
sensors

Article

Remote Monitoring of Human Vital Signs Based
on 77-GHz mm-Wave FMCW Radar

Yong Wang * , Wen Wang, Mu Zhou, Aihu Ren and Zengshan Tian

School of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China; wwangwen96@163.com (W.W.); zhoumu@cqupt.edu.cn (M.Z.);
rah15320299632@163.com (A.R.); tianzs@cqupt.edu.cn (Z.T.)
* Correspondence: yongwang@cqupt.edu.cn

Received: 18 January 2020; Accepted: 18 May 2020; Published: 25 May 2020
����������
�������

Abstract: In recent years, non-contact radar detection technology has been able to achieve long-term
and long-range detection for the breathing and heartbeat signals. Compared with contact-based
detection methods, it brings a more comfortable and a faster experience to the human body, and it
has gradually received attention in the field of radar sensing. Therefore, this paper extends the
application of millimeter-wave radar to the field of health care. The millimeter-wave radar first
transmits the frequency-modulated continuous wave (FMCW) and collects the echo signals of the
human body. Then, the phase information of the intermediate frequency (IF) signals including
the breathing and heartbeat signals are extracted, and the Direct Current (DC) offset of the phase
information is corrected using the circle center dynamic tracking algorithm. The extended differential
and cross-multiply (DACM) is further applied for phase unwrapping. We propose two algorithms,
namely the compressive sensing based on orthogonal matching pursuit (CS-OMP) algorithm and
rigrsure adaptive soft threshold noise reduction based on discrete wavelet transform (RA-DWT)
algorithm, to separate and reconstruct the breathing and heartbeat signals. Then, a frequency-domain
fast Fourier transform and a time-domain autocorrelation estimation algorithm are proposed to
calculate the respiratory and heartbeat rates. The proposed algorithms are compared with the
contact-based detection ones. The results demonstrate that the proposed algorithms effectively
suppress the noise and harmonic interference, and the accuracies of the proposed algorithms for both
respiratory rate and heartbeat rate reach about 93%.

Keywords: non-contact; frequency-modulated continuous waveform; orthogonal matching pursuit;
discrete wavelet transform

1. Introduction

Vital sign signals are important indicators in modern health care and medical applications [1].
Monitoring the vital parameters, such as heartbeat and breathing signals, provides doctors with
reliable diagnosis and treatment basis. The traditional vital sign detection method mainly uses a
contacted wearable sensor [2] or a sticky electrode [3] to directly monitor the heartbeat and breathing
signals. However, both the wearable sensor-based and sticky electrode-based methods restrict the
users’ behavior due to the wired lines, and thus they cannot truly reflect the change of the users’ vital
characteristics parameters with unconscious movement. Moreover, the contact-based sensor is usually
complicated to operate, and it often makes the users uncomfortable. In comparison, non-contact
radar detection technology can monitor the heartbeat and breathing signals over long distances
without electrodes or sensors, making it easier and more comfortable for users. More importantly,
the non-contact radar sensor has broad applications in the field of rescue, counter-terrorism response,
and emergency search [4]. As a result, non-contact radar detection technology has gradually become a
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research hotspot in the emerging application fields, such as vital sign monitoring [5], oceanographic
surface current velocity measurements [6], naval search and rescue operations [7,8], position occupying
perception [9,10], and gesture perception in human-computer interaction [11,12]. This paper focuses
on the vital sign monitoring, and other application fields of non-contact radar sensing are out the scope
of this paper.

At present, there are three main types of radar systems for vital sign monitoring, namely pulse
radar [13] /(ultra-wide band radar) [14], continuous wave (CW) Doppler radar [15,16], and frequency
modulated continuous wave (FMCW) radar [17]. In Reference [13], the authors reduce the noise
through a time-varying filter to extract the heartbeat and respiration rates using a 3.3 GHz pulsed
radar; however, the detection accuracy has not yet been discussed. Meanwhile, the pulse radar
used in [13] is very unfavorable in the system integration and low-power operation due to its broad
band characteristics. In contrast, CW and FMCW radars have higher levels of system integration
and lower-power operation, and easier proximity detection. Thus, Dong et al. [16] apply a 24 GHz
CW Doppler radar to obtain electrocardiograms, by detecting the combined atrial and ventricular
contractions and relaxations conducted to the skin on the back. Since the CW Doppler radar lacks
modulation spectrum information, it is not good at distinguishing clutter and multiple targets.
As a result, the CW Doppler radar-based vital sign monitoring methods rely only on the Doppler
information to detect the relative motion [18]. Moreover, since the Doppler radar gets only the doppler
information and it cannot get the range information, the extracted doppler information may contain
the micro-motion interference that from the human body itself and nearby environment, leading to a
low vital sign detection accuracy. Compared to CW and pulse radars, the FMCW radar has a higher
range and speed resolution, as well as its ability to distinguish multiple targets and extract target
fretting information, making it a mainstream choice in the field of life detection. Therefore, this paper
adopts FMCW radar for human non-contact vital sign detection.

The FMCW radar has been implemented for vital sign monitoring by Sharpe et al. in 1990 [19].
In 2013, Zhang et al. [20] use a 24.15 GHz FMCW radar with a scanning bandwidth of 72 MHz to
extract the human heartbeat rate signal, and propose a projection matrix method for periodic clutter
suppression. Although it considers the clutter interference of surrounding static objects, it does
not eliminate the interference of human micro-motion on the heartbeat rate estimation. Since the
micro-motion may cover the respiratory movement, the incorrect extracted heartbeat information
may be incorrect. Lee et al. [21] use a 24 GHz FMCW radar for heartbeat rate estimation, and they
eliminate the environmental clutter noise and reduce the mutual interference among multiple people.
Nevertheless, the influence of micro-motion of human target on the characteristics estimation of
living body is not considered. In [22], the authors apply a 9.6 GHz FMCW radar for heartbeat and
respiration rate detection. To reduce the influence of human respiratory fretwork harmonics on the
heartbeat rate estimation, Anitori et al. [22] propose two methods for heartbeat rate and respiratory
rate calculation using the signal amplitude and phase information. However, the specific solutions
for harmonic and noise reduction are inefficient. Gu et al. [23] use the arctangent demodulation and
phase compensation for a 2.4 GHz radar to solve the problem of harmonic interference caused by
body movement. Due to the use of orthogonal receivers, the I/Q signals introduces the DC offset,
thus a more complex I/Q signal calibration is required. The high-frequency millimeter-wave radar
provides a high signal-to-noise ratio, and has a high sensitivity when measuring the vital sign signals
even with small displacements of tens of microns [24]. Alizadeh et al. [25], the authors apply a
77 GHz millimeter-wave radar to detect the components of vital signal by extracting the phase of
the intermediate frequency (IF) signal. Such a 77 GHz millimeter-wave radar not only avoids the
higher harmonics caused by the amplitude signal estimation, but also solves the problem of dc signal
offset caused by the orthogonal receivers. Nevertheless, the method proposed in [25] may cause the
phenomenon of respiratory harmonic frequencies that conceal the heartbeat frequency, leading to a
decrease in the accuracy of heartbeat rate estimation. Alizadeh et al. [25] use two bandpass filters to
separate the heartbeat and breathing signals and find the largest spectral values (in the two bands)
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as the estimated respiratory frequency and heartbeat frequency. However, because of the existed
respiratory harmonic or noise, the obtained heartbeat and breathing frequencies might be incorrect,
especially for the heartbeat one.

To address the aforementioned issues, this paper proposes to use a high-frequency
millimeter-wave FMCW radar with a starting frequency of 77 GHz and a chirp frequency of 4 GHz to
detect the human breathing and heartbeat signals. The main contributions are concluded as follows:

(1) By briefly introducing the principle of FMCW radar, we induce the closed-form expression of
the measurement accuracy of human heartbeat and respiration detection. In addition, the range
determination of human body in the radar field of view and the vibration FFT of breathing and
heartbeat are expounded.

(2) The circular center dynamic tracking algorithm is applied to correct the DC offset. Then,
the extended differential and cross-multiply (DACM) is applied for phase unwrapping to obtain
correct phase change information of breathing and heartbeat signals, and the phase signal is
further differentially enhanced.

(3) We propose two methods, compressive sensing based on orthogonal matching pursuit (CS-OMP)
and rigrsure adaptive soft threshold noise reduction based on discrete wavelet transform
(RA-DWT), to separate and reconstruct the heartbeat and respiratory signals, and obtain
interference-suppressed heartbeat and respiratory signals. Then, the two methods, namely
frequency FFT algorithm and time domain autocorrelation algorithm, are presented to calculate
the heartbeat and respiratory rates.

(4) To verify the effectiveness of the proposed algorithms, the obtained heartbeat rate and respiration
rate are respectively compared with the two contact-based sensors (smart bracelet Mi 3 and
airflow sensors). The results show that the proposed CS-OMP and RA-DWT algorithms effectively
suppress the harmonics and interference, and greatly improve the detection accuracy of heartbeat
rate and respiratory rate.

The remainder of this paper is structured as follows: In Section 2, the mechanism of FMCW radar
and the actual detection accuracy of the radar are discussed. In Section 3, detailed introduction to the
extraction algorithm implementation steps are detailed. In Section 4, the results using the measured
data are presented and discussed. Finally, conclusions are given in Section 5.

2. Theory of FMCW Radar

The FMCW radar system includes the radio frequency (RF) such as transmit (TX) and receive
(RX), analog clocking, and digital circuit such as analog-to-digital converters (ADCs), microcontrollers
(MCUs), and digital signal processors (DSPs). Figure 1 shows a simplified block diagram of a typical
FMCW radar system. The FMCW radar sends a linear FMCW signal generated by the synthesizer.
The radar signal will be reflected when it encounters an object. Then, the orthogonal receiver is
responsible for capturing the echo signal and orthogonally mixing it with the transmitted signal.
A low-pass filter is used to filter out the high frequency part and obtain the IF signal. Finally, the IF
signal is sampled by an ADC.

Low-pass filter ADCIF signal

TX

RX

Synth

Low-pass filter IF signal ADC
DSP

TX chirp signal

RX chirp signal

90°

Figure 1. FMCW radar system block diagram.
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The transmitted signals are usually sawtooth or triangle waves, and the sawtooth wave is used in
this paper. It is noted that the method proposed in this paper is also suitable for the triangle wave,
but more effort are required. The specific form is shown in Figure 2.

TX chirp RX chirp

Tc

B

Frequency

time

td

fc

Figure 2. Time dependence of transmitted and received signals (frequency as a function of time).

The transmitted signal of the FMCW radar can be expressed as [26]

xT(t) = ATX cos(2π fct + π
B
Tc

t2 + θ(t)), (1)

where fc is the starting frequency of the chirp signal, B is the bandwidth, ATX is the amplitude of the
transmitted signal, θ(t) is the phase noise, Tc is the width of chirp signal pulse, and B / Tc is the slope
of the chirp signal, which represents the changing rate of the frequency.

Assuming that R(t) is the motion displacement of the chest, and d0 is the distance from the radar
sensor to the human body. The distance from the chest to the radar is x(t) = R(t) + d0, and the time
delay is td = 2x(t)/c, where c is the light speed. Then, the received signal is

xR(t) = ARX {cos(2π fc(t− td)) + π
B
Tc

(t− td)
2 + θ(t− td) } . (2)

The echo signal and the transmission signal are mixed by two orthogonal I/Q channels, and then
passed through a low-pass filter to obtain an IF signal SIF(t)

SIF(t) = AT AR exp(j(2π[
B
Tc

td]t + 2π fctd + π
B
Tc

td
2 + ∆θ(t)))

≈ AT AR exp(j(2π[
B
Tc

td]t + 2π fctd + ∆θ(t)))

≈ AT AR exp(j(2π
2Bd0

cTc︸ ︷︷ ︸
fb

t +
4π(R(t) + d0)

λ︸ ︷︷ ︸
ψ(t)

))

= AT AR exp(j(2π fbt + ψ(t)), (3)

where td = 2(R(t) + d0)/c. Since the third term, π B
Tc

td
2, is very small (about 106 order) in the

practical scenario, it is ignored in the second approximation. The residual noise phase term
∆θ(t) = θ(t)− θ(t− td) can also be neglected in the third approximation because of the range

correlation effects [27]. In general, t = 1 µs , the chest displacement R(t) is in mm, and R(t)t
can be ignored. It can be seen that at a fixed distance d0, ψ(t) varies with R(t) relative to λ.

Since the velocity rate of the chest motion is much lower than 103 m/s, the chest displacement
is no more than 1 mm per chirp (duration time of a single chirp is 50 µs). Thus, R(t) will be very
small and it approximates a constant in the microsecond time of a single chirp. Therefore, in order to
obtain the change in chest displacement, multiple chirps should be transmitted in sequence to obtain
the chest displacement information, which is equivalent to sampling R(t). Assuming that L chirp
signals are sent, and the sampling interval for R(t) is the frame period Tm. When Tm ≥ Tc, the chest
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displacement information related to the change of R(t) will be obtained at the distance of the human
target. The delay will become

td =
2 [d0 + R(lTc + t)]

c
. (4)

The form of displacement movement caused by thoracic dilatation is the form of cosine signal,
which satisfies R(lTc + t) ≈ R(lTc). Substituting Equation (4) into Equation (3), and, after sampling,
we can obtain

SIF(lTc + nTs) = AT AR exp(j(2π fbnTs + ψl), (5)

fb =
2Bd0

cTc
ψl =

4π(R(lTc) + d0)

λ
, (6)

where Ts is the fast-time sampling period. The acquired beat frequency signal is a two-dimensional
function of fast sampling n and slow sampling lTc. Therefore, we should find the information of fb
and ψl from the sampled beat signal to estimate the distance and the vibration frequency caused by the
thorax. These two pieces of information can be obtained using a FFT. It can be found that, when the
FFT is performed, only the phase term ψl is left if f = fb. The FFT is performed on a single chirp on
the fast sampling time axis to obtain the spectrum of the beat signal. The peak values of the spectrum
correspond to the targets at different distances, which is called range FFT [28]. A FFT is performed on
the slow time axis to obtain the vibration frequency, which is called vibration FFT [29].

The maximum detection range of FMCW radar is

dmax =
Fsc
2S

, (7)

where Fs is the sampling rate. Substituting S= B
Tc

into Equation (7), we have

dmax =
FsTcc

2B
= Msamples

c
2B

=Msamplesdres, (8)

where Msamples = FsTc is the number of sampling points in the period of Tc. The theoretical range
resolution of FMCW radar is defined by dres = c/2B according to the Nyquist sampling theorem.
It can be seen that the effective ranging dmax is proportional to the distance resolution dres. Combining
Equations (7) and (8), the range resolution can also describe as

dreal_res =
1

Msamples

FsTcc
2B

. (9)

It should be noted that the range resolution may not reach the theoretical value due to the
equipment in the actual experiment. Similarly, the vibration frequency caused by the chest cavity is
related to the sampling frame rate R(t) of 1/Tm. The Nyquist sampling principle limits the maximum
vibration frequency, and the minimum vibration frequency is determined by the number of FFT chirps
N, thereby giving the actual maximum and minimum frequencies

fmax =
1

2Tm
fmin =

1
NTm

. (10)

3. Proposed Algorithm

3.1. Overview

Figure 3 shows the systematic process of human heartbeat and respiratory signal detection.
It consists of four steps: target detection, phase extraction, signal separation and reconstruction,
estimation of respiration and heartbeat rates. After performing analog-to-digital conversion on the
IF signal, we first need to identify the distance range corresponding to the detected human body in
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the radar field of view. The distance information is obtained by range FFT, and then the range time
map (RTM) is constructed according to the range distribution. After the human target is determined,
the DC offset is corrected, and the arctangent demodulation phase is unwrapped by using the extended
DACM algorithm. The heartbeat signal is enhanced by using the differential phase to further extract
the accurate phase change information in Step 2. In Step 3, CS-OMP and RA-DWT algorithms
are presented to separate and reconstruct the heartbeat and respiratory signals. Finally, we use
a frequency-domain FFT algorithm and a time-domain autocorrelation algorithm to calculate the
heartbeat rate and respiration rate.

IF signal Range FFT
Range-

Time Map

DC offset 

correction

DACM Phase 

Unwrapping

Phase 

difference

Bandpass 

filtering

CS-OMP 

reconstruction

DWT
Rigrsure de-

noised

Respiration and 

heartbeat rate

A/D

Arctan(.)

Setp1.Target Detection

Setp2.Phase Extration

Setp3.Signal Separation 

and Reconstruction

Setp4.Estimation of respiration 

and heartbeat rates

Figure 3. Human heartbeat and breathing signal detection flowchart.

3.2. Target Detection

Before phase extraction, we must first perform target detection to determine the location of the
human being. We assume that the tested person is sitting in front of the radar and stay stably (Since
the human body movement usually covers the heartbeat and breathing signals, it is difficult to detect
vital sign of human body in the presence of body movements. The authors in [30] apply to solve
such a problem with a Doppler radar. Although the work in [30] cannot be directly applied to the
FMCW radar, it provides some research direction for the vital sign detection under body movements
with FMCW radar, and we leave it for future work). These tasks will be done by the range FFT and
RTM construction. A single-frame beat signal obtained after the A/D is a two-dimensional matrix,
which composes of fast sampling and slow sampling. The vertical axis corresponds to the slow time
sampling points constructed by the chirp frequency N, and the horizontal axis is the number of fast
time sampling points Msamples. In order to suppress side lobe leakage, a Hamming window is added,
and the range FFT vector is obtained by FFT at the fast time sampling points, so as to obtain the
distance distribution from the radar field of view. In [25], the vertical axis uses a single chirp in Tm

time, and N = 1. However, we experimentally found that using multiple chirps achieves a higher
signal-to-noise ratio and a smaller clutter power than a single chirp. We collect data every 2 cm at the
distance of 70–90 cm in front of the radar to calculate the signal peak and signal-to-noise ratio as shown
in Figure 4. The results show that the clutter power in the multi-chirp mode is significantly reduced,
and the signal-to-noise ratio is about 15 dB higher than that of the single-chirp mode. Therefore, we use
the average range spectrum of the multi-chirp mode by calculating the mean value among columns in
the two-dimensional matrix.
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Figure 4. Single chirp and multiple chirps comparison: (a) range spectrum; and (b) signal-to-noise ratio.

An RTM is constructed based on the range spectrum obtained by multi-frame coherent
accumulation. The horizontal and vertical axes of the RTM represent the range and time domains,
respectively, and the process is shown in Figure 5. The average range spectrum vector obtained
by the range FFT is obtained by multi-frame accumulation and put into a two-dimensional matrix
by rows. The horizontal axis is the distance domain obtained by FFT for fast sampling, and the
vertical axis is the time domain obtained by accumulating the corresponding length of multiple frames,
frame rate, Tm. The distance interval of human vital signs extraction is found on the range time
matrix. This search process can be achieved by calculating the maximum average power of different
distance intervals. Usually, the displacement movement brings strong reflection signals and large
average power, and power changes distinguish the human chest motion displacement interval and the
stationary target interval.

C

MSamples

Range FFT

Range

S
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w
 t

m
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Fast time

S
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w
 t
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e

N

1

2

3

MSamples

Figure 5. RTM construction.

3.3. Phase Extraction

After completing the human body detection, the phase information is extracted at the distance
interval where the target position is located. However, before extracting the phase information ψl in a
certain distance interval, it is necessary to ensure that any nonlinear distortion and interference such as
false targets are removed. The DC offset of the two I/Q channels is a typical interference, which affects
the accuracy of the phase extraction of vital signs. Assume that the two I/Q demodulated signals are
expressed as:

BI(t) = AI cos(2π fbnTm + ψl) + DCI , (11)

BQ(t) = AQ sin(2π fbnTm + ψl) + DCQ, (12)

ϕ(t) = arctan
[

BQ(t)
BI(t)

]
, (13)

where AI and AQ is the amplitude of the I and Q channels, respectively, DCI and DCQ are the DC
offsets. There are two main reasons for the DC offset. One reason is that the external DC signal
component is superimposed on the original signal. The other one comes from the local oscillator
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leakage and the nonlinearity of the mixer or I/Q demodulator. It is noted that the DC term contains the
DC component of the original signal and the DC information of the chest displacement motion. Thus,
the DC component caused by the circuit or external static objects makes the arctangent demodulation
ϕ(t) 6= ψl . Experimental results in [31] show that the DC offset is mainly affected by circuit component
defects, and the DC component of the interference needs to be corrected to obtain ϕ, so that ϕ(t) = ψl .
The traditional method is to use the ADC data in the empty environment to collect the DC offset caused
by the surrounding stationary targets, thermal noise, and circuits. However, this method should
strictly keep the same environment during measurement and collection, which is difficult to achieve
in practice. In this paper, we use a circular center dynamic DC offset tracking method. This method
uses an efficient gradient descent algorithm to achieve dynamic DC offset tracking, and then performs
DC offset correction [32]. Specifically, the DC offset correction is performed on the two I/Q channels,
and the trigonometric function is eliminated

(
|BI(t)− DCI |

AI

)2

+

(∣∣BQ(t)− DCQ
∣∣

AQ

)2

= 1. (14)

Considering that AI = AQ = AR, we have

|BI(t)− DCI |2 +
∣∣BQ(t)− DCQ

∣∣2 = AR
2. (15)

It can be seen that the I/Q data received will become a circle centered on the DC offset DCI
and DCQ. Therefore, if the center and radius are found, the DC offset of the signal can be corrected.
The gradient descent algorithm is used to minimize the following optimization functions

F(DCI , DCQ, AR) = min
n

∑
k=1

∣∣∣∣(√(BI [k]− DCI)
2 +

(
BQ[k]− DCQ

)2 − AR

)∣∣∣∣, (16)

where k is the number of sampling points. When the above formula achieves the minimum value,
we will get the optimal result, and the DC offset and circle radius will be obtained.

It is noticed that, since the breathing and chest displacement movements is about 12 mm, which
is several times of the FMCW radar wavelength (4 mm at 77 GHz). The value of the extracted phase
will exceed the phase range (−π/2, π/2) if we use the arctangent demodulation technology, which
will cause phase ambiguity caused by phase discontinuity and phase jump. To solve this problem,
the extended DACM algorithm is used [31]. Let{

I(t) = BI(t)− DCI
Q(t) = BQ(t)− DCQ,

(17)

The DACM algorithm turns the arctangent function into a derivative operation, then

d
dt

[ϕ(t)] =
d
dt

[
arctan

Q(t)
I(t)

]
=

I(t)Q(t)′ − I(t)′Q(t)

I(t)2 + Q(t)2 , (18)

where I(t)′ and Q(t)′ are the differential forms of I(t) and Q(t), respectively. According to [31],
Equation (18) is further expressed in a discrete form, and the summation is

ϕ[k] =
n

∑
k=2

I[k]{Q[k]−Q[k− 1]} − {I[k]− I[k− 1]}Q[k]

I[k]2 + Q[k]2
. (19)

Although the extended DACM algorithm solves the phase ambiguity problem, the heartbeat
frequency is very small and it can be easily drowned in the breathing harmonic frequencies and
noise. Therefore, we perform phase difference on the phase-unwrapping signal to enhance the
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heartbeat signal. Differential phase is the difference between adjacent consecutive phase values, i.e.,
ϕ[k]− ϕ[k− 1]. Such a differential phase expression enhances the heartbeat signal while suppressing
the phase drift phenomenon.

3.4. Signal Separation and Reconstruction

The differential phase signal includes the phases of the breathing and heartbeat waveforms.
After the phase difference, the heartbeat rate and the breathing rate can estimate directly, but the errors
of the estimated value are large. Although the heartbeat and respiratory signals are periodic, when the
harmonic frequency and noise frequency exist, the main respiratory signal is not an ideal periodic sine
wave, and the heartbeat and respiratory frequency are easily drowned in the harmonic or noise. For the
heartbeat frequency, the differential phase makes the heartbeat frequency more obvious; however,
the harmonic peaks larger than the peak value of the heartbeat frequency are prone to occur when
the breathing signal is not periodic. This will make the estimated rates of heartbeat and breathing of
an intermediate frequency domain FFT method and time domain autocorrelation in Reference [22]
wrong. It is worth noting that such problems cannot be avoided when estimating the heartbeat rate
and respiration rate [25]. Therefore, we provide two methods for the separation and reconstruction of
heartbeat and respiratory signals.

3.4.1. CS-OMP Algorithm

Since heartbeat frequency is 0.8–2 Hz, and the breathing frequency is 0.1–0.5 Hz, the heartbeat
and breathing signals can be separated using bandpass filters. In this paper, we first design two
bandpass filters (serially-cascaded Bi-Quad IIR filter) to separate the heartbeat and respiratory signals
according to these two frequency bands. The sampling frequency is 20 Hz, and the pass-band gain
and stop-band gain are, respectively, 1 dB and 40 dB. The differential phase signal is passed through
the two designed band-pass filters, and the heartbeat and breathing signals are separated as shown
in Figure 6. As shown in the spectrum in Figure 6b,d, there are always harmonic and noise frequencies
in the spectrums of the separated two bands that affect the estimation of heartbeat rate and respiratory
rate. Therefore, we propose a CS-OMP algorithm to reconstruct the heartbeat and breathing signals,
and suppress harmonic interference and noise.
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Figure 6. Waveform and spectrum of separated signal: (a) heartbeat waveform; (b) heartbeat spectrum;
(c) respiratory waveform; and (d) respiratory spectrum.
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According to the compressed sensing theory, if the signal is sparse in a transformation domain,
an observation matrix unrelated to the transformation basis can be used to project the transformed
high-dimensional signal into a low-dimensional space. Therefore, by collecting a small number of
signal projection values, the accurate or approximate reconstruction of the signal can be achieved [33].
Since the sparsity of heartbeat and breathing signals has been proven in [34], the compression and
reconstruction of the heartbeat and breathing signals in this paper can be implemented by the
compressed sensing theory. Then, the sparsity of the heartbeat or breathing signals is given by [35]

x = Γ(α + w), (20)

where Γ = {Γ1, Γ2, Γ3, · · · , ΓP} is the orthogonal transform basis in the frequency domain, α is the
weight coefficient of P× 1, and w is the noise. If the signal x has only K (K << P) non-zero coefficients
on a transformation basis Γ, then, Γ is called the sparse basis of x, and K is the number of sparse
signals. The smaller the K, the greater the signal sparseness. The original signal is projected onto
the measurement matrix Φ = [φ1, φ2, φ3, · · · , φP] of M× P by retaining the K important characteristic
components in the non-adaptive linear projection y. Then, the non-adaptive linear projection value of
the signal x is

y = Φx = ΦΓ(α + w) = ACSα + Z, (21)

where ACS = ΦΓ is the perception matrix, Z = ΦΓw is the projection value of noise. Especially when
there is no noise, y = ACSα. When the measurement matrix M << P, reconstructing x from y is an
ill-posed problem. However, since the signal x is sparse, L1-norm can be applied to transform the
problem as a convex optimization problem [33]. Therefore, the ill-posed problem is transformed into
the following optimization one

arg min ‖α‖1 s.t.‖Acsα− y‖2 ≤ ε, (22)

where ‖α‖1 is the L1-norm of α , and ε is the noise boundary in the data. By solving Equation (22),
we can obtain the sparse coefficient vector α̂, and then the reconstructed signal is x̂ = Γα̂, where α̂ is
the optimal solution. We use the OMP algorithm [36] to reconstruct signal x from x̂ = Γα̂. To obtain
a noiseless heartbeat or breathing signal (K = 1 in this paper), important feature components in y
are retained and reconstructed using OMP. It is noted that reconstruction failure occurs during the
reconstruction process due to the fact that the reconstructed signal may not be noiseless. Therefore,
in order to ensure that the reconstructed signal is the heartbeat or breathing signal after denoising,
a restriction condition is set. The reconstructed signal is output only when the peak value of the
reconstructed signal spectrum equals the peak value of the original one. Then, the CS-OMP algorithm
can be described as Algorithm 1.

Algorithm 1 CS-OMP algorithm for breathing signal.

Input: perception matrix ACS = ΦΓ, Observation vector y, Signal spectrum peak frequency fmax,

and the noise boundary ε.
Output: 1-sparse reconstructed signal for x, x̂.
1: Initialization residual r0 = y, K = 1, index matrix Λ0 = Φ0 = ∅.
2: Find the index λK corresponding to the residual rK, and the maximum value of the column inner

product of the measurement matrix such that λK = arg max
j=1,··· ,N

∣∣〈rK−1, φj
〉∣∣;

3: Update index matrix ΛK = [ΛK−1, λK] and ΦK = [ΦK−1, φλK−1 ];
4: Calculate the least squares solution, α̂K = arg min

αK

∥∥y− ACSK α
∥∥

2;
5: Update rK = y− ACSα̂K;
6: If ‖rK‖2 > ε, return to Step 1. Otherwise, reconstruct the signal x by using x̂ = Γα̂K;
7: If the reconstructed signal spectrum is f = fmax, stop, output x̂. Otherwise, return to Step 2.
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The proposed CS-OMP algorithm will get better results for the respiration signal reconstruction,
and the accuracy of its corresponding respiration rate will be improved. This is due to the fact that
the respiratory frequency always has the maximum peak in its spectrum. For the heartbeat spectrum,
its maximum peak may not necessarily correspond to the heartbeat frequency. As mentioned before,
breathing harmonics, noise, and body movements may have larger peaks than the real heartbeats.
Fortunately, the heartbeat frequency is always the maximum or sub-peak of its spectrum and the
heartbeat rate estimation method will be given later.

3.4.2. RA-DWT Algorithm

Heartbeat and respiration signals belong to non-stationary signals, which are very important for
the frequency domain characteristics of non-stationary signals at any time. The wavelet transform has
multi-resolution characteristics, and the selection of appropriate scale factor and telescopic coefficient
can be used to represent the local characteristics of signals in time domain and frequency domain by
the mother wavelet. The discrete wavelet transform is used to perform wavelet decomposition on the
differential signal. The discrete wavelet transform is described as [37]

yl [n] =
∞

∑
k=−∞

ϕ[k] · g[2n− k], (23)

yh[n] =
∞

∑
k=−∞

ϕ[k] · h[2n− k], (24)

where ϕ[k] is the discrete differential phase signal, k is the number of sampling points, and n is
the number of sampling data. g[2n− k] and h[2n− k] are respectively the low-pass and high-pass
filter decomposition coefficients. The yl [n] and yh[n] are the approximate and detail coefficients after
decomposition, respectively. After the finite order decomposition of ϕ[k], it can be reconstructed by
DWT decomposition

S[k] =
b

∑
i=a

yl [n] · G[2n− k] +
b

∑
m=a

yh[n]H[2n− k], (25)

where a is the scale factor, b is the displacement factor, G[2n − k] and H[2n − k] are low-pass
and high-pass reconstruction coefficients for scaling and wavelet functions, respectively [38].
The approximate and detailed coefficients after each order of decomposition can reconstruct the
corresponding two sets of the signals, and obtain the desired frequency interval signal according to
the breathing and heartbeat frequency ranges

SBR[k] =
∞

∑
k=−∞

S[k] · g[2n− k], (26)

SHR[k] =
∞

∑
k=−∞

S[k] · h[2n− k]. (27)

In this paper, “db5” wavelet is selected to perform wavelet decomposition on the input discrete
differential signal ϕ[k] according to the two expected frequency intervals of heartbeat and respiration
signals. After obtaining the heartbeat and breathing signals in the desired frequency range, the signals
are quantified by a threshold value. The rigrsure adaptive soft threshold Stein’s unbiased risk
estimation rule is selected for noise reduction [39], and then the heartbeat and breathing signals
are reconstructed. After the FFT of the noise-reconstructed signal is obtained, the peak value of the
spectrum can be used as the estimation of the respiration or heartbeat frequency. However, there may
be multiple decomposed and reconstructed signals falling in the desired frequency range. Therefore,
a confidence metric, W, is defined for each reconstructed signal, representing the ratio of the signal
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power at the maximum peak (and some surrounding frequencies) to the remaining frequency intervals
in the spectrum:

W =

fmax+h̄/2∫
fmax−h̄/2

|P( f )| d f

∞∫
0
|P( f )| d f −

fmax+h̄/2∫
fmax−h̄/2

|P( f )| d f

, (28)

where |P( f )| is the signal power at frequency f , and h̄ = Fslow/Msamples is the frequency resolution,
calculated as the ratio of the slow time sampling rate Fs_slow to the number of FFT sampling points.
The greater the confidence measure W is, the more accurate the peak frequency of the corresponding
reconstructed signal is as a heartbeat or breathing frequency estimate. It is noted that, when the
confidence level is less than a certain threshold value, it indicates that the peak frequency of the
corresponding spectrum is unreliable.

3.5. Estimation of Respiration and Heartbeat Rates

The respiration and heartbeat rates can be calculated using the FFT method after the CS-OMP
and RA-DWT reconstruction. However, as mentioned before, the method of heartbeat rate estimation
after reconstruction using the CS-OMP algorithm needs to be redefined. We find out all the peaks in
the spectrum of reconstructed signal and keep them in 0.8–2 Hz, and remove the respiratory harmonic
peak. Then, the frequency corresponding to the peak of the reconstructed signal is counted and the
frequency weight coefficient is defined as ξi = m/q, where m is the number of occurrences of the
corresponding frequency of reconstruction, and q is the number of reconstructions. Then, the heartbeat
rate is

f̄h =
N

∑
i=1

fiξi. (29)

For comparison, both the CS-OMP and RA-DWT reconstruction can be combined with the
autocorrelation method to estimate the heartbeat and respiration rates. For breathing and heartbeat
with a limited period signal, the corresponding autocorrelation function will gradually become zero,
and a peak corresponding to the multiple of the basic period will appear in the time:

Rxx(m) = ρ
k=∞

∑
k=−∞

x(k + m)x∗(k), (30)

where ρ is the normalization factor, m is the lag time, and ∗ is the conjugate multiplication.
The autocorrelation functions of the separated and reconstructed heartbeat and respiration signals
are calculated. Then, the corresponding time of the autocorrelation peak in the heartbeat and
breathing time interval is estimated, and the inverse number is the corresponding breathing and
heartbeat frequency.

The calculation of real-time heartbeat and breathing rate is given by

γ =
tconvert_hz_bpm · RnumPeaks · Fs

LcircularBu f f erSize
, (31)

where tconvert_hz_bpm is the measurement duration, LcircularBufferSize is the radar buffer size, RnumPeaks
is the number of signal crest when the data length of the buffer area is LcircularBufferSize. Specifically,
tconvert_hz_bpm = 60 s, the heartbeat and respiration rates are calculated as the number of heartbeats
and breaths per minute.
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4. Experimental Results and Discussion

4.1. Experimental Parameters

This paper uses Texas Instruments (TI)’ millimeter-wave radar AWR1642 (State of Texas, US),
which is an integrated single-chip FMCW radar sensor operating in the 77 to 81 GHz frequency
band [40]. The experimental application scenario is as shown in Figure 7a. The person to be tested
sits in front of the radar and remains stationary, wearing an airflow sensor and a smart bracelet Mi
3. The airflow sensor is used to get the breathing rate and the smart bracelet Mi 3 is adopted to
capture the heartbeat rate. It is noted that, although the person sits in front of the radar and remains
stable, there still exists noise and micro-motion interference from the human body itself and the nearby
environment. AWR1642 integrates TI’s high-performance C674x DSP subsystem for radar signal
processing, which can be programmed on the radar board. However, to observe the experimental
results and data analysis, we hope to obtain the original data for algorithm verification. Therefore,
human heartbeat and respiratory data are collected by DCA1000 [41] combined with AWR1642 in
streaming data mode.

AWR1642 adopts two transmitting and four receiving one-dimensional linear array antenna
layout, and uses time division multiplexing (TDM) mode to alternately transmit antenna TX1 and TX2
frequency modulation pulses to obtain eight virtual antenna arrays, as shown in Figure 7b. In our
experiment, a single TX/RX antenna pair can implement single-person heartbeat and respiration
detection. However, in order to get a longer detection distance, we increase the signals gain by using
two TXs. We alternately send a single FM pulse with duration time, Tc = 50 µs, and the pulse interval
idle time is 7 µs, and the sawtooth frequency modulation slope is S = 70 MHz/µs, as a result, the frame
rate is Tm = 50 ms. Considering that the observation time contains at least two cycles of breathing
or heartbeat signals, to better analyze the heartbeat rate and breathing rate per minute, we set the
observation time T = 50 s. Thus, the frame length C(C = T/Tm) is 1000. The specific frequency chirp
form is shown in Figure 7, and the specific radar parameter settings are listed in Table 1.

Airflow sensor

Smart band (Mi3)

Ethernet port

AWR1642

DCA1000

Tx1 Tx2

Tx1 Tx2

Rx1 Rx2 Rx3 Rx4 Rx5 Rx6 Rx7 Rx8

2λ λ/2 

(b)

time

Frequency

(GHz)
Chirp1Chirp2 Chirp281

77 t1 t2 t3

t1:idle time(7us)

            t2:Ramp end time(57us)

         t3:frame period(50ms)

Chirp1

(c)(a)

Figure 7. Experimental platform: (a) experimental scene; (b) radar antenna layout; and (c) radar chirp
parameters setting.

Table 1. Radar parameter setting.

Parameter Tc Tm S Fs_adc Fs_slow Msamples C

Value 50 µs 50 ms 70 MHz/µs 4 Msps 20 Hz 200 1000

Combining Equations (7) and (9) with (10), the actual distance measurement accuracy and
frequency vibration measurement range of the AWR1642 radar are calculated in a complex 1×mode,
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as shown in Table 2. The breathing frequency is in the range of 0.1–0.5 Hz, and the heartbeat frequency
is in the range of 0.8–2 Hz. The measurement accuracy range in Table 2 shows that the radar parameter
settings are sufficient to achieve non-contact human heartbeat and breathing detection.

Table 2. Distance and vibration frequency detection range.

Parameter Range (m) Vibration Frequency (Hz)

Max 6.7 10
Min 0.0335 0.020

Since we use the DCA1000 to capture the raw radar data, the data will become a non-interleaved
data format [41] after ADC. The ADC data need de-ping-pong to build a complex signal, and then
serial-parallel conversion is performed to correspond the TX/RX antenna pair.

4.2. Experimental Results

4.2.1. Target Detection

The RTM image constructed according to the flow of Figure 5 is shown in Figure 8a. Figure 8b
shows the single frame (single chirp) range information, and there are reflections from different targets
in the range of 0.6–0.9 m. During the experiment, the human body is always sitting in front of the
radar (see Figure 7a), which means that the target body moves up and down only because of heartbeat
and breathing movement. As mentioned before, the moving target always brings stronger signal
power, which is reflected in the brighter part of the image. By comparing the average power of unit
range interval, the maximum power interval caused by heartbeat and respiration is selected, which
is shown as 0.7–0.84 m in Figure 8a. The vibration FFT can be used to verify the selected distance
interval, and the second FFT is performed on the phase-unwrapping row to obtain the vibration FFT,
as shown in Figure 8b. The range corresponding to the vertical axis is about 21 times/min, and this
is caused by the predominant breathing vibration, which falls in the 0.1–0.5 Hz (6–30 beats/min)
interval, and it is proved that the distance interval we choose is correct. Moreover, we observe that
0.02–0.1 m in Figure 8a has a target, which is caused by the spectral leakage because of the antenna
coupling phenomenon. It can be removed after DC correction, which is reflected in the vibration FFT
of Figure 8c. Except for the body motion vibration caused by heartbeat and breathing, the vibration
frequency no longer exists in the other sections.
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Figure 8. Target Detection: (a) RTM; (b) range FFT; and (c) vibration-range.

4.2.2. Phase Extraction of Heartbeat and Breathing

The result after DC offset correction can also be seen in the time domain and the corresponding
frequency domain. The real part of the complex data of the collected radar is taken as the horizontal
axis, and the imaginary part is taken as the vertical axis. The circular center tracking algorithm is
applied for DC offset correction, and the results are shown in Figure 9a. The green points are the raw
data, and the blue ones are the data after DC offset correction. It can be clearly seen that the center and
the blue points of the green circle (shifted origin and before DC cor. in Figure 9a are moved to the blue
circle with center Origin. Figure 9b shows the comparison before and after the time-domain waveform
correction. It can be seen from Figure 9c that the DC offset dynamic tracking of the circle center can
effectively suppress the DC offset caused by non-thoracic displacement motion.

Figure 10a shows the phase after arctangent demodulation, and phase jumps and discontinuities
appear in the figure. The extended DACM algorithm is used to obtain Figure 10b. After phase
unwrapping, the time domain waveform is closer to a sine wave. It is learnt from Figure 10b that the
heartbeat frequency becomes weak and it is easily submerged in the fundamental harmonic and noise.
It can be seen that, in the spectrum of Figure 10c after the phase difference, the heartbeat frequency
becomes more obvious. It is noted that the large waveform in Figure 10b is caused by the respiratory
vibration, whereas the vibration caused by the chest displacement movement is always superimposed
on the top of the waveform. In the frequency spectrum, there are tiny frequencies close to 0, and they
are caused by small tremors such as muscles or bones.
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Figure 9. DC offset correction: (a) center-dynamic DC offset tracking correction; (b) time-domain; and
(c) frequency domain.
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Figure 10. Phase extraction: (a) phase waveform and its corresponding spectrum after arctangent
demodulation; (b) phase waveform and its spectrum after phase unwrapping; and (c) phase waveform
after phase difference and its spectrum.

4.2.3. Separation and Reconstruction of Heartbeat and Breathing Signals

The CS-OMP algorithm is proposed to construct the phase signal in Figure 11. The red line is the
original heartbeat and breathing signal after bandpass filtering, and the blue one is the reconstructed
signal. It is obviously learnt from the right two figures of Figure 11 that the reconstructed signal is an
ideal periodic sinusoidal signal composed of a single frequency, and there is no other interference for
the frequency estimation of the heartbeat and breathing.

The heartbeat and respiration signals in the differential phase signal can be obtained from
coarse to fine according to the confidence formula. The peak frequency and confidence value of the
reconstructed signal using “db5” under different order decompositions are given in Table 3. It can
be learnt that, at the 4th order, the peak frequency of the reconstructed heartbeat signal is 1.46 Hz,
and the corresponding confidence value is 0.4155. This confidence value is the largest in the frequency
range of 0.8–2 Hz; as a result, 1.46 Hz will be used as the estimated heartbeat frequency. Similarly,
0.34 Hz at the 6th order decomposition is the breathing rate frequency. Then, we can get the heartbeat
signal after the 4th order wavelet decomposition, and the breathing signal is obtained after 6th wavelet
decomposition. Therefore, to show the multiple decomposition process of the phase differential
signal, we give the reconstructed breathing and heartbeat signals in Figure 12. In Figure 12, the blue
line is the reconstructed breathing signal with approximate coefficients, and the green one is the
reconstructed heartbeat signal with detailed coefficients. Ideally, the heartbeat and breathing signals
are ideal periodical, and the reconstructed breathing and heartbeat signals after 6th and 4th order
wavelet decomposition are not strictly periodical because of the noise and interference. To preserve
the ideal periodicity of the heartbeat and breathing signals and the correctness of the reconstructed
signals, the adaptive soft threshold with rigrsure is further used for noise reduction. The red lines in
Figure 12 show the heartbeat and breathing signals of the noise reduction results. It can be seen that
the denoised results are much better than the original ones.
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Figure 11. CS-OMP reconstructed signal: (a) heartbeat signal and its spectrum; (b) respiration signal
and its spectrum.
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Figure 12. Wavelet decomposition and noise reduction reconstruction results.

Table 3. Confidence value of the reconstructed signal under different order decompositions.

Decomposition Level fn_ max fd_ max W1 W2

2 0.46 - 0.1217 -
3 0.46 1.78 0.2092 0.0614
4 0.46 1.46 0.4032 0.4155
5 0.28 1.3 0.3915 0.3868
6 0.14 0.34 0.3817 0.9229
7 - 0.14 - 0.5384

Figure 13 shows the frequency spectrum of the breathing (in Figure 13a) and heartbeat signals
(in Figure 13b) reconstructed after the 6th and 4th order wavelet decomposition and noise reduction.
The blue line represents the spectrum of the heartbeat and breathing signals after bandpass filtering.
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It can be seen that the interference frequency is significantly reduced after wavelet decomposition and
noise reduction.
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Figure 13. Wavelet decomposition spectrum: (a) respiratory signal; and (b) heartbeat signal.

In order to observe the respiration waveform and heartbeat waveform after reconstruction,
the observation time window is set to 50 s. In addition to the frequency domain estimation method,
the autocorrelation function is used to estimate the respiratory and heartbeat rates in the time domain.
The experimental results are shown in Figure 14.
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Figure 14. Separate reconstructed waveform: (a) heartbeat waveform and its autocorrelation; and
(b) breathing waveform and its autocorrelation.



Sensors 2020, 20, 2999 19 of 23

4.3. Performance Comparison

To further verify the accuracy and effectiveness of the proposed algorithms, we compare our
work with the filtering method that proposed in [25]. The filtering method uses two bandpass filters to
separate the breathing and heartbeat signals, and find the largest spectral values in the two bands as
the corresponding estimated breathing and heartbeat rate. In this paper, the radar is used to collect data
for five minutes on five adult males and five adult females, respectively. For the collected offline data,
the data length of one minute is taken for respiratory rate and heartbeat rate estimation. The respiratory
rate and heartbeat rate estimation in frequency domain FFT and time domain autocorrelation are used
to obtain Tables 4 and 5. In the tables, the mean standard deviation (MSD) and the Pearson correlation
coefficient (PCC) are used for performance comparison. The MSD is defined as:

σe =

√
1
n

n
∑

i=1
(ei − ē)2

d̄
, (32)

where ei is the difference between the corresponding reference heartbeat rate (or respiration rate) and
the estimated value; ē is the average difference; and d̄ is the data average rate. Reference heartbeat rate
and respiratory rate are provided by contact sensing device. PCC is defined as [25]

PCC =
∑N

i=1 (dri − d̄ri)(dsi − d̄si)√
∑N

i=1 (dri − d̄ri)∑N
i=1 (dsi − d̄2

si)
, (33)

where dri and dsi are the i-th estimated rate (respiratory or heartbeat rate) and contact sensor reference
rata, respectively. The value of PCC ranges from [0–1], where 0 indicates that the two are not related,
and 1 indicates that the two are completely linearly related. In Tables 4 and 5, when the band-pass
filtering method is used in conjunction with the frequency FFT and time-domain autocorrelation
methods, the MSD is higher and the PCC is reduced due to the passband noise and harmonic
interference. The use of CS-OMP and RA-DWT method while ensuring lower MSD, PCC has also been
correlated higher guaranteed. It is observed that the MSD and PCC of the two methods of CS-OMP are
always the same because CS-OMP is reconstructed as a single frequency periodic sine wave, and both
its frequency domain and time domain autocorrelation are corresponding to a single frequency or
period. We also learn from Tables 4 and 5 that the accuracy of heartbeat rate is improved by about 7%,
and the accuracy of breathing rate is improved by about 4%.

Table 4. Heartbeat rate comparison between different methods.

Subjects
Mi 3

(Reference Heartbeat Rate)

AWR1642 Radar Sensor

Filtering [25] CS-OMP RA-DWT

FFT Auto-
Correlation FFT Auto-

Correlation FFT Auto-
Correlation

Male 1 88 92 85 92 92 87 85
Male 2 77 85 75 73 73 79 77
Male 3 74 80 79 74 74 75 74
Male 4 60 75 65 58 58 60 58
Male 5 67 80 77 65 65 65 62

Female 1 81 97 83 83 83 82 80
Female 2 71 82 76 78 78 75 73
Female 3 85 93 88 87 87 89 82
Female 4 73 86 82 72 72 70 70
Female 5 82 95 90 80 80 85 83
MSD (%) - 4.63 5.43 4.38 4.38 3.16 2.92
PCC (%) - 88 86 95 95 97 97
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Table 5. Breathing rate comparison between different methods.

Subjects
Airflow Sensor

(Reference Breathing Rate)

AWR1642 Radar Sensor

Filtering [25] CS-OMP RA-DWT

FFT Auto-
Correlation FFT Auto-

Correlation FFT Auto-
Correlation

Male 1 17 21 18 17 17 17 17
Male 2 19 24 21 20 20 19 19
Male 3 23 26 25 22 22 25 23
Male 4 16 19 17 15 15 17 15
Male 5 22 21 19 20 20 22 21

Female 1 23 28 25 25 25 23 22
Female 2 18 19 16 18 18 19 17
Female 3 28 32 28 28 28 28 25
Female 4 24 28 27 26 26 25 25
Female 5 25 27 23 23 23 25 24
MSD (%) - 7.70 9.43 6.78 6.78 3.21 5.09
PCC (%) - 90 88 94 94 98 96

Figure 15a,b respectively show the real-time heartbeat rate and breathing rate obtained by the
RA-DWT method using the contact sensing devices (smart bracelet Mi 3 and Airflow sensor) and
AWR1642 radar sensor of male 5 within 10 min.
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Figure 15. Real-time comparison: (a) heartbeat rate; and (b) breathing rate.



Sensors 2020, 20, 2999 21 of 23

4.4. Discussion

After applying the circular center dynamic tracking algorithm to correct the DC offset,
the extended DACM allows us to obtain effective heartbeat and breathing-related phase information.
Two methods, CS-OMP and RA-DWT, are proposed to process the extracted differential phase signal.
The heartbeat and breathing waveform reconstructed by the CS-OMP algorithm shows an ideal
periodic sine wave, and its corresponding autocorrelation function is also a periodic sine signal with no
other interference frequencies. The heartbeat and breathing signals reconstructed by RA-DWT reduce
the irregular waveform phenomenon, and effectively reduce the noise and harmonic interference
while retaining the time-frequency characteristics of the original signal. Compared with the general
band-pass filtering method, the accuracies of heartbeat rate and respiration rate are improved.

The heartbeat signal reconstructed by CS-OMP may be noise that is close to the true heartbeat
frequency, and there is still a certain estimation bias in using the statistical value of the weighting
coefficient to approximate the true value. It is worth noting that the RA-DWT in Tables 4 and 5 has
a higher PCC and a lower MSD than the CS-OMP method, but this does not mean that the latter is
worse than the former. In Figures 15a,b, the PCC for the real-time heartbeat rate and the real-time
respiration rate are compared with the results in Tables 4 and 5 of the offline collected data processing,
and the RA-DWT method is reduced instead. Therefore, for offline data processing results, the PCC
obtained by RA-DWT is a little higher than CS-OMP, but, for real-time processing, due to hardware
equipment and other influencing factors, the accuracy of RA-DWT detection may be reduced. In our
experiments, the effect of the two methods is actually equivalent, and more experiments are needed
to verify which one is better. However, compared with the traditional method of band-pass filtering
in [25], the MSD of CS-OMP and RA-DWT are always lower, and both heartbeat rate and breathing
rate of the PCC value can be guaranteed at about 93%.

5. Conclusions

In this paper, a 77 GHz FMCW radar was applied to obtain the breathing and heartbeat signals
via extracting the radar IF phase information. This paper systematically introduced the radar data
signal processing flow and parameter configuration. Two methods for separating and reconstructing
the heartbeat and breathing signals were proposed, and the results were compared with those of
the contact sensor devices (smart bracelets and airflow sensors). Experimental results showed that
both the proposed methods effectively suppressed the influence of noise and harmonic interference.
The detection accuracies of both heartbeat rate and respiration rate were higher than 93%, which
proved the feasibility and effectiveness of FMCW radar in remote vital signs monitoring. The methods
proposed in this paper achieve high accuracy in static human life detection, and a more practical
scenario with human body movement is interesting, and we leave it for future work.
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