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Dendritic cells (DCs) are gatekeepers of the immune system that control induction and 
polarization of primary, antigen-specific immune responses. Depending on their matu-
ration/activation status, the molecules expressed on their surface, and the cytokines 
produced DCs have been shown to either elicit immune responses through activation 
of effector T cells or induce tolerance through induction of either T cell anergy, regula-
tory T cells, or production of regulatory cytokines. Among the cytokines produced by 
tolerogenic DCs, interleukin 10 (IL-10) is a key regulatory cytokine limiting und ultimately 
terminating excessive T-cell responses to microbial pathogens to prevent chronic inflam-
mation and tissue damage. Because of their important role in preventing autoimmune 
diseases, transplant rejection, allergic reactions, or in controlling chronic inflammation 
DCs have become an interesting tool to modulate antigen-specific immune responses. 
For the treatment of allergic inflammation, the aim is to downregulate allergen-specific 
T helper 2 (Th2) responses and the associated clinical symptoms [allergen-driven Th2 
activation, Th2-driven immunoglobulin E (IgE) production, IgE-mediated mast cell and 
basophil activation, allergic inflammation]. Here, combining the presentation of allergens 
by DCs with a pro-tolerogenic, IL-10-producing phenotype is of special interest to 
modulate allergen-specific immune responses in the treatment of allergic diseases. This 
review discusses the reported strategies to induce DC-derived IL-10 secretion for the 
suppression of allergen-specific Th2-responses with a focus on IL-10 treatment, IL-10 
transduction, and the usage of both whole bacteria and bacteria-derived components. 
Interestingly, while IL-10-producing DCs induced either by IL-10 treatment or IL-10 
transduction are arrested in an immature/semi-mature state, treatment of DCs with live 
or killed bacteria as well as isolated bacterial components results in the induction of 
both anti-inflammatory IL-10 and pro-inflammatory, Th1-promoting IL-12 secretion often 
paralleled by an enhanced expression of co-stimulatory molecules on the stimulated 
DCs. By the secretion of DC-derived exosomes or CC-chemokine ligand 18, as well as 
the expression of inhibitory molecules like cytotoxic T lymphocyte-associated antigen 4, 
TNF receptor superfamily member 4, Ig-like transcript-22/cluster of differentiation 85, or 
programmed death-1, IL-10-producing DCs have been repeatedly shown to suppress 
antigen-specific Th2-responses. Therefore, DC-based vaccination approaches hold 
great potential to improve the treatment of allergic diseases.
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iNTRODUCTiON

Dendritic Cells (DCs) Control the induction 
of immune Responses
Our immune system efficiently protects us from most pathogens. 
However, if the actions of immune cells are misdirected (e.g., 
against our own cells and tissues in the case of autoimmune 
diseases or against innocuous environmental antigens in the case 
of allergies) severe immunopathology can be the consequence. 
Therefore, the induction of potentially highly destructive immune 
responses needs to be tightly regulated.

Usually, the prevention of such detrimental immune responses 
is achieved by controlling against which antigens cells of the 
adaptive immune system are allowed to react. Here, antigen-
presenting cells (APCs) are pivotal in controlling the induction 
of innate and subsequent adaptive immune responses.

Antigen-presenting cells consist of DCs, macrophages, and 
B cells (1, 2). They control both the induction and regulation of 
T-cell immune responses via the uptake, processing, and presen-
tation of antigens to antigen-specific T cells (1, 2).

Among the different types of APCs, DCs are of special impor-
tance because they are the only APC type able to induce activation, 
differentiation, and expansion of naive, antigen-specific T cells (3, 
4). In contrast to this, macrophages and B cells are only sufficient 

to reactivate T cells that have already encountered their specific 
antigen in the past (5).

Dendritic cells are highly specialized APCs strategically 
located in the skin and the mucosal system (2, 6). They act 
as sentinel cells that initiate, monitor, and regulate immune 
responses (1). In their immature form DCs continuously take up 
and process antigens via endocytosis or pinocytosis (7). If this 
antigen uptake occurs in the context of additional DC-activating 
signals such as pro-inflamatory cytokines [tumor necrosis fac-
tor alpha (TNF-α), interleukin (IL)-1β, or IL-6], prostaglandin 
hormones (prostaglandin E 2), immune stimulating bacterial 
and viral components [lipopolysaccharide (LPS), CpG-DNA; 
Pam2CysK4, flagellin, etc.], or cell-contact-dependent signals 
[e.g., via cluster of differentiation (CD)40-ligand] DCs become 
activated (8). Once activated, DCs start to present the processed 
antigens in the context of major histocompatibility complex II 
(MHC II) molecules and express co-stimulatory molecules on 
their surface (2, 8). Via the expression of the chemokine recep-
tor 7 (CCR7, whose ligand is abundantly expressed in lymph 
nodes) mature DCs also start to migrate to lymph nodes, where  
DCs encounter antigen-specific naive T  cells and initiate their 
priming (9, 10).

By their actions, DCs link innate and adaptive immune 
responses by connecting the detection of danger signals with 
the uptake, processing, and presentation of foreign antigens to 
control both the induction and polarization of primary antigen-
specific CD4+ T-cell responses (11, 12).

Besides their important function in the induction of antigen-
specific immune responses, DCs are also key players in main-
taining immune homeostasis (13). Uptake and presentation of 
innocuous foreign- and self-antigens by DCs usually mediates 
T-cell tolerance (14). In this context, the cytokine IL-10 has been 
shown to shift DC function toward a tolerogenic rather than an 
immunogenic phenotype (15).

Dendritic cells may acquire tolerogenic properties either by 
(1) displaying a semi-mature state and exert tolerogenic func-
tion via the induction of apoptosis or anergy in the absence of 
co-stimulatory signals (2, 3, 16) promoting the differentiation of 
interacting T cells into CD4+CD25+ regulatory T (Treg) cells, or 
(3) increasing IL-10 production to expand allergen-specific type 
1 regulatory T (Tr1) cells (3, 17, 18). Indeed, the T cell skewing 
capacity of DCs largely depends on their cytokine pattern and 
expression of co-stimulatory molecules (19, 20).

Therefore, depending on their maturation/activation status, 
the molecules expressed on their surface, and their cytokine 
production DCs have been shown to elicit immune responses 
through either activation of effector T cells, induction of toler-
ance through regulatory T cells, or the induction of regulatory 
cytokines (6).

Because of their important role in the induction of both 
innate and adaptive immune responses, DCs have become an 
interesting tool to modulate antigen-specific immune responses 
(11, 21). In this context, their capacity to induce, modulate, and 
control T cell responses makes DCs an attractive adjuvant in vac-
cination settings that have the aim to either enhance inadequate 
immune responses for the treatment of infectious diseases 
and cancer or to attenuate exaggerated immune responses in 

Abbreviations: AIT, allergen-specific immunotherapy; AHR, airway hyper-
reactivity; APC, antigen-presenting cell; AR, allergic rhinitis; Art v1, major 
mugwort allergen Artemisia vulgaris allergen 1; B7-DC, programmed cell 
death 1 ligand 2 (CD273); BAL, bronchoalveolar lavage; BATF3, basic leucine 
zipper ATF-like 3; BCG, Bacillus Calmette–Guérin; Bet v 1, major birch pollen 
Betula verrucosa allergen 1; BM-DCs, bone marrow-derived DCs; cAMP, cyclic 
adenosine monophosphate; CCL-3/18, CC-chemokine ligand 3/18; CCR5/7, CC 
chemokine receptor 5/7; CD, cluster of differentiation; cDC, conventional DC; 
CpG-ODN, oligodeoxynucleotides containing CpG motifs; CTLA-4, cytotoxic 
T  lymphocyte-associated antigen 4 (CD152); DC, dendritic cell; Der p 1, major 
house dust mite allergen Dermatophagoides pteronyssinus peptidase 1; DTH, 
delayed-type hypersensitivity; FcεRI, high affinity IgE receptor Fc epsilon receptor 
I; Foxp3, forkhead box protein 3; HLA-DR, human leukocyte antigen DR; ICAM-1, 
intercellular adhesion molecule 1; ICOS, inducible co-stimulator; ICOS-L, induc-
ible co-stimulator ligand; IDO, indoleamine 2,3-dioxygenase; IFN-α1, interferon 
alpha 1; IFN-γ, interferon gamma; Ig E/G, immunoglobulin E/G; IL, interleukin; 
IL-1RN, interleukin 1 receptor antagonist; IL-10R, interleukin 10 receptor; iTregs, 
inducible Tregs; Jak1, Janus kinase 1; LAG-3, lymphocyte-activation gene 3; LZT, 
low zone tolerance; MAP kinase, mitogen-activated protein kinase; mDC, myeloid 
DCs; MHC I/II, major histocompatibility complex I/II; MoDC, monocyte-derived 
DCs; MPLA, monophosphoryl lipid A; mTOR1, mammalian target of rapamycin 
1; MyD88, myeloid differentiation primary response 88; OIT, oral immunotherapy; 
OX40, TNF receptor superfamily member 4 (CD134); OVA, ovalbumin; PAMP, 
pathogen-associated molecular pattern; PBMC, peripheral blood mononuclear cell; 
pDC, plasmacytoid DC; PD-1/2, programmed death-1/2; PD-L1/2, programmed 
death ligand ½; PDE4, phosphodiesterase-4; PRR, pathogen-recognition receptor; 
rFlaA, recombinant TLR5-ligand flagellin A; rFlaA:Artv1, recombinant fusion 
protein consisting of flagellin A and Art v 1; rFlaA:Betv1, recombinant fusion pro-
tein consisting of flagellin A and Bet v 1; rFlaA:OVA, recombinant fusion protein 
consisting of flagellin A and OVA; SbsC, surface (S-layer) protein of Geobacillus 
stearothermophilus; SbsC:Bet v 1, recombinant fusion protein consisting of SbsC 
and Bet v 1; SLIT, sublingual immunotherapy; SOCS-3, suppressor of cytokine 
signaling 3; STAT 1/5/6, signal transducer and activator of transcription 1/5/6; 
T-bet, T-box transcription factor TBX21; TGF-β, transforming growth factor beta; 
Th0/1/2/17, T-helper 0/1/2/17 cell; TLR, toll-like receptor; TRIF, TIR-domain-
containing adapter-inducing interferon-β; TNF-α, tumor necrosis factor alpha; 
Tr1, regulatory T cell type I; Treg, regualory T cell; Tyk2, tyrosine kinase 2.
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conditions such as autoimmunity, allergy, transplant rejection, 
and chronic inflammation (11, 21).

iL-10 is an important Cytokine Limiting 
excessive immune Responses
As we have just seen, cytokines produced by DCs play a central 
role in controlling both the induction and polarization of primary 
antigen-specific T-cell responses.

Among the cytokines produced by DCs, IL-10 is a key regula-
tory cytokine limiting and ultimately terminating excessive T-cell 
responses to microbial pathogens to prevent chronic inflamma-
tion and tissue damage (15, 22). IL-10 can both be produced by 
and has pleiotropic effects on multiple cell types, including DCs, 
macrophages, B cells, natural killer cells, both Th1- and Th2 cells, 
CD4+CD25+ forkhead box protein 3 (Foxp3+) Treg cells, and 
keratinocytes (1, 23–25).

Interleukin-10, originally identified as an inhibitor of 
interferon gamma (IFN-γ) and IL-2 synthesis in Th2 cells (26), 
efficiently inhibits proliferative and cytokine responses in T cells 
(1) and was shown to mediate both immunological unresponsive-
ness and the suppression of immune reactions (27). At epithelial 
interfaces to the environment, including the skin, IL-10 prevents 
excessive immune responses to foreign antigens (25).

Indeed, a well-documented mechanism by which IL-10-
producing DCs suppress allergic Th2-responses is the induction 
of allergen-specific CD4+CD25+Foxp3+ Treg cells (27–29). For 
example, Pacciani et al. reported that IL-10-producing DC can 
induce allergen-specific regulatory T cells suppressing prolifera-
tion and inflammatory cytokine production from Th2 cells of the 
same specificity from house dust mite-allergic patients (30). In line 
with this, Oh and colleagues showed that IL-10-secreting T cells 
in the airways were able to reduce Th2-type inflammation and 
airway hyperreactivity (AHR) (31). Therefore, the induction of 
IL-10- and transforming growth factor beta (TGF-β)-producing 
regulatory T  cells by IL-10-producing DCs is an important 
mechanism to prevent excessive immune responses (32, 33).

Consequently, IL-10-deficient mice develop increased contact 
hypersensitivity (34), display spontaneous enterocolitis and other 
symptoms akin to Crohn’s disease (35), and develop exaggerated 
asthmatic and allergic responses (35).

Interleukin-10 signaling is transmitted through a heterote-
trameric interleukin 10 receptor (IL-10R) which consists of two 
ligand-binding IL-10R alpha chains and two accessory, signal-
transducing beta chains all belonging to the interferon receptor 
family (Figure 1) (23). The IL-10R α chain is expressed at high 
levels on both macrophages and DCs, whereas the IL-10R β 
chain is ubiquitously and constitutively expressed by all cell 
types (23).

Mechanistically, IL-10 inhibits the function of APCs, including 
macrophages and DCs, by downregulating their maturation sta-
tus and reducing the associated production of pro-inflammatory 
cytokines (such as IL-1β, IL-6, or TNF-α), while increasing the 
expression of inhibitory genes (23, 36). These effects of IL-10 are 
mediated via the Janus kinase 1 (JAK1)/Tyk2/STAT3 pathway. 
It is initiated when IL-10 homodimers bind to the extracellular 
portion of the IL-10R alpha chain (Figure 1). In a first activation 

step, IL-10 binding triggers the recruitment of Jak1 to the IL-10R 
alpha chain and its subsequent phosphorylation, while tyrosine 
kinase 2 (Tyk2) is recruited to and phosphorylated by the IL-10R 
beta chain (Figure 1) (37, 38). Upon their phosphorylation, these 
kinases phosphorylate the tyrosine motifs Y446 and Y496 located 
in the intracellular portion of the IL-10R alpha chain (Figure 1) 
(39). The activated IL-10 receptor complex then mediates the 
phosphorylation of signal transducer and activator of transcrip-
tion 3 (STAT3) by providing transient anchorage sites for STAT-3 
that allow the phosphorylation of STAT3 by Jak1 and Tyk2  
(39, 40). Phosphorylated STAT3 forms homodimers which trans-
locate into the nucleus, bind to STAT-binding elements, and drive 
the expression of STAT-3-responsive genes. Among others, these 
include the suppressor of cytokine signaling 3 (SOCS-3) and 
the IL-1 receptor antagonist (IL-1RN) (Figure 1) (41): SOCS-3 
subsequently inhibits mitogen-activated protein kinase activa-
tion, NFκB translocation into the nucleus, and the associated 
induction of pro-inflammatory gene expression (40). SOCS-3 
also mediates Jak1-inhibition, resulting in feedback inhibition of 
the JAK1/Tyk2/STAT3 pathway (42).

In addition, production of IL-1RN, a decoy protein binding 
to the IL-1 receptor, blocks pro-inflammatory signaling normally 
initiated by binding of IL-1β to this receptor (Figure 1) (43).

Interleukin-10 also directly inhibits Th1  cell differentiation 
(by reducing IL-2, IL-12, and INF-γ production), limits effector 
T-cell function (by suppressing TNF-α, IL-1β, and IL-6 produc-
tion), and promotes the development, expansion, and function of 
regulatory T cells (23, 44). For example, IL-10 is known to inhibit 
the expression of IL-4 and IL-13-responsive genes in monocytes 
and DCs by suppressing the activation of STAT6 (Figure 1) (45).

Interleukin-10/IL-10R signaling may also result in STAT1 and 
STAT5 phosphorylation in monocytes and Treg cells, but the 
interactions of STAT1 and STAT5 with other intracellular signal-
ing events triggered by IL-10 are still unclear (42).

Because of its broadly anti-inflammatory effects, IL-10 is a 
highly interesting molecule for the treatment of allergic diseases, 
where affected patients mount exaggerated, immunoglobulin E 
(IgE)- and Th2-mediated immune responses against otherwise 
harmless environmental antigens.

In line with this, DC-derived autocrine IL-10 secretion was 
shown to suppress high-affinity IgE receptor Fc epsilon receptor 
I-dependent pro-inflammatory responses (46), suggesting that 
increased IL-10 production by DCs during allergy immuno-
therapy may reduce inflammatory responses to the allergen (47).

Up to now, numerous studies support the importance of IL-10 
produced by either Treg or Tr1 cells (48, 49), IL-10-producing 
regulatory B cells (50), and lung DCs (4, 32, 51) in the modulation 
of allergic diseases. Among other findings, IL-10 production by 
murine lung DCs suppressed inflammation and promoted the 
establishment of allergen-specific tolerance (52). In line with its 
function in the suppression of lung inflammation, IL-10 expres-
sion has been reported in DCs located in both lung tissue and 
the intestine, suggesting IL-10 to fulfill an important role in 
maintaining local T-cell tolerance to common environmental 
antigens (32).

The importance of IL-10 in controlling allergic inflammation 
is further highlighted by its ability to decrease eosinophil survival 
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FigURe 1 | Immune modulatory signaling in antigen-presenting cells (APCs) induced by binding of interleukin-10 (IL-10) to the IL-10 receptor. Activation of the 
IL-10/Janus kinase 1 (JAK1)/tyrosine kinase 2 (Tyk2)/signal transducer and activator of transcription 3 (STAT3) pathway in APCs results in the phosphorylation of 
STAT3 by the interleukin 10 receptor (IL-10R) complex and the subsequent translocation of STAT3 homodimers into the nucleus. There STAT3 homodimers bind  
to STAT-binding elements and drive the expression of STAT-3-responsive genes such as suppressor of cytokine signaling 3 (SOCS-3) and IL-1 receptor antagonist 
(IL-1RN): SOCS-3 efficiently inhibits mitogen-activated protein kinase (MAP kinase) activation, NFκB translocation into the nucleus, and the subsequent induction  
of pro-inflammatory gene expression, while the decoy protein IL-1RN suppresses pro-inflammatory signaling normally initiated by binding of IL-1β to its receptor. 
STAT3 activation also inhibits STAT6 activation and therefore the expression of IL-4/IL-13-responsive genes. By these events, IL-10 reduces the production of 
pro-inflammatory cytokines (IL-1β, IL-6, tumor necrosis factor alpha) and diminished expression of both major histocompatibility complex II and co-stimulatory 
molecules (CD80, CD83, CD86) on APCs. Black arrows: activation of the indicated signaling pathways, orange arrows: inhibition of the indicated signaling 
pathways, black dashed arrows: pathways normally induced by the indicated molecules that are inhibited in the presence of STAT3 activation. For more  
detailed information, see Section “IL-10 Is an Important Cytokine Limiting Excessive Immune Responses.”
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and IgE synthesis (53, 54). Indeed, IL-10 is often regarded as a 
key cytokine mediating tolerance in patients undergoing immu-
notherapy (55, 56).

Allergic Patients Show a Tendency  
to Produce Reduced iL-10 Levels  
upon Allergen Contact
In line with the importance of IL-10 in suppressing allergic 
responses, Akbari and colleagues reported that DCs from 
mice exposed to harmless inhaled antigens transiently produce 
IL-10 stimulating the development of IL-10-secreting, antigen-
specific CD4+CD25+Foxp3+ Tregs (32). Moreover, upon 
stimulation with the probiotic bacterium Escherichia coli 083, 
a lower expression and secretion of IL-10 was detected from 
monocyte-derived DCs (moDCs) derived from newborns of 
allergic mothers compared with cells derived from children 
with non-allergic mothers (57).

These results suggest that a reduced capacity to produce 
DC-derived IL-10 upon antigen contact may facilitate the 

development of allergic diseases by skewing immune responses 
toward the differentiation of Th2 cells and the development of 
childhood atopy and/or asthma (2).

Early studies showed that DC-derived IL-10 production 
is profoundly diminished in allergic rhinitis (AR) children 
regardless of the presence or absence of asthma, while 
DC-derived IL-12 secretion as well as T cell cytokine secretion 
were unchanged (2). These results suggest that atopic individu-
als have an intrinsic inability to upregulate DC-derived IL-10 
production (2). In line with this, several studies reported 
diminished antigen-induced, peripheral blood mononuclear 
cell (PBMC)-derived IL-10 production in children (58, 59) and 
adults (31, 60, 61) with atopic disorders (AR, asthma, or atopic 
dermatitis).

In addition, several studies have reported that allergic patients 
show a tendency to produce reduced levels of IL-10 upon allergen 
exposure. For example, defects in IL-10-producing T cells have 
been implicated in the immunopathogenesis of airway allergy, 
resulting in Th2-mediated production of allergen-specific IgE 
and tissue eosinophilia (55, 62).
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Moreover, Wei et al. reported that IL-10 levels in the super-
natants of DCs from AR patients were significantly lower than 
those observed in healthy controls (63). Accordingly, Pilette and 
coworkers described not only local nasal DCs but also systemi-
cally circulating blood myeloid DCs (mDCs) from AR patients to 
exhibit reduced IL-10 and IL-12 expression after allergen provo-
cation, while activated plasmacytoid DCs from these patients 
produced diminished amounts of interferon alpha (IFN-α) and 
triggered reduced levels of IL-10 from allogeneic CD4+ T cells 
(64). Due to these changes in cytokine production mDCs from 
AR patients preferentially supported Th2-cell polarization, link-
ing systemic DC dysfunction to biased T-cell responses and the 
failure to regulate T-cell-mediated responses to allergens seen in 
atopic patients (64).

While most studies suggest allergic patients to produce 
reduced levels of IL-10 compared with healthy individuals, 
some groups report contrary results: Lied and coworkers 
reported LPS-stimulated moDCs from atopic patients to pro-
duce significantly more IL-10 compared to non-atopic patients 
(65) and Frischmeyer-Guerrerio and colleagues described that 
mDCs from food allergic children produced greater quantities 
of IL-10 (66).

Successful Allergen-Specific 
immunotherapy May Restore Reduced 
iL-10 Secretion in Allergic Patients
Since several studies have reported that allergic patients show 
a tendency to produce reduced levels of IL-10 upon allergen 
exposure (see above paragraph), restoring allergen-induced 
IL-10 secretion from DCs is one of the aims in allergen-specific 
immunotherapy (AIT).

Indeed, IL-10 is often regarded as a key cytokine mediating 
tolerance in patients undergoing immunotherapy (55, 56). Many 
of the observed beneficial immune alterations during AIT have 
been attributed to IL-10 production (67). Several studies reported 
increased levels of IL-10 in blood and affected tissues of patients 
that underwent AIT (4, 68, 69). However, the cellular source of 
AIT-induced IL-10 production seems to depend on the exact 
treatment modalities: for example, exposure to high doses of 
allergen was repeatedly shown to result in the induction of differ-
ent IL-10-producing CD4+CD25+Foxp3+ Treg subsets (70–72), 
while for patients receiving pollen AIT increased IL-10 produc-
tion was reported in mucosal macrophages (69). Interestingly, in 
contrast to this, increased numbers of IL-10-producing B  cells 
and monocytes were described in the peripheral blood of patients 
receiving bee venom AIT (70, 73).

While many of the beneficial effects of AIT-induced IL-10 pro-
duction are attributed to the induction of allergen-specific, IL-10-
producing CD4+CD25+Foxp3+ Tregs (69–72), other cellular 
sources of IL-10 should not be ignored. In line with this, Kunz and 
coworkers recently described that the IL-10-dependent induction 
of allergen-specific tolerance by subcutaneous allergen injection 
resulted in increased IL-10 signals in T and B cells of both skin 
draining and mediastinal lymph nodes (74). Interestingly, toler-
ance induction could still be achieved when mice were unable to 
produce either T cell-, B cell-, T and B cell-, or DC-derived IL-10 

(74). In contrast to this, tolerance induction was not possible if 
all hematopoetic cells were unable to produce IL-10 (74). Taken 
together, these results suggest a high degree of functional cellular 
redundancy in IL-10-mediated tolerance induction (74).

STRATegieS TO iNDUCe DC-DeRiveD 
iL-10 SeCReTiON

We have seen that immature DCs can be used to as tolerogenic 
DCs to suppress antigen-specific T  cell responses. A regula-
tory, IL-10-producing DC phenotype is of special interest for 
the treatment of allergic diseases where the treatment aim 
is to downregulate allergen-specific Th2 responses and the 
associated clinical symptoms (allergen-specific Th2-responses, 
IgE-mediated mast cell and basophil activation, allergic inflam-
mation). The remainder of this review will summarize the 
strategies used to generate such IL-10-producing DCs with a 
focus on IL-10 treatment, IL-10 transduction, and the usage of 
both whole bacteria and bacteria-derived components (see also 
Figures 2 and 3 and Table 1). Besides these strategies, several 
other factors have been described to promote the differentia-
tion of IL-10-producing DC subsets in the context of allergies. 
Among others, these are endothelial splenic stroma (11), aryl 
hydrocarbon receptors (63), the phosphodiesterase-4 inhibitor 
roflumilast (75), and dexamethasone (16). Also induction of 
cyclic adenosine monophosphate was shown to result in upregu-
lated expression of DC-derived IL-10, attenuated secretion of the 
pro-inflammatory cytokines TNF-α and IL-12, and impaired 
T cell stimulation by these DCs (76).

iL-10 Treatment
The simplest strategy to induce tolerogenic IL-10 DCs is to dif-
ferentiate naive DCs in the presence of IL-10. Indeed, several 
studies reported IL-10-treated human or mouse DCs to induce 
antigen-specific anergy (99–101).

Immunologically, T cell tolerization (meaning the induction 
of antigen-specific CD4+CD25+ Treg cells) by IL-10-treated DCs 
requires a partially activated DC status commonly referred to 
as semimaturation (102, 103). In contrast to this, complete DC 
activation likely is more immunogenic than tolerogenic, resulting 
in the activation of effector T cell subsets (102, 103). This semi-
mature status is characterized by high-expression levels of MHC, 
intermediate to low levels of co-stimulatory molecules, and a 
strongly reduced production of pro-inflammatory cytokines 
such as IL-12 (Figure  2A) (102). Moreover, the development 
of antigen-specific CD4+CD25+Foxp3+ Treg cells, inhibiting 
allergic responses, was shown to be dependent on the presence 
of both IL-10 and an inducible co-stimulator (ICOS)–inducible 
co-stimulator ligand (ICOS-L) interaction provided by DCs 
(Figure 2B) (32).

Here, the suppression of Th2-responses by the induced 
regulatory T  cells was repeatedly described to occur via a cell 
contact-dependent and antigen non-specific manner (48, 104, 
105). For example, DCs treated with IL-10 were shown to induce 
CD4+ T cells expressing the cytotoxic T lymphocyte-associated 
antigen 4 (CD152, CTLA4), capable of mediating tolerance in a 
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FigURe 2 | Phenotype and immune modulatory effects of interleukin-10 (IL-10)-producing, semi-mature tolerogenic DCs. (A) Strategies resulting in the generation 
of IL-10-producing, semi-mature tolerogenic dendritic cells (DCs) with reduced expression of co-stimulatory molecules, cell adhesion molecules, and lower secretion 
of pro-inflammatory cytokines. Expression levels are indicated as follows: low: low expression, int: intermediate expression, high: high expression, +: positive for the 
indicated molecule; arrow up: increased production, arrow down: decreased production. (B) Immune modulatory effects of tolerogenic DCs displaying a semi-
mature DC phenotype. The lack of co-stimulation and antigen presentation results in the preferred induction of either anergic or regulatory T cell subsets which 
themselves are able to suppress both Th1- and Th2-responses. Also, the reprogramming of CD4+ memory T cells into IL-10 and IL-4 co-producing Th0-like cells 
has been described.
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cell contact-dependent manner (Figure 2B) (99, 106). In addi-
tion, some studies reported an increased expression of inhibitory 
molecules such as the Ig-like transcript-22/CD85 (77) on the 
surface of IL-10-treated DCs (Figure 2A).

The exact tolerogenic potential of IL-10-treated DCs seems to 
dependent on the experimental model used: while there are some 
reports suggesting that DCs treated with IL-10 may increase the 
secretion of Th2 cytokines (while suppressing Th1-responses) 
(107, 108), the majority of studies have described an efficient 
suppression of both mouse and human Th1- and Th2-responses 
by DCs treated with IL-10 (101).

The potency of IL-10-treated DCs to prevent the development 
of lung allergic responses in mice was demonstrated by Koya 
and colleagues (1). Koya et  al. reported IL-10-treated DCs to 
suppress production of the Th2 cytokines IL-4, IL-5, and IL-13 
in vitro and decrease both AHR and airway inflammation in vivo 
(1). Here, transfer of ovalbumin (OVA)-pulsed, IL-10-treated 
DCs into naive mice prevented the development of AHR, airway 
eosinophilia, reduced Th2 cytokine levels in bronchoalveolar 
lavage (BAL) fluid, and goblet cell metaplasia when challenged 
with the allergen (1).

In their hands, the IL-10-treated DCs displayed a tolerogenic 
phenotype, expressing lower levels of CD11c, CD80, and CD86, 
while producing lower amounts of IL-12 but significantly more 
IL-10 (Figure  2A) (1). Mechanistically, this endogenous IL-10 

production of exogenously IL-10-treated DCs was shown to be 
required for their regulatory function since DCs from IL-10-
deficient mice did not display regulatory function even when 
differentiated in the presence of IL-10 (1).

In accordance with these results, Li et  al. did report IL-10-
treated human DCs to induce tolerance in autologous T cells of 
patients with asthma (77). Phenotypically, the IL-10-treated DCs 
expressed reduced levels of the co-stimulatory and maturation 
markers CD86, human leukocyte antigen DR, and CD54, only 
modest reductions in CD40 and CD80, and reduced levels of the 
pro-inflammatory cytokines IL-6 and IL-12 (Figure  2A) (77).  
In contrast to this, expression levels of Ig-like transcript-22/
CD85j, IFN-α1, IL-2, and IL-10 were strongly increased 
(Figure 2A) (77). In this context, the inhibitory receptor Ig-like 
transcript-22/CD85j was shown to have an important role both 
in the regulation of natural killer cells and T cells (109, 110) and 
the function of tolerogenic DCs (110).

In co-culture with autologous CD4+ T cells IL-10-treated DCs 
inhibited Th2 cell differentiation and production of Th2-related 
cytokines (IL-4, IL-5, and IL-13) otherwise driven by immu-
nostimulatory DCs differentiated in the presence of TNF-α 
(77). Moreover, treatment of DCs with IL-10 led to a significant 
outgrowth and activation of CD4+CD25+LAG-3+CTLA-4+ 
Foxp3+ IL-10-secreting Tr1-type Tregs, and resulted in allergen-
specific induction of tolerance in a contact-dependent manner 
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FigURe 3 | Phenotype and immune modulatory effects of interleukin-10 (IL-10) producing, mature tolerogenic DCs co-producing pro-inflammatory cytokines.  
(A) Strategies using live or killed bacteria and bacterial components resulting in pro-tolerogenic dendritic cell (DC) phenotypes characterized by the expression of 
high levels of co-stimulatory molecules as well as the co-production of IL-10 and pro-inflammatory cytokines [IL-1β, IL-6, IL-12, tumor necrosis factor alpha (TNF-α)]. 
Expression levels are indicated as follows: low: low expression, int: intermediate expression, high: high expression, +: positive for the indicated molecule; arrow up: 
increased production, arrow down: decreased production. (B) Regulation of T cell responses by DCs stimulated with bacteria or bacterial components inducing an 
IL-10-positive DC phenotype that is characterized by the co-production of IL-12 and high expression levels of co-stimulatory molecules. In this context, both the 
induction of different regulatory T cell subsets and Th1-biased effector cells have been described. +: positive for the indicated molecule.
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which was critically dependent on expression of IL-10 by DC 
(Figure 2B) (77).

Although the tolerogenic capacity of IL-10-treated DCs is 
well described, Bellinghausen et  al. reported treatment of DCs 
with IL-10 alone (in contrast to the efficient suppression of Th1 
responses by IL-10-treated DCs) to be insufficient for the sup-
pression of Th2-responses (78). In their hands, the induction 
of regulatory T  cells with the ability to suppress Th2 cytokine 
production required at least two signals: IL-10 plus TGF-β 
(78). In their experimental system, the suppressive capacity of 
the IL-10 plus TGF-β-induced regulatory T cells was shown to 
be antigen-unspecific and strongly dependent on both cell–cell 
contact and the surface molecule programmed death-1 (PD-1) 
(78). Interestingly, neutralization of either IL-10, CTLA-4, or 
TGF-β had only marginal effects on the suppressive capacity of 
the induced CD4+CD25+ Tregs (78). Here, incubation of T cells 
with IL-10 alone instead of IL-10-treated DC did not lead to the 
generation of inducible Tregs (iTregs), suggesting that additional 
signals provided by the tolerizing DC are necessary for the gen-
eration of iTregs (78).

One such factor might be DC-derived CC-chemokine ligand 
18 (CCL18). When performing a genome-wide analysis of gene 
expression in co-cultures of CD4+ T  cells from patients with 
grass pollen allergy and either tolerogenic, IL-10-treated DCs 
or regular, mature allergen-pulsed DCs, Bellinghausen and 
coworkers could show that in DCs differentiated in the presence 

of IL-10 the only gene being upregulated was CCL18 (while 
many genes were downregulated) (79). These IL-10-treated, 
CCL18-producing DCs efficiently suppressed IL-13, IL-5, and 
TNF receptor superfamily member 4 (OX40) gene expression 
in CD4 T cell:DC co-cultures (79). Of note, exogenous addi-
tion of CCL18 to these co-cultures was sufficient to induce a 
similar inhibition of Th2 cytokine production compared to 
allergen-pulsed, IL-10-treated DCs (without affecting IFN-γ or 
IL-10 production) (79). In these co-cultures, neutralizing IL-10 
did not reduce CCL18 production suggesting that factors other 
than IL-10 are involved in maintaining the enhanced CCL18 
expression in IL-10-treated DCs (79). In a humanized mouse 
model of airway allergy, application of CCL18 inhibited airway 
reactivity and lung inflammation, preferentially attracting 
regulatory T  cells over Th2 cells (79). Therefore, CCL18 was 
shown to be an important effector molecule of tolerogenic 
IL-10-treated DCs.

iL-10 Transduction
Besides differentiating DCs in the presence of IL-10, several studies 
have described transduction of DCs with the IL-10 gene to result 
in DCs with tolerogenic properties. Here, IL-10-transduced DCs 
were shown to induce long-lasting, antigen-specific tolerance by 
induction of regulatory T cells (Figures 2A,B) (4).

Henry and coworkers reported a single intratracheal injection 
of OVA-pulsed, IL-10-transduced DCs to prevent eosinophilic 
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TABLe 1 | Summary of the strategies reported in the literature to induce dendritic cell (DC)-derived interleukin-10 (IL-10) secretion.

Strategy Reference DC phenotype DCs iL-10 
positive?

immunological effects of tolerogenic DCs Suppression shown to  
be iL-10 dependent?

DC differentiation in the presence of IL-10 Koya et al. (1) CD11clow

CD80low

CD86low

Reduced IL-12 production

Yes Suppression of Th2 cytokines IL-4, IL-5, and IL-13 in vitro
Decrease of airway hyperreactivity (AHR) and airway  
inflammation in vivo

Yes

Li et al. (77) CD86low

HLA-DRlow

CD54low

CD40int

CD80int

Ig-like transcript-22/CD85jhigh 
reduced levels of IL-6 and IL-12

Yes Suppression of Th2-differentiation and Th2-cytokine secretion
Activation of CD4+CD25+LAG-3+ CTLA-4+Foxp3+ IL-10- 
secreting Tregs
Induction of allergen-specific tolerance

Yes and Treg cell  
contact dependent

Bellinghausen  
et al. (78)

IL-10+

CTLA-4+

TGF-β+

Yes IL-10- and TGF-β-dependent induction of regulatory  
T cells suppressing Th2 cytokine production

No, but programmed  
death-1 dependent

Bellinghausen  
et al. (79)

CCL-18+ Yes Suppression of IL-13, IL-5, and TNF receptor superfamily  
member 4 gene expression in CD4+ T cell:DC co-cultures

No, but CCL18 dependent

DC transduction 
with IL-10

Lentiviral transduction  
with CMV-promoter

Henry et al. (4) CD40int

MHC IIint

CD80int

CD86int

IL-12low

Yes Prevention of eosinophilic airway inflammation, AHR,  
production of mucus, antigen-specific IgE and IgG1  
antibody, and IL-4 production in a mouse model of  
experimental asthma

Yes and Treg dependent

Plasmid vector Nakagome  
et al. (80)

CD11c+

MHC IIlow

Yes No induction of tolerogenic DCs or Treg, but overall suppression  
of function of CD11c antigen-presenting cells in the lung
Prevention of eosinophilic airway inflammation in vivo

Not investigated

Lentiviral transduction 
with DC-specific fascin 
promotor

Besche et al. (3) MHC IIint

CD86int

Unaltered IL-6 mRNA
Lower IL-12p40 mRNA levels

Yes Inhibition of ear swelling in mouse model of hapten-induced  
contact hypersensitivity

Not investigated

DC-derived exosomes Kim et al. (81) MHC IIhigh

MHC Iint

CD11cint

CD80int

CD86int

No Suppression of delayed-type hypersensitivity responses 
and murine collagen-induced arthritis

No, but via MHC II- 
dependent pathway

Ruffner et al. (82) IA/IEhigh

H-2kb int

CD80low

CD86int

PD-L1int

PD-L2low

IL-12p70−

IL-23−

IL-6+

Not 
determined

Suppression of delayed-type hypersensitivity responses CD80 and CD86 dependent
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Strategy Reference DC phenotype DCs iL-10 
positive?

immunological effects of tolerogenic DCs Suppression shown to  
be iL-10 dependent?

Bacteria Helicobacter pylori  
(live/extract)

Engler et al. (83) BATF3+

CD103+

CD11b+

Yes Suppression of airway inflammation in a mouse  
model of allergic asthma

Yes, and IL18 basic leucine 
zipper ATF-like 3 (BATF3) 
dependent

Escherichia coli 083 Súkeníková  
et al. (57)

CD83high

IDOhigh

TNF-α+

IL-6+

Yes Increased expression of IL-10 and IL-17A in CD4 T cells Not investigated

Bacillus Calmette–Guérin Bilenki et al. (84) CD8ahigh

CD80high

CD86high

CD40high

IL-12+

TLR2high, TLR4high, TLR9high

Yes Suppression of allergic airway eosinophilia, mucus  
overproduction, IgE production, and Th2 cytokine  
production in vivo

Yes, also IL-12 dependent

Listeria monocytogenes Stock et al. (85) CD8a+

IL-12+

Yes Induction of Th1-like ICOS+ Foxp3+T-bet+ Tregs co-producing  
both IL-10 and interferon gamma (IFN-γ)

Yes

Clamydia Han et al. (27) CD8high

ICOS-Lhigh

IL-10high

IL-12high

Yes Inhibition of allergen-specific Th2 cell differentiation in vitro
Inhibition of systemic and cutaneous eosinophilia in vivo

Yes, also IL-12 and ICOS-L 
dependent

Bacterial extracts Heat killed E. coli Pochard et al. (86) IAb high

CD40int

CD80high

CD86high

IL-12+

Yes Suppression of peanut-induced Th2 cytokine production  
and proliferation and induction of IFN-γ from mouse T cells

No, but myeloid differentiation 
primary response 88 (MyD88)/
TIR-domain-containing adapter-
inducing interferon-β, IL-12/IL23 
p40, and IFN-γ dependent

Isolated bacterial 
components (TLR 
ligands)

Pam3CSK4 Tsai et al. (87) Not investigated Not 
investigated

Induction of CD8+CD25+ Foxp3+ Tregs that inhibited  
Dermatophagoides pteronyssinus 2-induced IL-4  
production in vitro

Not investigated

Dual TLR2/7-ligands Laiño et al. (88) IL-1βlow

IL-6+

Yes Suppression of Th2 cytokine secretion and DNP-induced,  
IgE- and Ag-specific mast cell degranulation in vitro
Suppression of allergen-specific IgE production in vivo

Not investigated

LPS Ahrens et al. (89) CD40high

CD80high

CD86high

IL-1β+

IL-12+

TNF-α+

Yes Suppression of Th2 cytokine production and induction  
of Tr1-like cells in vitro
No suppression of ovalbumin (OVA)-induced asthma in vivo

Yes

LPS (plus IL-10  
treatment)

Wakkach  
et al. (90)

CD11clow

B220−

CD45RB+

Yes Increased eosinophilic airway inflammation and AHR, IL-5,  
and IL-13 secretion in bronchoalveolar lavage fluid in a mouse  
model of OVA-induced asthma

Not investigated

Monophosphoryl  
lipid A

Schülke  
et al. (91)

CD40+

IL-1β+

IL-6+

TNF-α+

Yes Boosting of OVA-specific IL-4 and IL-5 secretion, suppression  
of IFN-γ secretion in bone marrow-derived DC: DO11.10  
CD4+ T cell co-cultures

Not investigated
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airway inflammation, AHR, production of mucus, antigen-
specific IgE and immunoglobulin G1 (IgG1) antibodies, and IL-4 
as well as IFN-γ production in a mouse model of experimental 
asthma (Figure 2B) (4). These effects were shown to also depend 
on non-DC-derived IL-10 since IL-10-deficient mice treated with 
IL-10-transduced wild-type DCs were less well protected (4). 
Phenotypically, IL-10-transduced DCs displayed intermediate 
levels of cell surface maturation markers MHC II, CD40, CD80, 
and CD86 and secreted high amounts of IL-10, but no IL-12 
(Figure 2A) (4). In contact with allergen-specific T cells, these 
semi-mature DCs induced both differentiation and proliferation 
of antigen-specific CD4+CD25+Foxp3+ IL-10-producing regula-
tory T cells in the mediastinal lymph nodes of animals treated 
with IL-10-transduced DCs (4). These effects were shown to be 
antigen-specific, since IL-10-transduced DCs, primed with the 
major house dust mite allergen Dermatophagoides pteronyssinus 
peptidase 1 (Der p 1), did not protect against OVA-induced 
airway allergy (4).

In line with these results, Nakagome et al. reported IL-10 gene 
delivery by plasmid transfer to suppress OVA-induced eosino-
philic airway inflammation and AHR, suppressing the overall 
function of CD11c+ lung APCs in terms of antigen-presenting 
capacity, cytokine production, and transport of antigen to lymph 
nodes resulting in reduced Th2 responses (80).

In an attempt to optimize DC-derived IL-10 transduction, 
Besche et  al. showed that the usage of the DC-specific fascin 
promoter for IL-10 overexpression in bone marrow-derived DCs 
(BM-DCs) to result in the generation of IL-10+IL-6+ DCs with 
reduced IL-12p40 mRNA expression (3). In vivo application of 
these IL-10-transduced BM-DCs efficiently inhibited ear swelling 
responses in a mouse model of hapten-induced contact hyper-
sensitivity (3).

exosomes from iL-10-Treated DCs
Besides secreting immune modulatory cytokines, IL-10-treated 
DCs were also shown to secret exosomes with immune modulat-
ing capacity involved in the suppression of inflammatory and 
autoimmune responses (Figure 2A) (81).

Kim et  al. reported exosomes isolated from either BM-DCs 
transduced ex vivo with an adenovirus expressing the IL-10 gene 
or BM-DCs treated with recombinant murine IL-10 protein 
to express high levels of MHC II, moderate levels of MHC I, 
CD11c, CD80, and CD86 on their surface (Figure  2A) (81). 
Upon periarticular administration, these exosomes were shown 
to suppress delayed-type hypersensitivity responses within both 
injected and untreated contralateral joints, while systemic injec-
tion suppressed the onset of murine collagen-induced arthritis 
and reduced the severity of established arthritis in a mouse model 
(Figure 2B) (81). Here, administration of isolated exosomes had 
comparable effects to the application of IL-10 transduced DC 
(81). Mechanistically, the suppressive capacity of the exosomes 
was shown to depend on surface expression of MHC II (81). The 
authors speculated that these exosomes may be able to bind and 
possibly fuse with endogenous cells (macrophages, or APCs) to 
subsequently modulate their activity (81).

These results were confirmed by Ruffner and colleagues which 
demonstrated that IL-10 treatment generates both DCs with a 
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pro-tolerogenic phenotype and a population of immunosuppres-
sive exosomes (82). Treatment of DC with IL-10 significantly 
downregulated surface expression of MHC I, MHC II, CD80, 
CD86, and programmed death ligand 2 (PD-L2) (Figure  2A) 
(82). In addition to the modified co-stimulatory profile of IL-10-
treated DCs, exosomes derived from these DCs were shown to 
also contain reduced surface levels of CD80, PD-L1, and PD-L2 
(Figure 2A) (82). Here, the suppressive capacity of both IL-10-
treated DCs and exosomes derived from these cells in a mouse 
model of delayed-type hypersensitivity was shown to depend on 
CD80 and CD86, but not PD-L1 and PD-L2 expression (82).

Live Bacteria
Several studies have described the potential of different bacteria 
to induce DC-derived IL-10 production (27, 84). Among others, 
E. coli 083 (57), Helicobacter pylori (83), Clamydia (27), Listeria 
monocytogenes (85), Mycobacterium vaccae (111), and Bacillus 
Calmette–Guérin (BCG) (84) were reported to induce DC-derived 
IL-10 secretion with immune modulatory potential for the treat-
ment of allergic diseases. Of note, in contrast to IL-10-treated 
DCs, many of the available studies suggest that stimulation with 
either bacteria (live or killed) or isolated bacterial components 
induces both anti-inflammatory IL-10- and pro-inflammatory, 
Th1-promoting IL-12 secretion often alongside an enhanced 
expression of co-stimulatory molecules on the stimulated DCs 
(Figure 3A) (27, 84, 86, 98, 112).

Here, IL-10 secretion induced by bacteria can either prevent 
excessive inflammatory responses or suppress immune responses 
otherwise directed against the bacterium (27). In theory, this 
IL-10 induction by bacteria may be used to modulate immune 
responses in the host to unrelated antigens such as allergens (27).

In line with this, epidemiological and experimental stud-
ies revealed a strong inverse relationship between chronic  
H. pylori infection (which induces IL-10 secretion from DCs) 
and the risk of developing allergic asthma, hay fever, or eczema 
(113–115). Here, Engler and colleagues further investigated the 
mechanism underlying the protective effects of H. pylori (83). 
They reported extracts of H. pylori to prevent allergen-induced 
airway hyperresponsiveness, bronchoalveolar eosinophilia, 
pulmonary inflammation, and Th2 cytokine production in 
a mouse asthma model (Figure  3B) (83). Mechanistically, 
this suppression of Th2-responses was shown to require a 
heat-sensitive H. pylori component (possibly the H. pylori 
persistence determinants γ-glutamyl-transpeptidase GGT and 
the vacuolating cytotoxin VacA) and the production of IL-10 
by basic leucine zipper ATF-like 3 (BATF3)-dependent CD103 
and CD11b positive DCs infiltrating the lungs of protected 
animals (Figure  3A) (83). Moreover, both IL-18 and BATF3 
were critically required for H. pylori-mediated protection 
against allergic responses (83). In contrast to this, suppression 
of Th2-responses was independent of regulatory T cells since 
antibody-mediated depletion of CD25+ Tregs had no effect on 
the suppression of Th2-responses (83). Interestingly, in  vitro 
BM-DC-derived IL-10 secretion induced by H. pylori extracts 
was shown to depend on myeloid differentiation primary 
response 88 (MyD88) and toll-like receptor (TLR)2- but not 
TLR4-signaling (83).

Súkeníková et al. reported E. coli 083 to also induce increased 
gene expression and secretion of IL-10 in DC of newborns of 
healthy mothers in comparison to DCs derived from newbornes 
from allergic mothers (57). This higher IL-10 production was 
associated with lower levels of IL-4, IL-13, IFN-γ, IL-17A, and 
IL-22 in DC:CD4+ T cell co-cultures (Figure 3B) (57).

In line with these results, infection of mouse DCs with BCG 
resulted in a significant enhancement of both IL-10 and IL-12 
production (84). Interestingly, BCG-stimulated DCs were char-
acterized by a higher surface expression of CD8a, co-stimulatory 
molecules CD80, CD86, and CD40, and TLRs (Figure 3A) (84). 
Here, adoptive transfer of DCs from BCG-infected mice, but not 
DCs from naive mice, significantly inhibited established allergic 
airway eosinophilia, mucus overproduction, IgE production, 
and Th2 cytokine production (Figure 3B) (84). These protective 
effects of BCG-infected DCs were reversed by the application 
of either IL-10- or IL-12-neutralizing antibodies, showing 
both cytokines to be involved in the suppression of the allergic 
response (84).

Stock et al. described L. monocytogenes to induce CD8a+ DCs 
co-producing both IL-10 and IL-12 (Figure 3A) (85). These DCs 
mediated the differentiation of ICOS+Foxp3+ T-box transcrip-
tion factor TBX21 (T-bet)+ Th1-like CD4+CD25+ Treg cells that 
themselves produced both IL-10 and the Th1 cytokine IFN-γ 
(Figure 3B) (85). Therefore, these cells combined features of both 
regulatory T cells and Th1 cells (85).

Han et al. reported the adoptive transfer of CD8+ICOS ligand 
(ICOS-L)+IL-10+IL-12+ DCs isolated from Chlamydia-infected 
mice (Figure 3A), but not those from naive mice, to inhibit OVA-
induced systemic and cutaneous eosinophilia after intranasal 
challenge with OVA (27). In vitro DCs from Chlamydia-infected 
mice were shown to inhibit allergen-specific Th2 cell differen-
tiation while promoting Th1 responses in an IL-10-, IL-12-, and 
ICOS-L-dependent way (Figure 3B) (27).

Taken together, these results show that in addition to inducing 
Th1-priming DCs, infection with different bacteria can result in 
the differentiation of tolerogenic, IL-10-producing DC subsets 
characterized by both high expression levels of co-stimulatory 
molecules and the co-production of pro-inflammatory cytokines 
(Figure  3A). Mechanistically, these more activated tolerogenic 
DCs were shown to suppress allergen-specific Th2-responses via 
the induction of either Th1, Th1-like Tregs, CD4+CD25+Foxp3+ 
Treg, or Tr1 cells (Figure 3B).

Aside from results obtained with live bacteria, also bacterial 
extracts and heat killed bacteria were described to suppress 
allergen-specific Th2-responses. Here, both IL-10-dependent 
and -independent mechanisms of immune modulation were 
described.

For example, Pochard et al. reported the addition of heat killed 
E. coli to peanut-pulsed DCs to suppress both peanut-induced 
secretion of the Th2 cytokines IL-4, IL-5, IL-13, and T cell pro-
liferation while increasing IFN-γ production in a MyD88/TIR-
domain-containing adapter-inducing interferon-β-dependent 
manner (86). Although stimulation of the DCs with heat killed 
E. coli did trigger DC-derived, TLR4-dependent IL-10 secretion, 
these effects of were not influenced by neutralization of IL-10 but 
shown to be dependent of IL-12/IL23 p40 and IFN-γ secretion 
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(86). Therefore, the suppression of Th2-responses described by 
Pochard et al. is mediated by a TLR-mediated enhancement of 
Th1-responses, which in turn downregulate Th2-responses via 
IL-12 production (86).

Bacterial Components
Besides whole bacteria and bacterial extracts, which are complex 
mixtures of different, potentially immune modulating compo-
nents, some single bacterial components have been investigated 
for their DC tolerizing potential in the context of allergies 
(Figure 3A). For differentiation purposes, these components will 
be divided into TLR-ligands and non-TLR-ligands.

TLR Ligands
Bacteria- and virus-derived pathogen-associated molecular 
patterns are sensed by pathogen-recognition receptors and 
induce innate and subsequent adaptive immune responses. Due 
to their intrinsic capacity to activate innate immune cells, TLR 
ligands are interesting immune modulating components for the 
treatment of allergic diseases. Here, TLR2-, TLR3-, TLR4-, and 
TLR5-ligands have been described to induce tolerogenic DC 
subsets.

Bacterial lipopeptides such as the TLR2/6-ligand Pam2CysK4 
have repeatedly been shown to induce tolerogenic DC and regula-
tory T cell responses (Figures 3A,B) (87, 116, 117). In addition, 
TLR2-ligands have the potential to induce a Th1-promoting 
cytokine milieu, enhance Ag presentation of endogenous peptides 
by DCs (117), and suppress IL-5, IL-13, and IFN-γ responses 
from human house dust mite-allergic patients (Figure 3B) (118).

Here, chemical conjugation of the TLR2-ligand Pam3CysK4 
to OVA-derived CD8+ T  cell peptide sequences resulted in 
a rapid and enhanced uptake in DCs (119). Moreover, dual 
TLR2/7-ligands combining the TLR2-ligand Pam2CysK4 and 
the synthetic TLR7-ligand CL264 into a single molecule were 
shown to induce strongly activated mDCs co-producing IL-10 
and pro-inflammatory IL-6 (Figure  3A) (88). In vitro, these 
mDCs suppressed both DNP-induced, IgE- and Ag-dependent 
mast cell degranulation and IL-5 secretion from OVA-specific 
DO11.10 CD4+ TC (Figure 3B) (88). In vivo application of one of 
these ligands, CL531, was found to suppress allergen-specific IgE 
production in a mouse model of OVA-induced intestinal allergy, 
suggesting that such TLR2/7-ligands have the potential to induce 
Th1-biased immune modulation in vivo (88).

Ahrens et al. described LPS stimulation to strongly enhance 
IL-10 production from mouse BM-DCs (Figure  3A). In co-
culture with allergen-specific naive CD4+ T cells, LPS-stimulated 
BM-DCs suppressed the secretion of Th1 and Th2 cytokines in 
an IL-10-dependent manner (89). Here, LPS priming of BM-DCs 
resulted in the differentiation of a Tr1-like T-cell subset upon co-
culture of the primed DCs with naive T cells (89). Accordingly, 
Wakkach et  al. reported LPS-, but not CpG-stimulation, 
to induce enhanced IL-10 secretion from IL-10-treated, 
CD11clowB220−CD45RB+ DCs (Figure  3A) (90). However, the 
suppressive capacity of LPS-primed BM-DC in  vitro did not 
translate into suppression of allergic airway disease in vivo since 
intranasal administration of these LPS + IL-10-primed BM-DCs 
into mice was unable to prevent allergic airway inflammation in 

a mouse model of OVA-induced asthma (89). Here, vaccination 
with theseBM-DCs led to an even stronger eosinophilic airway 
inflammation and AHR accompanied by significantly increased 
levels of IL-5 and IL-13 in BAL fluid (89).

While LPS cannot be applied in humans due to its high toxicity 
and pyrogenicity, monophosphoryl lipid A (MPLA), a detoxified 
TLR4-ligand derived from Salmonella minnesota, is already 
applied as adjuvant in several vaccine formulations. Here, vac-
cines containing MPLA have been licensed or are in phase III 
trials including Fendrix (hepatitis B), Cervarix (human papillo-
mavirus-16 and human papillomavirus-18), and RTS,S (malaria) 
(120–122). For the treatment of allergies, MPLA mixed with 
grass pollen extract was shown to result in enhanced production 
of IFN-γ and reduce the production of IL-5 in PBMC from grass 
pollen-allergic patients (123). In line with these results, MPLA 
was shown to induce mouse BM-DC activation (CD40 upregula-
tion) and secretion of both pro- (IL-1β, IL-6, TNF-α) and anti-
inflammatory (IL-10) cytokines in  vitro (Figure  3A) (91). Of 
note, when MPLA-stimulated mouse BM-DCs were co-cultured 
with DO11.10 CD4+ T cells in vitro MPLA was shown to boost 
OVA-specific IL-4 and IL-5 secretion while dose-dependently 
suppressing IFN-γ secretion displaying a discrepancy between 
the results obtained in vitro and in clinical trials (91).

In addition, synthetic oligodeoxynucleotides contain-
ing CpG motifs (TLR9-ligands) either alone (124–126) or 
chemically linked to allergens (127–129) have been described 
to promote Th1 cytokine responses and decrease synthesis of 
IgE antibodies in allergic individuals. While these constructs 
were shown to induce the production of IL-12 and IL-18 from 
human moDCs (125) and induce IL-12, IFN-α, IFN-γ, IL-6, and 
IL-10 secretion from PBMCs (126), up to now no DC-derived 
IL-10 secretion has been reported upon application of these 
CpG-based vaccines.

In our own studies, we evaluated the induction of IL-10-
producing mDCs using fusion proteins consisting of the recom-
binant TLR5-ligand flagellin A (rFlaA) from L. monocytogenes 
and either OVA from hen’s egg as a model allergen (rFlaA:OVA) 
(92–94), the major mugwort allergen Artemisia vulgaris allergen 
1 (Art v1) (rFlaA:Artv1) (95), or the major birch pollen allergen 
Betula verrucosa allergen 1 (Bet v 1) (rFlaA:Betv1) (96). Such 
fusion proteins efficiently target TLR5+ immune cells, e.g., DCs, 
macrophages, and epithelial cells which take up, process, and 
present the fused antigen in the context of the flagellin-mediated 
cell activation.

Mouse bone marrow-derived mDCs stimulated with such 
fusion proteins were strongly activated [upregulation of CD40, 
CD69, CD80, CD86, programmed cell death 1 ligand 2 (B7-DC, 
CD273), PD-L1], displayed highly increased levels of the target 
receptor TLR5 on their cell surface, and secreted both pro- (IL-1β,  
IL-6) and anti-inflammatory (IL-10) cytokines (Figure  3A)  
(93, 95, 96). Interestingly, the non-fused mixture of both com-
ponents (flagellin and allergen) did not have a comparable effect 
(93, 95, 96).

When co-cultured with allergen-specific CD4+ T cells, these 
DCs efficiently suppressed both allergen-induced Th1 and Th2 
cytokine secretion in vitro (Figure 3B) (93, 95, 96). In this experi-
mental setting, the flagellin fusion protein-mediated suppression 
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of both Th1- and Th2-cytokine secretion was dependent on 
IL-10, since this effect was reversed when using either IL-10-
neutralizing antibodies or IL-10-deficient mDC as APCs for the 
co-cultures (93).

In vivo vaccination with the rFlaA:OVA fusion protein 
efficiently protected mice from OVA-induced gastrointestinal 
allergy. Here, vaccination with rFlaA:OVA either intraperitoneal 
(93) or intranasal (92) was sufficient to prevent intestinal allergy 
induced by continuous challenge with OVA-containing food 
pellets. Interestingly, core body temperature, body weight, food 
up-take, and symptom scores were significantly improved in 
rFlaA:OVA-treated mice in comparison to the respective control 
groups (92, 93). This protective effect was associated with a reduc-
tion of Th2 cytokines in intestinal homogenates, suppression of 
systemic T cell immune responses, suppression of OVA-specific 
IgE-, and induction of OVA-specific IgG2a-responses (93). 
Vaccination with rFlaA and OVA alone or provided as a mixture 
did neither prevent allergic sensitization nor improve allergy 
symptom scores.

Mechanistically, stimulation of mDCs with flagellin fusion 
proteins was shown to result in a stronger uptake into mDCs 
(92, 96) accompanied by an increased resistance to microsomal 
digestion (92, 96). Interestingly, stimulation with rFlaA:Betv1 
was shown to result in an increased metabolic activity of the 
stimulated mDCs characterized by a high rate of glycolysis fol-
lowed by lactic acid fermentation, known as the Warburg effect 
(130). Further analysis suggested an activation of the mammalian 
target of rapamycin 1 complex in mDCs stimulated with the 
fusion protein (96). In this context, recent studies suggest that 
mTOR is not only a master regulator of cell metabolic function 
but also regulates innate immune responses (131).

Inhibition of the mTOR complex by pre-treatment of the cells 
with rapamycin dose-dependently suppressed the induction of 
anti-inflammatory IL-10 secretion by rFlaA:Betv1, but not pro-
inflammatory cytokine secretion (IL-1β and IL-6). These find-
ings show that interestingly, the immune-modulatory cytokine 
secretion, and therefore the DC tolerizing capacity, of this vaccine 
candidate was linked to the activation of mDC metabolism. 
Similar results were obtained for a fusion construct consisting of 
FlaA and the major mugwort allergen Art v 1 (95).

Non-TLR Ligands with DC-Tolerizing Potential
In the context of allergy treatment, some non-TLR ligands have 
been reported to induce DCs with tolerizing potential. Here, 
Bordetella pertussis-derived filamentous hemagglutinin was 
shown to induce the production of IL-10 by DCs promoting the 
differentiation of CD4+CD25+CCR5highCD28lowCTLA-4low IL-10- 
and IL-5-co-producing Tr1 cells (97).

Moreover, Gerstmayr and colleagues generated a recom-
binant fusion protein of a bacterial surface (S-layer) protein 
of Geobacillus stearothermophilus (SbsC) and the major birch 
pollen allergen Bet v 1 as a vaccine candidate to improve the 
treatment of birch pollen allergy. The SbsC:Bet v 1 fusion pro-
tein displayed reduced mediator-releasing capacity, while both 
preserving Bet v 1-T cell epitopes, and the potency to induce 
IFN-γ and IL-10 production in Bet v 1-specific Th2-biased 
T  cell clones (98). DCs stimulated with the fusion protein 

were shown to have a semi-mature phenotype characterized by 
enhanced expression of CD40, CD80, and CD86 which were 
still lower than the levels induced by stimulation with LPS 
(Figure  3A) (98). Moreover, the SbsC:Bet v 1 fusion protein 
strongly increased DC-derived IL-10 and IL-12 secretion (98). 
Functionally, DCs matured with SbsC:Bet v 1 induced the 
IL-12- and IFN-γ-dependent differentiation of naive T  cells 
into IFN-γ-producing T  cells co-producing IL-4, suggesting 
a Th0 phenotype (Figure  3B) (98). In addition, naive T  cells 
also differentiated into IL-10-producing CD4+CD25+Foxp3+C
LTA-4+ regulatory T  cells capable of active suppression, thus 
promoting the simultaneous differentiation of Th0/Th1  cells 
and regulatory T cells (Figure 3B) (98).

OTHeR FACTORS CONTRiBUTiNg TO 
THe iNHiBiTORY CAPACiTY OF DCs

Although many studies described the suppressive capacity of 
IL-10 secreting DCs, several other factors were reported to 
also mediate suppression of T  cell responses without inducing 
DC-derived IL-10 production. Here, LPS- or polyriboinosinic-
polyribocytidilic acid-induced production of IL-1β, indoleamine 
2,3-dioxygenase (132), transforming growth factor-beta 1, 
vitamin D3 (133), corticosteroids, cyclosporine (134), as well 
as neuropeptides have been used to generate tolerogenic DCs 
(135, 136). Therefore, although the induction of IL-10 reproduc-
ibly leads to a tolerogenic phenotype of the induced DCs, other 
agents may also be used to generate DCs able to suppress T cells 
responses.

SUMMARY

Because of their potent T cell stimulatory as well as regulatory 
properties DCs have become a highly attractive tool in vaccine 
development to modulate antigen-specific immune responses.

While for cancer treatment and vaccination against infectious 
diseases the efficient induction of adaptive immune responses 
against the target antigens is the desired outcome when applying 
DC-based vaccination approaches, the therapy of autoimmune 
diseases, transplantat rejection, allergic reactions, or the control 
of chronic inflammation aims to induce DCs with tolerogenic 
properties.

Comparing IL-10-producing DCs induced either by IL-10-
treatment or IL-10-transduction to IL-10-secreting DCs gener-
ated by stimulation with bacteria and bacterial components has 
revealed striking differences in the phenotype of the induced 
DCs and therefore the mechanism of tolerization: tolerogenic 
DCs generated by non-bacterial stimuli are arrested in an 
immature or semi-mature state, characterized by the production 
of reduced amounts of cytokines that promote T cell activation 
such as IL-12 and IL-6, a reduced capacity to present exogenous 
antigens, and the expression of lower amounts of co-stimulatory 
molecules.

In contrast to this, treatment of DCs with live or killed bacteria 
as well as isolated bacterial components results in the induction 
of both anti-inflammatory IL-10- as well as pro-inflammatory, 
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Th1-promoting, IL-12 secretion often paralleled by an enhanced 
expression of co-stimulatory molecules on the stimulated DCs. 
This induction of Th1-priming, tolerogenic DCs generated 
by strongly activating stimuli was shown to suppress allergen-
specific Th2-responses via the induction of either Th1-like Tregs, 
CD4+CD25+Foxp3+ Tregs, or Tr1 cells.

Therefore, while displaying the ability to directly suppress 
both Th1- and Th2-responses by different mechanisms, IL-10-
producing DCs can efficiently modulate antigen-specific-specific 
immune responses via the induction of T cell subsets with regu-
latory functions. This makes IL-10-producing DCs promising 
therapeutics to improve the treatment of allergic diseases.

Over the past few years, we have started to understand 
the complex molecular mechanisms underlying the immune 
modulatory capacity of IL-10-producing DCs, identifying 
novel DC-derived factors that drive T  cell tolerization such as 

DC-derived exosomes, CCL18, and inhibitory molecules like 
CTLA-4, OX40, Ig-like transcript-22/CD85, or PD-1.

Future studies will undoubtedly further increase our knowl-
edge about the underlying immunological mechanisms allowing 
us to both refine and improve the application of DC-based vac-
cination approaches.
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