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Iron phthalocyanine with coordination induced
electronic localization to boost oxygen reduction
reaction
Kejun Chen1,9, Kang Liu1,9, Pengda An1,2, Huangjingwei Li1, Yiyang Lin1, Junhua Hu 3, Chuankun Jia4,

Junwei Fu1, Hongmei Li1, Hui Liu5, Zhang Lin 5, Wenzhang Li6, Jiahang Li7, Ying-Rui Lu8, Ting-Shan Chan8,

Ning Zhang2 & Min Liu 1✉

Iron phthalocyanine (FePc) is a promising non-precious catalyst for the oxygen reduction

reaction (ORR). Unfortunately, FePc with plane-symmetric FeN4 site usually exhibits an

unsatisfactory ORR activity due to its poor O2 adsorption and activation. Here, we report an

axial Fe–O coordination induced electronic localization strategy to improve its O2 adsorption,

activation and thus the ORR performance. Theoretical calculations indicate that the Fe–O

coordination evokes the electronic localization among the axial direction of O–FeN4 sites to

enhance O2 adsorption and activation. To realize this speculation, FePc is coordinated with an

oxidized carbon. Synchrotron X-ray absorption and Mössbauer spectra validate Fe–O coor-

dination between FePc and carbon. The obtained catalyst exhibits fast kinetics for O2

adsorption and activation with an ultralow Tafel slope of 27.5 mV dec−1 and a remarkable

half-wave potential of 0.90 V. This work offers a new strategy to regulate catalytic sites for

better performance.
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S ince the oxygen reduction reaction (ORR) directly deter-
mines the energy efficiency of fuel cells and metal–air bat-
teries, catalytic activation of oxygen (O2) to accelerate the

kinetics of ORR is crucial for these devices1–6. Though platinum
(Pt)-based catalysts exhibit excellent O2 adsorption and activation
abilities in ORR, the high price and low reserve sternly restrict
their large-scale applications7–10. Exploring non-Pt ORR catalysts
with high efficiency is imperative for further development of fuel
cells and metal–air batteries11–13. Among the reported non-Pt
ORR catalysts, iron phthalocyanine (FePc) molecular catalyst has
aroused much attentions due to its special FeN4 active site and
low reaction energy barrier during ORR processes14–16. However,
FePc possesses a typical two dimensional and plane symmetric
structure, which leads to the symmetric electron distribution in
the well-defined FeN4-active sites and is not conducive to the O2

adsorption and activation17,18. Therefore, breaking the symmetry
of electronic density would be an effective strategy to enhance the
O2 adsorption/activation and then greatly improve the ORR
activity of the FePc catalyst.

From the molecular structure, FePc with a tetracoordinate
planar FeN4 center offers extra coordination sites in the axial
direction19,20, suggesting the symmetric electronic density can be
modulated by suitable axial coordination20–23. Generally, the
organic ligands with rich electron-donating functional groups,
including oxygenic, nitrogenous, and sulfurous species, can be
easily employed to coordinate with FePc24–26. However, organic
ligands are not favored for electrocatalysis due to their poor
conductivity. Modifying the surface of conductive carbon mate-
rials with oxygenic groups for stronger electron donation to FePc
provides an alternative way to overcome the problem of con-
ductivity, and realize axial coordination of O–FeN4 sites17,26,27.
The axial coordination of O–FeN4 can break the electronic dis-
tribution symmetry of Fe, leading to better oxygen adsorption
and activation abilities, and superior ORR activity than those of
the FePc catalyst with symmetric FeN4 sites.

In this work, we design a composite catalyst (FeAB–O) by
coordination of the FePc molecule with oxygen-containing
groups on an O2 plasma-treated acetylene black (AB–O) matrix
to achieve efficient O2 adsorption and ORR. Theoretical calcu-
lations show that the axial O coordination (O–FeN4) sites greatly
break the electronic distribution symmetry of Fe and lead to
electron localization on O. The obvious electronic localization on
O–FeN4 sites is beneficial for the axial O2 adsorption and acti-
vation. X-ray adsorption experiments and the O2 adsorption/
desorption tests confirm the axial O coordination and out-
standing O2 adsorption capacity of the FeAB–O catalyst,
respectively. The ORR performance measurements show that the
optimized FeAB–O catalyst has an ultralow Tafel slope of
27.5 mV dec−1 and a superior half-wave potential of 0.90 V vs.
reversible hydrogen electrode (RHE), which is 30 and 50mV
higher than FePc supported onto acetylene black (AB) without
axial O coordination (FePc/AB) and Pt/C, respectively. This work
opens a new avenue to improve the ORR performance of metal
phthalocyanine catalysts, and inspires electronic localization of
active sites for regulating catalytic reaction activity.

Results
Theoretical calculations. Axial O coordination in FeAB–O and
no O coordination in FePc/AB were clearly showed in the sche-
matic diagrams (Fig. 1a), which leads to obvious differences on
the electron localization functions (Fig. 1b). As expected, the
FePc/AB shows a symmetric charge distribution. Instead, strong
electronic localization on the axial O atom accompanying with
axial asymmetrical electronic distribution of O–FeN4 sites can be
observed in FeAB–O. By analyzing the charge density differences

and spin density (Supplementary Figs. 1 and 2), we found that the
charges number and spin polarization of the symmetrical FeN4

site did not significantly change, due to their weaker interaction.
However, the axial O coordination accepts partial charges from
the FeN4 site to form the electron localization in FeAB–O28–30,
which break the symmetry of electronic density near the FeN4 site
and change the spin polarization of FeN4 site, obviously.

To study the interaction between catalysts and the adsorbed
O2, the O2 adsorption energy, charge density differences (between
catalysts and adsorbed O2), Bader charge analysis, projected
density of states (PDOS), and spin density were performed
(Fig. 1c, Supplementary Figs. 3 and 4)31. As predicted, the
FeAB–O shows much higher O2 adsorption energy of 0.92 eV
than that of FePc/AB with 0.72 eV. Correspondingly, the charge
transfers from FeAB–O and FePc/AB to the adsorbed O2 (Fig. 1c)
are 0.38 and 0.28 e, respectively. In addition, the PDOS and spin
density of O2* adsorption on the FeAB–O show that the 3d
electrons of Fe and the 2p electrons of O form stronger hybrid
states below the Fermi level, and the spin polarization of oxygen
molecule was broken (Supplementary Figs. 3 and 4). These results
reveal that electronic localization on axial O coordination
(O–FeN4 sites) enhances O2 adsorption and activation.

To study the effect of electronic localization on the ORR
processes, the free energies of ORR pathways on FeAB–O and
FePc/AB were calculated (Fig. 1d). The free energy diagrams also
show that the intermediate species adsorbed on FeAB–O is more
stable than that on Fe/AB. Both the rate-determining steps on
FeAB–O and FePc/AB are the oxygen adsorption/activation steps:

O2*þHþ þ e� ! OOH* ð1Þ

Thus, the stable adsorption of reactant (oxygen) can facilitate
the process of ORR. The corresponding overpotential of ORR on
FeAB–O and FePc/AB are 0.70 and 0.80 V, respectively,
suggesting the superior ORR performance of FeAB–O than that
of FePc/AB. Therefore, the axial Fe–O coordination-induced
electronic localization to improve the O2 adsorption and
activation can boost the ORR performance.

Catalyst synthesis and characterization. Inspired by the theo-
retical prediction, the FeAB–O catalyst was prepared by compo-
siting of FePc with the AB–O in dimethyformamide (DMF)
solution. The control sample without O coordination (FePc/AB)
was obtained by direct physical mixture of FePc and AB. X-ray
diffraction (XRD) patterns and Fourier transform infrared (FT-
IR) spectra reveal that both FeAB–O and FePc/AB are comprised
of carbon and FePc (Fig. 2a and Supplementary Fig. 5)32,33.
Scanning electron microscope (SEM) and transmission electron
microscope (TEM) images (Supplementary Figs. 6a–d and 7a)
show uniform carbon nanoparticles, and there is no agglomerate
FePc (Supplementary Fig. 6e) to be detected on the carbon matrix
in FeAB–O. The elemental mapping from Supplementary
Fig. 7b–f display overlapped distribution of C, N, O, and Fe,
verifying the uniform distribution of FePc in FeAB–O.

In order to investigate the presence of axial O coordination,
high-resolution X-ray photon spectroscopy (XPS) spectra and
synchrotron X-ray absorption spectra were conducted (Fig. 2b–d).
The fitted ratio of Fe–O to Fe–N bonds in FeAB–O shows obvious
increase compared with that in FePc/AB34, indicating more axial O
coordination with FeN4 sites in FeAB–O. X-ray absorption near-
edge spectra (XANES) of Fe K-edge (Fig. 2c) show obvious positive
shift in FeAB–O compared with in FePc/AB, indicating the change
of electronic structure of Fe35. Moreover, a pre-edge peak around
7114 eV can be indexed to the square-planar and centrosymmetric
Fe–N4 structure of FePc36–38. It should be mentioned that FeAB–O
exhibits a lower peak intensity of in-plane FeN4 structure than that
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of FePc/AB, which can be attributed to the axial coordination
breaking the in-plane Fe–N4 structure17,39. Additionally, extended
X-ray absorption fine structure (EXAFS) spectra of Fe K-edge
show that the coordination number of Fe in FeAB–O is higher
than the precise four nitrogen-coordination (FeN4) and lower than
the six-oxygen coordination (FeO6) in Fe2O3, respectively40,41.
These characterization results prove the formation of axial O
coordination between the FePc and oxygen group of AB–O in
FeAB-O.

To obtain more structure information, the 57Fe Mössbauer
spectra were collected at 300 K. As shown in Fig. 3a, the
Mössbauer spectrum of FePc/AB has a doublet peaks (D1), which
can be assigned to the square planar FeN4 species20. As for
FeAB–O, there is a small D1 doublet peaks and two obvious D2
and D3 doublet peaks. The D2 peaks are from the O–FeN4

species, and the D3 peaks can be attributed to the O–FeN4 sites
with surface-adsorbed O2 molecule (O–FeN4–O2)39. No clear O2

adsorption signal can be observed in FePc/AB. These results
confirmed the axial O coordination of O–FeN4 and the enhanced
O2 adsorption.

To prove the enhanced O2 adsorption, the O2

adsorption–desorption performances were measured (Fig. 3b–d
and Supplementary Fig. 8). Obviously, FeAB–O exhibits stronger
O2 adsorption response than FePc/AB, suggesting better O2

adsorption ability of FeAB–O than that of FePc/AB42. The O2

temperature-programmed desorption (TPD) measurements were
also performed to investigate the O2 adsorption property.
According to the thermogravimetry analysis (TGA) of FeAB–O
and FePc/AB (Fig. 3c), the weight loss at 380 and 507 °C can be
ascribed to the decomposition of FePc and carbon, respectively.
In Fig. 3d, the O2-desorption peaks located at 340 °C can be
assigned to the release of chemistry-adsorbed O2 in the samples43.
Interestingly, the O2-desorption peak of FeAB–O is higher than
that of FePc/AB, indicating the robust O2 adsorption ability of
FeAB–O.

Evaluating catalyst performance for ORR. To identify the
electrochemical ORR properties of catalysts, the cyclic voltam-
metry (CV) was measured in 0.1 M KOH. As presented in Fig. 4a,
the CV curve of FeAB–O in N2-saturated electrolyte contains two
pairs of peaks located at 0.8 and 0.3 V. The former is indexed to
the reduction/oxidation peaks of Fe3+/Fe2+, the latter is signed to
redox couple of Fe2+/Fe+ 38. With the increasing of dissolved O2

molecule, obvious new reduction peaks located at about 0.9 V
occur and increase, even beyond the reduction peak of Fe3+/Fe2+,
suggesting the active site of variable O–FeN4. However, the FePc/
AB and the pristine FePc display was negligible in these two
groups of peaks in Supplementary Fig. 9a, suggesting that the
oxygenic carbon coordination with FePc via Fe–O is beneficial for
electronic delocalization of Fe to form the active site. The CV
curves of the control samples under N2 and O2-saturated elec-
trolyte were also conducted and shown in Supplementary
Fig. 9b–d. All the samples exhibit obvious oxygen reduction peaks
and FeAB–O displays the most positive potential, indicating the
optimal ORR performance of FeAB–O.

Next, the linear scan voltammetry (LSV) curves of FeAB–O
and FePc/AB were conducted to further study their ORR
properties (Fig. 4b). The theoretical calculations, electrochemical
impedance spectroscopy (EIS), and resistance tests (Supplemen-
tary Fig. 10 and Supplementary Note 1) demonstrate that the
electrons can transfer from the electrode to FePc molecule
through the Fe–O bonds with the help of electric field. Thus,
FeAB–O presents a remarkable E1/2 of 0.90 V and a calculated
kinetic current density (Jk) of 24.0 mA cm−2 at 0.88 V, which are
much superior to FePc/AB (E1/2= 0.87 V, Jk= 1.9 mA cm−2 at
0.88 V) and Pt/C (E1/2= 0.85 V, Jk= 4.0 mA cm−2 at 0.88 V).
Instead, the AB, AB–O, and FePc only exhibit inferior half-wave
potentials (E1/2) and limited current density (JL) in Supplemen-
tary Fig. 11a. Moreover, FePc is physically mixed with AB–O
(FePc/AB–O) to exclude the effect of carbon substrate. As
expected, the FePc/AB–O displays the alike performance of FePc/
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AB in Supplementary Fig. 11b. Based on these results, the
introduction of axial O coordination in O–FeN4 sites can greatly
boost the performance of ORR. The ORR catalytic activity of
FeAB–O is superior to most of reported Fe–N–C catalysts in
recent literatures (Supplementary Table 1). Notably, the FeAB–O
has the most excellent Tafel slope of 27.5 mV dec−1, which is
lower than those of FePc/AB (37.5 mV dec−1) and Pt/C (71 mV
dec−1), confirming the fastest kinetic process of FeAB–O for O2

adsorption/activation and ORR.
The selectivity of ORR in FeAB–O was studied by rotating ring

disk electrode (RRDE) measurements. Compared with Pt/C, the
higher electron transfer number and lower H2O2 yield can be
observed in FeAB–O (Fig. 4e), indicating the ORR on FeAB–O is
a typical four-electron reduction process, and the main product is
H2O.

To explore the practical application of FeAB–O, long-term
catalytic stability and methanol tolerance tests were performed at
reduced potential of 0.4 V vs. RHE. As for the traditional Pt/C
catalyst, Pt nanoparticles tend to aggregate after long-term
ORR measurements, which leads to a decrease in activity
and durability44. In this work, the ORR current density of
FeAB–O maintained a level of 99.2% for over 10,000 s
chronoamperometric I-t tests, exceeding that of Pt/C (93.5%)

and FePc/AB (88.3%) (Fig. 4f and Supplementary Fig. 12a). The
outstanding durability of FeAB–O for ORR can be attributed to
the high dispersity and stability of the O–FeN4 sites17,45. No
current oscillation was observed in FeAB–O when methanol is
added (Supplementary Fig. 12b), while a clear decline of current
appears in Pt/C. A home-made aluminum–air battery was used to
evaluate the practical performance of FeAB–O. The battery with
FeAB–O as cathode catalyst shows higher open potential than
that with Pt/C as cathode catalyst (Supplementary Fig. 12c). The
corresponding discharge plots of long-term discharge were
performed at current density of 50 mA cm−2. As shown in
Supplementary Fig. 12d, the FeAB–O exhibits superior perfor-
mance than that of the commercialized Pt/C. These results
demonstrated that FeAB–O has excellent potential for practical
application.

To further confirm the importance of the axial O coordination
of O–FeN4, FeAB with less axial O coordination was prepared by
compositing of FePc with AB treated by O2-plasma for only 10
min in DMF solution. XRD and FT-IR characterization results
(Supplementary Fig. 13a, b) prove the presence of FePc and
carbon in FeAB. The Fe2p XPS spectrum (Supplementary
Fig. 13c) indicates the presence of axial O coordination in FeAB.
The EXAFS results (Supplementary Fig. 13d) show the order of
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Fe coordination number is FeAB–O > FeAB > FePc/AB. These
structural characterizations confirm the axial O coordination in
FeAB is between FeAB–O and FePc/AB. As we expected, the
electrochemical ORR performance of FeAB (Supplementary
Fig. 14a, b) is also between FeAB–O and FePc/AB, confirming
the axial O coordination induced the electronic localization,
which improves the O2 adsorption and then boosts ORR activity
of catalysts.

Discussion
In summary, we proposed a coordination-induced electronic
localization strategy to tune the O2 adsorption ability and ORR
performance of FeN4 sites in FePc. DFT calculations demon-
strated that the axial O coordination of O–FeN4 sites breaks the
symmetrical electronic density and promotes the electronic
localization of Fe sites. XPS, XAS, Mössbauer spectra, and O2

adsorption/desorption processes indicated the enhanced ORR
catalytic activity is ascribed to the strengthened O2 adsorption
and accelerated charge transfer from Fe to O2 molecule. As a
result, the FeAB–O with optimal axial O coordination exhibited a
record Tafel slope of 27.5 mV dec−1 and one of the best half-wave
potential of 0.90 V vs. RHE, which was much superior to com-
mercial Pt/C. The axial O coordination number is positively
correlated to ORR performance. This work provides a new
strategy to regulate the electronic localization property of catalytic
active sites for affecting the adsorption of the reactants and
accelerating catalytic reactions.

Methods
Chemicals and materials. FePc, dimethylformamide (DMF), potassium chloride
(KCl), indium hydroxide (In(OH)3), zinc oxide (ZnO), sodium stannate
(Na2SnO3), and potassium hydroxide (KOH) were bought from Shanghai Aladdin
reagent co. Ltd. Pt/C (20 wt%) and the raw AB were purchased from Alfa Aesar
and Shenzhen Kejing co. Ltd, respectively. All of the chemical reagents were used as
received without any other purification.

Synthesis of catalysts. The surface of the AB was decorated with oxygen-
containing groups by O2-plasma treatment. Typically, the raw AB was treated in
the O2 plasma for 30 min with 100W generator power (denoted as AB–O). Then,
the as obtained AB–O (25 mg) was added into 60 mL of DMF solution encom-
passed 5 mg of FePc. To get the uniform suspension, the mixture solution was
subjected to ultrasonical treatment for 1 h and then stirred overnight at room
temperature. Finally, the FeAB–O composite was collected by filtration of the
resulting solution and washing with ethanol. The obtained sample was dried in
vacuum at 60 °C for 12 h. The FeAB with less axial O coordination was obtained by
the same steps just by replacing the AB–O matrix with AB treated by O2-plasma
for 10 min at 100W. The FePc/AB and FePc/AB–O were obtained by direct
physical mixture of FePc with the AB and AB–O, respectively.

Characterizations. XRD data was collected by using a RIGAKU Rint-2000 X-ray
diffractometer (graphite monochromatized Cu-Kα radiation with λ= 1.54184 Å).
X-ray photoelectron spectroscopy (XPS) was measured by Thermo ESCALAB
250XI. FTIR measurements were performed by the Thermo iS50. The thermo-
gravimetric experiments were conducted on TG 209 F3 Tarsus under the air
atmosphere from the room temperature to 900 °C with heating rate of 10 °C min−1.
Scanning electron microscopy (SEM) was measured by a Quanta 200 field-emission
SEM system. The transmission electron microscopy (TEM) images were achieved
on Tecnai G2 F20. The 57Fe Mössbauer spectra were achieved by using an MS-500
instrument (Germany, Wissel) in transmission geometry with constant acceleration
mode at room temperature. The O2-TPD of the samples was measured using
AutoChem II 2920 apparatus. The catalyst (100 mg) was pretreated at 150 °C and
purged with helium (He) for 2 h, and then cooled down to room temperature. And
then, the catalyst was purged with 5% O2/He at 25 °C for 2 h. Finally, the deso-
rption profile of O2 was recorded online under the atmosphere of He.

Electrochemical measurements. All of the electrochemical experiments were
implemented with an electrochemical station of Auto Lab in a typical three-
electrode system. The Ag/AgCl (saturated KCl) electrode, carbon rod, and glassy
carbon electrode (GCE) were used as the reference electrode, counter electrode, and
working electrode, respectively. In this work, all electrode potentials were

referenced to the reversible hydrogen elecrtrode (RHE) based on the following
calculation equations:

ERHE ¼ E0
AgCl þ EAgCl þ 0:059 ´ pH ð2Þ

where E0
AgCl (saturated KCl)= 0.197 V (25 °C).

The catalyst ink was prepared by ultrasonic dispersion of 4 mg of catalyst in a
hybrid solution included 60 µL of Nafion (5 wt%), 470 µL of alcohol, and 470 µL of
H2O. All of the catalysts were cast onto the RDE (0.19625 cm−2) and RRDE
(0.2475 cm−2) with a loading amount of 0.2 mg cm−2, and contrast sample of Pt/C
was dropped RRDE with a loading amount of 0.1 mg cm−2. Cyclic voltammograms
(CV) measurements were performed with scan rate of 50 mV s−1 in the N2 or O2-
satureated 0.1 M KOH solution. The catalytic activity of samples was evaluated by
using linear sweep voltammetry (LSV) at scan rate of 10 mV s−1 with different
rotation rates. The electron transfer number (n) of catalysts was calculated through
the Koutecky–Levich (K–L) equations:

1
J
¼ 1

JL
þ 1
Jk

¼ 1

Bω1=2
þ 1
Jk

ð3Þ

B ¼ 0:62nFD2=3
o ν�1=6Co ð4Þ

where J, JL, and Jk represents the measured, diffusion-limiting, and the kinetic
current density, individually. ω is the electrode-rotating angular velocity, F is
the Faraday constant (96,485 Cmol−1), Do is the diffusion coefficient of O2

(1.9 × 10−5 cm2 s−1 in 0.1 M KOH), ν is kinetic viscosity (0.01 cm2 s−1) of the
electrolyte, and Co is the density of O2 (1.2 × 10−6 mol cm−3).

Tafel slope was achieved from the Tafel equation:

E ¼ aþ b log Jkð Þ ð5Þ
where E is the applied potential of LSV tests, a is a constant, b is the Tafel slope and
Jk is the kinetic current density. Moreover, the yields of peroxide species and the
electron transfer number can be calculated from the LSV of RRDE measurement at
1600 rpm via as following equation:

n ¼ 4
ID

ID þ IR=N
ð6Þ

H2O2ð%Þ ¼ 200
IR=N

ID þ IR=Nð Þ ð7Þ

where ID and IR is the disk current and ring current, respectively. The N represents
the current collection efficiency equaled to 0.37 of the RRDE in our experimental
system.

Assembly of Al–air batteries. In a typical Al–air batteries, the polished aluminum
plate is used as anode. The electrolyte is 6 M KOH contained 0.0005M In(OH)3,
0.0075M ZnO, and 0.01 M Na2SnO3; the gas diffusion electrode with catalyst-
loading amount of 2.0 mg cm−2 is employed as cathode in a home-made cell
model. As a control, the commercial Pt/C (20 wt%) was also assembled in
similar mode. The measurement of batteries was performed on the LAND testing
system.

Computation methods. Our simulation study was calculated by using the Vienna
ab initio simulation package (VASP)46. The PAW potentials describe the inter-
action of electron–ion47. The generalized gradient approximation of
Perdew–Burke–Ernzerhof (PBE) was employed to describe the electron–electron
exchange and correlation functional48. A plane wave cutoff energy of 400 eV was
applied in our calculations. A rectangular supercell containing 180 carbon atoms
are used as substrate. Spin-polarized calculations were employed for all systems.
van der Waals (VDW) forces were corrected with the D2 method of Grimme49.
The Gamma-point-only grid was used during the optimization. The convergence
criterion was set 0.02 eV Å−1 for the force and 10−5 eV per atom for energy.
We used the correlation energy (U) of 4 eV and the exchange energy (J) of 1 eV
for Fe 3d orbitals50.

The Gibbs free energy can be expressed as

ΔG ¼ ΔE þ ΔZPE� T � ΔS ð8Þ
where ΔE is the reaction energy calculated by the DFT methods, ΔZPE the changes
in zero-point energies, and ΔS the entropy during the reaction, respectively.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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