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Abstract: The human embryonic lethal abnormal vision-like protein, HuR, is a member of 

the Hu family of RNA-binding proteins. Over the past decade, this ubiquitously expressed 

protein has been extensively investigated in cancer research because it is involved in the 

regulation of mRNA stability and translation in many cell types. HuR activity and function 

is associated with its subcellular distribution, transcriptional regulation, translational  

and post-translational modifications. HuR regulation of target mRNAs is based on the 

interaction between the three specific domains of HuR protein and one or several U- or 

AU-rich elements (AREs) in the untranslated region of target mRNAs. A number of 

cancer-related transcripts containing AREs, including mRNAs for proto-oncogenes, 

cytokines, growth factors, and invasion factors, have been characterized as HuR targets. It 

has been proposed that HuR has a central tumorigenic activity by enabling multiple cancer 

phenotypes. In this review, we comprehensively survey the existing evidence with regard 

to the diverse functions of HuR in caner development and progression. The current data 

also suggest that HuR might be a novel and promising therapeutic target and a marker for 

treatment response and prognostic evaluation. 
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1. Introduction 

HuR is a member of the embryonic lethal abnormal vision (ELAV) family of RNA-binding proteins 

(RBPs) originally identified in Drosophila as essential for neural development [1]. It is the product of 

the human ELAVL1 gene located on human chromosome 19p13.2 and was first cloned in 1996 [2,3]. 

The HuR protein is extensively expressed in many cell types, including adipose, intestine, spleen, and 

testis [4]. By contrast, other ELAV family members in mammals including HuB, HuC and HuD  

are almost exclusively found in neuronal tissues [4]. The expression of HuR and other RBPs are 

perturbed in several pathological conditions including human cancer, such as breast cancer, lung 

cancer, mesothelioma, ovarian cancer and colon cancer [5–7].  

HuR has been reported to regulate the expression of many molecules by different post-transcriptional 

mechanisms, which are important components of eukaryotic gene expression, including mRNA 

trafficking, mRNA decay, and protein translation (Figure 1). Increasing evidence supports HuR is the 

first RBP that is shown to play a critical role in carcinogenesis and cancer progression by functioning 

as either an oncogene or a tumor suppressor regulating the expression of various target genes. Clinical 

data suggest that HuR overexpression is significantly related to specific clinicopathological features, 

advanced stage, positive lymph nodes, and poor survival in cancer patients. This review summarizes 

the recent findings and associations between HuR and cancer, especially in cancer development, 

progression, treatment responses, and prognosis. 

Figure 1. The diverse functions of HuR in cancer development and progression through 

the regulation of the stability or translation of target mRNAs that encode multiple  

cancer-related proteins. EGF, epidermal growth factor; GM-CSF, granulocyte-macrophage 

colony-stimulating factor; ER, estrogen receptor; COX-2, cyclooxygenase-2; GATA3, 

Trans-acting T-cell-specific transcription factor; ProTα, prothymosin α; VEGF, vascular 

endothelial growth factor; TSP1, thrombospondin 1; MMP-9, matrix metalloproteinase-9; 

uPA, urokinase-type plasminogen activator; uPAR, urokinase-type plasminogenactivator 

receptor; IL-6, interleukin-6; TNF-α, Tumor necrosis factor-α; IL-13, interleukin-13; TGF-β, 

transforming growth factor-β; iNOS, inducible NO synthase; TLR-4, toll-like receptor-4. 
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2. Post-Transcriptional Regulation of Gene Expression by HuR 

The regulation of a large subset of target mRNAs and protein translation by HuR is dependent on 

the molecular structure of the HuR protein. HuR binds to the cis-acting regulatory elements found the 

5'untranslated region (UTR) or 3'UTR of the unstable mRNAs. As a trans-acting factor, HuR protein 

can recognize and bind the adenylate/uridylate (AU)- and U-rich elements (AREs) in the UTR  

of mRNA or poly (A) tail through three classic RNA recognition motifs (RRMs) [8]. Because  

ARE-mediated rapid degradation of mRNA is an important mechanism of post-transcriptional gene 

regulation in mammalian cells [9], the direct interaction between the HuR protein and AREs confers 

post-transcriptional regulation of gene expression by increasing both mRNA stability and/or protein 

translation [10].  

During the regulation of mRNA stability, several RBPs, including AU-rich element RNA-binding 

protein 1 (AUF1), butyrate response factor 1 (BRF1), tristetraprolin (TTP), and KH-type splicing 

regulatory protein (KSRP), promote ARE-mRNA decay through the recruitment of the ARE-bearing 

mRNA to sites of mRNA degradation [11]. Similar to HuR, recently identified heterogeneous nuclear 

ribonucleoproteins (hnRNPs) are another family of RBPs [12]. HnRNP A1, hnRNP B1 and hnRNP K 

were aberrantly expressed in human cancer. Cytoplamic localization of hnRNPs were reported as 

effectors regulating cancer invasion and patient outcome [13–16], and interacted with HuR in  

heat-induced cells [17].  

Recent studies linked the interactions between HuR and microRNAs (miRNAs). Functional 

investigations show that HuR and miRNAs might have the same mRNA functional site [18]. 

Competitive miRNAs, including miR-122, miR-548c, miR-494, miR-16, and miR-331, antagonize  

the contribution of HuR to the stabilization of target mRNA. Whether the stability of mRNA is 

increased or decreased depends on the binding strength of HuR and particular miRNAs with target 

mRNAs [19–23]. Conversely, cooperative miRNAs, such as let-7, miR-19 and the RNA-induced 

silencing complex (RISC), leads to the downregulation of protein production [24–26].  

3. Shuttling of HuR from the Nucleus into the Cytoplasm 

It is well known that intracellular HuR is predominantly localized within the nucleus of resting 

cells. Under various stimulations, HuR can bind to ARE-containing mRNAs in the nucleus. The  

HuR-mRNA complex is then transported to the cytoplasm. Once HuR is bound to the target transcript, 

it stabilizes the message and protects it from rapid degradation by exonucleases. HuR releases itself 

from the mRNA and returns rapidly to the nucleus after completing the process of stabilizing mRNA 

(Figure 2). This translocation from the nucleus to the cytoplasm appears to be an important aspect of 

HuR stabilizing function. Many stress stimulators have been reported to induce HuR shuttling, 

including ultraviolet radiation (UVC), lipopolysaccharide (LPS), chemical compounds, alterations  

in the microenvironment, cytokines, viral infection and hormone treatment [27–58]. Most of these 

reported exogenous stimuli result in a significantly increased cytoplasmic accumulation of HuR 

protein (Table 1).  
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Figure 2. Autoregulation of HuR expression and function and its roles in regulating target 

mRNAs encoding cancer-related factors. Nuclear factor-κB and Smad control the HuR 

mRNA expression at the transcriptional level. HuR mRNA is also regulated by other RBPs 

(such as TTP and RNP C1), miRNAs and HuR protein itself, which influence HuR 

stabilization or protein translation. The nuclear import of HuR protein is associated  

with the activation of AMPK and elicits a dual modification of importin α1via acetylation 

on K22 and phosphorylation on S105. In response to various stimuli, HuR can be  

exported from the nucleus to the cytoplasm, where it stabilizes the target mRNAs. The 

nucleocytoplasmic shuttling mechanism of HuR is linked to HuR phosphorylation, 

ubiquitinylation, methylation and HuR cleavage, which effects the interaction of HuR with 

mRNA or/and its cytoplasmic accumulation. In addition, other RBPs and several miRNAs 

compete or cooperate with HuR, thereby their interaction affects the stability or translation 

of target mRNAs that encode proteins with multiple roles in cancer development and 

progression. NF-κB, nuclear factor-κB; TTP, tristetraprolin; miRNA, microRNA; RRMs, 

RNA recognition motifs; RBPs, RNA-binding proteins. 

 

The mechanism by which HuR shuttles from the nucleus to the cytoplasm is incompletely 

understood. However, several possible signaling pathways and coordinated molecules are involved 

(Table 2 and Figure 2). First, a novel shuttling domain, termed the HNS, is located in the hinge region 

between its second and third RRM. This domain allows HuR to shuttle back and forth between the 

nucleus and the cytoplasm. Second, several transport machinery components including transportins 

and the chromosome region maintenance 1, affect the nucleocytoplasmic shuttling of HuR [59,60]. 

Third, a number of kinases including checkpoint kinase 2 (Chk2), cyclin-dependent kinase 1 (Cdk1), 

protein kinase C (PKC), and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylate HuR at 
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serine/threonine residues and alter its subcellular localization [61–65]. Methylation of the HuR hinge 

region by coactivator-associated arginine methyltransferase 1 (CARM1) [66], and ubiquitination of 

HuR by an unknown E3 ligase [67], affect the cytoplasmic accumulation of HuR protein. In addition, 

the phosphorylation and methylation of the HuR change the binding activity of HuR with target 

mRNA [61,62,64]. In contrast to cytoplasmic accumulation, nuclear import of HuR protein is 

associated with the activation of AMPK, which elicits a dual modification of importin α1via 

acetylation on K22 and phosphorylation on S105 [42,68,69]. 

Table 1. Exogenous regulators that influence the expression and function of HuR. 

Regulators Effect on HuR References 

UVR Cytoplasmic accumulation ↑ [27,28] 
Compound   

Ethanol Cytoplasmic accumulation ↑ [29,30] 
LPS Cytoplasmic accumulation ↑ [31,32] 

SAHA Protein ↓ [44] 
Tamoxifen Cytoplasmic accumulation ↑ [33] 

Gemcitabine Cytoplasmic accumulation ↑ [34] 
Nitric oxide mRNA ↓, protein ↓ [23] 

HIV protease inhibitor Cytoplasmic accumulation ↑ [35] 
Proteasome inhibitor MG132 Cytoplasmic accumulation ↑ [36] 

Microenvironment change   
Hypoxia Cytoplasmic accumulation ↑ [37] 

Amino acid limitation Cytoplasmic accumulation ↑ [38] 
Bile salts Cytoplasmic accumulation ↑ [39] 

Serum Cytoplasmic accumulation ↑ [40] 
Polyamines depletion Cytoplasmic accumulation ↑ [41–43] 

DHA Cytoplasmic accumulation ↑ [44] 
Nature reagent   

Green tea Cytoplasmic accumulation ↓ [45,70] 
Ginkgo biloba extract Cytoplasmic accumulation ↓ [71] 

KPS-A Cytoplasmic accumulation ↓ [47] 
Triptolide  Cytoplasmic accumulation ↓ [48] 
Cytokine   

IL-1β Cytoplasmic accumulation ↑ [49] 
TNF-α Cytoplasmic accumulation ↑ [50] 
TGF-β1 Cytoplasmic accumulation ↑ [51] 

Virus infection   
HPV Cytoplasmic accumulation ↑ [52,53] 

Alphavirus Cytoplasmic accumulation ↑ [54] 
Hormone   

ACTH Cytoplasmic accumulation ↑ [55] 
Androgens Cytoplasmic accumulation ↑ [56,57] 

17β-estradiol Cytoplasmic accumulation ↑ [58] 

UVR, ultraviolet radiation; LPS, lipopolysaccharide; SAHA, suberoylanilide hydroxamic acid; DHA, 

docosahexaenoic acid; KPS-A, kalopanaxsaponin A; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; 

TGF-β1, transformation growth factor-β1; HPV, human papillomavirus; ACTH, adrenocorticotropic hormone. 
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Table 2. Endogenous regulators that influence the expression and function of HuR. 

Regulators Mechanism Effect sites Effect on HuR References 

NF-κB Transcriptional Promoter HuR mRNA ↑ [72] 

Smad Transcriptional Promoter HuR mRNA ↑ [73] 

Kinases     

PKCα Phosphorylation S158, S221 RNA-binding ↑, cytoplasmic accumulation ↑ [61] 

PKCδ Phosphorylation S318, S221 RNA-binding ↑, cytoplasmic accumulation ↑ [62] 

Cdk1 Phosphorylation S202 Cytoplasmic accumulation ↑ [63] 

Chk2 Phosphorylation S88, S100, T118 RNA-binding ↑ [64] 

p38 MAPK Phosphorylation T118 Cytoplasmic accumulation  [65] 

PI3K-AKT Transcriptional. Promoter p65/RelA binding to a putative NF-κB binding site in the HuR promoter ↑ [72] 

AMPK Transcriptional K22 and S105 of importin α Nuclear import via phosphorylation and acetylation of importin α ↑ [41,68,69] 

miRNAs     

miR-9 Transcriptional Unknown HuR mRNA↓; HuR protein ↓ [74] 

miR-200c Unknown Unknown Interaction of HuR and mRNA ↓ [75] 

miR-9 Post-transcriptional 3'UTR HuR mRNA↓; HuR protein ↓ [76] 

miR-34a Post-transcriptional 3'UTR HuR mRNA↓; HuR protein ↓ [77] 

miR-16 Translational 3'UTR HuR protein ↓ [78] 

miR-125a Translational 3'UTR HuR protein ↓ [79] 

miR-519 Translational 3'UTR HuR protein ↓ [80–82] 

Proteins     

CARM1 Methylation R217 RNA-binding ↑, cytoplasmic accumulation ↑ [66] 

HuR Ubiquitinylation  K182 Protein stability ↑ [67] 

HuR Post-transcriptional polyadenylation site mRNA stability ↑ [83] 

Hu (B-D) Post-transcriptional polyadenylation site mRNA stability ↑ [84] 

TTP Post-transcriptional 3'UTR mRNA stability ↓ [83] 

pp32 Interaction Not indicated RNA-binding ↓ [85] 

RNP C1 Post-transcriptional RRM, 3'UTR RNA-binding ↑, mRNA stability ↓ [86,87] 

Mdm2 Ubiquitinylation K283, K313, K326 Protein stability ↑ [88] 

Hsf1 Not indicated Not indicated HuR protein ↑ [89] 

NF-κB, nuclear factor-κB; PKC, protein kinase; Cdk1, cyclin-dependent kinase 1; Chk2, checkpoint kinase 2; p38 MAPK, p38 mitogen-activated protein kinase; PI3K-AKT, 

phosphatidylinositol 3-kinase AKT; AMPK, AMP-activated protein kinase; miRNA, microRNA; CARMI, coactivator-associated arginine methyltransferase 1; TTP, tristetraprolin; pp32, 

protein phosphatase 32; Mdm2, murine double minute 2; Hsf1, heat shock transcription factor. 
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4. The Autoregulation of HuR Function and Expression 

Although HuR has a crucial role in the post-transcriptional regulation of many transcripts, the 

regulation of its own function and expression remains obscure. As shown in Table 2 and Figure 1, HuR 

is controlled by many molecules at multiple levels. First, transcriptional regulation is essential for 

controlling the expression of HuR mRNA. The activation of AKT increases the binding of p65/RelA to 

a putative nuclear factor (NF)-κB binding site in the HuR promoter. This binding simultaneously 

enhances the cytoplasmic import of HuR and increases the stability of HuR targeted transcripts [72]. 

Another well-characterized transcriptional regulator is Smad, which was reported to bind to a motif in 

the GC rich 5'UTR of HuR and increases HuR mRNA expression [73]. Additionally, HuR mRNA  

is directly regulated by TTP, RNP C1, Mdm2, pp32 and Hsf1 [85–90]. Interestingly, HuR can be 

regulated by other ELAV family members and HuR itself. This regulation affects the stability of  

HuR mRNA and protein by influencing the HuR-mRNA interaction, mRNA stability, or protein 

production [83,84,90]. TTP is also an important RNA-binding protein and a TTP-HuR imbalance 

results in increased cell invasiveness through upregulation of cancer invasion factors including  

uPA, MMP-1, and MMP-13 [91]. Caspase-initiated HuR cleavage can affect the integrity of HuR  

protein [74]. Recently identified miRNAs, such as miR-9, miR-34a, miR-16, miR-125a, miR-29a, 

miR-200c, and miR-519, play crucial roles in regulating HuR expression through interaction of 

miRNAs with specific sites in the 3'UTR and 5'UTR of the HuR mRNA. The miRNAs lead  

to reduced expression of HuR mRNA and protein or alter the association of HuR with target  

mRNAs [74–82]. Interestingly, HuR can autoregulate its function and HuR can recognize and stabilize 

a long polyadenylation variant of HuR mRNA containing an ARE [83,90], or affect the cytoplasmic 

shuttling of HuR mRNA [92]. In contrast to TTP, genetic alterations of the ELAVL1 gene do not 

routinely occur in tumor cells or primary tumors [72,93].  

5. HuR Expression in Cancer 

The HuR protein is encoded by the ELAVL1 gene located on chromosome 19p13.2, which is a 

region correlated with various translocations and oncogenic mutations including T cell receptor  

gene [94], dynamin 2 [95], and intercellular adhesion molecules [96]. This gene was originally 

identified and cloned in 1996 [2]. Consistent with its function as an mRNA stability protein, high 

levels of cytoplasmic HuR have been found in oral, colorectal, gastric, lung, breast, ovarian, renal, skin 

carcinoma, and mesothelioma [97–109]. These studies revealed the association of HuR with cancer 

using immunohistochemical, RT-PCR or western blotting analysis. Clinical analyses showed that 

breast cancer cells with cytoplasmic HuR expression were usually associated with larger tumor size, 

estrogen receptor negativity, progesterone receptor negativity, p53 positivity and high tumor  

grade [110,111]. HuR was also associated with tumor stage in uterine cervical carcinoma [112] and 

with high tumor grade and poor differentiation in non-small cell lung carcinoma [102]. 

In cell culture studies, HuR expression is predominantly located in the nucleus of cancer cells and 

only small amounts of HuR are present in the cytoplasm. The immunohistochemical analyses for  

HuR localization show that HuR staining can be cytoplasmic, nuclear, or nuclear and cytoplasmic. 

Medium-to-strong HuR expression occurs in the nucleus of cancer cells as well as stromal cells 
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adjacent to tumor, including macrophages and fibroblast cells. A weak or medium expression level of 

HuR is also found in the cytoplasm of cancer cells [97]. By contrast, there are few cells with a positive 

expression of cytoplasmic HuR or a lack of cytoplasmic HuR accumulation in normal tissues. Stromal 

cells and adjacent non-neoplastic tissue do not show cytoplasmic expression of HuR [97]. 

6. HuR Expression in Pre-Malignant Lesions 

The status of HuR expression in human malignancies is apparently correlated with its expression in 

normal tissues and pre-malignant lesions. Blaxall et al., first detected elevated HuR expression in 

urethane-induced neoplasia and butylated hydroxytoluene-induced compensatory hyperplasia in mouse 

lung tissue [113]. Non-cancer, precancerous lesions and tumor tissues exhibit a distinctive HuR 

expression profile that may have practical implications [114,115]. A comparison of HPV-induced  

low-grade and high-grade pre-malignant lesions and cervical cancers showed the expression of all 

RBPs increased in neoplastic lesions. The highest RBPs expression occurred in cervical cancers [116] 

with a similar expression profile to proliferating cell nuclear antigen. These findings indicate the 

nucleocytoplasmic translocation and cytoplasmic presence of HuR is necessary for its activity and 

function in several types of carcinomas.  

The cellular and subcellular localization of HuR may be a surrogate for HuR function in cancer 

development and progression. The mechanism underlying HuR mediated carcinogenesis and cancer 

development remains unclear. However, its mRNA stabilizing function is required for cancer 

development. In 2003, López de Silanes et al., found HuR-overexpressing RKO cells produced larger 

tumors than control cells. A reduction in HuR expression through RNA interference or antisense 

significantly slowed the growth of colon tumors in nude mouse xenografts [117]. The increased 

expression of HuR occurs in virtually all cancer tissues compared to the normal-tissue counterparts and 

collections of HuR-regulated mRNAs were identified in colon cancer cells by cDNA arrays [118].  

An important carcinogenesis related factor is cyclooygenase-2 (COX-2). This protein is an 

inducible enzyme critically involved in the synthesis of prostaglandins. The prostaglandins have been 

widely studied because HuR regulates their abnormal expression, especially in gastric and colorectal 

carcinoma. These studies showed a statistically significant difference between early-onset gastric 

cancers and conventional gastric cancers based on COX-2 and HuR expression status [119]. This 

difference was similar when the expression of COX-2 and HuR were evaluated in normal epithelium, 

high-grade prostatic intraepithelial neoplasia and prostate carcinoma [114]. The increased HuR 

expression and cytoplasmic localization were present in 76% of adenomas and 94% of adenocarcinomas. 

Only low levels of HuR are present in normal colon tissues [120]. Additional studies also supported 

this conclusion in other cancer types [114,121]. The competition between HuR and TTP for binding to 

COX-2 mRNA can lead to the deregulation of COX-2 during colon tumorigenesis [120]. Furthermore, 

HuR binds to many mRNAs and promotes their stabilization. The HuR target mRNAs include 

oncogenes, [76,122,123], cyclins [22,124,125], cyclin-dependent kinases, methyltransferases [126,127], 

inflammatory factors [32,128–130], and apoptosis-related molecules [20,131,132]. Additionally, HuR 

is also responsible for the tight regulation of tumor suppressors p21 and Wnt family protein  

Went-5a [133,134], indicating its role in tumor suppression. Thus, there is a growing body of evidence 
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suggesting HuR-mediated post-transcriptional regulation of its target mRNAs is critical for neoplastic 

transformation and cancer development. 

7. HuR Function in Tumor Angiogenesis 

Tumor cells can promote vascular growth or angiogenesis through different mechanisms. 

Angiogenesis subsequently contributes to tumor growth and helps cancer cells enter the peripheral 

circulation. Vascular endothelial growth factor-A (VEGF-A), interleukin-8 (IL-8), hypoxia-inducible 

factor-α (HIF-α), and COX-2 have a predominant role in controlling this process [135]. There are 

several levels of regulation for these angiogenic factors including transcription, mRNA stability, and 

translation. However, post-transcriptional mechanisms are particularly involved in controlling the 

expression of these angiogenic factors. Many clinical investigations have shown a positive  

relationship between cytoplasmic HuR accumulation and VEGF-A [136,137], VEGF-C [101,109], 

COX-2 [103,104,109,138–140], and IL-8 [130] in human tumor samples, whereas cytoplasmic 

staining of HuR was not associated with VEGF-D expression in bladder cancer [109]. The association 

of VEGF-A with HuR has been previously reviewed by Yoo et al. [133]. Moreover, HuR was found to 

correlate with increased blood microvessel density [102,135,141]. Furthermore, cytoplasmic HuR was 

significantly associated with larger tumor size in various human malignancies [109–111,142].  

The increased cytoplasmic HuR expression is responsible for upregulating mRNA and the protein 

expression of important molecules by interacting with the mRNAs in cancer cells responding to 

different types of stress [49–51,130]. In addition, HuR was associated with the upregulation of  

VEGF-A and COX-2 in tumor endothelial cells. This result suggests HuR plays a critical role in 

activating angiogenesis in the tumor endothelium [143]. Our previous study showed HuR was  

involved in IL-1β-induced COX-2 and VEGF-C expression. HuR levels positively correlated with 

increased lymphatic microvessel density, which indicates a role of HuR in tumor-associated 

lymphangiogenesis [101,102]. Interestingly, in triple negative breast cancer, HuR overexpression 

significantly interfered with tumor growth, which conflicts with other reports showing the pro-growth 

function of HuR. The putative mechanism of this finding is that HuR had an anti-angiogenetic effect in 

orthotopic mouse models. HuR increased the expression of TSP1and but downregulated VEGF-A that 

are normally increased by HuR [144]. Furthermore, HuR can differentially regulate unique subsets of 

mRNAs in estrogen receptor negative and estrogen receptor positive breast tumors [145]. Its 

interaction with miRNAs affects the distribution or targeting of HuR to specific mRNA [24]. As a 

result, tumors with a different aggressive phenotype could have a specific expression pattern of  

RNA-binding proteins. All RNA-binding proteins should be analyzed before utilizing HuR as a 

potential therapeutic target in the future. 

8. HuR Function in Cancer Invasion and Metastasis  

Tumor cells have the ability to invade adjacent tissues or to enter the peripheral circulation and 

proliferate in distant organs, especially in lung, liver, bone and brain. In normal liver endothelial cells, 

HuR promoted gap junction mediated intercellular communication and adherens junction integrity by 

enhancing the expression of Cx43 and beta-catenin [146]. Clinical studies have demonstrated the 

cytoplasmic expression of HuR was associated with lymph node metastasis in non-small cell lung 
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carcinoma [101], colon carcinoma [147], upper urinary tract urothelial carcinoma [148], and showed a 

correlation with advanced diseases [111]. Several recent reports indicated the cytoplasmic levels of 

HuR significantly were increased in tumors with lymphatic/vascular invasion compared to tumors 

without vessel invasion in cervical carcinoma, colon carcinoma, and ductal in situ carcinoma of the 

breast [109,110,147,149]. A high cytoplasmic-to-nuclear ratio was also significantly correlated with 

lymph node involvement at presentation [150].  

HuR has been proposed to favor the process of cancer progression by regulating the expression of 

invasion and metastasis related genes. Studies have shown uPA and its receptor, which are well-known 

invasion factors, are tightly regulated by HuR mitogen-activated protein kinase-activated protein 

kinase 2 at the transcriptional level [151]. Another important HuR regulated factor is Snail, which is a 

hallmark of epithelial-mesenchymal transition and plays an important role in the invasion of mammary 

carcinomas [152]. In addition, matrix metalloproteinase-9 (MMP-9) was also found to be regulated by 

HuR. This was supported by data indicating HuR knockdown [125], kalopanaxsaponin A [47], 

dihydroavenanthramide [153], or radix clematidis extract [154] treatments significantly inhibited 

MMP-9 expression and HuR cytoplasmic translocation by different signaling pathways. HuR  

silencing in an immortalized breast epithelial cell line reduced anchorage-independent growth, cell 

invasion, and increased programmed cell death by targeting CTGF and RAB31 transcripts [149]. Thus, 

HuR-mediated cancer progression follows the upregulation of HuR-targeted mRNAs encoding 

extracellular proteases and proteins that alter the aggressive potential of cancer cells or change the 

extracellular matrix. Recently, Hsia et al., found that lapatinib-induced breast cancer invasiveness is 

caused by the downregulation of miRNA-7 and induction of epidermal growth factor receptor (EGFR) 

and COX-2 by a HuR-mediated posttranscriptional mechanism [155]. 

9. HuR and Drug Resistance and Sensitivity  

Drug treatments are commonly used in the clinical management of cancer. The main clinical 

obstacle to successful solid tumor therapy is drug resistance. HuR has recently been implicated in 

inducing drug resistance. In breast cancer MCF-7 cells, the cytoplasmic accumulation of HuR was 

proposed as a key mediator in the development of tamoxifen resistance, due to its ability to stabilize 

specific transcripts that encode drug-resistant proteins and activate subsequent MAPK and JNK 

signaling [33]. In glioma, the activity of HuR is a contributing factor in the onset of drug resistance 

and tumor growth by increasing the expression of bcl-2 [156]. High Tubulin beta-3 chain (TUBB3) 

expression is related to a poor chemotherapy response and adverse prognosis in gastric carcinoma, 

pancreatic ductal adenocarcinoma and non-small cell lung carcinoma [157–159]. The results from 

Raspaglio et al., suggest that cytoplasmic HuR staining was also positive in tumors with high TUBB3 

expression [160]. In A2780 ovarian cancer cells, the combination of HuR and miR-200c regulated the 

expression of TUBB3 and was linked to the abrogation of the resistant phenotype for both paclitaxel 

and cisplatin [75,160]. The introduction of a miR-34a precursor into paclitaxel and hormone-resistant 

prostate cancer cells caused a decrease of HuR, bcl-2, and SIRT1 expression and inhibition of the 

SIRT1 3'UTR activity. This result suggests HuR may be involved in paclitaxel resistance. 

Additionally, HuR bound to the transforming growth interacting factor mRNA 3'UTR and prevented it 

from degradation in response to arsenic trioxide in hepatocellular carcinoma, which suggests a 
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connection between HuR function and arsenic trioxide resistance during anti-cancer therapy [161]. 

Recent study showed that a worse event-free survival rate in some triple-negative breast cancers was 

associated with over-expressed EGFR and increased COX-2 mRNA stabilization by HuR [155].  

Cumulatively, these studies indicate a HuR-dependent mechanism for cancer cell survival and 

responses to chemotherapeutic or molecularly targeted drugs. HuR should be considered as a new 

therapeutic target to override drug resistance. For example, docosahexaenoic acid treatment sensitized 

nr-HaCaT cells to UVR-induced apoptosis by increasing the bax/bcl-2 ratio and caspase-3 activity 

while also reducing COX-2 levels. Furthermore, the transfection of nr-HaCaT cells with HuR siRNA 

can mimic the proapoptotic effect of docosahexaenoic acid by downregulating HuR expression [162]. 

HuR has also been implicated in mediating drug sensitivity. Costantino et al., found that HuR 

mediate gemcitabine efficacy by stabilizing the mRNA of a key gemcitabine metabolic enzyme, 

deoxycytidine kinase. The increased deoxycytidine kinase metabolizes and thereby activates gemcitabine 

by metabolizing the prodrug gemcitabine into its di- and tri-phosphate metabolites [35]. The 

cytoplasmic status of HuR correlates with worse pathologic features as assessed by T staging. 

Additionally, HuR status is a strong positive predictive marker for overall survival in patients treated 

with gemcitabine [142]. Latorre et al., investigated the role of the HuR protein during the cellular 

response to the anticancer drug doxorubicin. The results demonstrated in vitro selection of doxorubicin 

resistant MCF-7 cells overexpressing the multidrug resistance ABCG2 transporter had significantly 

downregulated HuR. The results were consistent with the downregulation of HuR targets and by loss 

of rottlerin toxicity [163]. HuR enhanced TOP2A translation and induces apoptosis by competing  

with miR-548c-3p and stabilizing TOP2A mRNA. The combined actions of HuR and miR-548c-3p  

control TOP2A expression levels and determine the effectiveness of doxorubicin and increase cell 

apoptosis [20]. In breast cancer, a synonymous polymorphism (rs3746083) of another RNA-binding 

protein tristetraprolin was significantly associated with a lack of Trastuzumab response in patients with 

HER2-positive-breast cancer [164].  

Thus, HuR exerts various regulatory functions and controls the expression of different target 

mRNAs via post-transcriptional mechanisms. HuR regulates tumor responses to cytotoxic agents, 

small-molecule antagonists, and molecular targeted agents. Recently, HuR was found to exert a 

different role in regulating unique subsets of mRNAs in estrogen receptor negative and estrogen 

receptor positive breast cancer using RNA immunoprecipitation and microarray analysis [146]. We 

hypothesize that many therapy resistance and sensitivity genes are regulated by HuR and other  

RNA-binding proteins. The expression of HuR could be a new mechanism of chemotherapy responses 

in cancer. The role of HuR in drug responses can vary widely in different cells and tissue types or in 

different stages of cancer development and progression. 

10. Prognostic Significance of HuR in Human Carcinoma  

Usually, tumor-node-metastasis stage is the best prognostic index for operable cancer patients. 

However, each patient’s prognosis varies significantly within this staging system. Understanding the 

pathological and molecular factors that identify patient subsets suitable for aggressive systematic 

treatment is particularly important for early-stage cancer patients.  
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HuR is the firstly identified mRNA stability protein, expression of which has been linked to 

changed prognosis in cancer patients. The association between HuR expression and cancer patient 

survival is summarized in Table 3. In the majority of these published retrospective studies, 

immunohistochemistry was used to investigate the intercellular expression pattern of HuR in  

human malignancies, and the cytoplasmic expression of HuR was associated with poor survival, 

disease-free survival, metastasis-free survival, or overall survival, using univariate or multivariate  

analysis [34,103,105,111,112,143,165–167]. By quantitative immunohistochemistry, Laurlola et al., 

found the low ratio between nuclear and cytoplasm retained an sensitive prognostic significance 

relative to the risk of metastasis and death for patients with early stage lung adenocarcinoma [150]. 

However, studies in pancreatic carcinoma patients that received potentially curative pancreatic 

resection showed HuR cytoplasmic staining was a positive predictor for gemcitabine sensitivity and 

good prognosis [35,143]. Most of these studies investigating nuclear HuR status did not find a 

relationship between nuclear staining and prognosis. However, Yi et al., demonstrated HuR nuclear 

expression also correlated with reduced disease-free survival in ovarian carcinoma [168]. A study in 

prostate carcinoma patients concluded an opposite result [139]. In a set of 560 patients with colorectal 

adenocarcinom, tissue microarray analysis with a quantitative, automated immunofluorescent 

microscopy system indicated that the immunoreactivity for total HuR predicts poor prognosis [141]. 

Conversely, HuR was a good prognostic indicator for disease-free survival in breast cancer [169], 

when total cellular expression of HuR in cancer tissues were analyzed by western blotting. These 

results are consistent with an experimental investigation both in vivo and in vitro that showed HuR 

over-expression impaired tumor growth and reduced angiogenesis [144]. In other studies, the  

nuclear-to-cytoplasmic ratio has an influence on overall survival of patients with lung adenocarcinoma 

or colorectal carcinoma [141,149]. Interestingly, high levels of HuR mRNA correlated with longer 

overall survival in patients with stage I–IV breast cancer, but the results were not statistically 

significant [170]. Recently, over-expression of hnRNPs indicates a poor prognosis for patients with 

various human cancers [13–16], and genetic polymorphisms of TTP gene but not HuR gene 

polymorphisms were associated with poor prognosis of breast cancer patients [97].  

In conclusion, HuR may exert a complex role in various types of human cancer. HuR protein level 

but not mRNA level may be very variable among cancer cells and tumor tissues. This expression 

pattern differs from the expression pattern of TTP. Both detection of HuR total protein and its 

cytoplasmic abundance may be useful in determining its prognostic value in different subsets of human 

malignancies. However, present data are based on retrospective studies regarding prognostic indicator 

is lower than provided by randomized controlled trials. The sample size of tumors studied in individual 

investigations varied. Further investigations are needed to reveal the prognostic value of HuR for 

patients with different stages or other malignant behaviors using a standard methodology for HuR 

detection in large prospective clinical trials. 
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Table 3. The association between HuR expression and patient outcome in human cancer. 

First author Year Country Method N Prognostic effect of HuR Type of cancer 

Unadjusted Adjusted 

Miyata et al. [109] 2013 Japan IHC 122 C b,f↓ C b,f↓ Bladder Cancer, pTa-3 

Zhu et al. [167] 2013 China IHC 82 C a,c↓, N a,c (NS) C a,c↓, N a,c (NS) Breast cancer, stage I–III 

Lauriola et al. [150] 2012 Italy IHC 54 C b,c↓, NCR b,c↓, N b,c (NS) C b,d↓, NCR b,c Lung adenocarcinoma, stage I–II 

Kim et al. [98] 2012 South Korea IHC 96 C c (NS), N c (NS) C c (NS), N c (NS) Oral squamous cell carcinoma, stage I–IV 

Liang et al. [148] 2012 China IHC 340 C a,b,f↓ C f (NS) Upper urinary tract urothelial carcinoma 

Kim et al. [106] 2011 South Korea IHC 244 C c (NS), N c (NS), (C + N) c (NS),  

(C − N) c (NS) 

C c (NS), N c (NS),  

(C + N) c (NS), (C − N) c (NS) 

Lung adenocarcinoma and squamous  

cell carcinomas, I–IV 

Yuan et al. [170] 2011 UK RT-PCR 109 HuR mRNA a,c (NS) HuR mRNA a,c (NS) Invasive breast carcinoma, stage I–IV 

Ronkainen et al. [165] 2011 Finland IHC 152 C c↓ C c (NS) Renal cell carcinoma, stage I–IV 

Wang et al. [102] 2011 China IHC 132 C a,c↓, N a,c (NS) C a,d↓, N a,c (NS) Non-small cell lung carcinoma, I–IIIB 

Cha et al. [166] 2011 South Korea IHC 103 C c↓, N a,c (NS) C d↓, N a,c (NS) Oral squamous cell carcinoma, I–IV 

Richards et al. [142] 2010 USA IHC 52 C d↑ C d↑ Pancreatic ductal adenocarcinoma 

Mrena et al. [107] 2010 Finland IHC 316 C c↓ C c (NS) Gastric carcinoma, stage I–IV 

Costantino et al. [34] 2009 USA IHC 32 C d↑ C d↑ Pancreatic ductal adenocarcinoma 

Yi et al. [168] 2009 USA IHC 113 N a↓ N a↓ Ovarian carcinoma, stage I–IV 

Yoo et al. [141] 2009 USA Immunofluorescence 560 (C + N) c↓, NCR c↑ (C + N) c↓ Colorectal carcinoma, stage I–IV 

Stoppoloni et al. [108] 2009 Italy IHC 29 C c↓ Not indicated Mesothelioma 

Ortega et al. [169] 2008 Spain Western blotting 89 (C + N) a↑ Not indicated Invasive breast carcinoma 

Niesporek et al. [138] 2008 Germany IHC 104 C a (NS), N a↑ N a↑ Prostate carcinoma 

Heinonen et al. [110] 2007 Finland IHC 641 C c,e↓ C c↓ Invasive breast carcinoma 

Lim et al. [112] 2007 South Korea IHC 308 C c (NS), N c (NS) C c (NS), N c (NS) Cervical carcinoma, carcinoma in situ and stage I–II 

Denkert et al. [99] 2006 Germany IHC 87 C c (NS) C c (NS) Colorectal carcinoma,  

Mrena et al. [100] 2005 Finland IHC 316 C c↓ C c (NS) Gastric carcinoma, stage I–IV 

Heinonen et al. [111] 2005 USA IHC 133 C a↓ C a↓ Invasive breast carcinoma, stage I–III 

Denkert et al. [103] 2004 Germany IHC 208 C a,c (NS), N a,c (NS) C a,c (NS), N a,c (NS) Invasive breast carcinoma, stage I–III 

Denkert et al. [104] 2004 Germany IHC 83 C a,c↓, N a,c (NS) C a,c↓ Ovarian carcinoma, stage I–IV 

Erkinheimo et al. [140] 2003 Finland IHC 445 C c↓, N c (NS) C c (NS) Ovarian carcinoma, stage I–IV 

IHC, immunohistochemistry; C, cytoplasmic HuR; N, nuclear HuR; NCR, nuclear-to-cytoplasmic ratio; C + N, total cytoplasmic and nuclear HuR; C − N, difference between cytoplasmic and nuclear HuR; 

NSCLC, non-small cell lung cancer; NS, not significant; a disease-free survival; b metastasis-free survival; c overall survival; d overall survival for patients treated with gemcitabine; e in familial non-BRCA1/2 breast 

carcinoma; f disease-specific survival. 



Int. J. Mol. Sci. 2013, 14 10028 

 

11. Conclusions  

A comprehensive investigation of the biological activity of HuR indicates it is a crucial regulator of 

post-transcriptional gene expression and has a central role in cancer [171]. Its multiple functions are 

linked to its ability to recognize, bind, and stabilize a large subset of ARE-containing mRNAs. The 

HuR target mRNAs encode a variety of factors required for cancer cell proliferation, survival, 

angiogenesis, invasion, and metastasis. Many HuR bound target mRNAs can be detected using cDNA 

array hybridization [172]. Recently, methods based on RNA-protein crosslinking, cross-linking and 

immunoprecipitation (CLIP), photoactivatable ribonucleoside-enhanced CLIP, and whole-transcript 

expression profiling, were developed to identify transcriptome-wide HuR binding sites [173–175]. 

These methods are helpful to elucidate regulatory mechanisms of HuR in mRNA processing and  

HuR-dependent antagonism of proximal miRNA-mediated repression. HuR expression and subcellular 

localization is aberrant in human tumor tissues. Unlike other RBPs, HuR mRNA levels change less 

dramatically in cancer than HuR protein. In response to various stimuli, HuR protein has the ability to 

move from the nucleus to the cytoplasm, where it stabilizes target mRNAs. Post-transcriptional 

modifications appear to control HuR abundance, localization, and binding to mRNAs. Therefore, 

inhibition of the cytoplasmic accumulation of HuR concomitantly with the administration of current 

therapeutics may lead to successful treatment strategies.  

Establishing the molecular mechanism of HuR regulation could be useful in identifying new  

targets for drug design. These strategies may include direct inhibition of HuR expression using HuR 

interference and HuR antisense, inhibition of HuR translation, suppression of HuR translocation 

between the nucleus and cytoplasm and using exogenous modulators such as kinase inhibitors. 

Additionally, published studies showed the ARE-harboring mRNAs are differentially regulated through 

the concerted efforts of RBPs such as HuR, AUF1, TTP, BRF1, and KSRP with miRNA-mediated 

effects. The coordinated actions of HuR or other RBPs add a complexity to current understanding of 

regulatory mechanisms of gene expression in cancer development and progression. These results suggest 

targeting other RBPs or miRNAs can be developed as additional strategies for cancer treatment.  

Recently, both natural and synthesized chemical compounds were found to affect HuR accumulation 

and attenuated the expression of cancer-related mRNAs. For example, suberoylanilide hydroxamic 

acid [39], inhibited cell transformation by suppressing HuR expression. Ginkgo biloba extract [71] 

inhibited cell proliferation by decreasing cytoplasmic levels of HuR. Green tea may regulate HuR 

expression at the transcriptional level and control inflammation and MMP-9 upregulation [45,70].  

By contrast, kalopanaxsaponin A [47] and triptolide inhibited MMP-9 and COX-2 expression, 

respectively, by suppressing HuR cytoplasmic accumulation [48] (Table 1). In addition, exogenously 

and endogenously produced nitric oxide reduced the expression of HuR mRNA and protein and 

increased the degradation of MMP-9 mRNA [176]. Furthermore, a consistent clinical relationship 

exists between cytoplasmic HuR protein and patient survival. HuR affects the treatment responses of 

anti-cancer drugs by stabilization of specific mRNAs. Ultimately, these findings could prove helpful in 

identifying a therapeutic or prognostic target. However, an important challenge will be to elucidate the 

regulatory mechanism of HuR and its structural modifications in cancer, which will contribute to the 

validation of pharmaceutical strategies.  
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