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Competing risks and the clinical
community: irrelevance or ignorance?
Michael T. Koller,a,b*† Heike Raatz,a Ewout W. Steyerbergc and
Marcel Wolbersd

Life expectancy has dramatically increased in industrialized nations over the last 200 hundred years. The aging
of populations carries over to clinical research and leads to an increasing representation of elderly and multi-
morbid individuals in study populations. Clinical research in these populations is complicated by the fact that
individuals are likely to experience several potential disease endpoints that prevent some disease-specific end-
point of interest from occurrence. Large developments in competing risks methodology have been achieved over
the last decades, but we assume that recognition of competing risks in the clinical community is still marginal.
It is the aim of this article to address translational aspects of competing risks to the clinical community. We
describe clinical populations where competing risks issues may arise. We then discuss the importance of agree-
ment between the competing risks methodology and the study aim, in particular the distinction between etiologic
and prognostic research questions. In a review of 50 clinical studies performed in individuals susceptible to com-
peting risks published in high-impact clinical journals, we found competing risks issues in 70% of all articles.
Better recognition of issues related to competing risks and of statistical methods that deal with competing risks
in accordance with the aim of the study is needed. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Competing risks are an extension of classical survival analysis. In competing risks, we observe different
event types in addition to the time to the first event occurring, possibly subject to censoring or left trunca-
tion. In medical research, competing risks occur when the time to a disease-specific endpoint of interest
may be precluded by death or a major health event from another cause. The statistical methodology for
analyzing competing risks data has rapidly expanded over the last decades. However, clinical studies
often ignore competing risks or the multistate process of clinical endpoint generation and there appears
to be a limited awareness of the importance and pitfalls of competing risks in the clinical community [1].

The aim of this work is therefore to address translational aspects of competing risks to the clinical
community. We first describe study populations susceptible to competing risks. These rapidly growing
populations highlight the increasing need for competing risks approaches in clinical research. After a
short overview of competing risks concepts, we show how competing risks interfere with the understand-
ing of diseases in clinical medicine and epidemiology. Moreover, we assess the popularity of the topic
of competing risks in biostatistical and clinical journals based on a literature search. Finally, we criti-
cally appraise the quality of reporting competing risks in studies performed in populations susceptible
to competing risks that were published in high-ranked clinical journals.
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2. The population susceptible to competing risks

Over the last 200 years, life expectancy has dramatically increased in industrialized countries. In
Norway, for example, life expectancy in 1866 was 47 and 51 years in males and females, respectively,
and has linearly increased to 79 and 83 years in 2000 [2]. The age distribution has thus rapidly changed
with an increasing proportion of elderly subjects in populations of industrialized countries.

The aging of populations has led to an increase of diseases attributable to aging and frailty such as
cancer, chronic heart failure or dementia. Moreover, it was shown in the US that the majority of health-
care resources are spent in people older than 60 years [3], and that the largest fraction of a person’s
total health costs arises during the last months of life [4]. The aging of populations has consequences
for clinical research. Study populations of common diseases increasingly consist of elderly individuals
with varying degrees of multimorbidity [5]. If the aim is to observe the time to some disease-specific
endpoint of interest, such study participants should be considered as susceptible to competing risks.

More precisely, the following characterization identifies study populations susceptible to competing
risks:

� Individuals are likely to host several yet unrecognized diseases or they are at risk to develop more
than one disease that all may lead to clinically relevant competing disease endpoints.

� The first occurrence of such an endpoint has a strong impact on the individual. Examples are death,
cerebral stroke with handicap, heart failure after a heart attack with limitations of physical activity
and need for regular pharmacological therapy.

Periods of susceptibility to competing risks are typically late in life with increasing disease accumula-
tion and frailty. Less prevalent but equally relevant are periods of critical or severe illness [6]. Table I
summarizes the characteristics of these two distinct presentations of susceptibility.

3. A concise overview of competing risks concepts

We restrict our short overview of competing risks concepts to two competing events and refer to Putter
et al. [7] for a more comprehensive tutorial. The observable data in competing risks is represented by the
(possibly censored) time to the first event T and the cause of failure D, that is, either the event of inter-
est (D D 1) or the competing event (D D 2). Two key concepts of competing risks, the cause-specific
hazard and the cumulative incidence function (CIF), arise from describing different components of the
transition of a patient from his baseline state to either failure cause.

The cause-specific hazards view describes the competing risks process as a multistate model with
initial state 0 and two absorbing states 1 (event of interest) and 2 (competing event, Figure 1) [8].
The transition intensity from the initial state to either of the absorbing states is determined by the
cause-specific hazards �1.t/ and �2.t/ defined as

Table I. Characteristics of two typical patient populations susceptible to competing risks.

The elderly/ multimorbid The critically / severe ill

‘(Slowly) progressive biology’ ‘Destructing biology’
Long-term risk exposure, e.g. smoking, diabetes,
hypertension, HIV

Short term risk exposure, e.g. acute infection, cell
depletion, mechanical ventilation

Period: late life Period: any
Examples: Elderly patients, chronic kidney disease,
long-term diabetes or hypertension, HIV/AIDS,
cardiovascular risk patient, prostate cancer patients

Examples: Intensive care unit patients, transplant
recipients, patients in aplasia, patients on chemotherapy

Figure 1. Competing risks as multistate model with cause-specific hazards �1.t/ and �2.t/.
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�k.t/D lim
�t#0

P.t 6 T 6 t C�t; D D j jT > t /=�t (k D 1 or 2/:

The cause-specific hazards can be interpreted as the momentary forces that draw a subject out of
state 0 into state 1 or 2 [9]. As the cause-specific hazards definition conditions on T > t , all patients
with failure (of any cause) before time t are removed from the risk set at that time point. Proportional
cause-specific hazards regression models can be estimated using software for standard Cox regression
and censoring patients with competing events at the time point of their occurrence [7].

The CIF describes the actual (absolute) risk of failing from cause k until time t W Ik.t/D P.T 6 t and
D D k/. A graphical display of the estimated CIFs for all competing events serves as a key summary of
the competing risks process (similar to the Kaplan–Meier curve in survival analysis [7]). The CIFs are
determined by the cause-specific hazards but, importantly, they depend not only on the cause-specific
hazard of the respective event but also on the total hazard through the relation [10]
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This complicates the interpretation of regression models for cause-specific hazards on the cumulative
incidence scale [11]. To avoid this complication, Fine and Gray [12] introduced a way to regress directly
on CIFs by specifying a proportional hazards model for the so-called subdistribution hazards defined as
˛k.t/ WD �d log.1�Ik.t//=dt (Figure 2). Importantly, this approach uses a revised definition of the risk
set where persons who fail from other causes remain in the risk set and act as placeholder for those who
will never experience the event of interest [12, 13].

There has also been interest in the marginal survival distribution of the event of interest, that is, the
survival time in a virtual world where competing events do not exist. Unlike the cause-specific hazards
and the CIF, the marginal distribution is not identifiable from competing risks data [14] and depends on
the exact means of removal of the competing causes. Greenland [15] illustrated this for overall survival
in a virtual world where death from lung cancer did not exist: The marginal survival curve in this virtual
world would be expected to be quite different depending on whether the cause-removal of lung cancer
deaths was because of a new highly effective chemotherapy (which does not affect other death causes) or
a comprehensive behavioural intervention including smoking cessation (which would also reduce other
death causes such as coronary heart disease or chronic obstructive pulmonary disease).

In clinical manuscripts, marginal survival estimates are often based on treating competing events as
censoring events and calculating Kaplan–Meier estimates (Section 5). Importantly, these estimates are
valid only under the assumption of independence of the (latent) marginal failure times for different
causes [7]. If we use survival estimates based on standard Cox regression instead, independence condi-
tional on covariates must be assumed. In both cases, the independence assumption cannot be tested and
is often a priori unrealistic. Marginal survival estimates in the clinical literature should thus be inter-
preted with caution, in particular if the means of removal of competing causes is not clearly defined or
implicit independence assumptions are made without clinical justification. Finally, many publications
have shown that the Kaplan–Meier estimator overestimates the CIF in the presence of competing risks
and should therefore not be used for this purpose [16].

As for survival data, left-truncation and interval censoring may also occur for competing risks data.
It is straightforward to account for left-truncation in cause-specific hazards models [7] and a method for
fitting the Fine and Gray model to left-truncated and right-censored data has recently been suggested
[17]. Interval censored competing risks data are more challenging to analyze; one valid approach is to
use parametric competing risks models [18, 19].

Finally, a commonly adopted method to circumvent competing risks issues is the use of a compos-
ite endpoint that combines all-cause mortality and a disease-specific failure endpoint of interest [20].
Often, however, in drug efficacy research or during the investigation of causal pathways, investigators
may also wish to assess the effect of exposure on the disease-specific endpoint of interest rather than on
the composite endpoint.

Figure 2. Competing risks model with the subdistribution hazards approach ˛1.t/.
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4. How do competing risks interfere with our understanding of disease?

Today’s concepts of understanding diseases go back to Hippocrates. He understood diseases in terms of
diagnosis, etiology (what is the cause of a disease?), treatment and prognosis. These concepts have been
inherent in the formation and thinking of clinicians for centuries [21] and have become fundamental to
the thinking in epidemiology [22]. It is thus of interest to discuss how competing risks affect this basic
understanding of diseases.

The concept of disease diagnosis is not of much interest in regard to competing risks and will not be
discussed further. The treatment concept is analogous to the etiology concept because treatments exert
their effects by modifying causal pathways of disease development. In clinical studies treatment effects
are thus often referred to as efficacy. Thus, two distinct concepts remain to be discussed, etiology/efficacy
and prognosis.

We believe that etiology/efficacy hypotheses in the presence of competing risks are most naturally
formulated in terms of cause-specific hazards. This allows for a ‘direct’ formulation of the effect of
exposure on the instantaneous forces that drive the patients remaining at risk at each time point t , that is,
those without any prior event. On the other hand, the absolute risk of events occurring over time is the
natural basis for prognosis and medical decision making [23] and this can be assessed most conveniently
by models that directly regress on the CIF [24–26].

Many efforts have been made to give etiologic effect measures a clinically more intuitive interpre-
tation. To do so, measures of etiologic associations are translated into measures of prognosis. Two
well-known examples are the average duration of life gained [27] and the number needed to treat [28].
For survival endpoints without competing risks, the translation of the etiologic effect (relative change in
the hazard) into prognosis (change in survival) is unambiguous as an increased hazard has a 1–1 associ-
ation with a shorter survival time. This association only breaks down in the presence of nonproportional
hazards, that is, treatment-time interactions. However, with competing risks, this translation is generally
ambiguous as we illustrate below.

We use a hypothetical perfectly conducted three-arm randomized trial of placebo versus two treat-
ments for our illustration. The endpoint is the time to a cause-specific mortality (e.g. death from lung
cancer) as the event of interest and death from all other causes as the competing event. We assume con-
stant cause-specific hazards �1 and �2 for the two events, respectively. Under this assumption, it can eas-
ily be shown that the CIF for the event of interest is given by I1.t/D �1=.�1C�2/�.1�exp.�.�1C�2/�t /
(and similarly for the competing risk). We further assume that the cause-specific hazards under placebo
are 1 and 0.5, respectively, and that treatments act proportionately on the cause-specific hazards. Treat-
ment 1 is efficacious and reduces the hazard of the event of interest by 50% but does not affect the hazard
of the competing event; whereas treatment 2 reduces both hazards by 40% and 20%, respectively. The
assumed cause-specific hazards and the resulting CIFs are displayed in Figure 3.

The figure shows an increase in the cumulative incidence of the competing risk for treatment 1 even
though etiologically, treatment 1 does not affect the competing event. Even under treatment 2, which
also moderately reduces the cause-specific hazard of the competing event, the cumulative incidence is
ultimately increased. Therefore, the changes in the CIF reflect not only the true effect of treatment on
the competing event (there was none for treatment 1) but also all modifications of the risk set caused by
the effect of treatment on the event of interest. More specifically, in this example, treatment prolonged
the life of the hypothetical subjects by reducing the occurrence of the more likely event of interest,
which increased the risk set of patients susceptible to competing death causes [29]. Because we assumed
a perfectly conducted randomized trial, there is a causal treatment effect on both the cause-specific haz-
ard and the CIF. However, the causal effects on the cause-specific hazards are much easier to interpret
etiologically whereas the CIF is a pragmatic quantity.

5. Competing risks issues in the clinical literature

We first assessed the frequency of studies published on the subject of competing risks within the last
10 years in three different fields: biostatistical journals (six journals: Biom J, Biometrics, Biostatistics,
Lifetime Data Anal, Stat Methods Med Res, Stat Med), core clinical journals (119 different journals) and
the six general clinical journals with the highest impact factors (Ann Intern Med, BMJ, JAMA, Lancet,
N Engl J Med and PloS Medicine, see Appendix A for a detailed search strategy). Figure 4 shows the
absolute number of articles published over the last 10 years, which steadily increased over time with a
maximum of 27 articles in core clinical journals in 2009 and roughly a similar number of publications
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Figure 3. Hypothetical three-arm trial with a competing risks outcome. The top two panels show the assumed
cause-specific hazards for placebo (solid black lines) and treatment 1 (dashed gray lines), which affects only
the cause-specific hazard of the event of interest and treatment 2 (dotted black lines), which affects both

cause-specific hazards. The two bottom panels show the resulting cumulative incidence functions.

Figure 4. Absolute number of articles published on competing risks between 1 January 2000, and 28 October
2010, in the highest ranked clinical journals, biostatistical journals, and core clinical journals.

per year in the six biostatistical and the 119 core clinical journals. In the high-impact medical journals,
only between 0 and 3 articles including the topic competing risks were published per year.

Then we examined how competing risks issues were treated in high-impact medical journals. We
therefore performed a systematic Medline search of scientific articles published in the last 3 years (i.e.
from 28 October 2007, until 28 October 2010) in those journals in the setting of populations susceptible
to competing risks. We defined a number of diseases that are prevalent or typical in aging or multimorbid
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patients and where follow-up studies potentially had competing risks issues (see Appendix A for detailed
search strategy). We screened the articles and included those studies where one or more time-to-event
endpoints were reported and analyzed. Exclusion criteria were: all-cause mortality was the only endpoint
under investigation; only short-term course of disease studied; case report, case-control, or ecological
studies.

For an in-depth review, we included the latest 50 articles fulfilling the inclusion/exclusion criteria.
Two reviewers (HR and MK) critically appraised all 50 included articles.

For each included study, we scrutinized the endpoint definitions and identified competing risks as: (i)
competing death — if the endpoint of interest was some nonfatal disease-specific endpoint (e.g. nonfa-
tal stroke) or (ii) ‘other causes of death’ — if the endpoint of interest was some disease-specific death
(e.g. prostate cancer related death) or a combined endpoint of fatal and nonfatal disease-specific events.
For simplicity, we only defined the absorbing state of ‘competing death’ or ‘other causes of death’ as
competing risk events.

If competing risks were present, we defined competing risks issues as (Figure 5):

� Estimation of marginal survival curves based on the Kaplan–Meier estimator (‘naive Kaplan–Meier
estimate’). Such estimates are sometimes referred to as ‘cause-specific survival’ [30] or death-
censored survival [31] and, as described at the end of Section 3, are interpretable only under strong
independence assumptions.

� The competing risks process was neglected: (i) competing death not reported or (ii) crude number
of competing events reported but not analyzed

We moreover extracted the following data from the included studies: reporting and/or analysis of
all-cause mortality; reporting and/or analysis of competing risk events; application of competing risks
methodology with details on the method used; and whether competing risks were mentioned or discussed
in the article (Figure 5).

Results: In 74% (37/50) of all included studies, the definition of at least one endpoint implied the
presence of competing risks; the remaining 13 studies exclusively defined composite endpoints with
all-cause mortality as component. In 70% (35/50) of the included studies, we actually observed at least
one competing risks issue: Naive Kaplan–Meier estimates in the presence of competing risks in 67%
(24/35) and complete ignorance of competing risks in 51% (18/35) of the studies. Although 90% (45/50)
of the included studies reported (a composite endpoint of) all-cause mortality among other endpoints,
67% (30/45) of these studies nevertheless revealed competing risks issues during the analysis of disease-
specific endpoints (Figure 5). Moreover, 4 of the 13 studies that exclusively defined a composite endpoint
of all-cause mortality showed competing risk issues at some point during the analysis.

Only 20% (10/50) of the included studies explicitly applied competing risks methodology and 18%
(9/50) discussed competing risks as a possible issue (Figure 5). The competing risks methodology most

Figure 5. Critical appraisal for competing risks issues in 50 studies published in high-ranked clinical journals
and populations susceptible to competing risks.
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frequently applied (in 8/50 studies) was the analysis of all cause-specific hazards corresponding to
the competing risks process. However, half of these 10 studies nevertheless presented survival curves
based on naive Kaplan–Meier estimates. Only two studies explicitly used the CIF in place of (biased)
cumulative incidence estimates based on the Kaplan–Meier method.

6. Discussion

We defined study populations susceptible to competing risks and critically appraised 50 recent studies in
these populations published in high-impact medical journals. We found that a large proportion of studies
analyzed endpoints that are subject to competing risks but that competing risks issues were often ignored
and that the application of inappropriate statistical methods was a frequent problem.

However, competing risks are clearly not irrelevant for medical research and their negligence has
important clinical consequences: first, the naive interpretation of Kaplan–Meier estimates in the pres-
ence of competing risks as estimates of actual risks leads to potential overestimation of the benefit and
cost-effectiveness of interventions in clinical trials [32, 33] and overestimation and inappropriate risk
stratification in prognostic models [24]. This may result in over-treatment with potential harmful con-
sequences for individuals and healthcare systems. Second, disregarding competing risks masks the fact
that in some populations the incidence of competing events may be much larger than the incidence of
the event of interest [24], which limits the clinical usefulness of costly interventions to reduce some
disease-specific endpoint of interest. In particular, this may occur if indications for interventions tested
in clinical trials with rigid inclusion/exclusion criteria are expanded to more frail populations [30, 31].
Third, analyzing only part of the multistate model describing the competing risks data may miss impor-
tant insights into diseases and unexpected effects of interventions on disease-unrelated causes such as
effects of antiretroviral therapy on non-AIDS-related deaths [34].

Even if competing risks are acknowledged, a choice between different statistical techniques has to
be made. We illustrated with a simple example that the one-to-one association between etiology and
prognosis that holds for traditional survival models breaks down in the presence of competing risks and
that this interferes with the traditional understanding of diseases. As we have shown, an intervention
may not etiologically affect the cause-specific hazard of an event of interest but still alter the actual risk
of this event through the indirect effects on the cause-specific hazards of competing events. The CIF
therefore reflects a pragmatic, but not necessarily a biologic quantity. In line with other authors [13], we
believe that the context of the research question is the main determinant for the choice of an appropriate
statistical model. For etiologic questions, cause-specific hazards models are generally more appropriate.
In contrast, if the focus is on the direct assessment of actual risks and therefore prognosis and medical
decision making, regression models for the CIF are preferred.

7. Limitations

First, there are several fields in medical research that were not discussed but where competing risks
play an important role. This includes competing beneficial and harmful events (e.g. hospital discharge
from ICU and death in ICU) [6, 11, 33] and the field of device or transplant survival estimation, where
it has been heavily debated how recipients’ deaths should be adequately accounted for [34, 35]. Second,
we have not discussed the implications of violations of model assumptions such as nonproportional
cause-specific or subdistribution hazards. Mathematically, proportional hazards can only hold for either
the cause-specific or the subdistribution hazards, but it has been shown that proportional subdistribution
hazard modelling offers a summary analysis, even if mis-specified [35]. Nevertheless, goodness-of-fit
may also impact on the choice of the competing risks model. Third, in some competing risks applica-
tions, not all competing events are fatal and there are also potential transitions between failure types.
In this case, a more general illness-death or multistate model would be required for a comprehensive
analysis [7]. Finally, we discussed the distinction between etiology and prognosis but did not attempt a
comprehensive discussion of the important topic of causality in competing risks models.

8. Conclusion

The increasing consideration of populations susceptible to competing risks in clinical studies highlights
the need for competing risks approaches in clinical research. The key conceptual differences in the
application of competing risks methodology pertain to etiologic and prognostic questions. A review of
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clinical studies in frail populations published in high-ranked clinical journals showed competing risks
issues in 70% of all articles. A better recognition of competing risks in the clinical community is needed.

Appendix A

Pubmed search strategy for studies on competing risks in biostatistical journals:
(‘competing cause’ OR ‘competing causes’ OR ‘competing risk’ OR ‘competing risks’ OR ‘competing
outcome’ OR ‘competing outcomes’ OR ‘competing endpoints’) AND (Biom J[Jour] OR Biomet-
rics[Jour] OR Biostatistics[Jour] OR Lifetime Data Anal[Jour] OR Stat Methods Med Res[Jour] OR
Stat Med[Jour])
Limits activated: English, Field: Title/Abstract, published in the last 10 years
Searched time period: 1 January 2000 until 28 October 2010

Pubmed search for studies of patients susceptible to competing risks in high-impact medical journals:
(atrial fibrillation OR cardiac failure OR coronary heart disease OR stroke OR aneurysm OR ((prostate
OR colorectal OR breast) AND cancer) OR chronic leukemia OR cancer screening OR critical care OR
transplant* OR chronic obstructive pulmonary disease) AND (N Engl J Med[Jour] OR JAMA[Jour] OR
bmj[Jour] OR Ann Intern Med[Jour] OR Lancet[Jour] OR PLoS Med[Jour]) AND (survival OR mortal-
ity) NOT retrospective NOT case-control study NOT short-term NOT in-hospital NOT 30-day
Limits activated: only items with abstracts, Humans, English, Aged: 65+ years, published in the last 3
years.
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