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Abstract

The observation that suicides sometimes cluster in space and/or time has led to suggestions that these clusters are caused
by the social learning of suicide-related behaviours, or ‘‘copycat suicides’’. Point clusters are clusters of suicides localised in
both time and space, and have been attributed to direct social learning from nearby individuals. Mass clusters are clusters of
suicides localised in time but not space, and have been attributed to the dissemination of information concerning celebrity
suicides via the mass media. Here, agent-based simulations, in combination with scan statistic methods for detecting
clusters of rare events, were used to clarify the social learning processes underlying point and mass clusters. It was found
that social learning between neighbouring agents did generate point clusters as predicted, although this effect was partially
mimicked by homophily (individuals preferentially assorting with similar others). The one-to-many transmission dynamics
characterised by the mass media were shown to generate mass clusters, but only where social learning was weak, perhaps
due to prestige bias (only copying prestigious celebrities) and similarity bias (only copying similar models) acting to reduce
the subset of available models. These findings can help to clarify and formalise existing hypotheses and to guide future
empirical work relating to real-life copycat suicides.
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Introduction
While suicide is undoubtedly a complex phenomenon with

multiple and diverse causes [1,2], evidence accumulated over

recent years suggests that one of these causes may be social learning.

These ‘‘copycat’’ suicides are proposed to be caused at least in part

by exposure to another individual’s suicide, for example through

the imitation of suicidal behaviour. Two general patterns of suicide

clusters have been documented and taken as evidence for copycat

suicides [3]: point clusters, which are localised in both time and

space, and mass clusters, which are localised in time only.

A point cluster is defined as a temporary increase in the frequency

of suicides within a small community or institution, relative to both

the baseline suicide rate before and after the point cluster and the

suicide rate in neighbouring areas [4,5]. For example, Haw [6]

documented 14 suicides within a psychiatric hospital during a one-

year period, while Brent et al. [7] documented two suicides and

seven suicide attempts during a 14-day period in a single school.

Beyond anecdotal case studies, Gould et al. [5] used statistical

analyses designed to detect the clustering of disease infections to

determine whether suicides occur in spatiotemporal clusters. On

average around 2% of suicides amongst 15–19 year olds in the

U.S. were found to cluster spatially and temporally beyond that

expected by chance, although this figure was as high as 13% in

some states. Given this spatiotemporal clustering, point clusters are

frequently explained in terms of copycat suicides, with suicidal

behaviour spreading through a local network via social learning

[4,5].

A mass cluster is defined as a temporary increase in the total

frequency of suicides within an entire population relative to the

period immediately before and after the cluster, with no spatial

clustering. Mass clusters are typically associated with high-profile

celebrity suicides that are publicised and disseminated in the mass

media. Analyses have shown that national suicide rates rise

immediately after the suicides of entertainment celebrities, and to

a lesser extent political figures, have been highly publicised in the

mass media [8–10]. The implication here is that this rise is caused

by social learning: people across the country imitate the suicide

behaviour of the celebrity. Consistent with a social learning effect,

this increase is found to be proportional to the amount of media

coverage, e.g. the number of column inches devoted to the suicide

[8] or the number of television networks covering the suicide [10].

Moreover, suicide rates do not show a corresponding drop some

time after the publicised suicide, suggesting that the immediate

increase is not caused by already-vulnerable people committing

suicide earlier than they otherwise would have [8]. The effect

appears to be restricted to the suicides of famous people who are

afforded some degree of prestige in their society (e.g. entertain-

ment celebrities); in contrast, non-celebrities and famous figures

who have negative reputations (e.g. cold war spies), both of whom

lack prestige, have smaller or non-significant effects on national

suicide rates [9,10]. There is also evidence that people are more

likely to imitate the suicides of celebrities who match them in

gender and nationality [9], although this effect is less robust than

the celebrity effect [11]. Similar increases in suicide rates in

response to media-publicised suicides have been observed in

Germany [12], Japan [13], Taiwan [14] and Austria [15].

The overall aim of this study is to use agent-based simulations to

formally explore how different social learning dynamics might

generate these different spatial and temporal clusters of suicides.

Agent-based models are typically used in cases such as these to

determine the population-level patterns generated by underlying

interactions between individuals [16,17], making them a useful

tool in the case of copycat suicides. Specifically, the agent-based

model addresses possible explanations that have been posited for
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each of the two kinds of suicide clusters - point and mass - as

discussed below.

Point clusters: Social learning or homophily?
Joiner [3] has challenged the assumption made by researchers

such as Gould et al. [5] that spatiotemporal point clusters are

necessarily caused by social learning. Joiner [3] hypothesised that

point clusters may instead be a by-product of homophily, the

tendency for similar individuals to preferentially associate with one

another [18]. If people preferentially associate on the basis of

factors that increase the risk of (non-copycat) suicide, then spatial

clusters of high-risk people will emerge. These high-risk clusters

may form suicide clusters due to each member’s independently

high risk of suicide, without any social learning occurring within

the cluster. Joiner [3] suggests that many spatiotemporal suicide

clusters observed in hospitals and schools may be cases of

independent suicides within homophilous groups of high-risk

individuals. However, while there is extensive evidence for the

general phenomenon of homophily [18], no direct empirical test of

Joiner’s hypothesis has yet been conducted in relation to suicide,

and without such tests it is difficult to determine which of these

explanations - copycat suicide via social learning or independent

suicide within a homophilous network - is responsible for point

suicide clusters.

The first aim of the present study is to determine whether

homophily can mimic social learning in generating point clusters,

and if so to guide future empirical research by exploring the

conditions under which this is most likely to occur.

Mass clusters: Prestige bias, similarity bias, and/or the
mass media?

Explanations for mass suicide clusters have centred around

three characteristics of such clusters: (i) that they are associated

with prestigious celebrities only, (ii) that the effect is greater when

the celebrities are similar to the target individual, and (iii) that the

mass media is involved in the dissemination of suicide information.

Regarding the first two of these, Henrich and McElreath [19]

suggest that mass suicide clusters result from two social learning

biases: prestige bias, where individuals preferentially copy the

behaviour of prestigious or high-status models [20], and similarity

bias, where individuals preferentially copy the behaviour of models

who are similar to them in ethnic markers such as dialect,

language or dress [21]. Evolutionary models suggest that both

prestige bias and similarity bias are adaptive means of acquiring

accurate information compared to both costly trial-and-error

individual learning and the unbiased copying of other randomly-

chosen people [22]. Prestigious individuals have usually acquired

high prestige because their behaviour is adaptive, and so copying

prestigious individuals will, on average, lead to the acquisition of

that adaptive behaviour [20]. Copying similar individuals is likely

to lead to the acquisition of adaptive behaviour because similar

individuals face similar adaptive challenges and so should have

appropriate solutions to such challenges [21]. Crucially, however,

both prestige and similarity bias are vulnerable to the occasional

acquisition of maladaptive behaviour when such behaviour is

exhibited by prestigious or similar individuals. Thus copycat

suicide can be seen as a maladaptive by-product of these generally

adaptive social learning rules [19].

Other researchers frequently cite the mass media as a driver of

mass suicide clusters [10,11,23], with suicide-related behaviour

assumed to be disseminated via newspapers, magazines, television

and radio. Indeed, this assumption has led to the establishment of

guidelines and safeguards concerning the reporting of suicides in

the media [11,23]. Formally, mass media dissemination resembles

‘‘one-to-many’’ cultural transmission [24], where a single individ-

ual can influence a large number of other individuals simulta-

neously. Cultural evolution models suggest that the extreme one-

to-many transmission that is permitted by the mass media can

greatly increase the rate at which behavioural traits spread [24],

thus potentially generating temporal clusters. Note that prestige/

similarity bias and one-to-many transmission are not mutually

exclusive hypotheses: the ‘‘one’’ individual from whom the

‘‘many’’ learn may be more prestigious than, or similar to, the

‘‘many’’.

The second aim of the present study is to explore which of the

aforementioned social learning biases - prestige bias, similarity bias

and/or one-to-many transmission - are necessary and sufficient to

generate mass suicide clusters.

Hypotheses
Based on the literature reviewed above, the following predic-

tions are made:

1a. Social learning generates spatiotemporal point

suicide clusters.

1b. Homophily can generate spatiotemporal point

clusters in the absence of social learning.

2a. Prestige bias generates temporal (but not spatial)

mass suicide clusters.

2b. Similarity bias generates temporal (but not spatial)

mass suicide clusters.

2c. One-to-many cultural transmission, i.e. the cultural

dynamics characterised by the mass media, generates

temporal (but not spatial) mass suicide clusters.

Methods

The agent-based model was programmed in Borland C++
Builder. An executable (.exe) version is available for download as

Supplementary File S1 and may be used to recreate the results

presented below. Source code is available upon request from the

author.

The freely-available program SaTScanTM [25] was used to

detect spatial, temporal, and spatiotemporal clusters in the suicide

frequency data generated by the agent-based model. This program

is commonly used to detect clustering of diseases in space and

time, such as leprosy [26], West Nile virus [27] and gonorrhoea

[28]. Previous simulation studies have found that SaTScanTM is

effective in detecting clusters of rare events [29] making it

particularly applicable to suicides. SaTScanTM uses the scan

statistic [30] to identify statistically significant clusters, i.e. clusters

that deviate from frequencies expected under a random distribu-

tion. A window of varying size is gradually moved across time

and/or space and the number of observed events (here, suicides) is

compared with the number expected under a random, no-

clustering distribution. This window is either an interval in time

(for temporal scanning), a circle (for spatial scanning) or a cylinder

with a circular spatial base and a time interval as its length (for

spatio-temporal scanning). The maximum cluster size was set here

at 50% of the total area for spatial clusters and 50% of generations

for temporal clusters to avoid biasing the detection with a priori

target cluster sizes. For each location and/or size of the window,

the expected frequency under the null hypothesis of no clustering

is calculated assuming a Bernoulli distribution, and the window

with the maximum likelihood is identified. The statistical

significance of this window is calculated using a Monte Carlo

simulation method. The scanning procedure and maximum

Copycat Suicide
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likelihood test is repeated for 999 randomly generated replications

of the data generated under the null hypothesis. The statistical

significance (p value) is given by the rank of the maximum

likelihood calculated from the real data compared with all ranked

maximum likelihoods from the simulated data sets; if the real

maximum likelihood falls within the top a proportion of ranked

simulated maximum likelihoods, then the null is rejected (e.g. if

a= 0.05, the real maximum likelihood must be within the largest

5% of simulated maximum likelihoods to be assigned statistical

significance).

To further increase the robustness of the analysis in the present

study, data from ten independent runs of the agent-based model

for each set of parameter values were analysed using SaTScanTM.

The results below are given as the proportion (X) of these ten runs

that yielded significant clusters at the p,0.005 level (given ten

tests, a is Bonferroni corrected to 0.05/10 = 0.005), either in space

(Xs), time (Xt), or both time and space (Xst). Thus where Xs = 0,

Xt = 0 or Xst = 0 then there is no spatial/temporal/spatiotemporal

clustering beyond that expected due to chance, and where Xs = 1,

Xt = 1 or Xst = 1 then it is statistically most likely that at least one

spatial/temporal/spatiotemporal cluster is present in the data

generated by the model.

Results

Basic model assumptions
The model assumes N = 1000 agents inhabiting a two-

dimensional 10610 grid, with 100 groups each located at a

different Cartesian coordinate and 10 agents in each group. This

organisation was intended to simulate the kind of social structure

often examined in suicide cluster studies (e.g. [5]) and as such may

be abstracted to different levels of social organisation, e.g. a

collection of schools/hospitals within a town, towns within a state,

or states within a country. The population then undergoes T = 100

generations. During each generation, every agent is cycled

through in a random order and commits suicide with a probability

that is determined by various parameters described in the

following sections and summarised in Table 1. If an agent

commits suicide, it is replaced with a new agent and, in the social

learning conditions, affects the surrounding agents’ probabilities of

suicide in the following generation. Each suicide is recorded as a

case and the entire 100-generation dataset is analysed for clusters

using SaTScanTM.

During the analysis it became apparent that analysing 100

generations from an initial no-suicide state generated artifactual

temporal clusters as suicides emerged during the first few

generations due to social learning, homophily or other processes.

Given that real-life suicide cluster data does not start arbitrarily at

zero suicides, in the agent-based model 110 generations were run

in total, the first 10 generations were ignored and generations 11–

110 analysed for clusters.

Each agent is initially given the same fixed probability of

committing suicide, p0. This baseline probability is then modified

according to a set of risk factors, intended to capture individual

differences in suicide rates. For example, data from the U.S. [31]

suggest risk factors of gender (men are 3.9 times more likely to

commit suicide than women), ethnicity (white people are 2.2 times

more likely than non-white people) and age (over 65s are 1.5 times

more likely than 15–24 yr olds). These risk factors appear to

combine additively, e.g. white men aged over 65 have the highest

compounded risk of suicide. Risk factors are represented in the

model as a set of six binary bits, ki, where i indexes the six risk

factors (i = {1, 2…6}) and ki M {12q, 1+q}. Each bit therefore

indicates whether an agent is at higher (1+q) or lower (12q) risk of

suicide (e.g. male vs. female), and are randomly generated for each

agent (except in the case of homophily, see below). The probability

of suicide after modification by the risk factors, p1, is then the

product of these risk factors (Equation 1).

p1~p0 P
i~6

i~1
ki ð1Þ

The magnitude of q thus determines the individual variation in

p1 within the population. Except where indicated otherwise, in the

simulations below q = 0.2; six risk factors with q = 0.2 gave a

suitable range of individual variation across the population, from

p0 (12q)6 = 0.26p0 to p0 (1+q)6 = 2.99p0. Obviously risk factors in

the real world are much more complex than this (e.g. age is

continuous not dichotomous and there may be more or less than

six factors that may interact non-independently). However, the

above implementation captures the essential phenomena of

individual differences in risk factors in an abstract, simplified

way that is easily implemented in silico. An example time series

with a small baseline risk of suicide of p0 = 0.005 and individual

differences of q = 0.2 is provided in Figure 1A, which shows rare

suicide events distributed randomly in time and space.

Social learning (s)
Whenever an agent commits suicide, it increases the probability

that every other agent in its 10-agent group will commit suicide

during the following generation according to the parameter s (s$0)

as in Equation 2, where p2 is the modified probability of suicide

following social learning and xn is the number of agents in the same

group in the previous generation who committed suicide.

p2 ~ p1 1 z xn sð Þ ð2Þ

Thus social learning is assumed to be additive, with each suicide

‘‘observed’’ by an agent increasing their suicide risk p2 in the next

generation by an equal amount. Note that this does not apply to

the new agent that replaced the suicide agent, or any other new

agents in that generation who did not ‘‘observe’’ the suicide in the

Table 1. Definitions of parameters manipulated in the model.

Parameter Definition

p0 Baseline (non-copycat) suicide rate

s Social influence, i.e. the increase in p0 in response to another
agent committing suicide

q The magnitude of individual differences in suicide risk factors

h Homophily, i.e. the extent to which agents in the same group
share risk factors

cp The probability that an agent is a prestigious ‘‘celebrity’’

cs Prestige bias, i.e. the increase in p0 in response to the suicide of
a prestigious ‘‘celebrity’’ (replaces s)

m Similarity bias, i.e. the number of binary risk factors (out of six)
that a model and an observer must share in order for the former
to exert social influence on the latter

r One-to-many transmission, i.e. the radius of the circular area
around a suicide agent across which social influence is exerted

doi:10.1371/journal.pone.0007252.t001
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previous generation. Also note that the (1+ xn s) term in Equation 2

constitutes a measure of relative risk, RR (where RR = p2/p1):

when there is no social learning (s = 0) then there is a relative risk

of 1, and exposed individuals have the same probability of suicide

as unexposed individuals; the relative risk then increases as s

increases.

Social learning within local groups is predicted to result in the

reliable spatiotemporal clustering of suicides as agents acquire

suicide behaviour from members of their local group. Table 2

shows the incidence of spatial, temporal and spatiotemporal

suicide clusters under different values of both p0 and s. First, note

that clusters never occur when s = 0, i.e. in the absence of social

learning (illustrated in Figure 1A). As s increases in magnitude, the

probability of observing clusters increases, but only for sufficiently

large values of p0 (p0 = 0.005 or p0 = 0.01). For these values,

spatiotemporal clusters are most likely to emerge, followed by

purely spatial clusters, and then purely temporal clusters (e.g. for

p0 = 0.005 and s = 5: Xs = 0.2; Xt = 0; Xst = 0.8). Figure 1B shows a

time series of an example spatiotemporal point cluster, in which a

single group temporarily exhibits disproportionately more suicides

than surrounding groups. These results therefore support Hypoth-

esis 1a that social learning generates suicide clusters, and

specifically spatiotemporal point clusters.

Homophily (h)
To simulate homophily, new agents created at the beginning of

the simulation copy the ki bits of a previously created agent in the

same group with a probability h (0#h#1). The first agent in the

group takes random ki values as described above. Thus where h = 0

there is no homophily and agents never share bits beyond that

expected by chance. Where h = 1 there is strict homophily: every

agent in the same group shares identical ki bits and different

groups vary in their bits (i.e. no within-group variation and high

between-group variation). As some of these groups will by chance

have uniformly high risk factors due to the variation caused by q,

these are the groups we would expect to form suicide clusters even

with no social learning. New agents introduced to replace agents

that have committed suicide take the same ki bits of a randomly

selected agent in their group in order to maintain the same level of

homophily throughout the simulation run. The use of binary bits

to simulate homophily is based in part on previous agent-based

simulations [32,33], although in the present model homophily is

assumed to have occurred before the simulations begin, rather

than emerging during the simulations.

Table 3 shows the probability of observing clusters in response

to different levels of h and the parameter q (the extent of individual

differences in baseline suicide risk), which was found to strongly

moderate the effect of h. When there is zero individual variation in

suicide risk (q = 0) then no clusters are observed even under

maximum homophily (h = 1). As q increases, clustering becomes

more frequent under high levels of homophily. Here, purely spatial

clusters are more common than spatiotemporal clusters, while

purely temporal clusters are never observed (e.g. for q = 0.2 and

h = 0.75: Xs = 0.7; Xt = 0; Xst = 0.2). An example of a homophily-

generated spatial cluster is illustrated in the time series in

Figure 1C, in which a single high-risk group repeatedly

experiences a disproportionately high frequency of suicides

throughout the entire simulation run. The model therefore lends

only partial support to Hypothesis 1b, that homophily on suicide

risk factors can mimic the spatiotemporal clustering shown above

Figure 1. Three time series indicating (A) baseline suicide occurrences with no clustering, (B) a spatiotemporal cluster resulting
from social learning, and (C) a spatial cluster resulting from homophily. Each square within the 10610 grid indicates one 10-agent sub-
group, with the colour of the square indicating the frequency of suicide from green (0%) to red (100%). In A, randomly distributed suicide events can
be observed due to the non-copycat probability of suicide (p0 = 0.005). No clustering is detected under these conditions. In B, a spatiotemporal point
cluster generated by social learning (s = 5) is marked with a red circle, and can be seen persisting over a period of three generations from t = 73 to
t = 75 inclusive, thus showing localisation in both time and space. In C there is no social learning (s = 0), but homophily (h = 1) and large inter-group
differences (q = 0.4) causes one sub-group, marked with a red circle, to be composed entirely of high suicide risk agents. This group repeatedly
features suicides throughout the simulation run, forming a spatial (but not temporal) cluster despite the lack of social learning.
doi:10.1371/journal.pone.0007252.g001
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to result from social learning, with the two qualifications that (i)

individual differences in suicide risk factors must be sufficiently

large and (ii) while spatiotemporal clusters are observed, purely

spatial clusters are more likely to be observed, the reverse of that

documented for social learning, in which spatiotemporal clusters

are more likely than purely spatial clusters.

Prestige bias (c)
Two parameters were used to simulate a minority of prestigious

‘‘celebrities’’ whose suicides have an increased social influence on

other agents’ suicide risks. These parameters are cp (0#cp#1),

which specifies the probability that a new agent is assigned

celebrity status, and cs (cs$0), which specifies the increase in p1 of

another agent in the same group as a result of observing a celebrity

agent committing suicide in the previous generation. Thus if xn is

the number of non-celebrity agents in a particular group who in

the previous generation committed suicide, and xs is the number of

celebrity agents in the same group who committed suicide in the

previous generation, then the suicide risk of surviving agents in

that group is now given by Equation 3.

p2 ~ p1 1 z xn s z xscsð Þ ð3Þ

Thus cs replaces s for celebrity agents, and prestige bias is

operating when cs . s such that celebrities have a greater social

influence than non-celebrities.

Table 4 shows the effect of prestige bias on the probability of

clustering, assuming values of p0 and s that would normally not

generate clustering (p0 = 0.01, s = 1; see Table 2). Increasing the

strength of prestige bias cs increases the probability of observing

spatiotemporal clusters, and to a lesser extent purely spatial and

purely temporal clusters (e.g. for cs = 20 and cs = 0.1: Xs = 0.3;

Xt = 0.2; Xst = 1). However, the strength of prestige bias (cs) must

be substantially larger than the non-prestige social learning

strength (s), with a 20-fold increase in suicide risk in response to

celebrity suicides needed to reliably generate spatiotemporal point

clusters. Moreover, Table 4 also shows that the strength of prestige

bias must be larger as the proportion of agents who are prestigious

celebrities gets smaller (i.e. cp decreases). Overall, then, prestige

Table 3. Suicide clustering in response to homophily (h) in
the absence of social learning and under varying levels of
individual variation in (non-copycat) suicide risk factors (q).

q h Xs Xt Xst

0 0 0 0 0

0.25 0 0 0

0.5 0 0 0

0.75 0 0 0

1 0 0 0

0.2 0 0 0 0

0.25 0 0 0

0.5 0 0 0

0.75 0.2 0 0.1

1 0.7 0 0.2

0.4 0 0 0 0

0.25 0 0 0

0.5 0.1 0 0.1

0.75 0.7 0 0.2

1 1 0 1

Parameters are the probability of homophily (h), the individual variation in
suicide risk (q), and the frequency of spatial (Xs), temporal (Xt) and
spatiotemporal (Xst) clusters in replicate simulation runs ranging from 0 (no
clustering) to 1 (maximum clustering). Other parameters: p0 = 0.005, s = 0, cp = 0,
cs = 0, m = 0, r = 0.
doi:10.1371/journal.pone.0007252.t003

Table 2. Suicide clustering in response to varying the
baseline (non-copycat) suicide risk (p0) and the strength of
social learning (s).

p0 s Xs Xt Xst

0.001 0 0 0 0

1 0 0 0

2 0 0 0.1

3 0 0 0

4 0 0 0

5 0 0 0.1

0.005 0 0 0 0

1 0 0 0

2 0 0 0.2

3 0.1 0 0

4 0.4 0 0.5

5 0.2 0 0.8

0.01 0 0 0 0

1 0 0 0

2 0 0.1 0.3

3 0.1 0.1 0.9

4 0.5 0.5 1

5 1 0.4 1

Parameters are the baseline (non-copycat) suicide rate (p0), the strength of
social learning (s), and the frequency of spatial (Xs), temporal (Xt) and
spatiotemporal (Xst) clusters in replicate simulation runs ranging from 0 (no
clustering) to 1 (maximum clustering). Other parameters: q = 0.2, cp = 0, cs = 0,
h = 0, m = 0, r = 0.
doi:10.1371/journal.pone.0007252.t002

Table 4. Suicide clustering in response to different
proportions (cp) and strengths (cs) of prestige bias.

cp cs Xs Xt Xst

0.01 5 0 0 0

10 0 0 0.2

20 0.1 0 0.2

0.05 5 0 0 0.1

10 0.1 0 0.1

20 0.2 0.2 0.7

0.1 5 0 0.1 0.3

10 0.2 0.1 0.5

20 0.3 0.2 1

Parameters are cp, the probability that an agent is a prestigious ‘celebrity’, cs,
the strength of social influence for celebrities, and the frequency of spatial (Xs),
temporal (Xt) and spatiotemporal (Xst) clusters in replicate simulation runs
ranging from 0 (no clustering) to 1 (maximum clustering). Other parameters:
p0 = 0.01, s = 1, q = 0.2, h = 0, m = 0, r = 0.
doi:10.1371/journal.pone.0007252.t004
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bias can mimic non-prestige biased social learning in generating

spatiotemporal clusters when prestige bias is sufficiently strong to

counteract the lower frequency of prestige-based suicides.

Hypothesis 2a, however, states that prestige bias alone should

generate mass (temporal) clusters rather than spatiotemporal

clusters, and thus was not supported by the model.

Similarity bias (m)
Here it is assumed that agents only influence each others’

probability of suicide if they share at least m (0#m#6) of the six ki

bits that describe individual differences in risk factors. When m = 0,

none of the ki bits need to be shared, and similarity bias is not

operating. When m = 6, learners and models must share all six ki

bits in order for the learner’s p2 to be affected by s. Thus the higher

the value of m, the stronger is the similarity bias (i.e. the more

similar the model must be to the learner in order for the learner to

be influenced by their behaviour).

Table 5 shows that increasing m from 0 (no similarity bias) to 6

(agents must be identical to engage in social learning) reduces the

frequency of all types of clusters, with no clusters occurring in the

extreme case where m = 6 (Xs = Xt = Xst = 0). This might be

expected, given that similarity bias reduces the set of models from

whom suicide behaviour can be learned. Given that social learning

generates clusters (Table 2), in blocking social learning similarity

bias also eliminates clusters. Hypothesis 2b, that similarity bias

generates temporal (mass) suicide clusters, is therefore not

supported. However, Table 5 also shows that homophily (h = 1)

removes the inhibitory effect of similarity bias, with clusters

virtually universally observed for large values of m (e.g. for h = 1

and m = 6: Xs = 1; Xt = 0.8; Xst = 1). This is to be expected: when

h = 1, all agents within a sub-group are identical, and so even when

similarity bias is at its strongest (m = 6) social learning still occurs.

However, given that these clusters are spatial as well as temporal,

and that homophily acts to partially mask the clustering effect of

social learning, this further undermines Hypothesis 2b that

similarity bias generates mass (temporal only) clusters as a result

of social learning.

One-to-many transmission (r)
The one-to-many transmission consequences of the mass media

is simulated by manipulating the radius of a ‘‘zone of social

influence’’ across which social learning of suicide behaviour

occurs. Thus when an agent commits suicide, in the following

generation every agent in every group that is within r (0#r#9)

sectors from the suicide agent’s group has their suicide probability

p1 updated according to Equation 3. Where r = 0, only the suicide

agent’s group is affected, as assumed in all of the simulations

discussed previously. Where r = 1, every agent in the eight groups

immediately surrounding the suicide agent’s group is affected (or

fewer groups if the focal group is on the edge of the grid). In the

extreme case where r = 9, the zone of social influence encompasses

the entire grid and all 1000 agents in the population are affected

by every suicide.

Table 6 shows that, for values of p0 and s that would not

normally produce clusters (p0 = 0.005, s = 1), a small increase in r

increases the probability of detecting clusters, predominantly

spatial and spatiotemporal clusters (e.g. for r = 3: Xs = 1; Xt = 0.6;

Xst = 1). This is because there are now more agents who are

affected by s, thus increasing the probability of a cluster occurring.

However, large values of r fail to generate clusters of any kind (e.g.

for r = 9: Xs = Xt = Xst = 0). The reason clusters were not observed

at large values of r was that the widespread social learning causes a

suicide pandemic such that virtually the entire population

constantly committed suicide during every generation. Such a

pandemic is illustrated in Figure 2A. As suicide rates are at a

constantly high rate, there are no clusters in either time or space.

Obviously, such a pattern of constant mass suicide is highly

unrealistic. Overall, Hypothesis 2c, that one-to-many transmission

generates mass clusters, was therefore not supported under any of

these values of r.

However, Table 6 also shows three cases where mass clusters

were observed. In these cases the effect or frequency of copycat

suicide is reduced such that suicide pandemics fail to take off, yet

Table 5. Suicide clustering in response to similarity bias (m)
in the absence of homophily (h = 0) and when homophily is
operating (h = 1).

h m Xs Xt Xst

0 0 1 0.4 1

2 0.4 0.4 1

4 0.1 0.3 0.3

6 0 0 0

1 0 1 0.7 1

2 1 0.5 1

4 1 0.8 1

6 1 0.8 1

Parameters are the probability of homophily (h), the strength of similarity bias
(m), and the frequency of spatial (Xs), temporal (Xt) and spatiotemporal (Xst)
clusters in replicate simulation runs, ranging from 0 (no clustering) to 1
(maximum clustering). Other parameters: p0 = 0.01; s = 5, q = 0.2, cp = 0, cs = 0,
r = 0.
doi:10.1371/journal.pone.0007252.t005

Table 6. Suicide clustering in response to one-to-many
transmission (r).

s M cp cs r Xs Xt Xst

1 0 0 0 1 0.4 0.2 0.5

3 1 0.6 1

6 1 0 1

9 0 0 0

0.1 0 0 0 1 0 0 0

3 0.1 0 0

6 0.1 0.4 0.1

9 0 0.7 0.3

1 5 0 0 1 0 0 0

3 0 0 0

6 0 0.6 0.1

9 0 0.8 0.3

0 0 0.01 5 1 0 0 0

3 0 0.3 0.4

6 0.1 1 1

9 0 1 0.9

Parameters are the strength of social learning (s), the range of one-to-many
transmission (r), the strength of similarity bias (m), the proportion of prestigious
celebrities (cp), the strength of prestige bias (cs), and the frequency of spatial
(Xs), temporal (Xt) and spatiotemporal (Xst) clusters in replicate simulation runs,
ranging from 0 (no clustering) to 1 (maximum clustering). Other parameters:
p0 = 0.005, h = 0, q = 0.2.
doi:10.1371/journal.pone.0007252.t006
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copycat suicides are not so weak or infrequent that clusters do not

occur. The first is when the strength of social learning (s) is directly

reduced (e.g. for r = 9 and s = 0.1: Xs = 0; Xt = 0.7; Xst = 0.3). The

second is where similarity bias operates to reduce the frequency of

social learning events (e.g. for r = 9, m = 5: Xs = 0; Xt = 0.8;

Xst = 0.3). The third is where prestige bias reduces the subset of

agents who have social influence (e.g. for r = 9, cp = 0.01, cs = 5:

Xs = 0; Xt = 1; Xst = 0.9). In each of these cases the probability of

pandemics such as those observed in Figure 2A is reduced either

by reducing the strength of social learning (s = 0.1) or reducing the

frequency of social learning events (cp = 0.01 or m = 5). Instead,

temporary clusters occur that are localised in time before returning

to baseline suicide rates. When r is large, these clusters affect all

agents in the population equally and so are not spatially localised.

Such a mass cluster is illustrated in Figure 2B. Hypothesis 2c is

therefore supported only under the conditions where one-to-many

transmission is strong enough to eliminate spatial clustering and

where social influence is strong enough to generate statistically

significant clusters yet not so strong as to cause population-wide

suicide pandemics.

Discussion

Evidence accumulated during recent years suggests that suicide

may be subject to social learning, potentially resulting in distinct

clustering of suicides in time and/or space. Point clusters are

clusters of suicides in both time and space, and have been

attributed to social learning within local groups [5]. Mass clusters

are clusters of suicides in time but not space, and have been

attributed to prestige and similarity bias (preferentially copying

prestigious or similar models: [19]) and the mass media [11,23].

The present study used agent-based modelling techniques, in

combination with rigorous statistical cluster-detection analyses, to

assess the validity of these proposals. Naturally, abstract simulation

models cannot give definitive answers to questions concerning

copycat suicides that are ultimately empirical. However, they can

help to clarify definitions of different processes with greater

precision than informal verbal explanations, they can lend

plausibility to hypotheses by demonstrating that assumed conse-

quences logically follow from premises, and they can guide future

empirical work by identifying the kinds of variables that might be

important and that future empirical work should focus on.

The prediction that social learning within groups of agents

generates spatiotemporal point clusters was supported. An

additional hypothesis, that homophily generates spatiotemporal

clusters in the absence of social learning because individuals who

are independently at high risk of suicide congregate in space and

form non-social suicide clusters [3], was only partially supported.

Homophily only generated clusters when there was relatively high

individual variation in agents’ (non-copycat) suicide risk, such that

high-risk clusters occur. Furthermore, these homophily clusters

were most likely to be spatial, to a lesser extent spatiotemporal,

and never purely temporal. This makes sense given that groups

maintained their relative levels of risk throughout the simulation,

and there is no reason why the agents would cluster their suicides

in time without social learning. These findings might be used to

guide future empirical tests of Joiner’s [3] homophily hypothesis,

by specifically taking into account the degree of individual

variability in known suicide risk factors (e.g. age, sex, ethnicity)

in a region, and by distinguishing between the spatial-but-not-

temporal clusters generated by homophily and the spatiotemporal

clusters generated by social learning.

A second set of simulations found that neither prestige bias

(preferentially copying prestigious celebrities) nor similarity bias

(preferentially copying others who are similar to oneself) generate

mass (temporal-but-not-spatial) clusters alone. Both prestige and

similarity bias act to reduce the subset of potential models from

whom suicide-related behaviour can be learned. For prestige bias,

this is because only a minority of the population can be, by

definition, prestigious. For similarity bias, requiring that models

must be similar to oneself in some respect reduces the number of

potential models from whom one can learn. Both biases therefore

reduce the frequency of social learning events and reduce the

probability of clustering. This reduction in the probability of

clustering was counteracted under certain conditions, such as

increasing the strength of prestige bias and introducing homophily,

which made neighbouring agents similar to one another and

Figure 2. Two time series illustrating the effects of strong one-to-many transmission (r = 9). In A, when the baseline suicide rate and the
strength of social learning are relatively high (p0 = 0.005, s = 1), a pandemic causes the entire population to commit suicide at extremely high rates
throughout the simulation run. Neither spatial nor temporal clusters are observed under these conditions, which are obviously highly unrealistic. In B,
when the frequency of social learning is reduced by introducing prestige bias (p0 = 0.005, s = 0, cp = 0.01, cs = 5) such that only a small minority of
agents have social influence, mass (temporal but not spatial) clusters emerge. Here, one of the four suicides that occur in generation t = 84 was a
prestigious ‘‘celebrity’’, resulting in a mass cluster in the following three generations. Suicide rates then drop back to baseline pre-cluster levels at
generation t = 88.
doi:10.1371/journal.pone.0007252.g002
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therefore more likely to copy each other even at high levels of

similarity bias. Yet even under these conditions (strong prestige

bias, homophily) mass clusters were no more likely to emerge than

purely spatial clusters or spatiotemporal clusters.

However, the mass media, represented here by one-to-many

transmission, did generate mass clusters, but only under certain

conditions. When social influence was too strong, extensive one-to-

many transmission gave rise to suicide pandemics in which all

agents committed suicide with an extremely high probability.

These pandemics neither contained any clusters nor were very

realistic. Mass clusters did emerge, however, when social influence

was weak, either directly via a reduced strength of social learning,

or indirectly via prestige bias or similarity bias, which both

reduced the subset of models that agents could be influenced by. In

summary, prestige and similarity bias were neither necessary nor

sufficient for mass clusters, while one-to-many transmission was

necessary but not sufficient. The three processes in combination

generated mass clusters, which is consistent with sociological

evidence for each in actual cases of mass suicide clusters. However,

the model highlights the very different roles that each plays: one-

to-many transmission acts to spread suicide behaviour across the

entire population thus eliminating spatial clustering, while prestige

and similarity bias somewhat counter-intuitively (and in contrast to

previous suggestions: [19]) prevent copycat suicides from persisting

and becoming pandemic.

Obviously several assumptions of this model are extreme

simplifications of a complex real-life phenomenon. For example,

the implementation of prestige and similarity bias in the present

model only incorporated certain, simplified aspects of these

processes, ignoring for example potential runaway prestige effects

[22], prestige hierarchies [20] and the consequences of similarity

bias on individual variation [32,33]. There is also no consideration

of the mechanism by which ‘social influence’ occurs: social

influence via the transmission of practical knowledge regarding

suicide methods might have quite different consequences to social

influence via the emotional effect of a close friend’s suicide. A

further source of potential inaccuracy is the mismatch between

parameter values in the model and equivalent real-life estimates.

The baseline suicide rate that is required in the model

(0.001#p0#0.01) to detect statistically significant clusters is higher

than actual national suicide rates (e.g. 11 in 100,000, or 0.00011 in

the USA in 2005: [31]), although this is possibly because of the

much smaller population size in the model compared to actual

national populations. The assumed strength of social influence s

might also be considered large (e.g. s = 5, or for prestige bias

cs = 20) compared to estimates that publicised suicide stories

increase the national suicide rate by just 2.5% [10] or that only 2–

4% of suicides show any spatiotemporal clustering [5]. However, it

should be noted that under some conditions of the model much

smaller values of s reliably generated clustering (e.g. when r = 9,

clusters occurred when s = 0.1), and more detailed individual-level

studies have found relatively large estimates of social influence. For

example, one study found that teenagers who knew another person

who had committed suicide were three times more likely to

commit suicide than teenagers who did not know anyone who had

committed suicide [34]. However, even with simplified assump-

tions and exaggerated parameter values, the findings reported

above can be useful in showing qualitatively how a change in one

variable (e.g. the magnitude of individual differences) interacts

with another (e.g. homophily) to cause some effect (e.g. increased

spatial clustering). These relationships can then be tested in actual

datasets.

In supporting the assumptions made by sociologists that point

and mass clusters can be taken as evidence that suicide may spread

via social learning, the model reinforces the need for efforts to

counter the social transmission of suicide-related information. The

findings related to point clusters suggests that social learning and

homophily generate distinct types of clusters (predominantly

spatiotemporal versus predominantly spatial); by using this

knowledge to distinguish between copycat point clusters and

homophilous point clusters, efforts to reduce social transmission

might be more effectively targeted at the former. The findings

related to mass clusters in particular highlight the need for media

guidelines that restrict the dissemination and glorification of

suicides, as already introduced in many countries [11,23]. More

specifically, the model suggests that increasing the range of one-to-

many transmission (r), increasing the social influence of prestigious

celebrities (cs) and increasing the proportion of the population who

are assigned celebrity status (cp) can all increase the probability of

widespread suicide pandemics. Anecdotally, all three of these

trends appear to be occurring in many countries in recent years:

satellite television and the internet have increased the global range

of the mass media; celebrities such as film actors and pop singers

are being assigned increasing importance relative to politicians and

intellectuals (whose suicides do not elicit copycat suicide attempts);

and reality television programmes are increasing the number of

celebrities within society. This highlights how media guidelines on

suicide reporting will become all the more important in the future.

Supporting Information

Supplementary File S1 The agent-based model (as a zippe-

d.exe file) used to generate the results in the paper.

Found at: doi:10.1371/journal.pone.0007252.s001 (0.35 MB ZIP)
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