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Average genome size estimation improves
comparative metagenomics and sheds light on
the functional ecology of the human microbiome
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Abstract

Average genome size is an important, yet often overlooked, property of microbial communities. We developed
MicrobeCensus to rapidly and accurately estimate average genome size from shotgun metagenomic data and
applied our tool to 1,352 human microbiome samples. We found that average genome size differs significantly
within and between body sites and tracks with major functional and taxonomic differences. In the gut, average
genome size is positively correlated with the abundance of Bacteroides and genes related to carbohydrate
metabolism. Importantly, we found that average genome size variation can bias comparative analyses, and that
normalization improves detection of differentially abundant genes.

Background

Shotgun metagenomics is increasingly being used to
characterize the functional composition of microbial
communities from the human body and many environ-
ments [1-4]. A common goal of these studies is to quantify
gene family abundance and identify microbial genes or
pathways that differ in abundance between environments,
host phenotypes, or experimental conditions. Comparative
metagenomics has shed light on how microbes have func-
tionally adapted to the myriad of environments on Earth
[4], and how variation in the functional composition of
microbial communities can impact human health and
disease [5,6]. Functional variation can be interpreted in
the context of taxonomic variation estimated from the
same shotgun data, shedding light on evolutionary and
ecological processes. These studies require accurate
quantification of gene abundance from microbial com-
munity DNA.

While often overlooked, it is important to consider the
average genome size (AGS) of cells in a microbial commu-
nity when performing comparative metagenomic analyses.
From a statistical perspective, AGS can be a potential
source of bias when comparing the abundance of genes
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between communities. Specifically, the probability of sam-
pling a gene from a community is inversely proportional
to the AGS of that community [7]. If not accounted for,
differences in AGS between samples can lead to the ap-
pearance of variation among genes that are present at
equal copy number per cell (that is, false positives) and
the appearance of stability among genes that vary in copy
number per cell (that is, false negatives). Along with li-
brary size (that is, sequencing depth) and gene length,
AGS should be accounted for in comparative metage-
nomic studies to identify ecologically meaningful genomic
differences between microbial communities.

AGS is also important for understanding the ecological
and evolutionary forces acting on microorganisms within
an environment. From an ecological perspective, micro-
bial genome size may reflect environmental complexity,
metabolic lifestyle, and community niche [8-12]. For ex-
ample, in the gut it is believed that organisms with larger
genomes follow more generalist lifestyles whereas those
with smaller genomes are more specialized [8]. To illus-
trate this, Bacteroides thetaiotamicron (6.5 Mb) has a
large genome with the metabolic potential to utilize a
variety of both diet and host-derived glycans, whereas
Methanobrevibacter smithii (1.9 Mb) is a methanogen
specialized for utilization of H,. From an evolutionary
perspective, reduced genome size may reflect genetic
drift in small populations or genome streamlining in
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large populations [13,14]. Genetic drift can shape the
size of microbial genomes by the fixation of mutations,
which are biased towards deletions in Bacteria [15]. In
contrast, genome streamlining can promote reduced
genome size by selecting for the efficient use of nutri-
ents in large microbial populations where nutrients
limit growth [14].

Up to this point it has not been possible to rapidly and
accurately estimate the AGS of microbial communities
due to a lack of software designed for modern metage-
nomics data. This has limited our understanding of both
the extent and impact of AGS variation in many envi-
ronments, including the human microbiome. The only
publicly available software tool, GAAS [10], estimates
AGS based on BLAST searches of shotgun sequences
against a database of microbial genomes. Given the large
and increasing scale of both metagenomic data and ref-
erence genomes, and the relatively slow speed of BLAST,
this method is not computationally practical (Results).
Additionally, microbial communities frequently contain
high fractions of 'novel' organisms, which have not been
cultured or sequenced. Even in the well-studied human
gut microbiome, it has been estimated that, on average,
43% of species abundance and 58% of richness cannot
be captured by current microbial reference genomes
[16]. It is not clear whether GAAS is able to accurately
estimate AGS for metagenomes composed of novel taxa.
Raes et al. [9] proposed to address these issues by esti-
mating average genome size based on the density of
reads assigned to a set of 35 essential single-copy genes
using BLASTX. While significantly faster and less
dependent upon community composition, this method
was not designed for reads shorter than 300 base pairs
(bp) and no software was released. Although current se-
quencing technologies are beginning to generate longer
reads, there remains a huge volume of existing short-
read data; for example, the MetaHIT [1,17-19] and Hu-
man Microbiome Project (HMP) [20] projects have to-
gether generated over 130 billion metagenomic reads
from the human microbiome with an average length of
only 96 bp [21]. It is not clear whether the Raes method
is able to estimate AGS for these modern short-read li-
braries. Others [22,23] have described similar methods,
but these have not been extensively validated or made
available as software.

To address this problem, we developed MicrobeCen-
sus to rapidly and accurately estimate AGS from shot-
gun metagenomic data and applied our tool to 1,352
human microbiome samples. We adopted a similar ap-
proach to Raes et al., but made significant methodo-
logical improvements that allowed us to accurately
estimate AGS using reads as short as 50 bp. We found
that AGS differs significantly both within and between
body sites in the human microbiome and tracks with
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major functional and taxonomic differences between com-
munities. For example, the AGS of stool metagenomes
ranged from 2.5 to 5.8 megabases (Mb) and was positively
correlated with the abundance of Bacteroides and genes
related to metabolism, biosynthesis, and two-component
systems, whereas Firmicutes and genes related to mem-
brane transport were more abundant in metagenomes
with smaller AGS. Furthermore, we confirmed that AGS
is a major bias in comparative metagenomic analyses, and
that normalization improves detection of differentially
abundant genes. These discoveries could not have been
made without the development of MicrobeCensus.

Results and discussion

Estimation of average genome size from metagenomic
data

At the core of our method is a database of 30 essential
single-copy gene families found in nearly all Bacteria
and Archaea (Additional file 1). These are a subset of
the 40 bacterial and archaeal PhyEco markers identified
by Wu, Jospin and Eisen [24], and they largely overlap
with gene sets previously identified by Ciccarelli et al.
[25], Raes et al. [9], and Wu et al. [26]. A preliminary
analysis shows that most of these gene families are also
present in Fungi, although are not as universal or stable
as in Bacteria and Archaea (Additional files 1 and 2).
Hence, we can expect that the vast majority of cells in a
microbial community - particularly those dominated by
Bacteria or Archaea - will carry one copy of each of
these genes.

Because of this unique property, these 30 genes can be
used to estimate the average genome size of cells in a
microbial community based on metagenomic sequencing
data. This is the approach used by Raes and others
[9,22,23]. Specifically, the AGS of a community will be
inversely proportional to the relative abundance, R, of an
essential single-copy gene in that community: AGS < R™.
In other words, these essential genes will be sequenced at
a higher rate in a community with a small AGS relative to
a community with a large AGS; this is simply because
these genes make up a larger fraction of the total genomic
DNA in the community with smaller genomes.

To implement this approach, we had to solve three
problems. First, we had to optimize parameters for map-
ping metagenomic reads to the database of essential
genes in order to minimize the technical variation of R
between metagenomes (Additional file 3). The mapping
occurs via sequence homology search, using RAPsearch2
[27], a fast alternative to BLAST. We found that the best
mapping parameters depended on read length and, to a
lesser extent, the identity of the gene family, which is a
problem that has been previously described for taxo-
nomic classification of metagenomic reads [28]. Second,
we needed to estimate the proportionality constant, C,
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between AGS and R*. This constant cannot be deter-
mined a priori and depends upon read length, mapping
parameters, and the gene family (Additional file 3).
Third, gene families vary in their usefulness for estimat-
ing AGS, due to occasional deviations from having
exactly one copy per cell, as well as variability in the ac-
curacy with which reads are mapped to each family.
Hence, when averaging AGS estimates across the 30
gene families, we sought to develop a method to weight
each family so that those with high accuracy contributed
more to the combined AGS estimate than did those with
low accuracy. To address each of these issues, we con-
ducted a large series of shotgun sequencing simulations
in which the AGS of each library was known. This en-
abled us to optimize mapping parameters, identify pro-
portionality constants, and estimate gene-family weights
(Materials and methods).
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The resulting new method, called MicrobeCensus, rap-
idly and accurately estimates AGS from metagenomic
data (Figure 1). MicrobeCensus first downsamples the
first n reads of at least i base pairs from the metagen-
ome, which we found improves computational efficiency
without sacrificing accuracy (Additional file 4; Results).
Next, these reads are trimmed from their 3" end down
to i bp. This is principally done because our method
uses parameters that are read-length specific. Next, these
reads are translated and aligned against the database of
essential genes using RAPsearch2. Reads are classified
into a gene family if their top scoring alignment meets
or exceeds the optimal mapping parameters for that
gene family and the specified read length. We then ob-
tain an estimate of AGS for each gene family based on
that family’s relative abundance and proportionality con-
stant. Finally, MicrobeCensus eliminates any outliers and
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Figure 1 Flowchart for estimating AGS from a shotgun metagenome. 1) MicrobeCensus takes the first n reads of at least i base pairs from
the shotgun metagenome and trims these reads down to i base pairs. 2) These reads are aligned against the database of essential genes using
RAPsearch2. 3) A read is mapped to an essential gene family, j, if its top scoring alignment satisfies the mapping parameters, which are optimized
for gene j and read length /. 4) Based on these mapped reads, the relative abundance of each essential gene family, R; is computed. 5) Next, we
use R; to obtain an estimate of AGS for each gene. 6) Outlier predictions are removed and 7) MicrobeCensus takes a weighted average over the
remaining estimates to produce a robust estimate of AGS for the shotgun metagenome. QC, quality control.
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take a weighted average over the remaining estimates to
produce a robust estimate of AGS for the metagenome.
We found that the 30 gene families we selected were
sufficient to produce accurate estimates of AGS, and
additional genes would probably not have significantly
improved performance (Additional file 5; Materials and
methods).

MicrobeCensus is provided as a command line soft-
ware package written in Python. Software, examples and
documentation are freely available at [29]. Additionally,
we have provided software necessary to retrain Microbe-
Census using user-supplied gene families and training
genomes. This may be important as new genomic data
become available or for researchers who wish to train
MicrobeCensus for microbes from specific environments
or using additional gene families; however, retraining will
not be necessary for most applications.

Comparison of MicrobeCensus with existing methods

Because MicrobeCensus estimates average genome size
using a set of genes present in nearly all Bacteria, Archaea,
and Fungi, we hypothesized that our tool would be robust
to high proportions of novel taxa present in metagenomes.
Conversely, we suspected that methods that rely on refer-
ence genomes to estimate AGS would not perform as well
in these cases. To this end, we benchmarked Microbe-
Census against the tool GAAS [10] on 20 simulated
metagenomes composed of 100-bp reads from prokary-
otic microbial communities (Additional file 6; Materials
and methods). To simulate the presence of novel taxa,
we held-back reference sequences belonging to organ-
isms from the same taxonomic group as organisms in
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the metagenome, and estimated AGS for each method
using the remaining reference sequences. For Microbe-
Census, the reference sequences included the 30 gene
families, whereas the reference sequences for GAAS
were complete microbial genomes. We performed this pro-
cedure and evaluated performance at each taxonomic level:
species, genus, family, order, class, and phylum. For ex-
ample, at the genus level, this procedure would discard
alignments between Escherichia coli shotgun sequences
and all reference sequences from Escherichia; at the phylum
level, this procedure would discard alignments between
E. coli shotgun sequences and all reference sequences
from Proteobacteria.

We quantified AGS estimation accuracy using the me-
dian unsigned error, which summarizes absolute errors
to account for both over- and under-estimation. When
we did not exclude any reference sequences, both GAAS
and MicrobeCensus performed well for the 20 datasets
(labeled 'mone' in Figure 2A), indicating that both
methods can accurately estimate AGS for metagenomes
composed of taxa that are represented in the reference
database. However, when species from the metagenome
were excluded from the reference database, the median
unsigned error for GAAS increased to 13.5%, while error
for MicrobeCensus remained 2% and did not rise above
3% even at higher levels of taxonomic exclusion, confirm-
ing our hypothesis that MicrobeCensus would be robust
to the presence of novel taxa. Using MicrobeCensus, we
were able to obtain reasonable estimates of AGS even for
metagenomes composed of taxa with no representatives
in the reference database at the phylum level (8.6% me-
dian unsigned error), while error for GAAS was over 20%.
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Figure 2 Comparison of MicrobeCensus to existing methods. (A,B) Performance of MicrobeCensus was compared with that of existing
methods using 20 simulated metagenomes. Unsigned error is defined as: |AGS - AGS|/AGS. (A) MicrobeCensus versus GAAS at different levels of
taxonomic exclusion. To simulate the presence of novel taxa, we held back reference sequences belonging to organisms from the same
taxonomic group as organisms in the metagenome, which is indicated on the x-axis. 'None' indicates that no reference sequences were held
back. Metagenomes were composed of 100-bp reads. (B) Estimation error for MicrobeCensus versus the method described by Raes et al. [9] for
metagenomes of various read length. 'NA" indicates that AGS could not be estimated. (C) Speed (reads/second) of MicrobeCensus compared with
existing methods on a simulated 150-bp library.




Nayfach and Pollard Genome Biology (2015) 16:51

We also compared the performance of MicrobeCensus
against the method described by Raes et al. [9], who
were the first to use essential single copy genes to estimate
average genome size from metagenomic data. However, this
method only considered one set of parameters for deter-
mining whether a read mapped to an essential gene -
regardless of the read length or the target gene family - and
did not evaluate performance on read lengths shorter than
300 bp. Because we found that mapping parameters needed
to be tuned depending on read length, we hypothesized
that this method would not be able to accurately estimate
AGS for modern short-read libraries. To evaluate this, we
implemented the method described by Raes et al. and
benchmarked this method against MicrobeCensus using
simulated metagenomes composed of reads ranging from
50 to 500 bp (Materials and methods). We found that the
Raes method was unable to generate any estimates of AGS
for the short-read libraries (<100 bp) due to a complete lack
of alignments that satisfied the method’s mapping parame-
ters (labeled as 'NA' in Figure 2B). In other words, the map-
ping parameters were too strict for the short-read libraries.
For intermediate read lengths (150 bp), the method was
able to generate estimates of AGS, but was not accurate
(all >500% unsigned error) and overestimated AGS. As
expected, long-read libraries (250 to 500 bp) produced
moderately accurate estimates (13 to 14% median un-
signed error), although tended to underestimate AGS. In
contrast, MicrobeCensus was able to accurately estimate
AGS across all libraries, using reads as short as 50 bp (all
< 7% median unsigned error), but particularly for reads at
least 100 bp long (all <2% median unsigned error).

The effect of sequencing error on estimation accuracy
While we were able to obtain accurate estimates of aver-
age genome size for error-free libraries, it was not clear
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if we could accurately estimate AGS from libraries that
contained sequencing error, artificially duplicated reads,
and a non-uniform distribution of coverage. To evaluate
the effect of sequencing error, we simulated 100-bp
metagenomes with up to 5% sequencing error rates
(Materials and methods). We found that we could accur-
ately estimate AGS from libraries that contained up to
2% sequencing error - beyond this, estimation error
quickly increased (Figure 3A). Luckily, most current se-
quencing platforms have raw error rates below 2%, includ-
ing Ilumina MiSeq (0.80%), Ion Torrent PGM (1.71%),
Mumina GAIIx (0.76%), Illumina HiSeq 2000 (0.26%),
and 454 GS-FLX Titanium (1.07%) [30,31].

Next, we built metagenomes composed of real Illu-
mina reads from completed microbial isolate sequencing
projects (Additional file 7; Materials and methods) and
used MicrobeCensus to estimate AGS for each of these
mock metagenomes. Overall, we estimated AGS with
1.9% median unsigned error and less than 0.1% median
signed error, indicating that we are able to obtain accur-
ate, unbiased estimates of AGS from real Illumina librar-
ies (Figure 3B). However, our estimates of the size of
each of the 42 individual genomes were less accurate
(6.4% median unsigned error when applying Microbe-
Census to single sequencing projects; Additional file 7),
suggesting that it is actually easier to estimate AGS in
more complex communities. We confirmed this hypoth-
esis with simulations (Additional file 8).

Finally, we were interested in exploring how various
quality control procedures could improve estimation accur-
acy in real datasets (Materials and methods). Interestingly,
we found that while removing adaptor contamination
and filtering duplicate reads resulted in a marginal re-
duction in estimation error, quality-filtering reads had
very little benefit and in some cases actually reduced
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accuracy (Additional file 9), which may be due to a
biased distribution of quality scores [32]. Regardless,
MicrobeCensus includes options for filtering duplicate
and low quality reads.

Estimation accuracy in the presence of microbial
eukaryotes and viruses

Next, we evaluated whether accurate estimates of AGS
could be made in the presence of microbial eukaryotes.
Fungi are typically minority members of human micro-
biome communities but can occasionally constitute a
significant proportion of metagenomic libraries [1,20,33].
To address this, we simulated 20 communities in which
0 to 50% of genomes were Fungi and used MicrobeCensus
to estimate AGS for these communities (Additional file 6;
Materials and methods). Fungal genome sizes ranged from
2.5 to 66.3 Mb with an average of 20.4 Mb. We used Fungi
as a proxy for microbial eukaryotes due to the availability
of complete genome sequences and the presence of these
taxa in the human microbiome [34,35]. Because microbial
eukaryotes were not included in our database and were
not used to train MicrobeCensus, we wondered if the
presence of these taxa would lead to inaccurate esti-
mates of AGS. Surprisingly, AGS estimates for most of
these communities were quite accurate, although not as
accurate as for the bacterial and archaeal communities
(Figure 4A). Even when Fungi were at 50% relative
abundance, representing, on average, 79% of total reads,
the median unsigned error was only 5% for the 20 com-
munities. Nonetheless, in the future, when more complete
genome sequences of microbial eukaryotes are available,
particularly for Protists, it should be possible to retrain
MicrobeCensus to achieve optimal performance for these
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types of communities. We have included training code in
our software package for such extensions.

Although MicrobeCensus achieved good performance
for the fungal communities, it was not clear what affect
DNA viruses would have. While viruses outnumber mi-
crobial cells 10:1 in most environments, it is believed
that viral DNA represents only 2 to 5% of the total DNA
in microbial communities [36]. However, this may be an
underestimate owing to a lack of homology to reference
databases (for example, NCBI nr). For example, a re-
cently discovered bacteriophage from human stool was
found to represent up to 22% of the total DNA [37]. To
quantify the effect of viral reads on AGS estimation, we
simulated 20 metagenomes that were composed of be-
tween 0 and 50% of reads from phage genomes and used
MicrobeCensus to estimate AGS for these communities
(Additional file 6; Materials and methods). Note that the
expected AGS for these communities is based on the
genome sizes of cellular microbes and does not account
for the genome sizes of viruses. We found that moderate
levels of viral reads were tolerated, but that very high
levels caused MicrobeCensus to overestimate AGS for
the communities (Figure 4B). For example, estimation
error was <3% for communities containing <5% viral
reads, but increased to approximately 9% when viral
reads comprised 10% of the metagenome. Because viral
reads are not homologous to the 30 essential gene-
families used by MicrobeCensus, their presence de-
creases the fraction of reads mapped to these genes and
creates the impression of a larger AGS. Therefore,
MicrobeCensus may not be appropriate for estimating
the AGS of communities that a priori are known to con-
tain high proportions of viral reads (for example,
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purified virus-like particles or small size fractions from
seawater). Researchers concerned with this issue could
screen and remove viral sequences from their metagen-
ome prior to AGS estimation.

While AGS was overestimated in the presence of vi-
ruses, we were still able to accurately estimate the total
coverage of cellular microbes present in the simulated
metagenomes (Figure 4C). This value is obtained by div-
iding the total number of sequenced base pairs by the
estimated AGS of the metagenome. This value repre-
sents the number of microbial genome equivalents
present in a metagenome and can be used to normalize
the abundance of gene families across metagenomics ex-
periments (Results and Materials and methods). While
viruses may contribute to the metabolic potential of mi-
crobial communities, their functions are generally not
captured by current protein family databases used for
inferring community function (for example, KEGG
Orthology [38], eggNOG [39], FIGfams [40]), which only
include orthologs from Bacteria, Archaea, and Eukaryota.
Hence, viral reads do not typically contribute to the total
count of reads for a protein family, and therefore AGS es-
timated by MicrobeCensus can still be used to normalize
protein abundance profiles.

Software speed

Due to the increasingly large scale of metagenomics
data, it is important to be able to process datasets in a
reasonable time frame, particularly for users with limited
computing resources. Therefore, we benchmarked the
speed of MicrobeCensus and other methods on a simu-
lated 150-bp shotgun sequence library (Figure 2C). We
found that MicrobeCensus was approximately 320 times
faster than GAAS and approximately 40 times faster
than our implementation of the Raes method. When
using a single CPU, MicrobeCensus was able to process
about 830 reads/second, or about 1 million reads in
20 minutes. Conversely, it took GAAS 10.2 hours to
process only 100,000 reads. Using multi-threading we
were able to further increase the speed of Microbe-
Census: 1.5 times for 2 cores, 2.0 times for 4 cores, and
2.5 times for 8 cores. Most of the difference in speed be-
tween these methods is a result of the fact that Microbe-
Census searches reads against a database of only 30
genes, which together comprise less than 1% of most
bacterial genomes, and the difference in speed in the
underlying sequence alignment algorithms - Microbe-
Census utilizes RAPsearch2, which is approximately 20
to 90 times faster than BLAST [27].

Additionally, we were interested in determining the
fewest number of reads MicrobeCensus needed for a
precise estimate of AGS. We reasoned that we might be
able to precisely estimate AGS using only a small frac-
tion of large datasets, which would reduce the runtime
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of MicrobeCensus. On the other hand, certain datasets
might not be large enough to obtain a reliable estimate
of AGS. To address this question, we ran Microbe-
Census on several samples from the HMP [20], using
between 10,000 and 20 million randomly sampled reads
(Materials and methods). For each sample, this allowed
us to estimate the amount of dispersion (that is, variabil-
ity in AGS estimates) at a given number of sampled
reads. For all HMP samples, we found that dispersion
was sufficiently low at 300,000 reads and reached an
asymptote at about 500,000 reads (Additional file 4). At
sampling depths below 300,000 reads, dispersion quickly
increased. The HMP samples we selected had estimated
AGS values that ranged from 1.8 to 4.3 Mb - it will likely
be necessary to use more than 300,000 reads to achieve
the same level of dispersion for metagenomes with larger
AGS. In summary, MicrobeCensus is able to generate
low variance estimates of AGS from typical metage-
nomic datasets using as few as 300,000 to 500,000
reads with a runtime of approximately 10 minutes on a
single CPU.

Average genome size varies systematically in human
microbiome data

To survey natural variation of average genome size in
the human microbiome, we used MicrobeCensus to esti-
mate the AGS of 1,352 metagenomic samples from hu-
man subjects, collectively spanning five major body sites
and five countries (Additional file 10). Included in this
analysis were samples from the HMP and three other
large studies of the human gut microbiome [1,5,6].

We found significant differences in AGS between
nearly all body sites within the HMP dataset (Figure 5A;
Additional file 11). The stool communities had an espe-
cially large and broad range of AGS (2.8 to 5.8 Mb,
mean = 3.9 Mb), which may reflect adaptation to vari-
ability in the human diet and rapid changes in the avail-
ability of nutrients. This is also consistent with previous
reports that stool communities have the highest ratio of
genes per operational taxonomic unit [20], and that sev-
eral prominent members of the gut have large genomes,
including B. thetaiotamicron (6.5 Mb), B. ovatus (6.5 Mb),
and B. vulgatus (4.9 Mb). The skin and nares communities
had intermediate AGS, but each contained several outliers
greater than 6 Mb, while the oral and urogenital commu-
nities were characterized by the lowest AGS (mean = 2.23
and 2.11 Mb, respectively). For example, only 3 of the 396
oral samples had an estimated AGS that exceeded any of
the 146 stool samples. Furthermore, we found that AGS
was remarkably stable within each of the oral sites - the
maximum coefficient of variation in any of the oral sites
was only 0.08, in contrast to high values in stool (0.16),
urogenital tract (0.23), airways (0.36), and skin (0.45) -
which may be due to a combination of factors, including
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lower beta diversity, greater functional convergence, and
less environmental variability, although these possibilities
need to be investigated in greater detail.

We found that differences in AGS within and between
body sites could be largely explained by genus and species
level taxonomic variation of Bacteria (Additional file 12).
Using a multiple linear model of species-level relative
abundance, we were able to explain 74% of the total vari-
ation in AGS across all HMP samples. Within the HMP
stool communities, we found that AGS was positively cor-
related with abundant Bacteroides spp., including Bacter-
oides ovatus (6.5 Mb), B. thetaiotaomicron (6.3 Mb), and
Bacteroides xylanisolvens (6.0 Mb) (all P<le-4, all
r*>0.12). In contrast, members of the order Clostridiales
(P=15e-7, r*=0.18) were negatively correlated with
AGS, consistent with reports that Firmicutes possess
smaller genomes and a disproportionately smaller number
of glycan-degrading enzymes than Bacteroides [41]. Bac-
teroides were also significantly correlated with AGS in

each of the other gut microbiome studies we examined
(Figure 5B-D). For example, Bacteroides were abundant in
American individuals (mean =51% relative abundance)
where AGS was high (mean=3.95 Mb), but were less
abundant in Swedish individuals (mean=9% relative
abundance) where AGS was lower (mean = 3.1 Mb). Inter-
estingly, AGS and Bacteroides abundance differed signifi-
cantly between nearly all studies we examined (Additional
file 11), which may be partially explained by different
DNA extraction protocols used by each study. For ex-
ample, it has been shown that the DNA extraction proto-
col used by the HMP resulted in greater extraction
efficiency for Bacteroidetes relative to the protocol used
by the MetaHIT consortium [42].

In the skin and nares communities, we found few
strong taxonomic associations with AGS, and our
multiple-linear model of bacterial species explained rela-
tively little AGS variation within these body sites (0.13
and 0.03 cross-validation r?, respectively). This suggests
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that the taxa responsible for AGS variation in these
communities were not captured by MetaPhlan [43],
which was used to estimate the abundance of Bacteria
and Archaea. In the oral body sites, we found members
of the genera Mycobacterium (r* = 0.34), Bifidobacterium
(r* = 0.31), and Actinomyces (r* = 0.33) were all positively
correlated with AGS, while members of Streptococcus
(Streptococcus infantis and Streptococcus mitis) and of
Haemophilus (Haemophilus influenzae and Haemophilus
parainfluenza) were negatively correlated with AGS.
Lastly, while the posterior fornix was dominated by dif-
ferent Lactobacillus spp. (mean relative abundance =
91%), variation in AGS was best explained by members
of other genera, including: Bacteroides, Parabacteroides,
Alistpes, and Eubacterium.

Average genome size and database coverage are sources
of bias for comparative analyses

We hypothesized that the variation in AGS we observed
within the human microbiome could significantly bias
estimates of gene family abundance from shotgun meta-
genomes and impact downstream biological analyses.
For example, differences in AGS between samples could
create the appearance of variation among genes that
were present at equal copy number per cell (that is,
false positives) and the appearance of stability among
genes that varied in copy number per cell (that is, false
negatives).

To address this question, we mapped metagenomic
reads from 84 HMP stool samples to the KEGG Orthol-
ogy (KO) Database [38,44] and used these results to
compute the relative abundance of protein families in
each sample, which is a commonly used metric to esti-
mate gene family abundance from metagenomic data
[2,4,33,45,46] (Materials and methods). To validate the
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accuracy of our functional classifications, we compared
our results with results obtained using the HMP Unified
Metabolic Analysis Network (HUMAnNN) [45]. We found
strong concordance between methods, with an average
correlation coefficient of 0.91 (all P-values = 0) across the
samples.

Strikingly, we found that the relative abundance of es-
sential single-copy KOs (Additional file 1) varied signifi-
cantly across stool samples, ranging from a minimum of
4.0e-4 to a maximum of 1.2e-3 (Figure 6A). In other
words, genes that were a priori known to be present at
equal copy number per cell appeared to vary in magni-
tude by threefold across the study. To identify the source
of this bias, we first compared the inter-sample variation
of essential KOs to inter-sample variation in AGS. As
expected, samples with high AGS had an artificially
low abundance of essential single-copy KOs. We found
that AGS alone was sufficient to explain approximately
40% of the inter-sample variation of essential KOs
(P=7e-11).

However, this still left the majority of the variation un-
explained, which prompted us to search for additional
sources of bias. We reasoned that differences in database
coverage (that is, the fraction of genes in a metagenome
that are represented in the reference database) might
also result in the appearance of variation among essen-
tial single-copy genes. For example, consider two com-
munities: in the first community, 50% of the genes have
homologs in a reference database (for example, KEGG
Orthology), while in second community, this number is
only 25%. Metagenomic sequencing is performed for
each community, reads are classified into the reference
database, and the relative abundance of gene families is
computed. Since relative abundance is the proportion of
classified reads mapped to a gene family, we would
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expect the relative abundance of essential genes to be
higher in the community with lower database coverage.

To investigate this possibility, we used the classifica-
tion rate (that is, fraction of reads classified into the
KEGG Orthology Database) as a proxy for database
coverage and compared this with inter-sample variation
of essential genes. As expected, we found that the classi-
fication rate was negatively correlated with the relative
abundance of essential genes (p =-0.45, P =2e-5). Fur-
thermore, when combined with AGS, these two sources
of bias were sufficient to explain 90% of the variation in
essential genes across samples (P < 2.2e-16). Therefore,
differences in both AGS and database coverage should
be accounted for when comparing the abundance of
genes across samples.

To address these biases, we introduce the measure
RPKG (reads per kilobase per genome equivalent) to
quantify the abundance of gene families from metage-
nomic data. RPKG is analogous to the commonly used
measure RPKM (reads per kilobase per million se-
quenced reads) for quantifying transcript abundance in
RNA-seq data [47], but instead of dividing by the num-
ber of sequenced reads, we divide by the number of gen-
ome equivalents, which depends on both library size and
AGS (Materials and methods). This measure accounts
for gene length, library size, and average genome size.
Furthermore, because it is not scaled to sum to 1.0
across gene families, it is not biased by database cover-
age. If one did normalize RPKG values to sum to 1.0
across gene families, AGS and library size would cancel
out in the equation so that the result would be equiva-
lent to the commonly used relative abundance metric
(Materials and methods).

We then used RPKG to quantify the abundance of
KOs in each of the 84 HMP stool samples. As expected,
we found that using RPKG resulted in an 80% decrease
in the coefficient variation of essential genes compared
with using the relative abundance metric (Figure 6B).
Interestingly, we found that it was actually better not to
filter duplicate reads when using AGS estimates to quan-
tify RPKG. While we previously found that filtering du-
plicate reads produced slightly more accurate estimates
of AGS, it resulted in 1.6 times more variation of essen-
tial genes across samples (Additional file 13). The effect
of filtering duplicate reads, and other commonly used
quality control procedures, on quantitative metage-
nomics studies should be investigated in greater detail in
the future.

In summary, both AGS and database coverage can be
major sources of bias when comparing the relative abun-
dance of genes across samples and should be accounted
for in addition to other known biases such as gene
length and library size. Our new metric, RPKG, elimi-
nates these unwanted sources of variation and should
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improve downstream biological analyses. We expect that
the biases we observed are not limited to the human
microbiome and extend to shotgun metagenomics stud-
ies in general.

Adaptive strategies in the gut microbiome reflect
differences in average genome size

Having developed a method to correct for common
biases in metagenomic sequencing data, we were inter-
ested in exploring variation in the functional compos-
ition of the human gut microbiome. Specifically, we
sought to better understand the relationship between
average genome size and functional ecology in the gut.
Previous work has suggested that specialists tend to have
smaller genomes than generalists and that organisms
adapted to live outside the host have large accessory ge-
nomes [8]. However, these observations were made
based on a limited number of sequenced gut isolates,
and this question has not been directly addressed in the
gut microbiome.

To shed light on the relationship between average gen-
ome size and functional ecology in the gut, we searched
for functions - genes, modules, and pathways from the
KEGG Orthology Database - that were strongly corre-
lated with AGS across stool communities within the
HMP. Because we used the RPKG metric to quantify
gene family abundance, we were confident that the vari-
ation we observed was not due to technical biases, and
instead reflected true differences in the copy number of
genes per cell across microbial communities. We found
that AGS tracked with major functional differences
across stool samples and was strongly correlated with
the first principle component of normalized gene family
abundance (that is, RPKG; r* = 0.63, P = 3e-19). Further-
more, we found over 1,700 KOs (9% of total), 200 KEGG
modules (31% of total), and 150 KEGG pathways (20%
of total) whose RPKG was strongly associated with AGS
across stool samples (all q<le-5) (Additional file 14).
Most of these functions tended to be more abundant in
communities with larger AGS, as one might expect since
genome size and gene content are directly proportional
in Bacteria [13]. Together, these findings challenge the
notion of functional stability in the human gut micro-
biome [46,48] and highlight the significant differences in
the functional composition of the gut microbiome across
individuals.

We found that our normalization procedure was crit-
ical to reveal both the magnitude and direction of func-
tional variation among stool samples. Using RPKG
enabled us to identify twice the number of positively
correlated genes (q < le-5, p>0) and likely prevented us
from identifying many false positives. For example, when
we used relative abundance to quantify gene family
abundance, many basic cellular pathways appeared to be
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differentially abundant, including the ribosome, aminoacyl-
tRNA biosynthesis, and RNA polymerase (all q=0).
However, when RPKG was used to quantify gene family
abundance, none of these pathways varied significantly
across samples (all q>0.10). In fact, without proper
normalization, the major direction of functional vari-
ation would have been reversed, with 60% of differen-
tially abundant genes (q < le-5) instead being negatively
correlated with AGS.

To better understand this major axis of functional
variation in the gut, we sought to identify classes of genes
that were commonly associated with AGS. Towards this
goal, we performed tests of enrichment using the BRITE
functional hierarchy [38], which is an ontology that groups
genes that perform related biological functions (Additional
file 15). A striking pattern emerged when looking at the
top-ranked functional categories from this analysis: genes
whose abundances were positively correlated with AGS
were enriched in functional categories related to metabol-
ism, biosynthesis, and two-component systems, whereas
genes negatively correlated with AGS were enriched in
categories related to membrane transport (Figure 7 and
Table 1). For example, 27% of genes in two-component
systems were positively associated with AGS, compared
with only 3% that were negatively associated (q < le-5,
mean p=0.15); in contrast, 30% of ABC transporter
genes were negatively associated with AGS, compared
with only 8% that were positively associated (q < 0.01,
mean p =-0.15). Furthermore, the gene rpoE, an ECE-
sigma factor involved in regulating expression of poly-
saccharide utilization loci [38], was strongly correlated
with AGS (q=0, p=0.87) and reached extremely high
levels of abundance in the gut.

Our results are in agreement with a comparative genom-
ics study which found that Bacteroides possess larger ge-
nomes and a greater number of glycan-degrading enzymes
than Firmicutes, which posses smaller genomes but a
greater number of ABC transporters [41]. Interestingly, an
earlier study [49] found the opposite pattern when looking
at the abundance of transporters across 144 complete ge-
nomes, suggesting that our result may be specific to the
human gut microbiome. Future studies are needed to bet-
ter understand the relationship between AGS and mem-
brane transport in other environments.

Together, our findings suggest that nutrient acquisition
may be accomplished in different ways by different organ-
isms in the gut: organisms with large genomes rely on de
novo biosynthesis and degradation of complex carbohy-
drates, whereas organisms with small genomes rely more
heavily on transport of simple sugars and amino acids
from the environment. Additional regulatory genes, such
as sigma factors and two-component systems, are neces-
sary to sense the environment and coordinate expression
of the appropriate metabolic and biosynthetic genes.
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Conclusions

MicrobeCensus is a new software tool that rapidly and
accurately estimates the AGS of cells in a microbial
community from metagenomic data by aligning reads to
a set of 30 essential single-copy genes. The accuracy of
our method is largely due to extensive optimization of
read length-specific alignment parameters, which limit
the technical variation of these genes across metagen-
omes. We performed careful validation of our method,
demonstrating that unlike existing methods, Microbe-
Census is able to rapidly and accurately estimate AGS
for libraries of varying read length and for communities
of varying phylogenetic divergence from sequenced or-
ganisms. We found that MicrobeCensus performs well
in the presence of Bacteria, Archaea, and Fungi. There-
fore, we expect MicrobeCensus to work well in many
environments and for many sequencing technologies.
However, we found that high levels of viruses resulted in
overestimates of AGS, so MicrobeCensus is probably not
appropriate for viral metagenomes.

Applying MicrobeCensus to a large number of human
microbiome samples, we confirmed that variation in
AGS is a major source of bias when comparing the rela-
tive abundance of genes across shotgun metagenomes.
Additionally, we found that the classification rate (that
is, the fraction of reads from a library that are classified
into a protein family database) is also a significant
source of bias. Together, AGS and the classification rate
accounted for 90% of the variation of essential single-
copy genes among stool samples from the HMP, which
varied from 4.0e-4 to 1.2e-3. To address these issues, we
introduced the measure RPKG (reads per kilobase per
genome equivalent), to quantify the abundance of gene
families from metagenomic data. RPKG accounts for
gene length, library size, and average genome size, and is
not biased by the coverage of a reference database in a
particular environment.

Finally, we found that AGS varies systematically across
body sites and individuals, and tracks with important
functional and taxonomic differences in the microbiome.
For example, in the gut, AGS ranges from 2.5 to 5.8
megabases and is positively correlated with the abun-
dance of Bacteroides. After normalizing for AGS and
other sources of bias, we found that communities with
large AGS were enriched for pathways related to metabol-
ism, biosynthesis, and two-component systems, whereas
communities with small AGS were enriched for functions
related to membrane transport. These findings highlight
how different organisms have developed different adaptive
strategies to thrive in the human gut microbiome. These
novel observations would have been missed without ap-
propriate normalization.

We expect our approach to be widely applicable.
MicrobeCensus is easy to use and can be applied to
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shotgun metagenomic data from any environment; it is
not limited to studies of the human microbiome. We ex-
pect the improved accuracy of MicrobeCensus over exist-
ing AGS methods to be even greater in environments
where fewer genomes have been sequenced (for example,
soil, marine). In this study, we focused on shotgun
sequenced DNA. In shotgun transcriptomics, similar
normalization issues will arise, in conjunction with
RNA-specific issues such as the large dynamic range of

expression values. Since we expect the essential genes
used by MicrobeCensus to be universally expressed,
MicrobeCensus could easily be modified to adjust for
and investigate the effect of AGS in metatranscriptome
studies. To facilitate such extensions, our open-source
software is freely available. This work comes at a critical
time for the metagenomics field, as more and more stud-
ies attempt to quantify and compare relative amounts of
many gene families and pathways across samples.
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Table 1 KEGG functions enriched for genes correlated
with AGS

KEGG function Hierarchy  Direction of g-value
level correlation
Metabolism A Positive 0
Metabolism of cofactors B Positive 0
and vitamins
Amino acid metabolism B Positive 0
Carbohydrate metabolism B Positive 0
Glycan biosynthesis and B Positive 2.7E-05
metabolism
Two-component system C Positive 0
Biosynthesis of amino acids C Positive 0
Glycosaminoglycan degradation ~ C Positive 1.50E-06
Pentose and glucuronate C Positive 1.07E-05
interconversions
Lipopolysaccharide biosynthesis C Positive 2.21E-05
Histidine metabolism Positive 2.24E-05
Fructose and mannose Positive 2.69E-05
metabolism
Carbon metabolism C Positive 2.75E-05
Alanine, aspartate and @ Positive 2.89E-05
glutamate metabolism
Biotin metabolism @ Positive 7.68E-05
Membrane transport B Negative 1.0E-05
Drug resistance B Negative 6.9E-03
Peptidoglycan biosynthesis @ Negative 9.5E-10
ABC transporters C Negative 2.3E-05
Pyruvate metabolism C Negative 7.3E-05

Functions within the BRITE hierarchy were tested for enrichment, using the
cumulative hypergeometric test, for genes that were strongly correlated with
AGS (Pearson g < 1e-5). This was performed separately for genes that were
positively correlated and genes that were negatively correlated. Listed are the
most significant results from this analysis.

Materials and methods

Essential, single-copy gene families

We downloaded a recently published set of 40 phylogen-
etically diverse, single-copy protein families found in
nearly all Bacteria and Archaea [24]. To validate that
these genes were in fact universally distributed and single
copy, we searched them against the complete proteomes
of 250 Bacteria and 79 Archaea (Additional files 1 and 2)
using BLAST [50]. An essential gene was deemed present
in a genome if its corresponding E-value was below 1E-5
and if the query and target proteins were both covered by
at least 70% of their length. We identified a subset of these
families (N =30) with mean copy number close to 1.0,
copy number variance close to zero, and universality
(fraction of genomes in which gene is present) close to
1.0. Nearly all of these genes (27/30) were components
of the ribosome. To address whether these markers
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could be extended to microbial eukaryotes, we repeated
this procedure for 24 complete genomes from Fungi
(Additional files 1 and 2). There were an insufficient
number of complete genomes from the Integrated
Microbial Genomes Expert Review (IMG/ER) database
[51] at the time of this writing to evaluate other groups
of microbial eukaryotes. While most of these gene fam-
ilies were present in most fungal genomes (21/30 with
universality >0.90), they were not as stable as in Bacteria
and Archaea. Therefore, a set of universal single-copy
genes that covers all three domains of life is needed in
future studies.

Selection of training genomes

We selected 329 diverse genome sequences from Bac-
teria in Archaea (Additional file 2). These genomes were
included in the shotgun sequencing simulations that
were used to train our method and were used to validate
our 30 essential single-copy gene families. Specifically,
we selected 250 complete bacterial genomes from a large
16S gene phylogeny using an algorithm that maximized
the total branch length of this sub-tree; additionally we
selected 79 complete archaeal genomes that were dis-
tinct at the genus level. These genomes ranged in size
from 138 kb to 10 Mb and spanned 33 distinct phyla.
All reference genomes were downloaded from the
IMG/ER database [51].

Optimizing MicrobeCensus

We developed a modular workflow to train Microbe-
Census given our essential gene families and training ge-
nomes. The purpose of this workflow was threefold: 1) to
identify the optimal parameters for mapping metagenomic
reads to each of the essential gene families at a given read
length; 2) to estimate the proportionality constant between
AGS and the relative abundance of each essential gene fam-
ily, given the optimal mapping parameters and read length;
3) to identify weights for each gene family at each read
length, such that the weighted average of their individual
AGS estimates minimized error in the combined AGS
estimate.

The first step in our training workflow was to simulate
shotgun sequence libraries in which AGS was known.
We used the software tool Grinder [52] to simulate one
library from each training genome at each read length,
using read lengths ranging from 50 to 500 bp. Specific-
ally, we simulated one 500-bp library for each of the 329
genomes at 200x coverage. For shorter read lengths, we
simply trimmed each read from the 3" end to achieve
the desired length. This resulted in 6,580 libraries and
totaled over 400 Gb of sequence data.

The next step in our workflow was to identify optimal
mapping parameters. We used the tool RAPsearch2
(version 2.10; options: -z 1 -e 1 -t n -p f -b 0) [27] to
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perform a translated alignment of each simulated li-
brary against our database of essential genes. We
assigned a read to a gene family if its alignment
exceeded a set of mapping parameters that included
minimum bit-score, minimum alignment coverage, and
maximum percent identity. We tested over 3,000 com-
binations of these cutoffs. At each read length, we
identified the combination of cutoffs that minimized
the median unsigned AGS estimation error of each
gene across all 329 training libraries.

The next step in our workflow was to identify the pro-
portionality constant between AGS and the relative
abundance of an essential gene family at a given read
length and using the optimal mapping parameters. First,
we used the optimal mapping parameters to assign reads
from each training library to the database of essential
genes. We used these mapped reads to compute the
relative abundance of each of the 30 essential genes in
each training library. Relative abundance was computed
as the number of mapped reads divided by the library
size in base pairs. Because the AGS of each training li-
brary was known, the proportionality constant for each
gene could be trivially computed for each library. To
identify a robust value of C for each gene family at each
read length, we used the median value of C across the
329 training libraries.

Finally, we identified weights for each gene family,
such that the weighted average of their individual esti-
mates minimized the median unsigned error in the
resulting AGS estimates across the 329 training libraries.
To do this we used the R software package optimx [53].
We have provided software necessary to re-run this
workflow using user-supplied gene families and training
genomes. Our software is freely available at [29]. This
may be important as new genomic data become available
or for researchers who wish to train MicrobeCensus for
microbes from specific environments or using additional
gene families; however, retraining will not be necessary
for most applications.

Mock communities and simulated metagenomes for
method validation

We generated over 650 metagenomic libraries to test
MicrobeCensus under various conditions and to compare
performance to existing methods. Each metagenome was
composed of reads from 20 bacterial or archaeal genomes
that were randomly selected from a pool of over 2,000
complete genome sequences from the IMG/ER database
(Additional file 6). To prevent overrepresentation of well-
studied organisms (for example, E. coli), we selected no
more than one genome per named species. Additionally,
we excluded the 329 genomes that were used for train-
ing MicrobeCensus and genomes of 177 known endo-
symbionts [51].
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Next, we used these genomes to build low, medium,
and high complexity communities (Additional file 8).
High complexity communities had an equal relative
abundance of its 20 members (Shannon entropy = 4.32),
whereas low complexity communities were dominated
by a single taxon (Shannon entropy =1.08); medium
complexity communities lay between these extremes
(Shannon entropy = 2.75).

In addition to these bacterial and archaeal communi-
ties, we built communities that contained either micro-
bial eukaryotes or viruses. For eukaryotes, we simulated
metagenomes where up to 50% of the genomes came
from Fungi, representing up to 94% of total reads. For
viruses, we built metagenomes where up to 50% of the
reads came from phage genomes. The remaining reads
in each metagenome came from an existing medium
complexity prokaryotic metagenome. Fungal genomes
were randomly selected from the IMG/ER database and
phage genomes were randomly selected from NCBI [54]
(Additional file 6). Fungal genome sizes ranged from 2.5
to 66.3 Mb with an average of 20.4 Mb, while phage gen-
ome sizes ranged from 6.8 to 182.8 kb with an average
of 59.5 kb.

The true AGS for each of these communities was de-
termined by taking an abundance weighted average of
the community members’ individual genome sizes:

n *
AGS =) %

i1 QR
where R; and S; indicate the relative abundance and gen-
ome size of community member i. In the case of the
viral communities, AGS was determined using only the
genome sizes of Bacteria and Archaea since our defin-
ition of AGS is based on only cellular organisms.

Next, we used the software package Grinder [52] to
simulate metagenomic libraries from each of these com-
munities. The coverage of genome i in library j, G;; was
simply a function of the total library coverage G; multi-
plied by the organism’s relative abundance: G;; = R; x G;.
And the number of reads simulated from genome i in li-
brary j, Nj was simply of function of that genome’s
coverage, genome size, and the library’s read length L
N;j= (G x S)/L;. We simulated libraries for a variety of
read lengths (50 to 500 bp), sequencing depths (1 to
100x total library coverage), and error rates (0 to 5%
uniform error). Sequencing errors were introduced using
a 4:1 ratio of substitutions to indels.

Finally, we used MicrobeCensus to estimate AGS for
each of these simulated metagenomes using default pa-
rameters. These estimates were then compared with the
expected value of AGS for the corresponding commu-
nity. Unless otherwise noted, we measured estimation
error as: |AGS - AGS|/AGS.
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Comparison to existing methods

We compared the estimation accuracy of MicrobeCensus
with GAAS (v.0.17) for 20 metagenomes from medium-
complexity communities composed of Bacteria and Ar-
chaea. These metagenomes contained 100 bp reads, were
sequenced at 60x total coverage, and contained no se-
quencing error. For GAAS, we first searched the reads
against the database of microbial genomes included with
the software (NCBI RefSeq release 56) using BLAST
(v.2.2.26) with the following options: blastall -m 8 -p
blastn. We supplied the BLAST output to GAAS using
the following command: gaas -f query.fna -d reference.
fna -m blast.m8 -a taxon.map -v nucleic -e 1e-03 -sm 0 -j
1 -gp 0 -gs 0 -gt 0. In parallel, we ran MicrobeCensus
using default parameters on the same 20 simulated
metagenomes.

To simulate the presence of novel taxa, we held back
reference sequences belonging to organisms from the
same taxonomic group as organisms in the metagenome.
We used each method to estimate AGS using only the
remaining reference sequences. For MicrobeCensus, the
reference sequences included the 30 gene families,
whereas the reference sequences for GAAS were
complete microbial genomes. We performed this pro-
cedure and evaluated performance at each taxonomic
level: species, genus, family, order, class, and phylum.
For example, at the genus level, this procedure would
discard alignments between E. coli shotgun sequences
and all reference sequences from Escherichia; at the
phylum level, this procedure would discard alignments
between E. coli shotgun sequences and all reference se-
quences from Proteobacteria.

Separately, we evaluated whether the method de-
scribed in Raes et al. was able to accurately estimate
average genome size for modern libraries composed of
short reads. To this end, we used the same 20 mock
communities that we previously used when benchmark-
ing GAAS. Here, however, we simulated libraries with
read lengths ranging from 50 to 500 bp, where each li-
brary was simulated at >20x coverage. These libraries
were simulated without sequencing error. Because no
software was released, we had to manually implement
the method described by Raes et al. To this end, we
downloaded version 3 of eggNOG database [55] and
identified all protein sequences that corresponded to the
35 single-copy orthologous groups (OGs) used by Raes
et al. Next, we created a BLAST database of these se-
quences using the tool formatdb and searched each sim-
ulated library against the 35 OGs with BLASTX
(v.2.2.26). We only assigned a shotgun sequence to one
of the 35 OGs if the alignment score exceeded 60 bits
but the percent identity was less than or equal to 50%.
We allowed a read to hit multiple OGs, conditional that
the alignments overlapped by no more than 50% of the
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shorter sequence. Finally, we computed marker density
(x) as the number of hits per megabase of input data,
and used the Raes formula to estimate average genome
size: Average genome size =a + (b x L™°)/x, where a =21.2,
b =4230, c=0.733, and L = library read length (Raes et al.
refer to this measure as effective genome size). We ran
MicrobeCensus on the same data and computed estima-
tion error for both methods as previously specified.

Estimation accuracy using real data

To evaluate the ability of MicrobeCensus to estimate
average genome size from real shotgun libraries, we
downloaded short-read Illumina datasets from 42 com-
pleted microbial isolate genome projects using SRAdb
[56] (Additional file 7). After converting the SRA files to
FASTQ format, we used FASTQC [57] to identify
adapter contamination in each dataset, and used cutadapt
[58] (-e 0.1 —discard -O 5) to remove any contaminated
sequences. Additionally, we removed exact duplicates
using the first end of each paired-end read, and filtered
reads with an average quality score of less than 5. Next,
we pooled these data to create 10 mock metagenomes.
Each metagenome was composed of 5 million 70-bp reads
from 10 randomly selected genome projects (that is,
500,000 reads from each project). The true AGS of each
metagenome was computed as previously described. We
used MicrobeCensus to estimate AGS for each of these
10 mock metagenomes. Finally, we evaluated the effect
of various quality control procedures on AGS estima-
tion accuracy. Specifically, we evaluated adaptor filter-
ing, duplicate filtering, filtering by mean read quality,
filtering by minimum read quality, and filtering reads
with ambiguous base calls (that is, Ns; Additional file 9).

Speed benchmarking

We benchmarked the speed of MicrobeCensus, GAAS,
and the Raes method on a simulated 150-bp shotgun se-
quence library, which contained between 1,000 and 1
million reads. GAAS was run with default options, ex-
cept -v nucleic -sm 0, to increase its speed. MicrobeCen-
sus was run with default options, except -t to specify the
number of threads to use. The Raes method was run as
previously described. All tests were performed on a ser-
ver with 16 Intel Xeon X5560 2.80 GHz CPUs and 200
Gb of RAM running Ubuntu 10.04.4 LTS.

Minimum number of reads for precise AGS estimates

To determine the minimum number of reads needed to
precisely estimate AGS, we ran MicrobeCensus using
different numbers of randomly selected reads from
several real datasets. Specifically, we chose Human
Microbiome Project samples from eight different body
sites (SRS011084, SRS017849, SRS023847, SRS019029,
SRS042984, SRS043663, SRS019127, SRS023468). For
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each sample, we selected up to 20 million unique,
single-end reads trimmed to 70 bp and searched these
reads against the database of essential genes using
RAPsearch2. Next, we used bootstrapping to repeat-
edly estimate AGS with MicrobeCensus using random
subsets of these 20 million reads. We evaluated sample
sizes of 10,000 to 20 million reads. For each sample size
we performed 100 bootstrap iterations. This enabled us to
estimate the amount of dispersion (variance/mean) ob-
served for each sample at a given number of sampled
reads (Additional file 4).

Minimum number of genes for accurate AGS estimates

To determine whether the 30 genes we selected were
sufficient for low-error AGS estimates, we ran Microbe-
Census on 20 simulated prokaryotic metagenomes (100-bp
error-free reads; 60x coverage), using between 1 and 30
essential genes (Additional file 5). For each number of
genes used, we took a weighted average across the esti-
mates produced by each gene. We used up to 30 random
combinations of genes at each level.

Human microbiome sequence data

We downloaded 738 metagenomic samples from the
Human Microbiome Project on 22 September 2013 from
the HMP Data Analysis and Coordination Center
(HMPDACC) [59]. Additionally, we downloaded meta-
genomic data for Chinese individuals [5] from the NCBI
Sequence Read Archive (SRA045646, SRA050230) on 22
December 2013; for Spanish and Danish individuals
from the MetaHIT project [1] from the Beijing Genomics
Institute [60] on 13 January 2014; and for Swedish in-
dividuals [6] from the NCBI Sequence Read Archive
[ERP002469] on 7 February 2014.

Estimating AGS for human microbiome samples

We used MicrobeCensus to estimate AGS for human
microbiome samples using up to 5 million single-end
reads trimmed to 70 bp (Additional file 10). Addition-
ally, we used options to remove duplicates (-d), filter
reads with mean quality less than 5 (-m 5), and filter
reads containing more than 5% unknown base calls (-u 5).
In all downstream analyses, we only considered samples
for which there were at least 300,000 reads after our qual-
ity control procedures. When using RPKM to measure
gene family abundance, we estimated AGS without filter-
ing duplicate reads (Additional file 13). Other options
used were the same as before.

Abundance of KEGG Orthology groups

We selected 84 HMP stool samples for functional ana-
lysis. Each sample was from a different subject, and
when there were multiple samples per subject, we chose
the sample from the subject’s first clinic visit. We
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excluded one outlier sample (SRS016585) from our ana-
lyses that we discovered was composed of only E. coli
(96.4%). Next, we downsampled the first 10 million reads
of at least 75-bp from each FASTQ file, using only the
first end of each paired-end read. Next, we used the tool
Prodigal [61] (v.2.60) to identify the likely protein coding
sequence from each read (command: prodigal -i input.fa
-a output -p meta -q). These protein sequences were
searched against the KEGG Orthology Database (March
2013) using RAPsearch2 [27] (v.2.22) with the com-
mand: rapsearch -q input.faa -d kegg.db -o output.m8 -i
30 -v 1 -b 0 -t a. After filtering alignments with bit
scores less than 30, we assigned each read to the KO ac-
cording to its top scoring hit.

Based on these top scoring hits, we then computed the
abundance of each KO in each sample. First, we com-
puted abundances using our AGS-normalized measure,
called RPKG. The RPKG of a KO in a metagenome was
computed by: 1) counting the number of reads mapped
to the KO; 2) dividing (1) by the length of the KO in
kilobase pairs; and 3) dividing the result of (2) by the
number of sequenced genome equivalents:

Mapped reads | Gene Length (Kb)

RPKG = g ,
Genome equivalents
where:
Lib ize (b
Genomequivalents (e L),

and library size is the total number of sequenced base
pairs. To compare our measure, we also computed the
relative abundance of each KO in each sample. The only
difference between these measures is that relative abun-
dance is scaled so that the sum across KOs for a sample
is equal to 1.0:

Mapped Reads/Gene Length (kb)

Relative Abundance= .
ZMapped Reads/Gene Length (kb)

For higher levels in the ontology, we summed the
abundance of all KOs that mapped to a particular mod-
ule or pathway.

To validate our mapping approach, we compared the
relative abundances of KOs obtained from our pipeline
to that obtained using the software HUMAnN [45].
HUMANN relative abundances were downloaded from
the HMP Data Analysis and Coordination Center [59].
For each sample, we computed a linear regression of the
relative abundance of KOs between the two methods.

Abundance of taxonomic groups

For Bacteria and Archaea, we downloaded MetaPhlAn
[43] taxonomic annotations for Human Microbiome
Project samples on 21 December 2013 from the HMP
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Data Analysis and Coordination Center. For other stool
microbiomes, we ran MetaPhlAn v.1.7.7 using the
options: —bowtie2db bowtie2db/mpa —input_type =
multifastq -t rel_ab.

Statistical analyses

To identify genes that tracked with average genome size,
we performed Pearson correlations between the abun-
dance of KOs - using both relative abundance and RPKG
- and AGS. We used the false discovery rate (FDR) pro-
cedure [62] to correct for multiple testing. Next, we per-
formed cumulative hypergeometric tests to identify
functional categories within the BRITE hierarchy that
were enriched for genes that were highly correlated with
AGS. We used an FDR adjusted P-value cutoff of le-5
to determine whether a gene was correlated or not. We
performed this procedure separately for genes that were
positively and negatively correlated with AGS. We used
the FDR procedure to correct hypergeometric P-values.

Additional files

Additional file 1: A table listing the 30 essential single-copy genes
used to estimate average genome size along with their copy
number distributions across Bacteria, Archaea, and Fungi.

Additional file 2: A table listing the 329 phylogenetically diverse
bacterial and archaeal genomes used to validate the 30 essential
genes and used in shotgun sequencing simulations to train
MicrobeCensus.

Additional file 3: Shows the effect of parameter tuning on the
ability to accurately estimate AGS.

Additional file 4: A figure that shows the effect of sequencing
depth on dispersion of AGS estimates from real metagenomes.

Additional file 5: Shows AGS estimation error as a function of the
number of marker genes used.

Additional file 6: A list of the bacterial, archaeal, eukaryotic, and
viral genomes used in metagenomic simulations to test
MicrobeCensus and existing methods.

Additional file 7: A table listing the completed genome projects
from NCBI that were used to build mock lllumina metagenomes.
AGS estimates for these projects are also included.

Additional file 8: A figure that shows the effect of community
complexity on AGS estimation error.

Additional file 9: A figure that illustrates the effect of various
sequence quality filters on AGS estimation accuracy.

Additional file 10: A table listing AGS estimates for human
microbiome data.

Additional file 11: Lists P-values from comparisons of AGS between
body sites, oral subsites, and gut microbiome projects.

Additional file 12: Lists associations between AGS and bacterial
and archaeal taxa within the HMP dataset.

Additional file 13: Shows the effect of duplicate filtering on AGS
estimates from HMP stool samples and the downstream effect
on RPKG.

Additional file 14: A table listing correlation coefficients for
functions associated with AGS across stool samples from the HMP.

Additional file 15: A table listing BRITE functional categories that
were enriched for KOs significantly correlated (either positively or
negatively) with AGS across HMP stool samples.
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