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Abstract

Circular RNA (circRNA) is mainly generated by the splice donor of a downstream exon join-

ing to an upstream splice acceptor, a phenomenon known as backsplicing. It has been

reported that circRNA can function as microRNA (miRNA) sponges, transcriptional regula-

tors, or potential biomarkers. The availability of massive non-polyadenylated transcriptomes

data has facilitated the genome-wide identification of thousands of circRNAs. Several cir-

cRNA detection tools or pipelines have recently been developed, and it is essential to pro-

vide useful guidelines on these pipelines for users, including a comprehensive and unbiased

comparison. Here, we provide an improved and easy-to-use circRNA read simulator that

can produce mimicking backsplicing reads supporting circRNAs deposited in CircBase.

Moreover, we compared the performance of 11 circRNA detection tools on both simulated

and real datasets. We assessed their performance regarding metrics such as precision,

sensitivity, F1 score, and Area under Curve. It is concluded that no single method dominated

on all of these metrics. Among all of the state-of-the-art tools, CIRI, CIRCexplorer, and

KNIFE, which achieved better balanced performance between their precision and sensitiv-

ity, compared favorably to the other methods.

Introduction

Circular RNA (circRNA) is a class of noncoding RNA that was discovered decades ago [1];

however, its abundance and ubiquity in eukaryotes were only recognized recently [2–5]

because of the advance of next-generation RNA sequencing (RNA-Seq). Although it appears

that many circRNAs remain to be discovered, ongoing studies continue to demonstrate

important functions of circRNA in cell physiology [6–11]. For instance, the well-known circu-

lar RNA sponge for miR-7 (ciRS-7), which originates from the vertebrate cerebellar degenera-

tion-related 1 (CDR1) antisense transcript, has the capacity to serve as a microRNA (miRNA)

sponge. It is highly expressed in human and mouse brain cells [2, 12]. Given its possession of

more than 60 miR-7 binding sites [2, 13], it is suggested to inhibit the binding of miR-7 to its

target mRNAs. Another circRNA that can potentially also act as an miRNA sponge is derived

from the murine sex-determining region Y (Sry) gene; it is a testis-specific circRNA, possessing

16 target sites for miR-138 in mouse [13]. Another function proposed for circRNAs is that they
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affect gene regulation by competing with linear splicing on the usage of splice sites during the

cotranscription process, leading to a change in the level of gene expression [14, 15]. Although

most circRNAs are from exons, there are also intron-containing circRNAs. It’s reported that

they are largely concentrated in the nucleus [16, 17]. Intriguingly, evidence suggests that these

intron-containing circRNAs enable the regulation of gene transcription in cis. Specifically,

they can enhance the RNA polymerase II (Pol II) transcription activity of their parental genes,

although the underlying mechanism is still not fully understood [16, 17]. CircRNAs are char-

acterized by their noncollinearity, in which a splice donor attacks an upstream acceptor, form-

ing a covalently closed circular structure [1, 2, 4, 12, 18–20]. This characteristic endows them

with the ability to escape exonuclease digestion, enabling them to persist longer in the cell than

their linear counterparts [3, 21, 22]. This feature in combination with their ubiquity in cancer

tissues [23, 24], saliva [25, 26], blood [27–29], and exosomes [30, 31] suggests that circRNAs

are promising as biomarkers for diseases. On the other hand, their circular structure also

serves as a key element for the detection of circRNAs. Specifically, the backsplicing junction

reads within the structure presented in RNA-Seq data facilitate the genome-wide identification

of this RNA species, although other mechanisms such as genomic tandem duplication, tem-

plate switching during PCR amplification, or trans-splicing between precursor mRNAs (pre-

mRNAs) can also potentially generate such reads [7, 19] and complicate the detection process.

To resolve this issue, Jeck et al. [3] developed a biochemical strategy termed CircleSeq that

involves treating samples with an exonuclease that digests linear RNAs but preserves circRNAs

(RNase R). However, it has been asserted that RNase R resistance alone cannot be used to

determine whether an isoform is circular or not, because some circRNAs were found to be sus-

ceptible to this exonuclease [3, 19, 32, 33]. CircRNA expression is reported to be specific to dif-

ferent tissues/cell lines and developmental stages [32–35]. Despite the fact that some circRNAs

have been experimentally verified to be abundantly expressed, even more highly than their lin-

ear counterparts, the vast majority of them are usually expressed at low levels [3, 32, 36]. This

not only constitutes another challenge for their identification, but also raises doubts about

their functions, indicating that the majority of them may be inert byproducts of noncanonical

pre-mRNA splicing [3, 32].

The advent of high-throughput next-generation sequencing technology has enabled the

sequencing of hundreds of millions of short reads, and its single-base-pair resolution provides

a precise and efficient way to identify circRNAs. The detection of circRNAs from RNA-Seq

data can be achieved using various software packages. There are approximately a total of 11

different tools that have been developed for this purpose. However, despite the development of

this range of computational tools, no systematic evaluations of their performance have been

performed. Although some attempts have been made to compare several of these packages [7,

37] and some comparisons were included in papers by those who developed these tools [33,

38–42], different conclusions were drawn with regard to their performance, owing to different

subsets of tools being compared, different filtering strategies being applied, or diverse datasets

being utilized, among others. The fact that some circRNAs are susceptible to exonucleases and

most of them are expressed at low levels means that there is an inherent bias in filtering for

reliable circRNA candidates based on resistance to RNase R and/or the selection of backspli-

cing junction reads above a specific abundance threshold [33, 43]. For example, recently, Han-

sen et al. found that, when focusing on the top 100 most highly expressed candidates detected

by one tool alone, a large number (77%–88%) of the candidates predicted by 3 of the 5 tools

evaluated would be qualified as artefacts, based on the criteria of RNase R resistance [37].

In this study, we perform a comprehensive evaluation of 11 different circRNA detection

tools, with the aim of providing useful guidelines for researchers engaged in this field. These

tools have been run and compared on 4 different datasets: (1) positive dataset: a dataset of
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simulated reads, encompassing a total of 14,689 circRNAs detected in HeLa cells from Cir-

cBase [44]; (2) background dataset: a large negative dataset comprised of reads generated from

mRNA sequences deposited in the NCBI Reference Sequence (RefSeq) database; (3) mixed

dataset, generated by combining the positive and background datasets together; and (4) real

datasets. These real datasets were established by downloading 6 runs of rRNA-depleted RNA-

Seq data from NCBI Sequence Read Archive (SRA), including 4 runs of RNA-Seq data from

the HeLa cell line and 2 runs from an immortalized human fibroblast cell line (Hs68), of

which, 2 runs of RNA-Seq data from the HeLa cell line and 1 run from Hs68 were further

treated with RNase R enzyme during sample preparation. The performance of the software

packages was evaluated based on metrics such as sensitivity, precision, F1 measure, Area

under Precision-Recall Curve (AUC), memory (i.e., Random Access Memory [RAM]) con-

sumption, running time, and physical disk space utilized. Notably, a striking difference in the

use of physical disk space was observed among these tools, which is an important factor that

should not be overlooked when running software on a large dataset or several moderately

sized datasets in parallel.

Results

Evaluation with the positive dataset

As stated above, the positive dataset comprises 14,689 circRNAs derived from those detected

in HeLa cells deposited in CircBase, with the number of supporting read pairs ranging from 2

to 24 and circle size varying from 51 to 846,530 base pairs (bps). We applied the 11 circRNA

detection tools to identify circRNAs on this dataset. Table 1 show that most tools achieved high

precision (>94%) and varying sensitivity (52%–93%). As F1 score (i.e., F1 = (2 � precision � sen-

sitivity)/(precision + sensitivity)) weights precision and sensitivity equally and serves as a good

metric to indicate whether a tool achieves favorable precision and sensitivity simultaneously,

the performance of each method in terms of F1 was also included in Table 1. In summary,

regarding the F1 measure, KNIFE, CIRI, PTESFinder, Segemehl, and CIRCexplorer were the

top 5 performers on this dataset, with an F1 score above 0.85. Moreover, the effect of filtering

for reliable circRNAs by increasing supporting read counts is shown in Fig 1A. In general, we

observed that the precision of each tool increased with thresholds for read counts, but some

highly expressed false positives were also reported by several tools, leading to a fluctuation of

precision at the end. Also, we could observe that NCLScan consistently dominated other tools

regarding the precision measure. Meanwhile, KNIFE, Segemehl, CIRI, PTESFinder and CIR-

Cexplorer achieved the best sensitivity. Consistent with the F1 measure, the same 5 methods

still performed best in terms of AUC.

Evaluation with the background dataset

The background dataset contained only reads from linear RefSeq mRNAs; therefore, the num-

ber of candidates and supporting read counts reported, which could be directly accessed from

each tool’s output, served as an indicator of false positive rate (Table 2). Here, NCLScan,

MapSplice, CIRCexplorer, DCC, and PTESFinder tended to have a low false-positive rate,

whereas Segemehl, find_circ and UROBORUS yielded the worst performance.

Evaluation with the mixed dataset

In the mixed dataset, we have 14,689 true positives. Similar to the positive dataset, metrics like

precision, sensitivity, F1 measure, and AUC can be applied to evaluate the tools’ performance

on this dataset. The results are presented in Table 1. We can see that NCLScan maintains the
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highest precision, while KNIFE, CIRI, PTESFinder, CIRCexplorer, and Segemehl exhibit the

best with regard to F1 measure. Compared with the findings on the positive dataset, as shown

in Fig 2, considerable drops of precision rate (−7.61%, −6.62%, and −6.23%) were observed for

Segemehl, find_circ, and UROBORUS, respectively, indicating that their performances were

vulnerable to background noise. Meanwhile, KNIFE, CIRI, and circRNA_finder also suffered

minor loss of precision (−3.39%, −1.21%, and −0.56%, respectively). On the other hand, small

decreases of sensitivity (−4.46%, −2.90%, and −0.87%) were only observed for UROBORUS,

Segemehl, and KNIFE. Notably, NCLScan, CIRCexplorer, DCC, Mapsplice, and PTESFinder

were robust to background noise, showing no pronounced reductions in precision or sensitiv-

ity rate. Fig 1B shows the influence on performance of each method when increasing the

threshold for supporting read counts on this dataset. In general, NCLScan and CIRCexplorer

dominated other tools regarding the precision measure, while KNIFE, CIRI, Segemehl, PTES-

Finder, and CIRCexplorer continued to be more sensitive than the rest of the tools. Of special

note, except NCLScan, DCC, and MapSplice, the precision of all the other tools dropped to 0

in the end, because of the highly expressed false positives reported. The highest AUC achieved

on this dataset was KNIFE (0.87), followed by CIRI (0.85), PTESFinder (0.83), Segemehl

(0.80), and CIRCexplorer (0.78).

Evaluation with the real datasets

For the real datasets, we found that the number of circRNA candidates detected correlated

with the types of candidates they were able to detect. Generally, methods that were able to

detect exonic, intronic, and intergenic circRNAs reported more candidates than tools that

were limited to detect exonic and intronic circRNAs, but the tools that could detect exonic and

intronic circRNAs predicted more candidates than tools that only reported exonic circRNAs,

with the exception that KNIFE and PTESFinder tended to be sensitive at detecting exonic cir-

cRNAs (Table 3). Since we had no information about the true or false circRNA candidates

detected in these samples, we mainly assessed each method’s performance from 4 perspectives:

Table 1. Summary of accuracy measures on the positive and mixed datasets.

Datasets Positive Mixed

Tools #Detected TP S (%) P (%) F1 AUC #Detected TP S (%) P (%) F1 AUC

CIRI 12,589 12,561 85.51 99.78 0.92 0.85 12,714 12,532 85.32 98.57 0.91 0.85

CF 9,460 9,383 63.88 99.19 0.78 0.64 9,513 9,383 63.88 98.63 0.78 0.63

DCC 8,558 8,512 57.95 99.46 0.73 0.58 8,562 8,512 57.95 99.42 0.73 0.58

FC 9,969 9,919 67.53 99.50 0.80 0.67 10,679 9,919 67.53 92.88 0.78 0.58

SG 13,470 12,766 86.91 94.77 0.91 0.84 14,158 12,340 84.01 87.16 0.86 0.80

CE 11,465 11,431 77.82 99.70 0.87 0.78 11,467 11,431 77.82 99.69 0.87 0.78

MS 9,072 9,032 61.49 99.56 0.76 0.61 9,075 9,028 61.46 99.48 0.76 0.61

UB 9,265 8,816 60.02 95.15 0.74 0.59 9,178 8,161 55.56 88.92 0.68 0.5

KNIFE 13,577 13,531 92.12 99.66 0.96 0.92 13,923 13,404 91.25 96.27 0.94 0.87

PF 12,341 12,303 83.76 99.69 0.91 0.84 12,357 12,298 83.72 99.52 0.91 0.83

NCLS 7,744 7,740 52.69 99.95 0.69 0.53 7,747 7,743 52.71 99.95 0.69 0.53

While the positive dataset contains only reads from circRNA species, the mixed dataset encompasses a large background dataset of simulated reads from

RefSeq mRNAs, additionally. There are a total of 14,689 circRNA species in these 2 datasets. The total number of candidates and true positives predicted

by each tool were calculated. AUC, Area under Precision-Recall Curve; CE, CIRCexplorer; CF, circRNA_finder; circRNA, circular RNA; F1, F1 score; FC,

find_circ; MS, MapSplice; NCLS, NCLScan; P, precision; PF, PTESFinder; RefSeq, NCBI Reference Sequence database; RNase R, exonuclease that

digests linear RNAs but preserves circRNAs; S, sensitivity; SG, Segemehl; TP, true positives; UB, UROBORUS.

https://doi.org/10.1371/journal.pcbi.1005420.t001
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Fig 1. Precision-recall Curve for the 11 circular RNA detection tools on synthetic positive and mixed datasets.

Counts of candidates and true positives were calculated at increasing thresholds for the number of supporting reads, and the
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First, we calculated and compared the percentage of circRNA candidates detected by each

method that were not depleted after RNase R treatment; though true circRNAs may not be

enriched after RNase R treatment, we assumed that the higher the percentage a method

achieves, the more reliable the method is. Second, for a specific sample, we calculated the pro-

portions of circRNA candidates detected by a particular method that were also detected by

every other method. Third, we assessed the sensitivity of each method at reads level, i.e., the

number of backspliced junction reads per circRNA each method can recover. Fourth, we man-

ually compiled a list of 282 circRNAs validated from 17 studies and checked how many of

these verified circRNAs were detected by each method.

Percentage of circRNA candidates that were not depleted after RNase R treatment.

After filtering for circRNA candidates with�2 supporting read counts, we normalized the

backspliced junction read counts by sequencing depth [28, 39]. Similar to Hansen et al. [37],

the ratio of normalized read counts between RNase R–treated and untreated samples was cal-

culated. As shown in Table 3, with approximately equal sequencing depth, RNase R treatment

indeed enabled the detection of many more candidates on the Hs68 samples. This is also con-

firmed on the HeLa samples. Although less than half the sequencing depth of the RNase R–

untreated sample, a much larger number of candidates were detected by all the tools except

PTESFinder, Segemehl, and UROBORUS on the HeLa RNase R–treated sample. In addition,

we found that, on both HeLa and Hs68 samples, while MapSplice was capable of recovering

the largest proportion of “not depleted” candidates, CIRI was much more sensitive to detecting

such candidates and ranked second regarding the proportion of “not depleted” candidates.

CIRCexplorer also exhibited decent performance and was ranked third in this analysis. When

precision-recall results for each tool were further computed and depicted in the figures above. (a) Positive dataset (Inset:

precision above 0.99 was detailed). (b) Mixed dataset (Inset: precision above 0.97 was detailed).

https://doi.org/10.1371/journal.pcbi.1005420.g001

Table 2. Overview of circRNA candidates detected on the background dataset.

Datasets Background

Tools #Detected #total read counts

CIRI 150 633

CF 51 175

DCC 4 16

FC 712 14,220

SG 1,084 3,420

CE 2 24

MS 1 10

UB 620 3,476

KNIFE 554 3,960

PF 18 93

NCLS 0* 0*

The large background dataset contains only reads generated from RefSeq mRNAs, thus the false positive

rate of a tool on this dataset correlates with the number of candidates it predicts. The total number of

candidates and supporting-junction reads reported by each tool are provided here. CE, CIRCexplorer; CF,

circRNA_finder; FC, find_circ; MS, MapSplice; NCLS, NCLScan; PF, PTESFinder; RefSeq, NCBI

Reference Sequence database; SG, Segemehl; UB, UROBORUS.

*Notably, NCLscan aborted for failing to construct putative noncollinear references, therefore the number of

candidates predicted by this tool was supposed to be 0 on this dataset.

https://doi.org/10.1371/journal.pcbi.1005420.t002
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we focused on the top 100 most highly expressed candidates, as in Hansen et al. [37], we found

that, while find_circ, UROBORUS, and Segemehl exhibited a relatively poor performance,

most tools performed similarly, with a close percentage of “not depleted” candidates detected

on HeLa (65%*75%) and Hs68 (72%*80%) samples.

Proportions of circRNA candidates detected by a specific method that were also

detected by every other method. Mathematically, for all the methods M, 8 i,j 2M, if we

assume Ni and Nj as the total number of candidates detected by method i and j, respectively,

and C(i,j) as the common candidates detected by both methods, then for method i, the propor-

tion of common candidates is P(i,j) = C(i,j)/Ni, while for method j, the proportion of common

candidates is P(j,i) = C(i,j)/Nj. If a large proportion of candidates detected by one method are

often detected by the other methods (i.e., 9 i 2M, 8 j 2M\{i}, we have P(i,j)� Pthreshold, e.g.,

Pthreshold = 0.5), then the method would tend to have high precision. On the other hand, if candi-

dates detected by one method frequently overlap with a large proportion of candidates detected

by the other methods (i.e., 9 i 2M, 8 j 2M\{i}, we have P(j,i)� Pthreshold, e.g., Pthreshold = 0.5),

then the method is sensitive and probably includes many true positives. After filtering for candi-

dates with�2 backspliced junction reads on HeLa and Hs68 RNase R–treated sample data, we

assessed the proportion of candidates detected by a specific method that were also detected by

Fig 2. Comparison of performance on the synthetic positive and mixed datasets in terms of sensitivity and precision rate. After

filtering for candidates with�2 supporting reads, the number of candidates and true positives detected by each method were computed, then

precision and sensitivity rate for each method were depicted.

https://doi.org/10.1371/journal.pcbi.1005420.g002
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every other method (i.e., 8 i, 8 j 2M\{i}, we calculate P(i,j)), and the results were shown in Fig

3. We found that NCLScan was a conservative method in that a high proportion of candidates

detected by this method were frequently detected by other methods, while CIRI and Segemehl

were sensitive methods in that a large percentage of candidates detected by other methods were

frequently detected by these 2 methods, but Segemehl tended to sacrifice much more precision,

because a relatively large portion of candidates detected by this method were frequently missed

by the other methods. In the case of UROBORUS, its behavior seemed to depend on the dataset.

The number of candidates detected on the Hs68 RNase R–treated sample by this method was

markedly smaller than by the other methods; as a consequence, a large proportion of candidates

detected by the other methods were left out by this method.

Sensitivity at reads level. CircRNAs that are relatively abundant at a specific condition or

developmental stage may possess important functions, and the number of backspliced junction

reads is often used to quantify the expression level of circRNAs [3, 24, 27, 34–36, 38]. There-

fore, the tools that are able to recover more of such reads will better serve this purpose. Of spe-

cial note, for paired-end data, when both mates from a read pair span the same backspliced

junction, which can be the case for small circRNAs, different tools undertake different count-

ing methods. To our knowledge, CIRI, circRNA_finder, CIRCexplorer, KNIFE, DCC, and

NCLScan take it once, while find_circ, MapSplice, PTESFinder, Segemehl, and UROBORUS

count them twice. In our analysis, we focused on circRNA candidates detected from RNase R–

treated samples. As shown in Fig 4A and 4B, consistent results were achieved on these 2 sam-

ples. Basically, these tools can be clustered into 4 groups according to their sensitivity. MapS-

plice, CIRI, and PTESFinder were in the most sensitive group, followed by the group of

KNIFE, find_circ, and Segemehl. While CIRCexplorer, circRNA_finder, DCC (all of which

Table 3. Comparison of circRNA candidates detected with and without RNase R treatment.

Dataset HeLa Hs68

Tools RNaseR

−
RNaseR

+

Not

depleted

Percentage

(%)

Top 10

Enriched

Top 100

Not

Depleted

RNaseR

−
RNaseR

+

Not

depleted

Percentage

(%)

Top 10

Enriched

Top 100

Not

Depleted

CIRI 5,923 8,699 3,210 54.20 0 72 4,893 29,981 3,400 69.49 5 73

CF 3,448 5,190 1,597 46.32 1 72 3,577 24,060 2,094 58.54 5 72

DCC 3,892 4,781 1,760 45.22 1 71 3,340 19,746 2,107 63.08 5 75

FC 5,655 6,113 2,092 36.99 0 48 3,978 23,027 2,377 59.75 6 64

SG 17,504 13,973 2,506 14.32 0 45 35,253 77,702 3,094 8.78 0 7

CE 2,771 4,428 1,388 50.09 1 73 2,708 20,747 1,856 68.54 5 79

MS 3,256 4,780 1,765 54.21 0 66 2,429 18,197 1,854 76.33 7 80

KNIFE 4,643 5,295 2,055 44.26 0 75 3,546 19,491 2,359 66.53 6 76

PF 5,762 5,646 2,054 35.65 0 65 3,909 19,778 2,474 63.29 5 74

NCLS 2,117 2,832 954 45.06 1 65 1,378 11,001 892 64.73 7 78

UB 2,455 2,365 761 31.00 0 54 1,414 2,906 279 19.73 0 18

Having obtained candidates with�2 supporting reads, we normalized the supporting read counts with sequencing depth and defined a candidate as “not

depleted” or “significantly enriched” if its normalized read counts were not reduced or had�5 folds of enrichment after RNase R treatment, respectively. The

percentage of “not depleted” candidates in the RNase R–untreated sample is provided. Among the top 10 and top 100 most highly expressed candidates,

the number of candidates “significantly enriched” or “not depleted” after RNase R treatment are also provided. In this table, these tools are ordered and

divided into 3 groups, according to the types (genomic origin) of candidates that they are able to detect, namely: the first 5 are tools are able to detect

exonic, intronic, and intergenic circRNA candidates, followed by CIRCexplorer and MapSplice, which are limited to predicting exonic and intronic

candidates, with the last 4 methods predicting only exonic candidates. CE, CIRCexplorer; CF, circRNA_finder; circRNA, circular RNA; FC, find_circ; MS,

MapSplice; NCLS, NCLScan; PF, PTESFinder; RNaseR-, sample without RNase R treatment; RNaseR+, sample with RNase R treatment; SG, Segemehl;

UB, UROBORUS.

https://doi.org/10.1371/journal.pcbi.1005420.t003
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Fig 3. Coverage between circRNA detection methods on (a) HeLa and (b) Hs68 RNase R–treated data. For a pair of methods

(i, j), the number of candidates detected by each method and the common candidates between them are calculated, then the

proportion of common candidates for each method can be further computed and depicted. Cells within the same column reflect
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are based on the STAR aligner), and NCLscan formed the third group, followed by the outlier

of UROBORUS. In addition, the result was corroborated by similar analysis on the positive

dataset (Fig 4C). Of note, probably due to the relatively high error rate (1%) introduced into

proportions of candidates detected by a specific method (column name) covered by other methods (row names) while cells

within the same row show the proportions of candidates detected by other methods (column names) covered by a specific

method (row name). CE, CIRCexplorer; CF, circRNA_finder; circRNA, circular RNA; FC, find_circ; MS, MapSplice; SG,

Segemehl; NCLS, NCLScan; PF, PTESFinder; RNase R, exonuclease that digests linear RNAs but preserves circRNAs; UB,

UROBORUS.

https://doi.org/10.1371/journal.pcbi.1005420.g003

Fig 4. Sensitivity analysis at reads level. On (a) HeLa and (b) Hs68 RNase R–treated samples, common circRNA candidates detected by all the methods

(659 and 903) and deposited in CircBase (608 and 724) were extracted, then candidates of which the spliced length is smaller than insert size of 500 base

pairs (bp) and 400 bp, respectively, were further excluded (212 and 323). The numbers in parentheses above are candidates left after each filtering step.

The number of supporting reads per candidate (log2 transformed) reported by each method was used in the cluster analysis. Each column represents a

circRNA candidate and each row represents detection result of a specific method. The dendrogram was constructed via the average linkage hierarchical

clustering approach, with intermediate Euclidean distance method chosen. (c) Backspliced junction reads recovery on positive dataset. After removing

small-size candidates (smaller than insert size of 350 bp), proportion of backspliced junction reads recovered per candidate for the remnant common

candidates was calculated for each method, and the results were used to depict the boxplot. circRNA, circular RNA; RNase R, exonuclease that digests

linear RNAs but preserves circRNAs.

https://doi.org/10.1371/journal.pcbi.1005420.g004
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the synthetic reads on the positive dataset and the strict filtering step applied by PTESFinder

(no mismatches or indels within “n” nucleotides either side of the junction position, n = 10 in

this case), the performance of PTESFinder on this dataset was not as sensitive as suggested

from the real datasets. This indicates that its performance was vulnerable to sequencing error

and depended on the sequencing depth.

Sensitivity for compiled experimentally validated circRNAs. We performed a broad

survey of the published circRNA-related articles, from which we compiled a total of 282 ex-

perimentally verified circRNAs from 17 studies. Notably, they included circRNAs detected in

various tissues or cell lines at different developmental stages, so many of them may not be

expressed in HeLa or Hs68 samples. The detection of these validated circRNAs by each

method on HeLa and Hs68 RNase R–treated samples is shown in Fig 5. It shows that varying

numbers of validated circRNAs were lost upon filtering for candidates with�2 supporting

reads. In addition, CIRI was found to be the most sensitive method when we only considered

circRNA candidates with�2 supporting backspliced junction reads.

Fig 5. Number of experimentally verified circRNAs detected by each method. A total of 282 experimentally verified circRNAs were

manually compiled from 17 studies, and the number of circRNAs rediscovered by each method on HeLa and Hs68 RNase R–treated

samples was computed. CircRNAs with�1 and�2 supporting reads are shown in light blue and deep blue color, respectively. GE1:

candidates with greater than or equal to 1 supporting reads; GE2: candidates with greater than or equal to 2 supporting reads. circRNA,

circular RNA; RNase R, exonuclease that digests linear RNAs but preserves circRNAs.

https://doi.org/10.1371/journal.pcbi.1005420.g005

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005420 June 8, 2017 11 / 21

https://doi.org/10.1371/journal.pcbi.1005420.g005
https://doi.org/10.1371/journal.pcbi.1005420


Computational cost overview

We evaluated the computational efficiency of each software package using the metrics of run-

time, RAM consumption, and physical disk space. We found that the computational cost not

only correlated with the sequencing depth, but was also affected by the abundance of circRNA

candidates detected in each sample. As Fig 6A shows, when running on large datasets (i.e.,

Hs68_RNaseR− and Hs68_RNaseR+) with an equal number of 3 threads allocated, only CIR-

Cexplorer, circRNA_finder, DCC, CIRI, and find_circ could finish within a day or so, while

MapSplice took an incredibly long time of about 13 days and a month to finish Hs68_RNaseR

− and Hs68_RNaseR+, respectively. The relative long runtime of MapSplice was also con-

firmed by the study of Hansen et al. [37]. For Central Processing Unit (CPU)-intensive tools

such as MapSplice, we recommend users to run these tools on servers with adequate processors

allocated to reduce running time. Regarding memory consumption, only UROBORUS and

find_circ were capable of processing large datasets on a standard PC equipped with 8 gigabytes

(GB) of RAM. NCLScan consistently required approximately 10 GB, while CIRCexplorer, cir-

cRNA_finder, and DCC needed about 27 GB to run the underlying STAR aligner. Also, Sege-

mehl was the least efficient, demanding about 50 GB to run all the time. For other software

packages, moderate or sharp increase of memory consumption was observed when the dataset

shifted from moderate to large size (Fig 6B). In addition, MapSplice, PTESFinder, KNIFE,

Segemehl, CIRI, and NCLScan were found to be the 6 least efficient software packages regard-

ing physical disk space usage (Fig 6C), indicating that users should prepare adequate computa-

tional resources before running these pipelines on large datasets.

Discussion

The global and accurate identification of circRNAs from RNA-Seq data serves as a fundamen-

tal step towards revealing their biogenesis and functions. Here, we provided an improved and

easy-to-use circRNA read simulator that we believe will benefit the circRNA research commu-

nity. Besides, we performed a comprehensive evaluation of 11 circRNA detection tools using

synthetic and real datasets based on multiple metrics such as sensitivity, precision, F1 measure,

AUC, RAM consumption, running time, and physical disk space used.

Taken together, we observed concordant results on the synthetic and real datasets. Gener-

ally, CIRI, CIRCexplorer, and KNIFE, which achieved better balanced performance between

their precision and sensitivity, compared favorably to the other methods, whereas NCLScan

and MapSplice were conservative methods with comparable precision but less favorable sensi-

tivity. Conversely, Segemehl was sensitive but suffered with the presence of many false posi-

tives in the output. Together with find_circ and UROBORUS, these 3 methods exhibited the

worst precision based on our comparisons with the background and real datasets. The perfor-

mance of PTESFinder was noticeable on the synthetic dataset but less pronounced on the real

datasets. Its performance tended to be variable depending on the dataset. Also, we found that

CIRI and MapSplice were the most sensitive methods to recover backspliced junction reads

for candidates detected. For the positive dataset used, it should be noted that we might have

introduced bias into this dataset when we generated backspliced junction reads for candidates

deposited in CircBase. Specifically, the HeLa circRNAs used were reported in the Salzman

2013 study [36], thus potential favor may be with KNIFE. But the high recall rate achieved by

KNIFE on this dataset could also be attributed to its high sensitivity, as demonstrated in Szabo

et al. [33]. For KNIFE, it also should be pointed out that the output from its de novo module

was not incorporated in our study, thus the sensitivity of this tool may be underestimated in

our analysis on real datasets.
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Fig 6. (a) Computational cost for each method on metrics of runtime, (b) memory consumption, and (c) physical disk space

usage. While HeLa_RNaseR+ and HeLa_RNaseR− datasets are moderately sized RNA-Seq datasets, Hs68_RNaseR

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005420 June 8, 2017 13 / 21
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In addition to the performance factor, practical issues may also affect the choice of an opti-

mal tool. For instance, Hansen et al. failed to run KNIFE and Segemehl in their study [37]. In

our experience, generally, the installation process would be more complicated for tools with

more dependencies (Table 4). Also, great differences in computational cost were observed

among these tools (Fig 6); practitioners need to pay attention to this when analyzing large

datasets. Finally, a comprehensive manual and user-friendly output would be beneficial to the

users. Though most tools included detailed user guides, some only provided limited descrip-

tions (e.g., circRNA_finder and PTESFinder). Besides, the backspliced junction reads provided

critical information for further scrutinizing the authenticity of a candidate of interest; how-

ever, only some of the tools (e.g., CIRI and KNIFE) included the identifiers of such reads in

the output.

Of all the methods evaluated here, no single tool dominates on all the metrics used, and

there is still much space for further improvement regarding methods for the global detection

of these noncollinear molecules from RNA-Seq data. For example, all of them were originally

designed to identify circRNAs originating from the same gene locus, but a recent report [45]

pointed out that circRNAs could derive from gene fusion events and potentially play a critical

role in cancer pathogenesis. These fusion circRNAs are overlooked by the current methods,

underscoring the complexity of the RNA world and the need to refine the existing methods or

develop new ones for circRNA detection.

+ and Hs68_RNaseR− are examples of datasets with deep sequencing depth. Note: The analyses were run on an Ubuntu

10.04 server with two Intel®Xeon®E5530 Central Processing Units and 102 gigabytes of RAM. The running time

presented was based on at most 3 threads allocated for each tool.

https://doi.org/10.1371/journal.pcbi.1005420.g006

Table 4. Overview of circRNA detection tools evaluated.

Method Approach Genomic origin Version Reference Dependencies

CIRI Segmented read-

based

Exonic, intronic,

intergenic

2.0.1 [39] Bwa, perl

circRNA_finder Segmented read-

based

Exonic, intronic,

intergenic

NA [34] STAR, samtools, perl

DCC Segmented read-

based

Exonic, intronic,

intergenic

0.3.2 [42] STAR, python (pysam, pybedtools, numpy, pandas, HTSeq)

find_circ Segmented read-

based

Exonic, intronic,

intergenic

1.0 [2] Bowtie2, samtools, python (pysam, numpy)

Segemehl Segmented read-

based

Exonic, intronic,

intergenic

0.2.0 [47] samtools

CIRCexplorer Segmented read-

based

Exonic, intronic 1.1.5 [15] STAR, bedtools, python (pysam, docopt, Interval)

MapSplice Segmented read-

based

Exonic, intronic 2.2.0 [48] Bowtie, samtools, python

UROBORUS Segmented read-

based

Exonic 0.0.2 [38] Bowtie, Bowtie2, tophat2, samtools, perl

KNIFE Candidate-based Exonic* 1.4 [33] Bowtie, Bowtie2, samtools, python (numpy, scipy), R (data.

table), perl

PTESFinder Candidate-based Exonic 1.0 [41] Bowtie, Bowtie2, bedtools, Java

NCLScan Candidate-based Exonic 1.5 [40] Bwa, Blat, Novoalign, bedtools, samtools, python

Note

*The de novo module in KNIFE can also detect circRNAs from unannotated spliced sites; these unannotated spliced sites may be located in the intronic or

intergenic regions. circRNA, circular RNA; NA, not available, the version number of circRNA_finder tool was not provided by its developers.

https://doi.org/10.1371/journal.pcbi.1005420.t004
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Materials and methods

Software packages for detecting circRNAs

To our knowledge, about 11 tools are now available for the detection of circRNAs from RNA-

Seq data and can be broadly divided into two groups according to the underlying strategies to

detect circRNAs [7, 10, 19] (Table 4). For instance, KNIFE, NCLScan, and PTESFinder all

require that the putative circRNA sequences to be constructed with gene annotation informa-

tion are provided in order to detect circRNAs. This strategy was called “pseudo-reference-

based” in [7, 10] or “candidate-based” approach in [19]. However, the difference is that KNIFE

directly constructs all the potential out-of-order exon–exon junction sequences from gene

annotation information before alignment, while NCLScan and PTESFinder create the putative

circRNA sequences levering the mapping information of the segmented anchors obtained

after alignment to the genome or transcriptome. The other strategy that other tools used was

called “fragmented-based” in [7, 10] or “segmented read approach” in [19], which identified

backsplicing junctions from the mapping information of a multiple-split read’s alignment to

the genome. Under this category, specifically circRNA_finder, CIRCexplorer, DCC, MapS-

plice, and Segemehl can be assigned to a subgroup, because they devise spliced alignment algo-

rithms to detect and parse the backsplicing events, whereas find_circ and UROBORUS can be

grouped together, as they both gather the unmapped reads after mapping them to the genome,

extract the first and last 20 bp anchors from the unmapped reads, and then derive the backspli-

cing events from the mapping information of these anchors. Finally, CIRI is unique. It detects

the paired chiastic clipping (PCC) signals from the mapping information of reads by local align-

ment with BWA-MEM [46] and combines with systematic filtering steps to remove potential

false positives. For evaluation of their performance, these tools and associated software packages

were deployed on an Ubuntu 10.04 server, equipped with 2 Intel(R) Xeon(R) E5530 CPUs and

102 GB of RAM. We followed the instructions and recommendations provided in their manuals

and focused on output circRNAs with�2 backspliced junction reads. Here, we provide a brief

summary of these software packages. For details of the algorithms underlying each tool, users

can refer to the papers introducing each method.

circRNA_finder [34] requires paired-end sequencing data and relies on the RNA-Seq

spliced alignment software STAR [49]. After read alignment, the output putative chimeric

junction reads are filtered and collapsed into a set of putative circularization junctions based

on the following restrictions: (1) At most, 3 mismatches are allowed, and only unique mapped

reads are used. (2) The distance between the splice donor and acceptor should be less than 100

kilobases (kbs). (3) One read in a pair should span the backsplicing junction site, while the

other should be mapped within the interval between the splice donor and acceptor. In this

study, neither circRNA candidates without GT/AG splice sites nor those derived from mito-

chondria were taken into consideration.

CIRCexplorer [15] is a Python-based tool, providing user-friendly circRNA detection out-

put. Initially, it uses TopHat [50] to do the spliced alignment of reads to genome, then extracts

the unmapped reads to detect backsplicing events by alignment with TopHat-Fusion [51].

Reads that are split and mapped to the same chromosome but in reverse order are candidate

backspliced junction reads. The mapping positions of these reads are realigned and adjusted if

needed, in order that the donor and acceptor splice sites derived are consistent with canonical

splice sites from known gene annotation. Currently, it also supports parsing the STAR spliced

alignment output. Since TopHat and TopHat-Fusion require much more time to complete the

alignment step, in this study, we took the intermediate STAR alignment output generated dur-

ing running circRNA_finder as the input for CIRCexplorer. As a consequence, the computa-

tional costs (i.e., RAM, running time, and physical disk space) of these 2 pipelines were almost
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equivalent because the computational resources required by them were negligible during the

circRNA detection phase compared with that in the process of read alignment.

Another software package that utilized STAR alignment software and is evaluated in this study

is DCC [42]. However, to improve the detection of small circRNAs, in addition to the usual align-

ment of read pairs from paired-end data as a whole, the DCC pipeline also recommends that

users run an alignment of each segment from read pairs separately. This almost doubles the

computational cost during the alignment phase. During the process of detection, several filtering

steps are applied: (1) If paired-end data are being dealt with, mapping of mates should match with

the relevant circRNA. (2) If biological replicates are available, filtering for common circRNAs

detected by these replicates would be allowed. (3) The canonical GT/AG splicing signal should be

presented in the backsplicing junction borders. (4) Backsplicing events from mitochondria are

discarded. (5) Candidate circRNAs from repetitive or homologous regions are removed.

Find_circ [2] is one of the 5 tools evaluated in this study that utilizes Bowtie2 [52] and/or

Bowtie [52] to perform read alignment. In short, first, it collects the unmapped reads generated

during the first round of alignment to the genome. Second, it extracts the first and last 20-bp

anchors from each unmapped read to perform the second alignment. If the 2 anchors are

mapped to positions within spliced exons in an opposite orientation, it indicates circRNA

splicing. Third, it extends the anchors’ alignment, collects and outputs the identified splice

junctions, and keeps those junction-spanning reads. Finally, it applies a series of filtering steps

to check and report reliable circRNA candidates.

UROBORUS [38] is also a circRNA-detection pipeline based on the Bowtie RNA-Seq align-

ment tool. First, it employs TopHat to perform splice alignment. Second, it collects the first

and last 20 bp of an unmapped read as anchors and realigns these anchors using TopHat to

gather balanced mapped junctions and unbalanced mapped junctions. Third, these 2 types of

junction-spanning anchors are separately handled to infer the potential backspliced junction

reads. In the end, the reads obtained above are further aligned to the genome using Bowtie;

those that map to the same chromosome but in reverse orientation are annotated as candidate

circRNA-derived reads.

PTESFinder [41] employs both Bowtie and Bowtie2 to perform read alignment. It only

detects backsplicing junctions stemming from known splice sites. Intriguingly, it does not

make use of the paired-end information, even if it is available. The detection process can be

summarized as follows. First, it extracts the first and last 20-bp anchors from a read and aligns

them to transcriptome reference sequences. Second, it exploits the anchors’ mapping informa-

tion to detect the exon-shuffling events and also generates the putative circRNA sequences

flanking the backsplicing junction sites. Third, it aligns the original reads to the putative cir-

cRNA sequences, genome, and transcriptome. Finally, to eliminate potential false positives, it

requires greater mapping scores obtained from the putative circRNA sequences than those

from genome or transcriptome, and also user-adjustable criteria on mapped reads must be sat-

isfied to support putative circRNA sequences.

KNIFE [33] starts by mapping reads to the genome, rRNA sequences, transcriptome, and

customized linear and backspliced junction databases separately, with the help of Bowtie2. It

discards possible backspliced junction reads when they also map with high scores to the other

databases mentioned above. For those remaining backspliced junction-spanning reads, it fur-

ther categorizes them into circRNA and decoy reads based on the mapping information of the

mate when paired-end data are available. Finally, for reads aligned to none of the databases

mentioned above, it remedies with a de novo analysis module to detect circRNAs derived from

unannotated splice sites. However, the break points of these inferred circRNAs are window-/

bin-based; in other words, they are not exact break points, so we did not incorporate these cir-

cRNA candidates into this study. The major advantage of KNIFE over other tools, according
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to its developers, is the method of filtering circRNAs for which there is high confidence. It

employs a statistical framework to obtain the posterior probability of every circular read col-

lected to subsequently predict whether it is true or false positive.

Unlike the above circRNA detection tools based on Bowtie, which require extracting a fixed

size of anchors from the unmapped reads to identify potential backspliced junctions, the underly-

ing BWA-MEM aligner of CIRI [39] can automatically determine the break points of query reads

derived from circRNAs. After BWA-MEM alignment, CIRI scans the alignment results twice.

Briefly, during the first scan, it collects the PCC signals supporting the backsplicing junctions and

appropriate paired-end mapping signals consistent with the circRNA templates. Then, it checks

and filters for those junction signals with canonical GT/AG splice sites (if a gene annotation file is

provided, other possible splice-site signals flanking exon boundaries in this file will also be consid-

ered). During the second scan, it further clusters the unbalanced junction reads missed during the

first scan by applying a dynamic programming alignment algorithm and also filters out those

potential false positive junctions derived from repetitive or homologous regions.

MapSplice [48] is one of the 3 software packages evaluated in this study that are able to

identify multiple types of splice junction events. Specifically, it’s de novo splice mapping soft-

ware that can segment reads into multiple anchors to detect canonical and noncanonical junc-

tions in RNA-Seq data. This algorithm was applied in the study by Jeck et al. [3] and detected

more than 25,000 distinct circRNA species in human fibroblasts that were resistant to RNase

R. This tool is memory efficient when running on an RNA-Seq dataset with a regular sequenc-

ing depth but takes longer to run than all of the other packages presented here when equivalent

numbers of threads are allocated.

Segemehl [47] is also a multi-split RNA-Seq mapping tool that can identify circRNA,

canonical splicing, trans-splicing, and gene fusion events. It is claimed to be more sensitive

than its counterparts at detecting these events. Notably, Segemehl consumes a large amount of

RAM when the reference genome is large, for example, approximately 50 GB for the human

genome. In such cases, runs on computers with a small memory allocation will fail.

NCLscan [40] is another RNA-Seq analysis tool that is claimed to be accurate at identifying

noncollinear transcripts such as trans-splicing, fusion, and circRNAs from transcriptome data.

One of the key steps in this pipeline is to construct the putative noncollinear references with

gene annotation information and BLAT alignment output of the concatenated sequences from

unmapped read pairs. To eliminate false positives, it undertakes several stepwise alignments

and filtering, integrating different aligners such as BWA [53], BLAT [54], and license-required

Novoalign (www.novocraft.com).

Datasets used

Table 5 provides a summary of all of the datasets used. Detailed descriptions of these datasets

are provided below.

Positive dataset. The positive dataset contains a total of 1,071,113 pairs of synthetic reads,

with the sequence length of 101 bp and insert size of 350 bp. These synthetic data encompass a

total of 14,689 circRNA species. The number of backspliced junction read pairs supporting

each circRNA ranges from 2 to 24, while the size of circRNAs varies from 51 to 846,530 bp.

This simulated positive dataset was generated by an improved circRNA read simulation tool

named CIRI-simulator [39], which was originally released with CIRI. To accurately generate

mimicking circRNA reads, we overhauled this circRNA simulation tool. It now supports gen-

erating circRNAs deposited in CircBase, which are far more appropriate circRNA candidates

than those generated from the joining of 2 randomly chosen out-of-order exons. A total of

14,689 circRNA species were produced from those reportedly detected in HeLa cells. This
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accurate and easy-to-use simulation tool, which we believe will benefit the circRNA research

community, can be accessed at: https://github.com/linatbeishan/circRNA_detection_review.

Background dataset. Simulated paired-end RNA-Seq data were generated with a widely

used read simulator ART [55]. Briefly, the RefSeq mRNA sequences were downloaded from the

UCSC Genome Browser first, then the simulator was executed using the downloaded sequences

as input database. Indel and substitution variants were introduced into the generated reads. Spe-

cifically, to take the influence of poor sequencing quality into consideration, we shifted down the

quality score of reads to increase substitution sequencing errors. Finally, a large negative dataset

with sequencing length of 101 bp and insert size of 350 ± 10 bp was generated (the command

used: art_illumina-ss HS25-d simulate-na-i refMrna.fa-o simulate-l
101-f 200 -p -m 350 -s 10 -sp -rs20160830-qs-13 -qs2–13).

Mixed dataset. The mixed dataset was generated by combining the background and posi-

tive datasets to further evaluate the performance of each method.

Real datasets. We included 6 runs of real datasets produced in 2 separate independent c-

ircRNA-related studies [3, 39]. The first is the HeLa cell-line dataset, which was also used in

Chen et al. [7]. This dataset comprises 4 runs of rRNA-depleted RNA-Seq libraries downloaded

from the NCBI Sequence Reads Archive (accession numbers SRR1636985, SRR1636986,

SRR1637089, and SRR1637090). Specifically, SRR1636985 and SRR1636986 are from samples

further treated with RNase R enzyme after rRNAs had been depleted. Therefore, we combined

SRR1636985 and SRR1636986 as a HeLa_RNaseR+ sample and SRR1637089 and SRR1637090

as a HeLa_RNaseR− sample. After cleaning the raw data, there were approximately 80.5 million

and 36.8 million PE101 read pairs left for HeLa_RNaseR− and HeLa_RNaseR+, respectively.

Furthermore, to eliminate possible bias from data generated by a single group and assess

the performance of each method on large datasets, we incorporated another 2 runs of deep

sequencing PE100 RNA-Seq data derived from Hs68 cells (accession numbers SRR444975 and

SRR445016), which were also used in [37]. Both runs were similar in being rRNA-depleted, but

SRR445016 was from samples additionally treated with RNase R enzyme. After cleaning, the

numbers of remaining read pairs for SRR444975 and SRR445016 were approximately 202.5 mil-

lion and 196.4 million, respectively.
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Table 5. Summary of the datasets used in this study.

Datasets Library construction Sequencing type #Read pairs SRA accession number

Positive / Simulated PE101 1,071,113 /

Background / Simulated PE101 168,552,417 /

Mixed / Simulated PE101 169,623,530 /

HeLa_RNaseR− rRNA(−) Illumina PE101 80,533,660 SRR1637089 and SRR1637090

HeLa_RNaseR+ rRNA(−) and RNaseR(+) Illumina PE101 36,758,130 SRR1636985 and SRR1636986

Hs68_RNaseR− rRNA (−) Illumina PE100 202,521,855 SRR444975

Hs68_RNaseR+ rRNA(−) and RNaseR(+) Illumina PE100 196,383,303 SRR445016

HeLa_RNaseR−, HeLa cells without RNase R treatment; HeLa_RNaseR+, HeLa cells with RNase R treatment; Hs68_RNaseR−, Hs68 cells without RNase

R treatment; Hs68_RNaseR+, Hs68 cells with RNase R treatment; PE101, Paired-End 101 bp sequencing; PE100, Paired-End 100 bp sequencing; SRA,

NCBI Sequence Read Archive database.

https://doi.org/10.1371/journal.pcbi.1005420.t005
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