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Abstract The endoplasmic reticulum (ER) is a large,

dynamic structure that serves many roles in the cell

including calcium storage, protein synthesis and lipid

metabolism. The diverse functions of the ER are performed

by distinct domains; consisting of tubules, sheets and the

nuclear envelope. Several proteins that contribute to the

overall architecture and dynamics of the ER have been

identified, but many questions remain as to how the ER

changes shape in response to cellular cues, cell type, cell

cycle state and during development of the organism. Here

we discuss what is known about the dynamics of the ER,

what questions remain, and how coordinated responses add

to the layers of regulation in this dynamic organelle.
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Introduction

The ER is the largest organelle in the cell and is a major

site of protein synthesis and transport, protein folding, lipid

and steroid synthesis, carbohydrate metabolism and cal-

cium storage [1–7]. The multi-functional nature of this

organelle requires a myriad of proteins, unique physical

structures and coordination with and response to changes in

the intracellular environment. Work from a variety of

systems has revealed that the ER is composed of multiple

different structural domains, each of which is associated

with a specific function or functions. However, it is not yet

clear how these functional subdomains are organized and

how different functional domains translate into different

structures.

Protein synthesis and folding

One of the major functions of the ER is to serve as a site for

protein synthesis for secreted and integral membrane pro-

teins [8], as well as a subpopulation of cytosolic proteins

[1]. Protein synthesis requires localization of ribosomes to

the cytosolic face of the ER, and the canonical pathway

that regulates protein synthesis involves co-translational

docking of the mRNA:ribosome complex on the ER

membrane. Translation of secretory or integral membrane

proteins initiates in the cytosol, then ribosomes containing

these mRNAs are recruited to the ER membrane via a

signal sequence within the amino terminus of the nascent

polypeptide that is recognized and bound by the signal

recognition particle (SRP) [9, 10]. The complex of

mRNA:ribosome:nascent polypeptide:SRP is targeted to

the ER where it docks on the SRP receptor [11, 12].

Translation continues on the ER and the emerging

polypeptide can co-translationally enter the ER through the

translocon [2], which is a channel that contains several Sec

proteins and spans the lipid bilayer [13].

Also during this time, or in some cases once translation

is complete [3], a signal peptidase cleaves the short signal

peptide allowing the free protein to enter the ER lumen
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[14]. If the protein is destined to be an integral membrane

protein, determined by the presence of a stretch of

hydrophobic residues or stop-transfer membrane anchor

sequence, translocation will pause [15]. At this point the

protein will be shifted laterally and become anchored

within the phospholipid bilayer where it remains [15].

Transmembrane proteins can either contain one

hydrophobic stretch of amino acids, and are classified as

single pass transmembrane proteins, or contain multiple

regions that cross the membrane and are classified as multi-

pass transmembrane proteins [3].

If the protein is not destined to be integrated into the

membrane, but instead enter the secretory pathway or the

lumen of membrane-bound organelles, the protein begins

the process of transport. Once translation is complete and

the signal peptide has been cleaved the ribosomes are

released back into the cytosol [16, 17]. For mRNAs

translated by stably-bound ER ribosomes, mRNAs are

released and ribosomes may remain bound to the ER and

participate in multiple rounds of translation [18, 19]. For

cytosolic proteins translated on ER-bound ribosomes it is

not clear how these mRNAs are recruited to the ER or what

populations of ribosomes are utilized to initiate translation,

although a recent study indicates that the ER-resident

protein p180 may play a role in the translation-independent

recruitment of mRNAs to the ER [20].

Following protein synthesis and translocation into the

ER lumen, a protein destined for secretion must undergo

proper folding and modifications, with the aid of chaper-

ones and folding enzymes. These modifications include

N-linked glycosylation, disulfide bond formation and

oligomerization [3]. At this point the fate of the secretory

proteins is determined. If the protein functions in the ER,

for example as a chaperone, then proper folding will

commence. If the protein is destined for secretion, it will be

released by the chaperones and packaged for travel through

the Golgi on to a final destination (such as the plasma

membrane or secreted) or move into peroxisomes [21].

Additionally, the cytosolic regions of the transmembrane

protein may interact with cytosolic proteins or chaperones

to properly fold these domains.

On the other hand, even with several proteins and

complexes dedicated to folding proteins properly, a frac-

tion of proteins do not achieve native and functional form

and are either misfolded or aggregated [22]. These proteins

can either remain in the ER or enter the ER-associated

degradation (ERAD) pathway mediated by the proteasome,

assuring that aberrant polypeptides do not inadvertently

enter the secretory pathway [23]. Recognition of misfolded

proteins, followed by clearing of these aggregates through

the ERAD pathway, needs to be tightly controlled so as not

to affect cellular function [23]. Interestingly, there are

several connections to activation of ER stress response

pathways and pathological human conditions. Several

neurodegenerative protein misfolding diseases, such as

Alzheimer’s disease, activate ER stress response pathways.

Additionally, activation of the ER stress response pathway

is observed in diabetes, inflammatory bowel disease, and

various cancers. How ER stress response pathways play a

role in these pathologies is an active area of research and

various components of the stress response pathways are

being investigated as potential therapeutic targets [24]. In

general, the protein synthesis functions of the ER are

confined to ER sheets and regulation of ER structure by

RNA localization and ER stress will be covered later in this

review.

Lipid biogenesis

While the ER is a major site of protein synthesis, it is also a

site of bulk membrane lipid biogenesis [4], which occurs in

the endomembrane compartment that includes the ER and

Golgi apparatus. Proteins and phospholipids, which are the

major lipid component of membranes, are transferred and

biochemically modified in the region of the ER that is in

close juxtaposition to the Golgi apparatus [25]. This region,

known as the ER-Golgi intermediate compartment

(ERGIC), is rich in tubules and vesicles [4]. Once lipids are

mobilized to the ERGIC they are distributed throughout the

cell through organelle contacts or secretory vesicles [26].

The cis-Golgi, which is the closest structure to the ERGIC,

leads to the trans-Golgi network where vesicles carrying

newly synthesized secretory proteins from the ER form and

bud [4]. The trans-Golgi network has traditionally been

viewed as the main sorting station in the cell where

cytosolic cargo adaptors are recruited to bind, indirectly or

directly, and transport proteins or lipids [27].

Calcium (Ca21) metabolism

Finally, while the ER is a major site of synthesis and

transport of a variety of biomolecules, it is also a major

store of intracellular Ca2? [28, 29]. The typical cytosolic

concentration of Ca2? is *100 nM, while the Ca2? con-

centration in the lumen of the ER is 100–800 lM, and the

extracellular Ca2? concentration is *2 mM [6, 30]. The

ER contains several calcium channels, ryanodine receptors

and inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) that

are responsible for releasing Ca2? from the ER into the

cytosol when intracellular levels are low [6]. Ca2? release

occurs when phospholipase C (PLC) is stimulated through

G protein-coupled receptor (GPCR) activation [31] and

cleaves phosphatidylinositol 4,5 bisphosphate (PIP2) into

diacyl-glycerol (DAG) and IP3, which can then bind the
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IP3R leading to Ca2? release and transient increase in

intracellular Ca2? levels [6]. Ryanodine receptors (RyRs)

act through Ca2?-induced Ca2? release (CICR), when the

receptors bind Ca2? in response to increased cytoplasmic

levels of Ca2? [32]. In addition, depolarization of t-tubule

membranes can lead to conformational changes in voltage-

dependent Ca2? channels, such as dyhydropyridine recep-

tors (DHPRs), which interact and activate RyRs leading to

Ca2? release [33]. Furthermore, Ca2? can leak from the ER

into the cytoplasm only to be pumped back into the ER via

sarcoendoplasmic reticular Ca2? ATPases (SERCAs), or

can enter the cell from the extracellular media, adding to

the layers of regulation [6]. If ER stores of Ca2? are rapidly

depleted through IP3 receptor (IP3R)-mediated release a

mechanism for Ca2? entry into the cell is activated, known

as store-operated Ca2? entry (SOCE) [6, 34]. After ER

luminal Ca2? depletion, STIM1 proteins cluster in regions

of ER abutting the plasma membrane. At these regions,

clustered STIM1 traps plasma membrane-diffusing Orai1

subunits [35, 36] and assembles them into active Ca2?

release-activated channels (CRAC) allowing for uptake of

extracellular Ca2? into the ER lumen to restore Ca2? levels

[37–39]. Interestingly, SOCE and activation of CRAC does

not depend on, nor sense, changes in levels of Ca2? in the

cytoplasm [6], but senses and responds to changes in

luminal Ca2? concentration.

Calcium is a widespread signaling molecule that can

affect diverse processes including localization, function

and association of proteins, either with other proteins,

organelles or nucleic acids. Release of Ca2? can result in a

wave of Ca2? that moves through the entire cell [40], a

gradient of Ca2? from the source of release, or a spatially-

restricted wave from clustered channels known as a Ca2?

spark [41]. One of the most well-studied Ca2? release

events occurs at fertilization following sperm entry [40,

42], but also occurs during muscle contraction and secre-

tion [6] as well as neuronal processes including

neurotransmitter release [43]. We will highlight recent

evidence that Ca2? may also play a role in reshaping the

ER in response to cellular signals.

Regulation of ER shape and function

The ER is a complex organelle, involved in protein and

lipid synthesis, calcium regulation and interactions with

other organelles. The complexity of the ER is reflected in

an equally complex physical architecture. The ER is

composed of a continuous membrane system that includes

the nuclear envelope (NE) and the peripheral ER, defined

by flat sheets and branched tubules (Fig. 1). The shape and

distribution of these ER domains is regulated by a variety

of integral membrane proteins and interactions with other

organelles and the cytoskeleton. These interactions are

dynamic in nature and reflect changes within the cell, either

through cell cycle or developmental state, cell differentia-

tion, intracellular signals or protein interactions. While it is

generally known how the basic shapes of ER sheets and

tubules are determined, it is relatively unclear how changes

in shape or the ratio of sheets to tubules occur in response

to specific cellular signals.

Here, we will discuss what is known about how the

structures of ER are formed, how the dynamics of the ER

are regulated, and how these dynamics change in response

to cell cycle state and cellular cues. In addition, we provide

examples of how the proteins that are involved in con-

tributing to ER shape are influenced by these cellular cues,

such as calcium release, and how this is reflected in the

dynamics of the ER and ultimately the function of spe-

cialized cells that display varying ratios of sheets to

tubules.

ER structure

There have been several excellent, recent reviews that

cover the topic of general ER structure in detail [7, 44–48],

so we will limit our review of the basic ER structure to

only those factors that may play a role in changing the

shape of ER in response to signaling. The ER consists of

the nuclear envelope and the peripheral ER, which includes

smooth tubules and rough sheets. While the ER is defined

as an interconnected network with a continuous membrane,

the different structures that make up the ER perform very

diverse and specialized functions within the cell.

The nuclear envelope is made up of two lipid bilayers,

the inner nuclear membrane (INM) and outer nuclear

membrane (ONM), and shares a common lumen with the

peripheral ER. Hundreds of nuclear pores spanning the

ONM and INM of the nuclear envelope allow transport of

molecules, including RNAs and proteins, at various rates of

diffusion or regulated transport depending on the size of

the molecule. The nuclear envelope is connected to sheets,

or cisternae, that make up part of the peripheral ER. Sheets

are flat in nature consisting of two lipid bilayers with an

intervening lumen, with curved regions located only at the

membrane edges. Peripheral ER Sheets may vary in size,

but the luminal spacing is very consistent, usually about

50 nm in mammals and 30 nm in yeast [49] (Fig. 2).

Sheets are usually observed in a stacked conformation and

are connected via regions of twisted membranes with

helical edges [50]. These rough sheets, as defined by the

high density of ribosomes on the cytosolic surface [51, 52],

are the main site of synthesis, folding and post-translational

modifications for secreted or membrane-bound proteins. In

turn, far fewer ribosomes are present on the membrane
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surface of ER tubules [52], which is highly curved and

smooth and may not accommodate the binding of large

polysomes (Fig. 2). The tubular network is dynamic, con-

tinually rearranging and growing, and is defined by three-

way junctions that connect individual tubules (Fig. 1).

While tubules and sheets possess very different structural

features, and hence play a role in different cellular pro-

cesses, the luminal spacing of both tubules and sheets is

similar [49, 52].

Interestingly, ER tubules and sheets are found in all

eukaryotic cells [53], though the ratio of sheets to tubules

varies in different cell types and reflects the different

functions of these cells. For example, the ER architecture

of specialized cells that synthesize vast amounts of secreted

proteins, such as pancreatic secretory cells and B cells, is

largely made up of sheets (Fig. 1). In turn, cells that are

involved in processes including lipid synthesis, calcium

signaling and sites of contact for other organelles possess

an ER composed of primarily tubules (Fig. 1). Adrenal,

liver and muscle cells are all examples of specialized cells

with a predominantly tubular network and reflects the

function of these cells [54].

Fig. 1 Various ER structural morphologies. a Location of the ER

visualized in a HeLa cell transfected with GFP-Sec61b. Inset shows
the polygonal network of the peripheral ER magnified 93 relative to

the magnification in a. This view highlights the relationship of the ER

to the nuclear envelope (red arrow). b ER morphology from the same

HeLa cell depicting an image plane closer to the coverslip. This

highlights the complexity of the peripheral ER. c ER network formed

in Xenopus egg extracts. Three-way junctions, ER tubules and small

ER sheets are highlighted (red arrows). d ER network formed in

Xenopus egg extracts highlighting large ER sheets containing

ribosomes (red arrow). Scale bar for a–d is 10 lM and is shown in

a. e Electron micrograph (EM) of rough ER from guinea pig pancreas.

Reprinted with permission from James Jamieson. Scale bar is 0.1 lM.

f EM of smooth ER from ocular rabbit muscle. Reprinted with

permission from Fig. 4 [164]. Magnification is 950,000
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An additional configuration of the peripheral ER

includes cortical ER, which abuts the plasma membrane

and displays an intermediate phenotype between sheets and

tubules with membranes that are both highly curved as well

as regions that are flat in nature. Calcium signaling occurs

at the contact sites between the plasma membrane and the

abutting cortical ER and is necessary for muscle contrac-

tion [55, 56]. Therefore, the morphology and intracellular

location of the ER subdomains contribute to the function of

these structures and hence the role of the specialized cell in

which they are located.

Improved microscopy techniques have allowed for the

characterization of different ER structures, and the ratios of

these structures to one another, in specialized cell types.

When comparing the roles of these cells in the organism, it

is clear that the type and amount of peripheral ER present

reflects the function of that particular cell type. It is still

unclear how these ratios are generated and what cellular

signaling pathways play a role in designating which ER

type will be most prominent in a particular cell type.

ER shaping proteins

ER tubules

Peripheral ER structures are just as distinct and diverse as

the set of proteins that contribute to their shape. Several

proteins have been identified that promote specific ER

structures, but perhaps the most well-studied group of

proteins include the reticulon family of proteins that

localize to tubules and the highly curved edges of ER

sheets [51, 57]. These integral membrane proteins con-

tribute to the bending of the membrane by forming a

transmembrane hairpin topology that acts as a wedge,

displacing lipids in the outer leaflet of the bilayer leading to

curvature of the membranes [57]. These proteins tend to

form oligomers and are much less mobile than other ER-

resident proteins [58]. Overexpression of some reticulon

isoforms leads to formation of long ER tubules at the

expense of sheets [58]. In turn, depletion of reticulons, and

hence the ability to bend membranes, leads to a reduction

in the number of ER tubules, leading to an expansion of

peripheral sheets [57, 59, 60]. Therefore, the level of

reticulons within a cell determines the abundance and fine

structure of ER tubules.

Reticulons do not act alone in shaping ER tubules.

Members of the DP1/Yop1/REEP5/6 and REEP1-4 family,

which are abundant ER-resident proteins that specifically

localize to tubules and edges of sheets, also act as tubule-

promoting factors. DP1/Yop1, or REEP5/6 [61], proteins

share a similar transmembrane hairpin architecture with the

reticulons (Fig. 2), leading to the stabilization of the curved

membranes of tubules [57, 58, 62]. Interestingly, REEP1-4

proteins have a topology distinct from REEP5/6 suggesting

that these proteins may have slightly different functions in

shaping the ER than the closely related REEP5/6 proteins

[63] (Fig. 2). Additionally, purified reticulons and DP1/

Yop1 family proteins were able to induce tubule formation

from purified vesicles [62], demonstrating that these pro-

teins play an essential role in ER tubule growth.

Reticulons and DP1/Yop1 promote tubule formation,

but additional factors are required to promote the formation

of the tubular network and characteristic three-way junc-

tions through homotypic fusion. Atlastins, members of the

dynamin-like GTPase family, mediate these homotypic

fusion events. Depletion by RNAi or expression of domi-

nant-negative atlastin in cells results in a lack of fusion

events leading to an abundance of long, unbranched tubules

[61]. When a dominant-negative cytoplasmic fragment

from Xenopus, which contains the GTPase domain but

lacks the transmembrane domain and cytoplasmic tail [64],

are introduced into Xenopus interphase extracts ER net-

work formation was blocked [65]. Comparable point

mutations that prevent dimerization of the cytoplasmic

fragment of human atlastin [66] were made in the Xenopus

cytoplasmic atlastin protein, added into interphase extract

and had no effect on ER network formation [65]. Fur-

thermore, antibodies directed against atlastin inhibit ER

network formation when introduced into Xenopus egg

extracts [61]. In Drosophila, atlastin depletion leads to ER

fragmentation and purified atlastin is sufficient to catalyze

Fig. 2 Structure of ER sheets and tubules. a ER sheets and tubules

have a diameter of 30–50 nm in eukaryotes. Eukaryotic ribosomes are

25–30 nm and localize to the flat regions of ER sheets, giving the

sheets a rough appearance (rough ER). Ribosomes are present in

much lower numbers on tubules, giving the tubules a more smooth

appearance (smooth ER). b Models of potential hairpin topologies of

REEP family proteins that act as wedges to promote bending of the

membrane, adapted from [63]
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GTP-dependent fusion of proteoliposomes [64, 66, 67].

Therefore, studies from multiple organisms, extracts and

purified components indicate that atlastin is likely required

for catalyzing homotypic vesicle fusion between ER

membranes, which is important for proper network

formation.

Recently, a few new key players have been identified

that are involved in ER dynamics. Work using purified ER

vesicles derived from Xenopus eggs has demonstrated that

GTP is required for homotypic ER vesicle fusion in the

absence of cytosolic factors [57, 68]. Previous studies

indicated that GTPases are required for ER fusion events

[69, 70], and a recent study utilized a proteomics approach

to identify Rab10 as a factor required for ER assembly

[71]. Knock-down of Rab10, or overexpression of a GDP-

locked dominant-negative point mutant, in cultured human

cells caused an increase in ER sheets and a decrease in

tubules [71]. ER–ER fusion events occurred at regions

where Rab10 was enriched. Rab10 was found to co-local-

ize with several lipid-synthesizing enzymes, including

phosphoinositol synthase (IS) and choline/ethanolamine

phosphotransferase (CEPT1) [71], leading to the possibility

that this may represent a previously unidentified ER sub-

domain or compartment. It is currently not clear what role

Rab10 plays in the ER vesicle fusion reaction or how

homotypic ER vesicle fusions are coupled to lipid

synthesis.

Recent work has also identified a role for Rab18, which

is targeted to the ER by Rab3 GTPase activating protein

(GAP) complex, in ER dynamics. Depletion of Rab18 leads

to a phenotype similar to that observed following Rab10

inhibition [72]. Additionally, when Rab10 is depleted,

Rab18 redistributes to peripheral sheets [72]. Therefore, it

appears that depletion of either Rab10 or Rab18 prevents

the stabilization of ER tubule fusion, reducing the density

of tubules resulting in an increase in ER sheets. Depletion

of the Caenorhabditis elegans RAB-5, which has been

previously implicated in early endosome function [73],

phenocopies the peripheral ER defects seen in the RET-1

and YOP-1 (homologs of Rtn4a and DP1) depletions [70].

In addition to the role RAB-5 plays in peripheral ER for-

mation, kinetics of nuclear envelope disassembly is

affected in these mutants [70].

In addition to GTPases that may play a direct role in

homotypic membrane fusion of vesicles, recent work has

demonstrated a role for lipid synthesizing enzymes in

controlling the shape and organization of the ER. Inhibition

of C-terminal domain (CTD) nuclear envelope phos-

phatase-1 (CNEP-1), which is enriched on the nuclear

envelope and promotes the synthesis of membrane phos-

pholipids, led to the appearance of ectopic sheets that

encased the nuclear envelope, interfering with nuclear

envelope breakdown [74]. These results reflect the inter-

connected network of proteins and functions that play a

role in shaping the structures of the ER.

The ER is a very dynamic network that is constantly

undergoing rearrangements and remodeling [75]. ER

tubules are continually fusing and branching resulting in

the creation of new three-way junctions. In a competing

process, junction sliding and tubule ring closure leads to

loss of three-way junctions and the characteristic polygonal

structure [76]. Very little is known about the complexes

controlling this process, but it was recently discovered that

Lunapark (Lnp1) localizes to and stabilizes three-way

junctions [77, 78]. Lnp1 binds to reticulons and Yop1, and

localization of Lnp1 to junctions is regulated by Sey1p, the

yeast homolog of atlastin [78]. Loss of Lnp1 leads to a

collapsed and densely reticulated ER network in yeast and

human cultured cells [77, 78], though only half of the

junctions are bound to Lnp1 [77], which reflects the fluidity

of the ER network. If Lnp1 is overexpressed, the protein

localizes to the peripheral ER and induces the formation of

a large polygonal tubular network [79]. Additionally, for-

mation of this network was inhibited by Lnp1 mutations

that blocked N-myristoylation [79], an attachment of

myristic acid (a 14-carbon saturated fatty acid), indicating

that this modification plays a critical role in Lnp1-induced

effects on ER morphology. N-myristoylation is not

required for membrane translocation, topology formation,

or protein localization to the ER but may play a role in

protein–protein or protein-lipid interactions that are

required for morphological changes in the ER, though the

exact molecular mechanism of action remains to be elu-

cidated [79].

The actual mechanism for Lnp1-mediated stabilization

of three-way junctions is unknown, though recent studies

and insights from the structure and domains within the

protein shed light on how Lnp1 stabilizes junctions [77,

78]. First, Lnp1 contains two transmembrane domains as

well as a zinc finger domain, which is located on the

cytoplasmic face of the ER membrane [77]. When cys-

teines were mutated within the zinc finger domain, the

polygons became smaller and regions lacking cortical ER

were more apparent as the number of cysteines mutated

increased [78]. Therefore, mutations in the zinc finger

domain may affect protein–protein interactions, complex

formation or interfere with the distribution of resident

lipids on the cytoplasmic face of the membrane causing

deleterious effects on junction stabilization. In addition, the

transmembrane domains may be acting as an inverted

wedge, adding to the local negative curvature characteristic

of three-way junctions [77], and acting opposite to the

positive curvature promoted by reticulons. Another possi-

bility is that multiple Lnp1 proteins may also act
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cooperatively together to stabilize the junction, or Lnp1

may be acting transiently to stabilize or modify lipids or

other proteins at junctions [77].

In addition to proteins that regulate membrane structure

and dynamics, there is accumulating evidence that chang-

ing the nucleic acid content of the ER can also impact ER

shape. Early experiments showed that brief treatment of

tissue culture cells with the translation inhibitor puromycin,

which dissociates mRNA:ribosome complexes, leads to

loss of ribosomes from the ER and a loss of ER sheets [51,

80]. This suggests that the presence of mRNA:ribosome

complexes may stabilize ER sheets. In support of this

hypothesis, our recent work identified an ER-localized

ribonuclease, XendoU [81], that changes the RNA content

of the ER in response to changes in free Ca2? concentration

[82, 83]. These changes occur at physiologically relevant

levels of *1.5 lM, which mimics release of Ca2? from

intra- and extracellular stores at fertilization [42, 84]. A

subpopulation of XendoU localizes to the ER and co-im-

munoprecipitates with a number of ER-resident proteins

[82]. Depletion of XendoU leads to the formation of long,

unbranched tubules in Xenopus leavis egg extract, and

rescue of this phenotype requires intact catalytic activity of

the protein, indicating that the nuclease function is critical

to proper ER network formation [82]. Furthermore, anti-

body addition to purified vesicles leads to a block in

network formation, demonstrating that XendoU acts on the

surface of ER membranes to regulate ER structure [82].

Interestingly, addition of 5050-dibromo BAPTA, a strong

calcium chelator, blocked vesicle fusion in this system

[68]. Depletion of XendoU also leads to a delay in repli-

cation and nuclear envelope closure [82], and BAPTA

blocks nuclear envelope formation in Xenopus egg extract

reconstitution experiments [85]. Together these results

suggested that XendoU acts on membranes to degrade

RNAs.

Upon vesicle fusion it was found that RNAs were

degraded and released from the surface of membranes,

suggesting that XendoU acts to degrade these RNAs, as

well as release proteins, to clear patches of membrane to

allow for vesicle formation leading to network formation

[82]. Interestingly, when purified vesicles were treated with

increasing concentrations of RNaseA and subjected to the

same assay, an increasingly aberrant network formed with

large vesicles that were unable to fuse [82]. Results from

in vitro studies indicate that XendoU is activated on

membranes in coordination with calcium release to locally

degrade RNAs and clear patches of membranes leading to

fusion in a controlled manner to fine tune network

formation.

Lastly, similar to other proteins that play a role in

tubule formation, knock-down of the human homolog

EndoU in cultured human cells leads to an expansion of

sheets [82]. Additionally, rescue of the expanded sheet

phenotype depended on intact catalytic function as

observed with recombinant protein in the extract system.

Therefore, XendoU is an example of a protein that is

activated in response to cellular cues to regulate proper

ER formation, and further studies may reveal additional

proteins that are regulated in this manner to fine tune

organelle structure.

ER sheets

We have considered how tubules are formed and main-

tained, which leads the discussion to sheets, the other

peripheral ER structure. First, we must consider how sheets

are formed. Several mechanisms have been proposed,

including the idea that integral membrane proteins can span

the intraluminal space and form bridges, connecting the

lipid bilayers [51, 86, 87]. These proteins may either sta-

bilize the structure or define the distance between the two

lipid layers based on the size of the proteins. Additionally,

these proteins or protein complexes may form a scaffold

that aids in the stabilization of the sheets or bring the two

lipid membranes in closer proximity [86]. Several proteins

including Climp63, p180 and kinectin have been impli-

cated in the generation, maintenance and stabilization of

ER sheets [51].

In addition to highly enriched membrane proteins and

core components of the translocon, Climp63, a coiled–

coiled protein with a single transmembrane domain, was

identified along with kinectin and p180 in a mass spec-

trometry screen for abundant integral ER membrane

proteins [51]. Through various techniques and in various

cell types Climp63 was shown to be a highly abundant

protein [88–90] that localizes to perinuclear ER and is

absent from the nuclear envelope [91, 92]. Very

stable oligomers of Climp63 can form, restricting mobility

of the protein along the membrane, promoting localization

to the rough ER [92]. Overexpression of Climp63 leads to a

massive proliferation of ER sheets while reduction in

expression surprisingly does not lead to loss of sheets but

instead a decrease in the distance between sheets [51].

Moreover, these sheets are spread diffusely throughout the

cytoplasm, reminiscent of the phenotype of cells treated

with the translation inhibitor puromycin [51]. This is

interesting as the core components of the translocon, the

protein channel that interacts with ribosomes and is

responsible for translocating nascent peptides into the ER

or anchoring transmembrane segments of newly synthe-

sized proteins, were found to be enriched on sheets [93].

Therefore, these results suggest that the role of Climp63 in

formation of sheets is likely to involve additional factors

and acts as a part of an elaborate regulatory network that

balances the production of sheets and tubules.
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ER microtubule interactions

It is clear that proteins involved in the promotion, main-

tenance or stabilization of peripheral ER structures

function through interactions with additional proteins or

structures, and these interactions are key to proper forma-

tion of the ER network. Interestingly, several of the

proteins discussed above have been shown to interact with

microtubules, including Climp63 [91], p180 [94], kinectin

[95] and STIM1 (discussed below). One important inter-

action discussed below is with microtubules. The ER

network exhibits several dynamic interactions with

microtubules that are important for determining the dis-

tribution of the ER within the cell. The two main types of

interactions between the ER and microtubules are Tip

Attachment Complexes (TACs) and sliding along pre-

formed microtubules by the action of kinesin and dynein

motors [96–100]. In cultured cells treated with nocodazole

to depolymerize microtubules, the ER retracts from the

periphery [101], though the retraction does not occur

immediately. Further investigation revealed that sliding

events occurred mainly on a small subset of microtubules,

modified by acetylation, that are more resistant to noco-

dazole treatment [76]. Furthermore, ER tubules can form in

the absence of microtubules [57, 65, 68], raising many

questions and leading several groups to study the interac-

tion between ER and microtubules more in-depth.

In the past 10 years we have learned a great deal about

what proteins are responsible for the intrinsic shape of the

ER and how these proteins are connected to specific ER

subdomains. However, we know very little about how

cellular signals communicate with ER shaping proteins to

change the shape of the ER in response to cellular signals.

Changes in ER structure during mitosis

During mitosis many cellular structures are dramatically

remodeled to facilitate chromosome segregation. One of

the most dramatic examples is changes to the microtubule

cytoskeleton that occur as a result of increased microtubule

dynamics caused by the action of cyclin-dependent kinases.

The increase in microtubule dynamics during mitosis is

important for the bipolar attachment of chromosomes to the

mitotic spindle and accurate segregation to daughter cells

during anaphase [102]. In addition to changes to the

microtubule cytoskeleton, essentially all organelles change

shape and function during mitosis to facilitate accurate

organelle inheritance and orderly chromosome segregation.

The ER undergoes dramatic shape changes during mitosis

and recent studies are beginning to uncover the mecha-

nisms linked to these structural changes.

In organisms with an open mitosis the nuclear envelope

breaks down at the onset of mitosis to allow free exchange

between the nucleus and cytoplasm. Nuclear envelope

breakdown (NEBD) is a carefully orchestrated process that

begins during mitotic prophase [103]. During prophase

components of the nuclear pore dissociate from the pore,

the nuclear lamina depolymerizes, and the membrane-

bound proteins of the nuclear envelope retract into the

general ER. These events free the chromosomes of nuclear

lamina and membranes to facilitate chromosome conden-

sation and segregation. In general, the events of nuclear

envelope breakdown are thought to be driven by the

phosphorylation of components of the NE during mitosis

by various mitotic kinases, especially cyclinB:cdk1,

although many molecular details are still unclear.

Concomitant with changes that occur to the nuclear

envelope during NEBD the ER also begins to undergo

dramatic shape changes. Changes in ER shape during

mitosis have been studied in many different organisms by

both light and electron microscope and these studies have

resulted in a conflicting series of reports about the shape of

the ER during mitosis. However, during the last few years a

consensus has begun to emerge that the mitotic ER is

primarily composed of sheets. Early studies using live cell

microscopy in both Drosophila and C. elegans embryos

demonstrated that the ER changed from a mixture of sheets

and tubules to almost exclusively sheets during mitosis

[104, 105]. Additionally, work using thin section trans-

mission EM in HeLa cells also concluded that the majority

of the ER was present in sheets throughout mitosis [106].

However, two studies in a variety of mammalian tissue

culture cells [80, 107] have used both live cell microscopy

and electron microscopy to suggest that the ER is primarily

tubular during mitosis, and two additional studies [60, 108]

also suggested that the ER remained tubular during mitosis

and further suggested that end-on binding of ER tubules to

chromatin during mitosis initiates nuclear envelope

reassembly at the end of mitosis. One potential difficulty in

interpreting the shape of the mitotic ER is that most cells

round up during mitosis which can make acquisition of

light and electron microscopy images difficult and require

laborious reconstruction of the images into a three

dimensional model. In addition, the mitotic ER is highly

dynamic, which can complicate acquisition of live cell

images during mitosis. To address these questions a series

of recent studies have used both high-resolution, high-

speed live cell microscopy and high-resolution EM to

demonstrate that the ER is almost exclusively composed of

sheets during mitosis [109, 110]. In addition, these studies

demonstrate that the nuclear envelope reforms through the

docking of ER sheets onto regions of chromatin that are

isolated from spindle microtubules [109]. Finally, to cir-

cumvent many or the problems associated with imaging

large, three dimensional cells during mitosis a recent study

has examined the structure of the ER in vitro using ER
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reconstituted from Xenopus egg extracts [65]. This study

convincingly demonstrated that ER formed in mitotic

extracts is primarily composed of sheets while interphase

ER is primarily composed of tubules. In addition, the

authors demonstrated that active cyclinB:cdk1 was suffi-

cient to convert a tubular ER into a primarily sheet based

ER. Taken together all of these studies present conflicting

views of the shape of the ER during mitosis, but a con-

sensus is emerging from a wide variety of organisms that

the mitotic ER is primarily composed of sheets and that the

shape changes in the ER are related to changes in

cyclin:cdk activity.

In addition to changes in the gross morphology of the

ER during mitosis there are also dramatic changes in the

distribution of proteins throughout the ER. During inter-

phase the ER is organized into distinct domains with

certain proteins defining different domains. For example,

the tubule-shaping reticulon protein Rtn4 is exclusively

present in the peripheral ER and excluded from the nuclear

envelope [57, 60, 110]. In contrast, some proteins, such as

the Lamin B receptor and components of the nuclear pore,

are exclusively present in the nuclear envelope and are

excluded from the peripheral ER [60, 110], while some

proteins, like Sec61b, are present in all ER subdomains.

However, during mitosis the NE retracts into the ER and

there is nearly complete mixing of the specialized ER-

shaping proteins [60, 110]. At the end of mitosis proteins

that define the NE and peripheral ER are rapidly resorted

such that they reestablish their characteristic interphase

organization [60, 110]. In addition, it has been shown that

overexpression of Rtn4 or knockdown of three reticulons

(Rtn1, Rtn3, Rtn4) can either slow or speed the rate of NE

reassembly at the end of mitosis, although the mechanism

through which these proteins affect NE formation is cur-

rently unknown. These studies highlight the massive

reorganization that takes place in the ER during mitosis and

suggests that different expression levels of specific ER

shaping proteins can control ER reorganization during

mitosis. However, we know very little about how various

ER shaping proteins are resorted to specific domains at the

end of mitosis.

Two very recent studies [111, 112] have begun to pro-

vide insight into the specialized processes that regulate

nuclear envelope reformation at the end of mitosis. Both of

these studies identified a transient localization of the

ESCRT-III complex to the surface of chromatin during late

anaphase when the nuclear envelope is beginning to

reform. ESCRT-III is best known for its role in the for-

mation of multivesicular bodies during endocytosis, but

also has well-documented roles in cytokinesis and viral

budding from the plasma membrane [113]. Both studies

demonstrated that the membrane binding and deformation

properties of ESCRT-III are required for nuclear envelope

formation. Additionally, interactions with the microtubule

severing enzyme spastin and the ubiquitin recognition

factor UFD1 are important for nuclear envelope reforma-

tion. These results demonstrate that an endosomal complex

is important for regulating NE reformation and suggest that

ESCRT-III could potentially play a role in additional

aspects of ER dynamics.

The redistribution of ER shaping proteins during mitosis

suggests that the fundamental activities of some of these

proteins are modified during mitosis. For example, the

mitotic ER is composed of primarily sheets, yet Rtn4,

which promotes tubule formation [57], is distributed

throughout the ER [60, 110]. This result suggests that the

tubule-promoting activity of Rtn4 may be modified during

mitosis to facilitate the tubule-to-sheet transition observed

during mitosis. Inspection of large-scale phospho-pro-

teomics studies reveals that a large number of ER-shaping

proteins have identified mitosis-specific phosphorylation

sites [114–121]. Although none of the phosphorylation

sites identified in these large-scale screens has been studied

in detail their presence and specificity to mitosis suggests

that these are likely to be involved in reshaping the ER

during mitosis.

In support of the hypothesis that mitosis-specific phos-

phorylation of ER-shaping proteins regulates ER

remodeling during mitosis two studies have examined this

phenomenon in detail. A study of the ER sheet promoting

protein Climp63 [51] has demonstrated mitosis-specific

phosphorylation on three N-terminal residues [121].

Phosphorylation of Climp63 blocks the interaction of

Climp63 with microtubules. Additionally, phosphomimetic

mutants blocked the interaction of the ER with micro-

tubules during interphase and resulted in an ER composed

primarily of sheets, while nonphosphorylatable mutants

tethered the ER to microtubules and resulted in an extre-

mely distorted ER. These results suggest that mitotic

phosphorylation of Climp63 likely blocks the interaction of

the ER with microtubules and could be an important step in

the tubule-to-sheet transition that occurs during mitosis. A

second study examined the interaction of the ER with

growing microtubule plus ends during mitosis. During

interphase the ER-associated protein STIM1 interacts with

the microtubule plus end-binding protein EB1 to couple ER

reshaping to microtubule polymerization [122]. However,

during mitosis the ER is excluded from the mitotic spindle

and does not exhibit plus tip growth events. A recent study

[123] has demonstrated that STIM1 is specifically phos-

phorylated during mitosis to control the interaction of the

ER with microtubules. Specifically, phosphorylation of

STIM1 blocks the interaction with the plus-end tracking

protein EB1. Nonphosphorylatable mutants of STIM1,

created by mutation of 10 S/T residues that block all

mitotic phosphorylation, result in a recruitment of the ER
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throughout the spindle by restoration of the interaction of

STIM1 with EB1, demonstrating that phosphorylation is a

major mechanism that regulates the association of the ER

with microtubules during mitosis. Interestingly, phospho-

rylation of STIM1 also blocks activation of SOCE,

although this occurs independently of the STIM1:EB1

interaction [118]. Clearly much more work remains before

we have a clear understanding of how cell cycle signaling

cascades contribute to reshaping of the mitotic ER.

While the above studies demonstrated that phosphoryla-

tion of key proteins that link the ER to the microtubule

cytoskeleton is important for excluding the ER from the

spindle during mitosis a recent study demonstrated the

importance of an interaction of the ERwith microtubules for

clearing the ER from mitotic chromatin. During mitosis the

nuclear envelope is absorbed into the ER and is cleared from

the surface of the chromatin, however little is known about

the mechanisms that regulate ER removal from the chro-

matin. A recent study used a biochemical approach to

identify proteins that bind to both membranes and micro-

tubules to identify new ER proteins REEP3/4 [124]. The

authors demonstrate that RNAi against REEP3/4 results in a

failure to remove membranes from chromosomes during

mitosis, resulting in chromosome segregation defects and

internuclear membrane inclusions. Interestingly, the authors

further demonstrate that removal ofmembranes frommitotic

chromatin requires the interaction of REEP3/4 with micro-

tubules. However, it is not known if REEP3/4 is subject to

phosphoregulation during mitosis or if the microtubule-

binding activity or REEP3/4 is required for shaping the ER

during interphase. Taken together these three studies

demonstrate that interaction of the ERwith microtubules is a

major mechanism that contributes to shape rearrangement

during mitosis and that ER:microtubule interactions are

regulated by mitotic phosphorylation. In addition, these

studies demonstrate that the ER interacts with microtubules

usingmany different adaptor proteins and that these different

adaptor proteins serve different functions during mitosis.

Changes in ER during oocyte maturation

and fertilization

One of the greatest changes during development occurs at

fertilization. As in mitosis, the transition from oocyte to

embryo requires many coordinated cellular changes

including release from meiotic arrest, resumption of

mitosis, fusion of pronuclei, activation of signaling cas-

cades and changes in protein expression [125–128]. In

order for development to proceed normally, the egg must

undergo the proper calcium response in order to initiate the

developmental program and embryogenesis [129].

While the exact mechanism and conformational changes

vary slightly among all organisms studied, the ER

architecture in oocytes of all animals changes including

Xenopus [130, 131], sea urchin [132], starfish [133] and

mouse [134]. Initial studies in starfish oocytes revealed that

the ER is comprised of interconnected sheets of mem-

branes, though following germinal vesicle breakdown

(GVBD), the ER sheets wrap around yolk platelets

resembling a shell [133]. In immature mouse oocytes, large

clusters were found deep within the cytoplasm [134].

Following GVBD, the spindle and surrounding ER migrate

to the cortex leading to another round of ER reorganization

into vegetally localized clusters in the metaphase II egg in

addition to a finer reticular network throughout the egg

[134, 135]. Interestingly, these steps are dependent on the

microtubule network as nocodazole and inhibition of

cytoplasmic dynein both prevent the ER reorganization

[135]. Formation of the ER clusters is prevented by the

depolymerization of microfilaments, but not microtubules

[135]. Given the timing of each of these reorganizations, it

seems likely that they are related to increases in

cyclinB:cdk1 activity that occurs upon oocyte maturation

[136]. These observations show an additional time in

development where the ER and microtubule network

interact to regulate ER structure.

In Xenopus immature oocytes, the network in both the

animal (pigmented) half and vegetal (unpigemented) half

appears to be uniform and consists of tubules and indi-

vidual, unstacked sheets [130]. Additionally, the vegetal

half contains annulate lamellae, stacks of sheets with

membranes containing densely packed nuclear pores [130].

In mature eggs, the ER in the animal half is unchanged,

however the annulate lamellae in the vegetal half disap-

peared. Interestingly, it has been proposed that the annulate

lamellae share many properties with the nuclear envelope

[137]. In place of the annulate lamellae dense, irregularly

shaped ER clusters were present. The appearance of these

clusters coincided with germinal vesicle breakdown. These

clusters disappeared and reappeared throughout maturation

and upon fertilization dispersed and permanently disap-

peared. The reorganization of the ER is coupled to the cell

cycle as the clusters present in mature eggs contain IP3
receptors [130] and release calcium from IP3 channels at

fertilization [138, 139].

Along with these changes comes a transient intracellular

calcium wave, initiated during sperm entry, released from

the ER and extracellular stores [40, 42, 140–142]. There is

one major difference in eggs of mice versus eggs of frogs.

Frogs, as well as sea urchin [143] and starfish [133, 144]

have a single calcium transient at fertilization [145]. Other

animals, including mice and humans, have multiple smaller

calcium transients following fertilization, and these dif-

ferences may be reflected in the ER organization in mature

eggs [145]. Mice [134] and frogs display ER clusters that

are similar in size and location (the side opposite the
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meiotic spindle) and possess IP3 receptors [130, 146].

However, fertilization in mice occurs on the side with the

ER clusters whereas fertilization in frogs occurs in the

animal pole where the meiotic spindle is located. There-

fore, the clusters may be involved in secondary calcium

wave propagation. The organization of the ER network,

and the reorganization throughout oogenesis, serves as a

functional consequence of calcium signaling and propa-

gation in these organisms [129]. We currently do not know

much about the molecular mechanisms that lead to changes

in ER shape during meiotic maturation and fertilization,

and this should be a major are of research interest.

ER changes in response to ER stress

As seen so far, the ER is an organelle of many different

functions that must be tightly regulated to carry out the

proper functions. One of the most prominent functions of

the ER is protein synthesis. Even with several chaperones

and folding enzymes in place, an accumulation of unfolded

or misfolded proteins in the lumen of the ER can occur.

When the cell undergoes this type of stress there are several

things that must occur to retain balance and proper func-

tion, including translational inhibition, degradation of

unfolded or misfolded proteins, and an increase in the

production of chaperones and folding enzymes to restore

normal function of the ER and the cell. If the balance is not

restored it can lead to cell death or apoptosis [147],

therefore achieving normal function is critical to the sur-

vival of the cell.

As discussed above, once a peptide destined for secre-

tion has entered the lumen of the cell, there are several

modifications that occur, including N-linked glycosylation,

disulfide bond formation and oligomerization [3]. N-linked

glycosylation can occur co-translationally as the protein is

translocated into the ER lumen. The oligosaccharyltrans-

ferase (OST) can modify the Asparagine within the Asn-X-

Ser/Thr sequence once it has traversed approximately 13

amino acids into the ER lumen [148], which improves the

kinetics and thermodynamics of folding for proteins [149,

150]. Misfolding can occur due to the unique environment

of the lumen and the high protein concentration of both

newly synthesized proteins, proteins ready for secretion

and proteins that act as molecular chaperones and folding

enzymes. Logistically, due to the high protein concentra-

tion and packing in the lumen, the folding enzymes must

first identify and find the proper target protein for folding to

take place. If proteins are not modified correctly, the lack

of glucose residues is recognized by the ER and proteins

including UDP-glucose:glycoprotein glucosyltransferase

(UGGT) in an attempt to re-glycosylate the protein [151–

153]. If the normal folding process is not restored,

hydrophobic residues are exposed and bound by Grp78,

accumulation of these proteins occurs and the unfolded

protein response (UPR) is activated [154, 155]. The first

action of the UPR is to increase ER abundance to accom-

modate the needs of the cell to properly fold the proteins,

leading to an expansion of the ER through the generation of

sheets [156] and an increase in the ER folding machinery.

The UPR consists of three parallel branches that are

activated upon stress and include inositol requiring enzyme

1 (IRE1) by nonconventional splicing, double-stranded

RNA-activated protein kinase (PKR)-like ER kinase

(PERK) through translational control by phosphorylating

eIF2a, and activating transcription factor 6 (ATF6) through
regulated proteolysis [155]. Briefly, activation of these

pathways lead to production of b-ZIP transcription factors

that activate UPR genes [155]. First, ER-resident IRE1, a

transmembrane endoribonuclease, mediates the post-tran-

scriptional, non-canonical splicing of XBP1 mRNA that is

localized to the ER [157–159] and encodes a transcription

factor involved in upregulating additional stress response

genes. Additionally, the nuclease activity of IRE1 is

involved in degradation of a subset of ER-associated RNAs

in a process known as IRE1-dependent decay (RIDD) [160,

161]. The cell has evolved this mechanism to reduce the

translational load on the ER by removing mRNAs that

otherwise would be translated, and may be one way for the

cell to upregulate stress-response genes that are needed in

the UPR. Although it is clear that ER-stress leads to large

scale changes in the protein and RNA content of the ER, it

is not yet clear if this leads to immediate structural reor-

ganization in order to accommodate the new needs of the

organelle. In addition, it is not yet clear if activation of

stress-responsive signaling pathways leads to the modifi-

cation of intrinsic structural components of the ER.

Interestingly, it has been observed that splicing of XBP1 is

activated during meiosis in both Xenopus and budding

yeast [162, 163], suggesting that changes in ER structure

during meiosis could be linked to the ER stress response.

These would both be interesting avenues of future research

exploring structural changes in the ER in response to cel-

lular signaling cues.

Closing remarks

The ER is a complex organelle that plays a pivotal role in

protein and lipid synthesis, calcium storage and stress

response. Changes in structure in response to cell cycle or

developmental state render this organelle highly dynamic.

Several proteins play a role in the proper formation of the

different structures of the peripheral ER including the

nuclear envelope, sheets and tubules. Regulation exists at

multiple steps in the formation and maintenance of these

structures, and the ratios of these structures are very
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different in cells of different functions. In general, cells

involved in synthesizing large amounts of protein have

higher ratios of sheets, whereas cells involved in lipid

synthesis or signaling with other organelles would have

higher ratios of tubules. The generation of these structures

relies on a myriad of proteins, involved in either structural

aspects of ER morphology by directly affecting the phos-

pholipid bilayer and curvature of membranes or mediating

interactions with other organelles or the cytoskeleton. In

addition, proteins with other functions, including nucleases

and GTPases, also play a role in network formation. Recent

work has begun to connect our knowledge of the proteins

that provide the fundamental shape of the ER to signaling

pathways, but much work remains to be done to understand

how developmental, cell cycle, and stress pathways change

the fundamental shape of the ER in different circum-

stances. Recent work on several different human diseases

has highlighted a role for several different ER-shaping

proteins in diverse diseases such as Alzheimer’s and

Hereditary Spastic Paraplegia (HSP) [reviewed in 7]. The

strong link of ER-shaping proteins to hereditary human

diseases highlights the need for further research into the

basic biology of the ER and how this biology changes in

response to changes in cellular environment.
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