres by addition of HA. Recently, 

negatively charged inorganic HA nanoparticles were assembled together with positively charged 

PLGA microspheres dispersed in deionized water to create a cohesive colloidal gel. This material was 

held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, moulding,  

or injection. Scanning electron micrographs of the dried colloidal gels showed a well organized,  

three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover 

after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when 

seeded on the colloidal gels [81]. Another approach was described by Kang et al. [82] that prepared  

HA-coated PLGA microspheres, previously prepared by water/oil/water, after immersion in simulated 

body fluid (SBF) for 5 days at 37 °C. The apatite-coated PLGA microspheres with osteoblasts were 

injected into a subcutaneous dorsum of the mice and tested for bone formation at 6 weeks.  

The new bone formation was significantly enhanced for the apatite-coated PLGA microsphere group 

compared to the plain PLGA microsphere group [82]. In another study, PLGA-hydroxyapatite 

microsphere composites were loaded with the bisphosphonate-based osteoporosis-preventing drug, 

alendronate (AL) [83]. These microspheres were prepared with the solid/oil/water or water/oil/water 

technique. The AL release from the PLGA/HA-AL system showed a sustained releasing tendency, 

except a minimal burst at the very beginning over a 30-day period. Their results indicated that the  

PLGA/HA-AL system was able to improve osteoblast proliferation, and, also, enable upregulation  

of ALP. 

4. Current Trends in the Development of Functionalized PLGA Constructs 

PLGA is widely used in bone tissue engineering due to its suitable physico-chemical properties and 

biodegradability rate; however, compared to natural polymerssuch as collagen and chitosan which 

have numerous ionic molecular groups, the synthetic polymers have relatively few of these groups, 

making it very difficult to induce mineralization [84,85]. Surface modification is an interesting 

approach to increase cell affinity or to generate a biomimetic interface between PLGA and the 

biological environmental. In this contest the main research goal is the formation of biomimetic apatite 

layer onto device surface [86]. As widely reported in literature, surface negative charge and 

topography influence the apatite formation [87,88]. Wan et al. [89] demonstrated that appropriate 

oxygen plasma treatment could not only incorporate functional groups on PLGA surface, increasing its 

negative charge, but also could change surface topography due to etching effects. Qu et al. [90] treated 
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PLGA films and scaffolds with oxygen plasma and then incubated them in a modified SBF solution to 

obtain a bone-like apatite layer. The formation of bone-like apatite was enhanced by oxygen plasma 

treatment, allowing an increased number of negative charge and surface roughness. The formed apatite 

was similar in composition and structure to the natural bone mineral and enhanced the adhesion and 

proliferation of OCT-1 osteoblast-like cell when compared with neat PLGA. 

Other strategies to functionalize the PLGA surface involve physical adsorption, a simple method to 

attach bioactive molecules, such as peptides and growth factor, but without controlling the amount 

and/or orientation of immobilized molecules. Using covalent techniques it is possible to obtain a better 

control of the amount immobilized, prolonged retention of the biomolecules, and ability to dictate  

the orientation/presentation of molecules [91]. Since Pierschbacher and Ruoslahti found that  

the argimine-glycine-aspatic acid (RGD) was the minimal cell-recognizable sequence in many 

extracellular matrix protein and blood proteins [92], the covalent linking of RGD to biomaterials is a 

widely used technique favouring their biological response. Yoon et al. [93] prepared a blend of PLGA 

and functionalized PLGA, in various ratios to prepare films by solvent casting or to fabricate porous 

scaffolds by a gas foaming/salt leaching method. In this work, carboxyl terminal end of PLGA was 

functionalized with a primary amine group by conjugating hexaethylene glycol-diamine. Then, under 

hydrating conditions, the activated GRGDY (Gly-Arg-Gly-Asp-Tyr) could be directly immobilized to 

the surface-exposed amine groups of the PLGA-NH2 blend films or scaffolds. The results showed that 

the extent of cell adhesion was substantially enhanced by increasing the blend ratio of PLGA-NH2 to 

PLGA. The level of an alkaline phosphatase activity (ALP), measured as a degree of cell 

differentiation, was also enhanced as a result of the introduction of cell adhesive peptides.  

Recently, Huang et al. [94] modified PLGA/nano-hydroxyapatite composite with GRGDSPC  

(Gly-Arg-Gly-Asp-Ser-Pro-Cys) through coupling mediated by a polyethyleneimine (PEI). The 

biocompatibility of PLGA/nano-HA-GRGDSPC was greatly increased compared with PLGA/nano-HA, 

and the scanning electron micrographs images showed that the cells grew better on  

PLGA/nano-HA-GRGDSPC both in 2D and 3D materials than that on PLGA/nano-HA. Moreover, the 

scaffolds PLGA/nHA-GRGDSPC showed better results in bone healing in rabbit mandibular defect. 

Unfortunately, the technologies for surface modification of synthetic polymers, such as covalent 

graft, ionized gas treatments, silane monolayers, generally require complex reaction conditions and 

specific equipment, which greatly limit the application at a large industrial scale [95]. An innovative 

approach to modify the synthetic polymer surface consists of employing mussel-inspired 

molecules,3,4-dihydroxy-L-phenylalanine (DOPA), that mimic the Mytilus edulis foot protein-5 

(Mefp-5). DOPA and its derivates, such as 3,4-dihydroxyphenethylamine (dopamine) exhibit a 

powerful ability to adhere to almost any type of surface, including artificial polymers. The 

polymerization process of dopamine to polydopamine is likely to involve oxidation of the catechol 

(dopamine) to a quinone, followed by polymerization in a manner similar to that of melanin formation. 

Furthermore, the deposited film formed by polydopamine is easily adapted for a secondary 

modification due to it having many active functional groups [96,97]. Chen et al. [88] prepared a 

collagen/chitosan coating on polydopamine-modified PLGA in order to obtain a suitable material for 

guided bone regeneration (GBR). The composite membrane retained mechanical properties from 

PLGA and biological properties from natural polymer coatings. Recently, Lee and co-workers [98] 

fabricated barrier membranes with appropriate porosity and bioactivity for GBR, producing bioactive 
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electrospun membranes based on PLGA by immobilizing bone-forming peptide 1 (BFP1) derived from 

the immature region of bone morphogenetic protein 7 (BMP7). The authors employed poly(dopamine) 

to graft BFP1 on nanofibre surfaces as shown in Figure 5. 

Figure 5. Schematic illustration of the preparation of electrospun fibres with immobilized 

BFP1 by polydopamine coating [98]. 

 

In vitro tests performed using human mesenchymal stem cells (hMSCs) displayed a significant 

increase in ALP activity and calcium deposition when cells were cultured on BFP1 functionalized 

fibres. Moreover, in vivo tests carried out by implanting samples onto mouse calvarial defects, 

demonstrated an effective integration of the bioactive membranes with the host tissue. 

5. Conclusions and Future Prospects 

This article reviews the potential of PLGA to favour bone tissue engineering, due to its biological 

safety and tuneable degradation properties. As reported in this review, PLGA is categorized to its 

application forms: scaffolds, fibres, hydrogels or microspheres; composite constructs based on PLGA 

and hydroxyapatite are widely discussed. As reported, the addition of HA enhanced the 

osteoconductivity and the mechanical properties of PLGA scaffolds for their use as load-bearing 

applications, and the bone tissue regeneration. Finally, the review reports an alternative strategy to 

increase cell affinity or to generate a biomimetic interface between PLGA and the biological 

environment, involving the formation of the biomimetic apatite layer on the PLGA surface by  

surface modification. Furthermore, the combination of both strategy (HA addition and surface 

functionalization) in PLGA scaffold is expected to create an osteoconductive and osteoinductive 

gradient, allowing an increased success of bone tissue regeneration. 
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