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Deep learning radiomics can predict axillary lymph
node status in early-stage breast cancer
Xueyi Zheng 1,5, Zhao Yao2,5, Yini Huang 1,5, Yanyan Yu3,5, Yun Wang 1, Yubo Liu 1, Rushuang Mao 1,

Fei Li 1, Yang Xiao3, Yuanyuan Wang2,4, Yixin Hu1, Jinhua Yu 2,4✉ & Jianhua Zhou 1✉

Accurate identification of axillary lymph node (ALN) involvement in patients with early-stage

breast cancer is important for determining appropriate axillary treatment options and

therefore avoiding unnecessary axillary surgery and complications. Here, we report deep

learning radiomics (DLR) of conventional ultrasound and shear wave elastography of breast

cancer for predicting ALN status preoperatively in patients with early-stage breast cancer.

Clinical parameter combined DLR yields the best diagnostic performance in predicting ALN

status between disease-free axilla and any axillary metastasis with areas under the receiver

operating characteristic curve (AUC) of 0.902 (95% confidence interval [CI]: 0.843, 0.961)

in the test cohort. This clinical parameter combined DLR can also discriminate between low

and heavy metastatic burden of axillary disease with AUC of 0.905 (95% CI: 0.814, 0.996) in

the test cohort. Our study offers a noninvasive imaging biomarker to predict the metastatic

extent of ALN for patients with early-stage breast cancer.

https://doi.org/10.1038/s41467-020-15027-z OPEN

1 Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for
Cancer Medicine, Guangzhou, China. 2 Department of Electronic Engineering, Fudan University, Shanghai, China. 3 Paul C. Lauterbur Research Center for
Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China. 4 The key laboratory of medical imaging computing and computer assisted intervention of Shanghai, Shanghai, China. 5These authors
contributed equally: Xueyi Zheng, Zhao Yao, Yini Huang, Yanyan Yu. ✉email: jhyu@fudan.edu.cn; zhoujh@sysucc.org.cn

NATURE COMMUNICATIONS |         (2020) 11:1236 | https://doi.org/10.1038/s41467-020-15027-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15027-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15027-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15027-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-15027-z&domain=pdf
http://orcid.org/0000-0003-1386-7052
http://orcid.org/0000-0003-1386-7052
http://orcid.org/0000-0003-1386-7052
http://orcid.org/0000-0003-1386-7052
http://orcid.org/0000-0003-1386-7052
http://orcid.org/0000-0002-4890-9665
http://orcid.org/0000-0002-4890-9665
http://orcid.org/0000-0002-4890-9665
http://orcid.org/0000-0002-4890-9665
http://orcid.org/0000-0002-4890-9665
http://orcid.org/0000-0002-3296-3421
http://orcid.org/0000-0002-3296-3421
http://orcid.org/0000-0002-3296-3421
http://orcid.org/0000-0002-3296-3421
http://orcid.org/0000-0002-3296-3421
http://orcid.org/0000-0002-1413-0987
http://orcid.org/0000-0002-1413-0987
http://orcid.org/0000-0002-1413-0987
http://orcid.org/0000-0002-1413-0987
http://orcid.org/0000-0002-1413-0987
http://orcid.org/0000-0003-3925-5679
http://orcid.org/0000-0003-3925-5679
http://orcid.org/0000-0003-3925-5679
http://orcid.org/0000-0003-3925-5679
http://orcid.org/0000-0003-3925-5679
http://orcid.org/0000-0001-8329-0899
http://orcid.org/0000-0001-8329-0899
http://orcid.org/0000-0001-8329-0899
http://orcid.org/0000-0001-8329-0899
http://orcid.org/0000-0001-8329-0899
http://orcid.org/0000-0002-0654-6034
http://orcid.org/0000-0002-0654-6034
http://orcid.org/0000-0002-0654-6034
http://orcid.org/0000-0002-0654-6034
http://orcid.org/0000-0002-0654-6034
http://orcid.org/0000-0003-2096-8126
http://orcid.org/0000-0003-2096-8126
http://orcid.org/0000-0003-2096-8126
http://orcid.org/0000-0003-2096-8126
http://orcid.org/0000-0003-2096-8126
mailto:jhyu@fudan.edu.cn
mailto:zhoujh@sysucc.org.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Breast cancer is the most commonly diagnosed cancer
among women worldwide and becomes the second leading
cause of cancer-related death1. Accurate identification of

axillary lymph-node (ALN) involvement in patients with breast
cancer is important for prognosis and therapy decisions2. Sentinel
lymph-node (SLN) is the first node draining the primary cancer.
SLN dissection (SLND) is recommended to predict ALN status,
especially for those with clinically negative nodes3. The American
College of Surgeons Oncology Group Z0011 (ACOSOG Z0011)
trial showed that among patients with clinical T1/T2 breast
cancer, if there were two or fewer SLN metastases, the use of
SLND alone would not lead to inferior survival compared with
ALND4,5. Compared with ALND, SLND has fewer complications,
but it is not risk-free surgery and still has some significant lim-
itations, including increasing considerable anesthesia time and
expense, and causing complications such as arm numbness or
upper limb edema in 3.5–10.9% of patients6,7. There were studies
showing that 43–65% of patients who had positive SLNs under-
went unnecessary axillary surgery because of no additional non-
SLN metastasis, resulting in high morbidity8,9. In fact, SLN biopsy
could be avoided if there was reliable preoperative evaluation of
ALN status because most patients who had early-stage breast
cancer have disease-free axilla10.

Ultrasound (US) has been widely used to preoperatively
characterize breast lesions and determine ALN status11. A study
showed that clinical T stage and preoperative axillary ultrasound
(US) results were associated with the ALN status in patients with
early-stage breast cancer10, but the diagnostic performance of
axillary US was poor to determine the ALN status with an area
under the receiver operating characteristic curve (AUC) of
0.585–0.719 (ref. 12). Several studies intended to predict the ALN
status by clinicopathological data, such as tumor grade, histolo-
gical tumor size, lymphovascular invasion, Ki-67 proliferation
index, and hormone receptor status13,14. However, using clin-
icopathological data only is not accurate enough with an AUC of
0.66–0.74 in previous studies15. In addition, some data like
lymphovascular invasion and histological tumor size could not be
available preoperatively, but preoperative knowledge of ALN
status is important for determining appropriate axillary treatment
options6.

Two-dimensional (2D) shear wave elastography (SWE), a new
US technology to measure tissue stiffness, integrates B-mode
image with a color-coded map which shows the distribution of
shear wave velocity (SWV)16. This technique showed promise in
distinguishing malignant and benign breast lesions17. Some stu-
dies suggested that stiffness of breast cancer was a predictor of
ALN status. Higher SWV of breast cancer showed higher possi-
bility of ALN metastasis18,19. However, the performance of 2D-
SWE depends on the placement of regions of interest (ROI) and
the AUC was only 0.759 for the prediction of ALN status17,20.
Therefore, only SWE images of breast cancer might be insuffi-
cient to evaluate ALN status accurately.

Radiomics can automatically provide a large number of
quantitative image features from medical images, which tends to
be hard for naked eyes to recognize21,22. This method was first
demonstrated to be useful in analyzing CT or MRI images on
clinical oncology23,24. Recently, radiomics based on analysis of
US images showed better performances than other routine
methods25. However, analyzing US images by radiomics has
some limitations including object segmentation and extraction of
hard-coded features22. Deep learning radiomics, a newly devel-
oped method, can provide quantitative and high-throughput
features from medical images by supervised learning21,22. A
recent study demonstrated that this DLR was useful in analyzing
SWE images and showed excellent performance in predicting
the stages of liver fibrosis22. When applied to analyze medical

images, DLR usually confronts small-sample learning problems.
Clinical parameter combined DLR, which integrates clinical
information with network characteristics, can help provide
complementary information for image features and collabora-
tively use clinical information and US images features to build
model, thus improving model performance26. Our hypothesis is
that clinical parameter combined DLR might be able to extract
more valuable information from images of breast conventional
US and SWE and thus provide better prediction and stratifica-
tion of ALN status according to the cuts off for axillary surgery of
ACOSOG Z0011 trial.

Hence, the purpose of this study is to evaluate the diagnostic
performance of clinical parameter combined DLR on conven-
tional US images and SWE images of breast cancer in predicting
the extent of ALN involvement in patients with early-stage breast
cancer. Our results reveal that clinical parameter combined DLR
yields the best diagnostic performance in predicting ALN status
between disease-free axilla (N0) and any axillary metastasis
(N+(≥1)) with an AUC of 0.902 in the test cohort, which was
significantly higher than that of axillary US (P < 0.001, Hanley &
McNeil), classification by clinicopathological data (P= 0.002,
Delong et al.) and DLR on images only (P= 0.004, Delong et al.).
Clinical parameter combined DLR on breast conventional US and
SWE images provides a noninvasive imaging biomarker for
predicting the extent of ALN involvement preoperatively and
have the potential to determine appropriate axillary treatment
options for patients with early-stage breast cancer.

Results
Baseline characters. Between January 2016 and April 2019, a
total of 1342 women with 1342 breast lesions was studied and
finally 584 women (mean age, 50 years; range, 26–83 years) with
584 malignant breast lesions were enrolled for analysis. Figure 1
shows the patient recruitment workflow. According to the results
of SLND or ALN dissection, 337 had disease-free axilla (N0), 150
had low metastatic burden of axillary disease (N+(1–2)) and 97
had heavy metastatic burden of axillary disease (N+(≥3)).

Base model selection and clinical information integration. The
base model acted as a feature encoder, which had a significant
impact on classification. In order to find the most suitable base
model for ALN prediction tasks, the performances of ResNet50,
ResNet101, Inception V3, and VGG19 in predicting ALN status
between N0 and N+(≥1) were compared. When ResNet50 was
selected as the basic model with best performance, clinical
information was further added to the diagnostic model. The
model incorporating clinical information was called ResNet50 +
C, where C stands for clinical information. The method of adding
clinical information was to directly input clinical information into
the penultimate layer of the fully connected (FC) layer of
ResNet50 by increasing the number of neurons. The detailed
results were summarized in Table 1. The ResNet50, which inte-
grated the deep features and clinical information offline, was
proved to be the best in terms of performance and memory usage.

Prediction of ALN status between N0 and N+(≥1). Adopting
N0 as negative reference standard, 466 lesions were randomly
assigned as training cohort and the other 118 lesions as inde-
pendent test cohort. The detailed characteristics including
patient age, US size, Breast Imaging-Reporting and Data System
(BI-RADS) category, tumor type, estrogen receptor (ER) status,
progesterone receptor (PR) status, human epidermal growth
factor receptor 2 (HER-2), Ki-67 proliferation index were
demonstrated in Table 2. There was no significant difference
between the detailed characteristics of the two cohorts (all
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P > 0.05, t-test or Mann-Whitney U test). Based on axillary US
findings evaluated by an experienced radiologist, axillary US
findings had an AUC of 0.735, accuracy of 0.635, sensitivity of
0.721 and specificity of 0.573. The Kappa values for axillary US
were 0.933 for inter-observer agreement and 1 for intra-observer
agreement (both P < 0.001, Kappa test).

In the training cohort, clinical parameter combined DLR
achieved the highest AUC of 0.936 while DLR based on images
only and classification by clinicopathologic data only achieved
AUCs of 0.850 and 0.771, respectively. In the independent test

cohort, AUCs dropped slightly for predicting ALN metastasis and
was consistent with the performance of training cohort. The
clinical parameter combined DLR still achieved the highest AUC
of 0.902, which was significantly higher than the AUC of other
methods including axillary US findings (AUC: 0.735, P < 0.001,
Hanley & McNeil test), DLR based on images only (AUC:0.796,
P= 0.004, Delong et al.) and classification by clinicopathologic
data (AUC:0.727, P= 0.002, Delong et al.). The accuracy,
sensitivity, specificity, PPV, and NPV of clinical parameter
combined DLR were also universally better than other methods.

1342 Women with 1342 breast
lesions enrolled

Conventional ultrasound and shear
wave elastography

1292 Patients with
1292 Breast lesions

50 Patients excluded:

  28 Incomplete information or images

  10 Unqualified SWE images

  12 Ipsilateral breast surgery history, radiation therapy,

        chemotherapy or neoadjuvant chemotherapy

708 Patients excluded:

  147 No pathological results or immunohistochemical results

  526 Benign breast lesions

   34 Carcinomas in situ

     1 Breast metastatic carcinoma

584 Patients with 584 malignant
breast lesions

Fig. 1 Patient recruitment workflow. In total, 584 out of 1342 patients were included according to the selection criteria. The included patients were
examined by conventional US and SWE, and had complete clinical information needed for the study.

Table 1 The performance comparison of different models.

AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%) PARAM (Mb)

Resnet50 T 0.936 [0.910, 0.962] 85.7 [82.0, 89.4] 79.1 [71.6, 85.3] 93.6 [89.2, 96.5] 90.0 [83.5, 94.6] 85.9 [80.6, 90.2] 98
V 0.904 [0.847, 0.961] 81.4 [73.9, 88.2] 74.0 [59.7, 85.5] 88.2 [78.1, 94.8] 82.2 [67.9, 92.0] 82.2 [71.5, 90.2]
I-T 0.902 [0.843, 0.961] 81.0 [73.4, 87.7] 81.6 [68.0, 91.2] 83.6 [72.5, 91.5] 78.4 [64.7, 88.7] 86.2 [75.2, 93.5]

Resnet50+C T 0.945 [0.922, 0.969] 87.5 [84.0, 90.9] 85.8 [80.1, 90.3] 90.1 [85.1, 93.8] 89.4 [84.1, 93.4] 86.7 [81.3, 91.0] 98
V 0.864 [0.796, 0.933] 75.9 [68.1, 83.6] 73.5 [58.9, 85.1] 88.1 [77.8, 94.7] 81.8 [67.3, 91.8] 81.9 [71.0, 90.1]
I-T 0.842 [0.767, 0.916] 74.6 [66.7, 82.4] 70.0 [55.4, 82.1] 76.5 [64.6, 85.9] 68.6 [54.1, 80.9] 77.6 [65.8, 86.9]

Resnet101 T 0.901 [0.869, 0.934] 81.9 [77.7, 85.8] 72.1 [64.1, 79.2] 92.5 [88.0, 95.8] 87.6 [80.3, 92.9] 81.9 [76.3, 86.7] 172
V 0.847 [0.771, 0.923] 77.1 [69.0, 84.4] 78.0 [64.0, 88.5] 82.4 [71.2, 90.5] 76.5 [62.5, 87.2] 83.6 [72.4, 91.6]
I-T 0.836 [0.758, 0.914] 82.2 [74.3, 88.4] 72.0 [57.5, 83.8] 89.7 [79.9, 95.8] 83.7 [69.1, 93.3] 81.3 [70.7, 89.4]

Inception V3 T 0.875 [0.841, 0.910] 79.7 [75.2, 83.7] 82.2 [76.2, 87.3] 79.7 [73.5, 85.0] 79.8 [73.6, 85.1] 82.1 [76.0, 87.2] 253
V 0.853 [0.783, 0.924] 78.5 [71.0, 85.9] 81.6 [68.1, 91.2] 79.1 [67.4, 88.1] 74.1 [60.3, 85.0] 85.5 [74.1, 93.2]
I-T 0.796 [0.713, 0.878] 73.7 [64.9, 80.9] 76.0 [61.8, 86.9] 73.5 [61.4, 83.5] 67.9 [53.9, 79.8] 80.6 [68.6, 89.6]

VGG19 T 0.792 [0.744, 0.840] 74.3 [69.7, 78.9] 62.2 [53.8, 70.0] 80.7 [74.6, 85.9] 70.2 [61.6, 77.9] 74.4 [68.1, 80.1] 636
V 0.759 [0.667, 0.851] 73.3 [65.2, 81.3] 67.4 [52.5, 80.1] 74.6 [62.5, 84.5] 66.0 [51.1, 78.9] 75.8 [63.6, 85.5]
I-T 0.750 [0.656, 0.844] 69.5 [61.2, 77.8] 66.0 [51.2, 78.8] 79.4 [67.9, 88.3] 70.2 [55.1, 82.7] 76.1 [64.4, 85.5]

95% confidence intervals are included in brackets.
AUC area under the receiver operating characteristic curve, ACC accuracy, SENS sensitivity, SPEC specificity, PPV positive predict value, NPV negative predict value, PARAM model parameters amount,
T training cohort (n= 350), V validation cohort (n= 116), I–T independent test cohort (n= 118).
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The detailed statistical results were summarized in Table 3 and its
corresponding ROCs were shown in Fig. 2. The prediction results
of DLR based on using only US or SWE images combined with
clinical parameters were poorer than DLR based on using both
US and SWE images combined with clinical parameters (P=
0.006 and P= 0.002, respectively, Delong et al.) (Supplementary
Note 1 and Supplementary Table 2).

Prediction of ALN status between N+(1–2) and N+(≥3).
Adopting N+(1–2) as negative reference standard, this experi-
ment assigned 197 lesions as training cohort and 50 as inde-
pendent test cohort. In the training cohort, DLR based on images
only and classification by clinicopathologic data achieved AUCs
of 0.874 and 0.756, respectively, while clinical parameter com-
bined DLR achieved the AUC of 0.956. In the independent test
cohort, the AUC of clinical parameter combined DLR dropped
slightly but still reached 0.905, which was significantly higher
than the AUC of DLR based on images only (AUC: 0.777, P=
0.04, Delong et al.) and the AUC of classification by clin-
icopathologic data (AUC: 0.686, P= 0.03, Delong et al.). The
detailed statistical results were summarized in Table 4. The cor-
responding ROCs depicted the comparisons (Fig. 3).

Prediction of ALN status among N0, N+(1–2) and N+(≥3).
This model was extended to be compatible with three groups of
tasks to predict ALN status. As described above, the clinical
endpoints were categorized into three parts: N0, N+(1–2), and
N+(≥3). The number of lesions of the three categories is 337
(N0), 150 (N+(1–2)), and 97 (N+(≥3)), respectively. The DLR
model was built on breast conventional US and SWE images and
was classified by axillary US findings, clinicopathologic data. The
overall accuracy of differentiating the three groups was 0.805 and
the confusion matrix was shown in Fig. 4. The model performed

well in differentiating the N0 group while showed poorer results
in the other two groups.

Interpretability of DLR model. For investigating the interpret-
ability of the DLR, the network was visualized by applying the
Gradient-weighted Class Activation Mapping (Grad-CAM),
which could produce a coarse localization map highlighting the
import regions for classification target27. The last convolutional
layer of the last res-block was made transparent to the prediction
of ALN status as shown in Fig. 5. We found that there were
usually two locations valuable for predicting ALN status based on
DLR model. One is the boundary of the tumor and the other is
the low echo area inside the tumor. To some extent, this proved
the effectiveness of the model.

Discussion
According to ACOSOG Z0011 trial, patients who had early-stage
breast cancer with less than 2 SLN metastasis had no inferior
survival if they underwent SLND only rather than ALN
dissection4,5. Based on the results of ACOSOG Z0011 trial, all
patients should undergo SLND to predict ALN status whether
patients have clinically positive node or not28. However, SLND
has some limitations, including causing some complications6,
having false-negative rates ranging from 7.8–27.3%29–31 and
resulting in unnecessary axillary surgery9. Hence, there is an
increasing need for predicting metastatic extent of ALN accu-
rately in a noninvasive way.

In this study, we developed and validated a clinical parameter
combined DLR method based on breast conventional US and
SWE images for preoperative prediction of ALN status in patients
with clinical T1 or T2 breast cancer. This method showed sig-
nificantly better diagnostic performances in distinguishing
patients with a negative axilla (N0) and patients with any axillary
metastasis (N+(≥1)) than any single method. Encouragingly, our
model showed favorable discriminating ability between patients
with low metastatic burden of axillary disease (N+(1–2)) and
patients with heavy metastatic burden of axillary disease
(N+(≥3)). With false-negative rate similar to SLND, this clinical
parameter combined DLR might have the potential to serve as a
noninvasively imaging biomarker to replace SLND for patients
with early-stage breast cancer. The clinical parameter combined
DLR showed the possibility to assist breast clinicians to make
decisions for appropriate axillary treatment: no need for SLN
biopsy or ALN dissection in patients with N0, SLND only for
patients with N+(1–2) and ALN dissection for patients with
N+(≥3)4.

Some studies argued that compared with SLND, axillary US
combined with fine needle aspiration or core needle biopsy could
be cost saving for patients with positive nodal status11. However,
axillary US was not accurate enough to predict ALN status with
an AUC of 0.585–0.719 (refs. 12,32). Some studies demonstrated
that the number and morphology of abnormal lymph nodes
detected by axillary US were predictors of nodal burden28, but the
diagnostic performances were poor with AUC of 0.725–0.747
(refs. 33,34). In our study, the overall diagnostic performance of
preoperative axillary US results was low with an AUC of 0.735,
which was concordant with previous studies35,36. Compared with
axillary US results alone, the clinical parameter combined DLR
method makes use of all available data including findings of
axillary US, clinicopathologic data, breast conventional US and
SWE images and therefore, showed significantly better diagnostic
performances in predicting ALN metastasis than the routine
axillary US evaluated by an experienced radiologist.

Some studies reported that some histopathological data such as
tumor grade, lymphovascular invasion, histological tumor size,

Table 2 Patient and tumor characteristics.

Characteristics All patients Training Test P

Number 584 466 (80%) 118 (20%) –
Age,
mean ± SD, years

50.27 ± 10.32 50.46 ± 10.36 49.52 ± 10.20 0.372

US size,
mean ± SD, mm

18.90 ± 6.48 19.06 ± 6.57 18.13 ± 6.10 0.164

ER 0.567
Positive 471 372 (79.8%) 99 (83.9%) –
Negative 113 94 (20.2%) 19 (16.1%) –

PR 0.531
Positive 429 338 (72.5%) 91 (77.1%) –
Negative 155 128 (27.5%) 27 (22.9%) –

HER2 0.381
Positive 135 104 (22.3%) 31 (26.3%) –
Negative 449 362 (77.7%) 87 (73.7%) –

Ki-67 0.380
Positive 491 396 (85.0%) 95 (80.5%) –
Negative 93 70 (15.0%) 23 (19.5%) –

BI-RADS category 0.158
4A category 31 24 (5.1%) 7 (5.9%) –
4B category 164 128 (27.5%) 36 (30.5%) –
4C category 267 210 (45.1%) 57 (48.3%) –
5 category 122 104 (22.3%) 18 (15.3%) –

Tumor type 0.742
Invasive ductal
carcinoma

516 412 (88.4%) 104 (88.1%) –

Invasive lobular
carcinoma

18 12 (2.6%) 6 (5.1%) –

Other
tumor types

50 42 (9.0%) 8 (6.8%) –

Qualitative variables are in n (%) and quantitative variables are in mean ± SD, when appropriate.
Source data are provided as a Source Data file.
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and hormone receptor status could be a predictor of ALN
metastasis10,37. However, some histopathological data, such as
histological tumor size and lymphovascular invasion, could only
be evaluated after surgical resection, and could not guide deci-
sions of axillary surgery preoperatively. Although tumor grade
could be estimated from core biopsy samples preoperatively, low
concordant rates ranging from 67% to 75% were found between
core needle biopsy and surgical excision in previous studies38,39.
Different from previous studies, this current study adopts all
histopathological data available after biopsy of primary breast
tumor40, which is a standard procedure preoperatively. Therefore,
some clinicopathologic data available preoperatively were kept as
candidate factors in developing the predictive model, which could
serve as a noninvasive predictive method to assess ALN status.

Clinical parameter combined DLR was completely established
on analyzing images of breast conventional US and SWE with
the DLR concept22 and was combined with axillary US findings
and clinicopathologic data. This DLR method has shown great
promise in analyzing SWE images on staging liver fibrosis22.

Radiomics method was also applied in other imaging modalities
like CT or MRI images of some primary cancer like bladder,
colon cancer to predict regional lymph-node metastasis,
demonstrating this method was a useful way to make a prediction
of lymph-node metastasis41,42. Compared with the previous
study, our study yielded a better diagnostic performance by
concentrating on the clinical parameter combined DLR method,
which can complement image features with more information
and make the model more robust by restraining the features
extracted from images26. In addition, for patients with suspected
breast lesions, breast and axillary US is a routine practice to
characterize breast lesions and axillary lymph-node status, and
have the advantages of cost effective and no ionizing radiation
comparing with other imaging modalities10.

Compared with those studies using SWE values as a single
parameter to predict ALN status12,18, our study showed a better
diagnostic performance by applying DLR on breast conventional
US and SWE images. Instead of measuring the stiffness of breast
cancer inside the shear wave ROI based on several parameters of
SWE, the whole shear wave ROI was analyzed and a large number
of features were quantified automatically by DLR22.

Some limitations have to be addressed in this study. First, this
is a single-center study. Acquiring more evidence from multi-
center is needed to validate this model before clinical application
in the future. Second, patients with multifocal breast lesions and
bilateral disease are excluded because it is difficult to determine
which lesion would lead to ALN metastases and should be input
in the model. Therefore, current clinical parameter combined
DLR model could only be used to predict extent of ALN invol-
vement for patients with single breast cancer. Further study is
needed to build other model to predict ALN status for patients
with multifocal breast lesions and bilateral disease. Third, gene
markers of breast cancer like BRCA1 and BRCA2, are used to
stratify patients based on the risk for disease43. However, radio-
genomics, focusing on the relationship between genomics and
imaging phenotypes, is not available currently although it is an
interesting attempt.

Conclusions
Clinical parameter combined DLR on breast conventional US and
SWE images provides a noninvasive and practical way for pre-
dicting the extent of ALN involvement preoperatively and have
the potential to determine appropriate axillary treatment options
for patients with early-stage breast cancer. Prospective multi-
center validation is expected to acquire high-level evidence for
clinical use in subsequent studies.

Table 3 The prediction of ALN status results (N0 v.s. N+(≥1)).

Methods AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

Axillary US 0.735a [0.694, 0.775] 63.5 [58.6, 70.4] 72.1 [76.1, 84.8] 57.3 [52.3, 64.9] 72.6 [67.9, 77.2] 57.3 [50.1, 61.2]
Classification by
clinicopathologic data

T 0.771 [0.719, 0.824] 73.6 [68.8, 78.0] 68.0 [59.8, 75.5] 79.6 [73.4, 84.9] 70.9 [62.7, 78.3] 77.3 [71.0, 82.8]
V 0.755 [0.665, 0.845] 71.6 [63.3, 79.8] 63.3 [48.3, 76.6] 71.6 [59.3, 82.0] 62.0 [47.2, 75.3] 72.7 [60.3, 83.0]
I–T 0.727b [0.630, 0.825] 70.9 [62.1, 78.6] 62.0 [47.2, 75.3] 69.1 [56.7, 79.8] 59.6 [45.1, 73.0] 71.2 [58.7, 81.7]

DLR on images only T 0.850 [0.813, 0.887] 76.7 [72.1, 81.0] 71.6 [64.7, 77.8] 80.2 [74.0, 85.5] 77.9 [71.1, 83.7] 74.3 [68.0, 80.0]
V 0.804 [0.717, 0.891] 72.4 [63.3, 79.8] 69.4 [54.6, 81.7] 79.1 [67.4, 88.1] 70.8 [55.9, 83.0] 77.9 [66.2, 87.1]
I–T 0.796c [0.708, 0.883] 71.6 [63.0, 79.4] 67.4 [52.5, 80.1] 79.1 [67.4, 88.1] 70.2 [55.1, 82.7] 76.8 [65.1, 86.1]

Clinical parameter
combined DLR

T 0.936 [0.910, 0.962] 85.7 [81.7, 89.1] 79.1 [71.6, 85.3] 93.6 [89.2, 96.5] 90.0 [83.5, 94.6] 85.9 [80.6, 90.2]
V 0.904 [0.847, 0.961] 81.4 [73.9, 88.2] 74.0 [59.7, 85.5] 88.2 [78.1, 94.8] 82.2 [67.9, 92.0] 82.2 [71.5, 90.2]
I–T 0.902 [0.843, 0.961] 81.0 [73.4, 87.7] 81.6 [68.0, 91.2] 83.6 [72.5, 91.5] 78.4 [64.7, 88.7] 86.2 [75.2, 93.5]

95% confidence intervals are included in brackets. Source data are provided as a Source Data file.
AUC area under the receiver operating characteristic curve, ACC accuracy, SENS sensitivity, SPEC specificity, PPV positive predict value, NPV negative predict value, DLR deep learning radiomics, T training
cohort (n= 350),V validation cohort (n= 116), I–T independent test cohort (n= 118).
aindicates P < 0.001, Hanley & McNeil in comparison with clinical parameter combined DLR in independent test cohort.
bindicates P= 0.002, Delong et al. in comparison with clinical parameter combined DLR in independent test cohort.
cindicates P= 0.004, Delong et al. in comparison with clinical parameter combined DLR in independent test cohort.
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Methods
Patients. This prospective study was approved by Institutional Review Board of
Sun Yat-sen University Cancer Center. The inclusion criteria included the fol-
lowings: (a) women with US-suspected breast masses; (b) availability of clinical
data; (c) patients who underwent breast surgery and sentinel lymph-node biopsy or
ALN dissection with curative intent. The exclusion criteria included the followings:
(a) preoperative therapy (resection biopsy, neoadjuvant radiotherapy or che-
motherapy); (b) patients with multifocal lesions or bilateral disease; (c) masses
deeper than 3 cm in depth due to the attenuation of SWE or larger than 3.5 cm in
diameter due to the limited width of the US probe; (d) unqualified 2D-SWE
measurements, which means little or no shear wave signal was acquired in the ROI
of SWE; (e) benign breast lesions or carcinoma in situ; (f) missing important
histopathological results (immunohistochemical results or lymph-node results);
(g) incomplete information or images. Verbal informed consent was obtained from
all patients.

Conventional US examinations. One of five radiologists who had 18, 6, 3, 2, and 2
years of experience in breast ultrasound respectively performed preoperative breast
and axillary US with Siemens S2000 ultrasound scanner (Siemens Healthineers,
Mountain View, CA, USA) equipped with a 4–9MHz linear array transducer. The
target breast mass was measured at maximal-diameter plane to determine US size
and classified by using US BI-RADS17. After performing whole-breast US, the same

radiologists performed axillary US routinely and recorded suspicious US features
of ALN. Suspicious US features of ALN include the ratio of long axis diameter
to short axis diameter<2, diffuse cortical thickening>3 mm, focal cortical bulge
>3 mm, eccentric cortical thickening >3 mm, rounded hypoechoic node complete
or partial effacement of the fatty hilum, nonhilar cortical blood flow on color
Doppler images, complete or partial replacement of the node with an ill-defined or
irregular mass and microcalcifications in the node32. The result of axillary US
evaluated by the experienced radiologist was regarded as positive as long as at least
one suspicious US finding was found. The result of axillary US was regarded as
negative when no suspicious findings of ALN were found10. To evaluate the intra-
observer agreement for axillary US, one radiologist repeated evaluating the same 30
ALNs at a time interval of 1 week. Inter-observer agreement was tested by two
radiologists, evaluating the same ALNs independently in another 30 ALNs.

SWE. After performing conventional US, SWE was performed thrice at the
maximal-diameter plane of the breast lesion. The ROI of SWE was adjusted to
include subcutaneous fat layer and superficial pectoral muscle layer, with at least
5 mm of distance from the boundary of the lesion to the lateral borders44. With
sufficient coupling material filling between probe and skin, the radiologist applied
extremely slight pressure to minimize pre-compressions. When acoustic radiation
force impulse was generated, patients were asked to suspend respiration for several
seconds. The quality map, displayed in red-yellow-green representing low-
intermediate-high quality respectively, was obtained to evaluate the quality of the
SWE first. Then the velocity map of SWE was obtained. Guided by the quality map,

Table 4 The prediction of ALN status results (N+(1–2) v.s. N+(≥3)).

Methods AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

Classification by
clinicopathologic data

T 0.756 [0.674, 0.838] 73.9 [66.6, 80.7] 65.5 [51.9, 77.5] 75.6 [65.4, 84.0] 63.3 [49.9, 75.4] 77.3 [67.1, 85.5]
V 0.701 [0.567, 0.835] 72.0 [58.8, 84.1] 62.0 [36.1, 80.9] 78.0 [61.4, 92.3] 66.7 [40.2, 87.1] 75.0 [56.6, 88.5]
I–T 0.686a [0.528, 0.844] 71.4 [57.3, 82.7] 68.4 [43.4, 87.4] 73.3 [54.1, 87.7] 61.9 [38.4, 81.9] 78.6 [58.6, 91.9]

DLR on images only T 0.874 [0.814, 0.934] 79.7 [72.5, 85.6] 84.5 [72.6, 92.7] 80.0 [70.2, 87.7] 73.1 [60.8, 83.3] 88.9 [79.9, 94.8]
V 0.80 [0.671, 0.929] 73.5 [61.1, 85.8] 84.2 [60.4, 96.6] 73.3 [54.1, 87.7] 66.7 [44.7, 84.4] 88.0 [68.8, 97.5]
I–T 0.777b [0.644, 0.911] 69.4 [55.0, 80.9] 79.0 [54.4, 93.9] 66.7 [47.2, 82.7] 60.0 [38.7, 78.9] 83.3 [62.1, 95.4]

Clinical parameter
combined DLR

T 0.956 [0.926, 0.986] 89.2 [84.2, 94.2] 91.4 [81.0, 97.1] 87.8 [79.2, 93.7] 82.8 [73.1, 91.1] 94.0 [86.6, 98.1]
V 0.925 [0.850, 0.997] 88.0 [78.6, 96.9] 95.0 [75.1, 98.9] 86.7 [69.1, 95.3] 82.6 [60.6, 95.2] 96.3 [81.0, 98.0]
I–T 0.905 [0.814, 0.996] 80.0 [68.9, 91.1] 85.0 [62.1, 96.8] 86.7 [69.3, 96.2] 81.0 [57.4, 94.8] 89.7 [72.6, 97.8]

95% confidence intervals are included in brackets. Source data are provided as a Source Data file.
AUC area under the receiver operating characteristic curve, ACC accuracy, SENS sensitivity, SPEC specificity, PPV positive predict value, NPV negative predict value, DLR deep learning radiomics, T training
cohort (n= 148), V validation cohort (n= 49), I–T independent test cohort (n= 50).
aIndicates P= 0.03, Delong et al. in comparison with clinical parameter combined DLR in independent test cohort.
bIndicates P= 0.04, Delong et al. in comparison with clinical parameter combined DLR in independent test cohort.
Source data are provided as a Source Data file.
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the velocity map of SWE with fewest artifacts and the best quality was chosen and
stored as the SWE image for analysis.

Data analysis. Clinical and histopathologic data were obtained from the medical
records. Histopathologic results of the breast cancer included tumor type, ER
status, PR status, HER-2, and Ki-67 proliferation index. Clinical data included
patients age, US size, tumor location, and BI-RADS category. Histopathologic

results of SLND and ALN dissection including the total number of resected lymph
nodes and total number of positive nodes were recorded.

Deep learning radiomics model. The enrolled patients were randomly divided
into the training cohort and independent test cohort with the ratio of 4:1 and the
training cohort were then used to optimize the model parameters. We also ran-
domly chose 25% of training images to form a validation cohort to guide the choice
of hyper parameters. The whole pipeline of our model was shown in Fig. 6. Resnet
was adopted as the base model which pre-trained on Imagenet45,46. In particular,
the last 1000 nodes FC layer was replaced with our specifically designed three FC
layers with Xavier initialized weights47. The detailed architecture of the network is
shown in Supplementary Table 1.

There were two steps included in the entire process, the forward computation
and the backward propagation48. Before that, the rectangular ROIs were cropped
from raw US images according the tumor segmentation mask, resized to 224 × 224
pixels and normalized. The pathology type was encoded to one-hot, which was the
label. In the training stage, rectangular ROIs were fed into network to update
model parameters by backward propagation. The outputs of the network were used
as the classification results, and the cross-entropy of the outputs and the labels were
calculated as the loss function. Note that to alleviate the influence of over fitting
and sample imbalance, a strategy called online data augmentation was used, which
meant randomly horizontal and vertical flipping the input image, randomly
cropping every ROI image from four directions in the steps of 2 pixels and feeding
each category image into the network with same probability. We set learning rate to
1e-4 and applied the Adam optimizer to update the model parameters with batch
size 32. The maximum iteration step was set to 5000, and the learning rate decayed
by 1/2 at 2000 and 4000 steps. After training, we replaced the last FC layer with an
SVM as classifier and fused the clinical information and network features to
collaboratively make a decision49.

Network feature extraction. Contrasting with hand-crafted and engineered fea-
tures designed according to the previous medical experiences, DLR learnt the high-
throughput image features in a supervised manner, which could make full use of all
embedded information in US images50,51. The convolutional layers encoded the
input rectangular ROIs and adaptively learnt the semantic features and the FC
layers then selected the relevant features and reduced the features dimensions.
Supervised by the label of input images, the model updated parameters and finally
led to the most relevant features in the FC layer. The penultimate FC layer output
was used as the network features, which further proved efficient and effective. For
comparison, clinicopathological information and network features were used to
train SVMs directly to compare predictive performance of ALN status, respectively.

Multi-modal multi-sources features fusion on DLR. As described earlier, a single
modal image could be encoded into network features. An additional modal image
might provide more effective information. Hence the model was extended to be
compatible with bimodal image inputs. A parallel model structure was designed,
which contained two ResNet50 base networks and FC layers. The two ResNet50
base model shared parameters, which accepted US and SWE images as bimodal
image inputs, respectively. The final convolutional layer outputs of the parallel
network were concatenated and fused by the following FC layers. Network features
were extracted from layers the same as one modal model. We argued that when
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deep models were applied to medical images analysis usually confronting small-
sample learning problems, they should be combined with the clinical informa-
tion26. Finally, the deep features combined with clinical features were used to
collaboratively train an SVM classifier for predicting ALN status. In the control
group model ResNet50+C, the neurons were added to the penultimate FC layer of
the ResNet50 with the same number of clinical features. During the model training,
the network received dual-modal images and as the input, and the clinical features
were directly input into the penultimate FC layer instead of extracting deep features
and combining them offline. To use the proposed model, a rectangle ROI which
cover the tumor should be manually selected as the network input.

Statistical analysis. By using SLN biopsy or ALN dissection as reference standard,
the extent of ALN metastasis was divided into three groups, including disease-free
axilla (N0), low metastatic burden of axillary disease (N+(1–2)) and heavy meta-
static burden of axillary disease (N+(≥3)). The detailed clinicopathological differ-
ence of N0 and N+(≥1) was compared by t-test or Mann-Whitney U test. AUC was
used to estimate the performance of axillary US, DLR based on images only, clas-
sification by clinicopathological data and clinical parameter combined DLR, and
was compared by using Delong et al52. or Hanley & McNeil53,54. The other mea-
surements like accuracy, sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were also used to estimate the model performance.
The calculation method is shown in Supplementary methods. Kappa test was used
to compared the intra-observer agreement and inter-observer agreement. All the
statistics were two side and a P-value less than 0.05 was considered statistically
significant. All statistical analyses were performed using MedCalc software (V.11.2;
2011 MedCalc Software bvba, Mariakerke, Belgium), Python 3.5, matlab R2015b.

Statistics and reproducibility. Models were verified and replicated using regular
machine learning metrics on independent test cohorts. We released the software of
the model for replication on new data.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Excel files containing raw data included in the main figures and tables can be found in
the Source Data File in the article. All other data are available in the Article and
Supplementary Information. All other data including the imaging data can be provided
upon reasonable request to the corresponding author.

Code availability
The software and code of the proposed method have been separated into two files and are
available as Supplementary Software files.
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