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Abstract

Background: Rapid molecular diagnostics for detecting multidrug-resistant and extensively drug-resistant tuberculosis (M/
XDR-TB) primarily identify mutations in Mycobacterium tuberculosis (Mtb) genes associated with drug resistance. Their
accuracy, however, is dependent largely on the strength of the association between a specific mutation and the phenotypic
resistance of the isolate with that mutation, which is not always 100%. While this relationship is well established and reliable
for first-line anti-TB drugs, rifampin and isoniazid, it is less well-studied and understood for second-line, injectable drugs,
amikacin (AMK), kanamycin (KAN) and capreomycin (CAP).

Methodology/Principal Findings: We conducted a systematic review of all published studies evaluating Mtb mutations
associated with resistance to AMK, KAN, CAP in order to characterize the diversity and frequency of mutations as well as
describe the strength of the association between specific mutations and phenotypic resistance in global populations. Our
objective was to determine the potential utility and reliability of these mutations as diagnostic markers for detecting AMK,
KAN and CAP resistance. Mutation data was reviewed for 1,585 unique clinical isolates from four continents and over 18
countries. Mutations in the rrs, tlyA, eis promoter and gidB genes were associated with AMK, KAN and/or CAP resistance.

Conclusions/Significance: The rrs A1401G mutation was present in the majority of AMK, KAN and CAP resistant Mtb strains
reviewed, but was also found in 7% of CAP susceptible strains. The 1401 mutation alone, however, was not found with
sufficient frequency to detect more than 70–80% of global Mtb strains resistant to AMK and CAP, and 60% of strains
resistant to KAN. Additional mutations in the rrs, eis promoter, tlyA and gidB genes appear to be associated with resistance
and could improve sensitivity and specificity of future diagnostics.
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Introduction

In 2010, 8.8 million new cases of tuberculosis (TB) and 1.4

million TB-related deaths were reported worldwide [1]. While the

global incidence of TB appears to be decreasing, the emergence of

multidrug-resistant TB (MDR-TB) and extensively drug-resistant

TB (XDR-TB) has significantly complicated TB eradication

efforts. MDR-TB strains, as defined by World Health Organiza-

tion (WHO), are Mycobacterium tuberculosis (Mtb) strains resistant to

the most effective ‘‘first-line’’ TB medications: isoniazid (INH) and

rifampin (RIF). XDR-TB strains are characterized by resistance to

INH, RIF (ie MDR-TB) plus any fluoroquinolone (e.g., moxi-

floxacin), and at least one of the three ‘‘injectable’’ anti-TB drugs:

amikacin (AMK), kanamycin (KAN), and capreomycin (CAP) [2].

At an estimated 5% of all tuberculosis cases globally, the incidence

of MDR-TB recently reported by the WHO is the highest ever

recorded [3], and XDR-TB cases have been confirmed in 58

countries to date [4].

Appropriate use of the ‘‘second-line’’ injectable drugs, AMK,

KAN and/or CAP is critical to the effective treatment of MDR-

TB and to the prevention of XDR-TB. It is therefore imperative

that the MDR-TB strains in patients starting second-line drug

treatment are first tested for sensitivity to these drugs to ensure

appropriate treatment choices are made and that resistance is not

further amplified [5]. Conventional diagnosis of drug-resistance in

Mtb strains relies heavily upon mycobacterial culture and drug

susceptibility testing in liquid or solid media. While this method is

effective for detecting INH and RIF resistance, detecting resistance
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to AMK, KAN and CAP is more complicated and less reliable [6].

Additionally, results are only obtained after weeks to months of

incubation and many developing countries lack the resources to

establish the stringent laboratory conditions needed for these

growth-based methods. From a clinical perspective, the existing

growth-based diagnostics also reveal too little, too late, as patients

undergoing treatment with drugs to which they are resistant,

remain contagious, and those with XDR-TB and HIV often die

before they are even diagnosed [7]. Rapid molecular diagnostic

tests that do not rely upon the culture of this slow-growing

pathogen are essential to the future management of M/XDR-TB.

Molecular diagnostics, which focus on the detection of mutations

in pathogen genes that have been associated with drug resistance,

have shown the most promise for rapid diagnosis of M/XDR-TB

[8–10]. Their accuracy, however, is dependent largely on the

strength of the association between a specific Mtb gene mutation and

the phenotypic resistance of the isolate with that mutation, which is

not always 100%. This relationship between mutation and

phenotypic resistance is well established and consistent for the

first-line drug RIF [11,12], and to a lesser extent INH [13,14], but it

is less well-studied and understood for the injectable drugs.

To date, the primary genes associated with injectable drug

resistance in Mtb have been identified based on an understanding of

the mechanisms of action of the aminoglycosides (AMK, KAN) and

cyclic peptides (CAP) against Mtb. Both AMK and KAN bind to the

16S rRNA in the 30S ribosomal subunit and inhibit protein synthesis

[15]. The mechanism of action of CAP in Mtb is not well understood,

but it appears to interfere with translation and inhibit phenylalanine

synthesis in mycobacterial ribosomes [16]. Mutations in Mtb, mostly

non-synonymous, single nucleotide polymorphisms (SNPs), that

prevent the binding of the injectable drugs to their pathogen gene

targets or that change the mechanism of action of the drugs, have

been associated with drug resistance to AMK, KAN and CAP

[17,18]. The most well-studied gene mutations believed to confer

resistance to the injectable drugs lie in the rrs and tlyA genes. The rrs

gene encodes 16S rRNA [19] and tlyA encodes a 29-O-methyltrans-

ferase that modifies nucleotide C1409 in helix 44 of 16S rRNA and

nucleotide C1920 in helix 69 of 23S rRNA [20]. The mutations most

commonly reported to cause resistance to the injectable drugs

include: A1401G, C1402T, and G1484T in the rrs gene [9,10,18,21–

38]. More recently, the eis promoter, which has been demonstrated

to enhance the intracellular survival of a related bacterium—

Mycobacterium smegmatis—has also been considered for its utility as a

marker for resistance to KAN when mutated [39]. Other resistance-

associated mutations in these genes and other genes have been

proposed [32], but their utility as accurate predictors of resistance has

yet to be demonstrated. Consequently, current molecular detection

tests for XDR-TB are considered inferior to those used for MDR-TB

due to insufficient knowledge about the key mutations responsible for

conferring resistance to AMK, KAN and CAP.

We therefore conducted a systematic review of all published

studies evaluating Mtb mutations associated with resistance to

AMK, KAN, CAP in order to characterize the diversity and

frequency of mutations as well as describe the strength of the

association between specific mutations and phenotypic resistance

in global populations. The objective of our study was to determine

the potential utility and reliability of these mutations as diagnostic

markers for detecting AMK, KAN and CAP resistance in Mtb.

Methods

Literature Search
A Medline search was conducted of all publications evaluating

mutations associated with resistance to AMK, KAN and CAP in

Mtb. The search was restricted to studies published from 1959

through September 10th, 2011, including those studies available

online prior to publication. MEDLINE/PubMed key search terms

used were: (second-line OR kanamycin OR capreomycin OR

amikacin) AND (resistance OR resistant) AND tuberculosis AND

(mutation OR sequence OR gene).

Study Selection Criteria
Studies were included if they met the following predetermined

criteria: i) published in English; ii) presented original data; and iii)

assessed drug resistance mutations in clinical Mtb strains that were

resistant to AMK, KAN and/or CAP (in vitro studies were

excluded as laboratory generated mutations have been frequently

observed to be different from those found in clinical isolates [40]).

Studies were also excluded if they did not perform or describe

phenotypic drug susceptibility testing (DST), did not perform

sequencing as a method for determining drug resistance

mutations, or did not report specific mutation data. We included

studies that used both liquid and solid-based media for DST as

long as they reported clearly defined drug concentration cutoffs for

determining resistance. These criteria were intended to select the

broadest range of studies with the highest quality of specific data

for mutation analysis.

Data Extraction and Entry
From each publication, we extracted the following information:

authors, publication year, geographic origin of clinical strains,

reference strain(s) utilized to evaluate mutations, testing method for

phenotypic drug susceptibility and drug concentrations used for

defining resistance, methods used to detect genotypic mutations,

genes sequenced, and loci of genes sequenced. The following

mutation information was also recorded: specific gene mutation(s)

found, injectable drug utilized for selection, number of resistant and

susceptible isolates tested, and number of resistant and susceptible

isolates demonstrating mutation. Data were recorded and compiled

using Excel and Access software (Microsoft, Redmond, WA).

Data Collation and Cumulative Mutation Frequency
Calculations

Mutations associated with resistance to AMK, KAN, and CAP

were grouped by genes and stratified by the drug resistance

phenotype associated with the mutation. Data was examined for

evidence of individual as well as multiple mutations within a gene.

Each mutation reported in a resistant Mtb isolate was considered

independent of all others within and between studies (except where

otherwise noted for multiple mutations in the same gene), and

recorded as one instance of the mutation in the numerator of our

cumulative frequency calculations. Cumulative mutation frequen-

cy in resistant isolates was calculated as the number of resistant

isolates in which the mutation was found, divided by the total

number of phenotypically resistant isolates tested across studies.

Cumulative mutation frequency in susceptible isolates was calculated

as the number of susceptible isolates in which the mutation was

found, divided by the total number of susceptible isolates tested

across studies. As not all studies examined all mutations or all

genes associated with resistance, an isolate was only included in the

denominator of a cumulative frequency calculation for a particular

mutation if that mutation could have been detected in that isolate

(i.e. the study sequenced the appropriate section of the gene).

While all mutations identified in the review were evaluated, the

cumulative mutation frequency tables presented in this review

represent only the mutations that reached a frequency threshold as

described below. Isolates with rrs and gidB gene mutations were

Mutations and Resistance to Injectable Drugs in TB
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included if their frequency among resistant isolates was at least 1%

for any one of the injectable drugs tested, and when that frequency

was not higher among susceptible isolates than resistant isolates for

two or more injectable drugs. The isolates with tlyA gene, eis

promoter, and multiple rrs mutations were included in the tables if

the mutation frequency among resistant isolates was at least 1% for

any one of the injectable drugs tested. Mutations were excluded

from the tables when the frequencies of the mutation were equal in

resistant and susceptible strains (ie not likely to be associated with

resistance).

Quality Assessment and Consistency
Throughout this review mutation co-ordinates are referred to in

accordance with the numbering in the Mtb H37Rv complete

genome, accession number NC_000962, National Center for

Biotechnology Information [41]. Mutations identified in earlier

publications that did not use this co-ordinate system [21,22,25]

were updated to this numbering system. The H37Rv strain was

the assumed template for mutation analysis in all publications,

even when not explicitly stated within a given study, as is standard

practice [9,10,18,25,26,30].

In publications that did not examine the whole gene and did not

report the specific area of the gene sequenced, the reported SNPs

were substituted as the outer limits for the gene region under study

(e.g. if only rrs mutations A1401G and G1484T were reported

within a publication, the sequence from 1401–1484 was

considered to be the section of rrs analyzed for mutations). In

publications evaluating the MTBDRsl line probe assay (Hain Life

Sciences, Tübingen, Germany), in which resistance-associated

genes were sequenced, but sequence data was only provided for

regions hybridized to the line probes, only those SNPs tested via

hybridization strips were considered sequenced.

In one publication, mutation data was reported for ‘‘probable-

resistant’’ and ‘‘probable-susceptible’’ clinical isolates [33]. A

‘‘probable-susceptible’’ strain was defined as an Mtb strain isolated

prior to initiation of any treatment with a given drug, while a

‘‘probable-resistant’’ strain was defined as a strain isolated from

patients after at least six months of treatment with the given drug.

For the purposes of this review, we assumed the probable-resistant

and probable-susceptible isolates were resistant and susceptible

based on the DST methodology described in the manuscript.

Sensitivity and Specificity of Mutations
In order to comment on the potential predictive value of the

reported resistance-related mutations in a molecular diagnostic

test, we described a mutation as potentially ‘‘very sensitive’’ when

its cumulative frequency was 75% or more in the resistant strains

evaluated and ‘‘moderately sensitive’’ if it occurred in 50% to 74%

of the resistant strains reported. A resistance-related mutation was

defined as ‘‘very specific’’ if it was reported in 5% or less of

susceptible strains evaluated and ‘‘moderately specific’’ if it was

reported in 6% to 10% of the susceptible strains evaluated.

Results

Description of Included Studies
Figure 1 (Figure S1) illustrates the study selection and exclusion

process utilized for this review. Initial search parameters identified

135 studies published from November, 1959 through September,

2011. Twenty-two publications met all eligibility criteria and were

included in the review [6–27].

Of the 22 studies included, the earliest was published in 1998

and 17 (77%) were published in the last three years (Table 1).

Altogether, mutation data was provided for 1,585 unique clinical

isolates with various phenotypic resistance profiles to AMK, KAN,

and/or CAP. The reported geographic origins of these strains

were diverse, covering four continents and over 18 countries.

Mutations in the rrs, tlyA, eis promoter and gidB genes were

associated with Mtb resistance to AMK, KAN and/or CAP in the

examined literature. A total of 94 unique mutations were reported

relative to the reference H37Rv genome: rrs (37 unique mutations),

tlyA (30 unique mutations), eis (12 unique mutations) and gidB (15

unique mutations). Eighty-two of these mutations (87%) were

SNPs, six were deletions (one in rrs, two in tlyA and three in gidB),

and six were insertions (two in rrs and four in tlyA). As resistance

determination for the strains was crucial to our analysis, we

evaluated the DST methods and drug-concentration cutoffs used

in each study to define whether a strain was resistant or not.

Table 2 shows the method of DST and cutoff concentrations used

in each study as well as whether or not they conformed to

published standards. The drug concentrations used in all but three

studies [10,26,36] conformed to at least one national or

international published standard. As DST standards are somewhat

controversial and variable between countries, and the three studies

in question were all conducted by national reference laboratories,

we assumed their DST definition of resistance was correct for this

review. A PRISMA checklist is provided as befitting a systematic

review, to ensure integrity of the data (Table S1).

rrs Mutations Associated with Injectable Drug Resistance
Among the genes considered in the 22 papers reviewed, rrs was

the most extensively studied, but only eight papers (36%),

Figure 1. Study Selection Process and Reason for Exclusion of
Studies.
doi:10.1371/journal.pone.0033275.g001
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representing a total of 442 tested isolates (32% of the total),

included sequence data on the entire rrs gene. Figure 2 shows the

rrs studies as a heatmap of the number of isolates evaluated in each

study as well as the locations of the major mutations found. The

most commonly examined mutations were the A1401G mutation,

reported in all 21 papers with rrs mutations, and the G1484T

mutation, reported in 7/21 papers.

Table 3 shows the cumulative frequencies of the most

commonly reported mutations in the rrs gene. The A1401G

SNP was found in 387/493 (78%) of AMK-resistant (AMKR)

strains and it was never observed in AMK-susceptible (AMKS)

strains. It is notable that while 367/483 (76%) CAP-resistant

(CAPR) isolates studied had the A1401G mutation, it was also

found in 45/678 (7%) of CAP-susceptible (CAPS) strains tested

across 7 studies. However only 354/637 (56%) KAN-resistant

(KANR) isolates studied had the A1401G mutation, and it was

never reported in KAN-susceptible (KANS) strains. These studies

indicate that the A1401G mutation has potentially moderate

sensitivity for predicting resistance to all three drugs and the

potential to be a highly specific predictor for AMK and KAN

resistance, but less so for CAP.

Other notable rrs mutations included the A514C and C517T

SNPs, which were found in only 7%–10% and 4%–7% of resistant

strains, respectively. However, both mutations were also found in

2%–6% of isolates defined as susceptible to the injectable drugs.

Surprisingly, while the G1484T and C1402T mutations are

commonly cited as being strongly and commonly associated with

resistance, our review found that out of over 400 injectable drug

resistant strains evaluated, only 1% or less had these mutations.

The C1402T appears to occur as frequently in AMKS and KANS

strains as it does in AMKR and KANR strains suggesting it would

be a poor marker of resistance. The rrs mutation G1158T, while

studied in less than 300 injectable drug resistant strains, appears to

be at least as frequent in resistant strains as the 1484 and 1402 rrs

mutations, and has never been observed in the almost 150 strains

susceptible to AMK, KAN and/or CAP, suggesting it might be at

least as sensitive as 1484 and 1402 mutations and a more specific

predictor for injectable drug resistance.

Table 1. Details of Studies Included in Review and Source of Mycobactrium tuberculosis Isolates.

Clinical Isolates

PubMed ID
# of Clinical Isolates
Examined Origin of Isolates Clinical Institution(s) Providing Isolates Year of Collection

09574680 114 Japan Various hospitals Not stated

Japan Anti-TB Association

Research Institute of TB

Hiroshima University

09593173 17 Not stated PHRI TB Center, New York Not stated

12937004 49 Estonia Not stated 2001

15673735 18 Not stated CDC Not stated

16048924 16 Not stated CDC Not stated

19906990 58 Not stated CDC Not stated

19386845 106 Germany National Reference Laboratory Not stated

19470506 87 Uzbekistan Not stated 2003–2006

19634718 15 China Beijing TB and Lung Tumor Research Institute Not stated

19752274 145 Georgia Georgian National Reference Laboratory Not stated

19890396 11 South Africa Not stated 1994, 1995, 2005, 2006

20028780 26 Portugal Various hospitals and laboratories 2005

20032248 106 South Korea National Masan Tuberculosis Hospital Not stated

20185419 10 South Africa Groote Schuur Hospital 2006, 2009

20335420 52 France French Reference Center of Mycobacteria 2005–2009

20573868 62 Vietnam Pham Ngoc Thach Hospital 2005–2006

20713679 6 India Super Religare Laboratories Reference Center Not stated

20854453 133 Korea Korean Institute of Tuberculosis Not stated

USA Massachusettes State Laboratory Institute

Philippines Tropical Disease Foundation

Latvia State Agency of Tuberculosis and Lung Diseases

China Public Health Laboratory Centre

21300839 314 Not stated CDC Not stated

21427106 152 Various Countries Not stated Not stated

21562102 38 Taiwan Not stated 2008–2009

21732736 50 South Africa National Health Laboratory Services 2008–2009

CDC = Center for Disease Control and Prevention, Atlanta.
doi:10.1371/journal.pone.0033275.t001
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Table 2. Drug Susceptibility Testing (DST) Methods Employed in Publications.

Upper Limit Drug Concentration used to determine
resistance (ml/ml)

PubMed ID DST Method AMK KAN CAP
DST Conforms to Published
Standard

19386845 MGIT 960 1.0 ND 2.5 Yes [73]

19470506 MGIT 960 1.0 ND 2.5 Yes [73]

20713679 MGIT 960 1.0 4.0 2.5 Yes [73]

21732736 MGIT 960 1.0 ND 2.5 Yes [73]

20028780 BACTEC 460 1.0 5.0 1.25 Yes [6]

20335420 Lowenstein-Jensen 20* 20 20* Yes* [74]

20573868 Lowenstein-Jensen ND 20 ND Yes [74]

20854453 Lowenstein-Jensen ND 30 40 Yes [75]

19634718 Lowenstein-Jensen 20* 20 ND Yes* [74]

19752274 Lowenstein-Jensen 40 30 40 Yes [73]

09593173 Lowenstein-Jensen ‘‘standard’’ ‘‘standard’’ ND Yes [75]

19890396 Lowenstein-Jensen ND 20 ND Yes [74]

12937004 Middlebrook 7H10 4.0 4.0 ND Yes [6,76]

20032248 Middlebrook 7H10 4.0 5.0 10 Yes [6,73,76]

15673735 Middlebrook 7H10 4.0 5.0 10 Yes [6,73,76]

16048924 Middlebrook 7H10 4.0 5.0 10 Yes [6,73,76]

19906990 Middlebrook 7H10 4.0 5.0 ND Yes [6,73,76]

21300839 Middlebrook 7H10 4.0 5.0 10 Yes [6,73,76]

21427106 Middlebrook 7H10 1.0 4.0 8.0 Yes [77]

20185419 Middlebrook 7H11 ND 6.0 ND Yes [73]

21562102 Middlebrook 7H11 6.0* 6.0 10 Yes* [73]

09574680 Ogawa Egg Medium ND ND 100 Yes [78]

*No publication found to validate DST concentration.
AMK = amikacin, KAN = kanamycin, CAP = capreomycin.
ND = not done.
doi:10.1371/journal.pone.0033275.t002

Figure 2. Heatmap of Reviewed Studies that Evaluated rrs Gene Mutations in Mycobacterium tuberculosis isolates. Graphic shows the
region of the rrs gene studied, the number of isolates tested in each study and the locations of the mutations found. The X-axis (nucleotide position)
has a 25 base pair resolution. The numbers of isolates varies from 314 (black) to 10 (lightest grey). Red indicates that a mutation has been found in
that 25 base pair region.
doi:10.1371/journal.pone.0033275.g002
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tlyA Mutations Associated with Injectable Drug
Resistance

Sequence data for the tlyA gene was provided in only 8 of the 22

publications reviewed [18,24,28,31,33,35,37,38]. Mutations of the

tlyA gene have been most well-studied in CAPR and CAPS Mtb strains

(n = 366 and 559, respectively), and have been evaluated in less than

260 KANR or AMKR strains (Table 4). Mutations in the tlyA gene

associated with CAPR were reported to be rare in the surveyed

literature (found in ,1–3% of resistant strains). However, when

reported, they were not found in any CAPS strains, making them

potentially highly specific markers of CAP resistance. Of the 559 total

CAPS isolates reported in 7 studies [18,24,28,31,33,35,37,38], none

had any mutations within the tlyA gene. A GT insertion at position

755 of the tlyA gene was the only mutation that was found in more

than 1% of CAPR strains (3% of strains had this mutation).

eis Promoter Mutations Associated with Injectable Drug
Resistance

Mutations within the eis promoter region of Mtb have only been

evaluated in a few hundred injectable drug resistant strains

(Table 5) and were reported to be largely associated with KAN

resistance [37,39]. The most frequently reported eis promoter SNP

(G-10A) was found in 66/296 (22%) of the KANR strains

studied—second only to the frequency of the rrs A1401G mutation

in injectable drug resistant strains—and was found in only 2/266

(1%) of KANS strains. The C-14T SNP was reported in modest

frequency in both KANR and AMKR strains (11% and 9%

respectively) and was not found in susceptible strains. eis promoter

mutations were also reported in up to (9%) CAPR strains. Aside

from the C-12T SNP, however, which was reported in 5/93 (5%)

of CAPR strains and 1/93 (,1%) of CAPS strains, these mutations

appear to be non-specific markers of resistance, occurring in up to

29% of CAPS strains.

gidB Mutations Associated with Injectable Drug
Resistance

The reported gidB mutations associated with injectable drug

resistance have only been evaluated in 20 strains resistant to

AMK, KAN and/or CAP (Table 6), producing what are likely

unreliable cumulative frequencies. The G102 deletion appeared

with a high frequency among resistant isolates (17–20%), and was

only found in one susceptible isolate examined. The T230C,

Table 3. Cumulative Frequencies of Selected Mutations within the rrs Gene among Mycobacterium tuberculosis Isolates Resistant
or Susceptible to Amikacin (AMK), Kanamycin (KAN) and/or Capreomycin (CAP).

Mutation
Drug
Tested #R Examined #S Examined

#R with
Mutation

#S with
Mutation

Frequency of
Mutation among R

Frequency of
Mutation among S

A1401G AMK 493 703 387 0 0.78 0.00

KAN 637 643 354 0 0.56 0.00

CAP 483 678 367 45 0.76 0.07

A514C AMK 200 263 20 15 0.10 0.06

KAN 269 236 23 12 0.09 0.05

CAP 195 273 14 14 0.07 0.05

C517T AMK 200 263 14 10 0.07 0.04

KAN 269 236 20 5 0.07 0.02

CAP 195 273 8 14 0.04 0.05

A513C AMK 196 260 1 1 0.01 0.00

KAN 259 239 9 4 0.03 0.02

CAP 190 271 1 1 0.01 0.00

G1484T AMK 491 666 5 1 0.01 0.00

KAN 616 654 9 0 0.01 0.00

CAP 483 678 2 0 0.00 0.00

C1402T AMK 443 624 3 6 0.01 0.01

KAN 525 543 5 4 0.01 0.01

CAP 434 637 7 0 0.02 0.00

G1158T AMK 206 133 2 0 0.01 0.00

KAN 273 116 2 0 0.01 0.00

CAP 201 149 2 0 0.01 0.00

A907C AMK 200 263 2 1 0.01 0.00

KAN 259 236 2 1 0.01 0.00

CAP 190 271 1 1 0.01 0.00

C1402 AMK 443 624 0 1 0.00 0.00

KAN 525 543 3 0 0.01 0.00

CAP 434 637 1 0 0.00 0.00

R = Resistant isolates.
S = Susceptible isolates.
doi:10.1371/journal.pone.0033275.t003
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C286T, and T104G SNPs were each reported in one injectable

drug resistant strain and did not appear to occur in strains

susceptible to AMK, KAN and/or CAP.

Double Mutations in the rrs Gene Associated with
Injectable Drug Resistance

Only a small number of the surveyed publications described

specific mutations at more than one site in any of the genes

evaluated, limiting our ability to calculate cumulative frequencies

of such ‘‘multiple mutations’’ in injectable drug resistant strains.

We therefore report here only specific double mutations within the

most commonly described gene (rrs). The most common double

mutations reported always included the A1401G mutation

(Table 7). While the cumulative frequency of double mutations

did not exceed 5% in injectable drug resistant strains, an A1401G

mutation together with A514C, A513C or A1338C SNP occurred

only in resistant strains and was not reported to occur in any

strains susceptible to AMK, KAN and/or CAP, whereas the

A1401G mutation alone was found to occur in up to 7% of CAPS

strains (Table 3). This suggests that multiple rrs mutations might be

a highly specific predictor of injectable drug resistance when

detected (i.e., never observed in susceptible strains).

Discussion

It is clear from the literature reviewed that Mtb mutations

associated with injectable drug resistance are understudied

compared to the mutations associated with resistance to first-line

drugs [42]. Only the 1401 and 1484 positions of the rrs gene have

been evaluated to any extent in injectable drug resistant isolates

(n.600), while the remainder of the rrs and other resistance-

associated genes (tlyA and the eis promoter) have each been

evaluated in less than 400 drug resistant Mtb isolates. Only 20

injectable drug resistant isolates have been examined for gidB

mutations. This review uncovered evidence to suggest that certain

mutations outside the commonly-observed A1401G SNP, alone or

in conjunction with rrs mutations, could help to detect some of the

25%–40% of AMK, KAN, and CAP resistant Mtb strains that do

not appear to have an rrs mutation.

Future studies of Mtb resistant to AMK, KAN and CAP should

always include a comprehensive sequence analysis of at least the

entire four genes examined here, if not the entire Mtb genome.

Additionally, a suitable number of injectable drug susceptible

strains should be included in each study to build data on the

potential specificity of each mutation. As the sensitivity of any

mutation-based molecular diagnostic will be determined by both

the strength of the association between mutation and phenotypic

resistance and the frequency of the specific resistance-related

mutation in the population, it is also crucial to establish both

regional and global frequencies of these mutations to predict

where and how to develop the most effective molecular

diagnostics.

Mutations as Markers of Phenotypic Resistance to the
Injectable Drugs

Certain rrs, tlyA, eis promoter and gidB gene mutations with the

potential to be both sensitive and specific predictors of phenotypic

drug resistance were found frequently in drug-resistant strains and

infrequently, or never, in drug-susceptible strains. Compared to

INH-resistant Mtb strains (,85% of which have katG and/or inhA

promoter mutations) [43] and RIF resistant strains (,97% of

which have rpoB mutations) [44], phenotypic resistance to AMK,

Table 4. Cumulative Frequencies of Selected Mutations within the tlyA Gene among Mycobacterium tuberculosis Isolates Resistant
or Susceptible to Amikacin (AMK), Kanamycin (KAN) and/or Capreomycin (CAP).

Mutation Drug Tested #R Examined #S Examined
#R with
Mutation

#S with
Mutation

Frequency of
Mutation among R

Frequency of
Mutation among S

insGT755 AMK 257 221 2 9 0.01 0.04

KAN 223 118 9 2 0.04 0.02

CAP 366 559 11 0 0.03 0.00

G223T AMK 257 184 2 0 0.01 0.00

KAN 223 118 2 0 0.01 0.00

CAP 366 559 2 0 0.01 0.00

insGC202 AMK 257 221 0 0 0.00 0.00

KAN 223 118 0 0 0.00 0.00

CAP 366 559 2 0 0.01 0.00

Gly196Glu* AMK 257 221 0 0 0.00 0.00

KAN 223 118 0 0 0.00 0.00

CAP 366 559 2 0 0.01 0.00

T220C AMK 257 221 0 0 0.00 0.00

KAN 223 118 0 0 0.00 0.00

CAP 366 559 2 0 0.01 0.00

T708G AMK 257 221 0 3 0.00 0.01

KAN 223 118 0 3 0.00 0.03

CAP 366 559 3 0 0.01 0.00

*Represents an amino acid change, as specific nucleotide changes were not provided for this mutation.
R = Resistant isolates.
S = Susceptible isolates.
doi:10.1371/journal.pone.0033275.t004
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Table 5. Cumulative Frequencies of Selected Mutations within the eis Promoter among Mycobacterium tuberculosis Isolates
Resistant or Susceptible to Amikacin (AMK), Kanamycin (KAN) and/or Capreomycin (CAP).

Mutation Drug Tested #R Examined #S Examined
#R with
Mutation

#S with
Mutation

Frequency of
Mutation among R

Frequency of
Mutation among S

G-10A AMK 118 72 12 27 0.10 0.38

KAN 296 266 66 2 0.22 0.01

CAP 93 97 8 28 0.09 0.29

C-14T AMK 118 72 11 0 0.09 0.00

KAN 296 266 32 0 0.11 0.00

CAP 94 97 5 6 0.05 0.06

C-12T AMK 118 72 7 0 0.06 0.00

KAN 296 266 9 6 0.03 0.02

CAP 93 97 5 1 0.05 0.01

G-37T AMK 118 72 2 0 0.02 0.00

KAN 296 266 15 0 0.05 0.00

CAP 93 97 0 2 0.00 0.02

G-10C AMK 118 72 1 0 0.01 0.00

KAN 296 266 1 0 0.00 0.00

CAP 93 97 1 0 0.01 0.00

G-6T AMK 118 72 1 0 0.01 0.00

KAN 296 266 1 0 0.00 0.00

CAP 93 97 1 0 0.01 0.00

C-15G AMK 118 72 1 0 0.01 0.00

KAN 296 266 1 0 0.00 0.00

CAP 93 97 0 1 0.00 0.01

R = Resistant isolates.
S = Susceptible isolates.
doi:10.1371/journal.pone.0033275.t005

Table 6. Cumulative Frequencies of Selected Mutations within the gidB Gene among Mycobacterium tuberculosis Isolates Resistant
or Susceptible to Amikacin (AMK), Kanamycin (KAN) and/or Capreomycin (CAP).

Mutation Drug Tested #R Examined #S Examined
#R with
Mutation

#S with
Mutation

Frequency of
Mutation among R

Frequency of
Mutation among S

DG102* AMK 17 89 3 1 0.18 0.01

KAN 20 86 3 1 0.15 0.01

CAP 18 88 3 1 0.17 0.01

T230C AMK 17 89 1 0 0.06 0.00

KAN 20 86 1 0 0.05 0.00

CAP 18 88 1 0 0.06 0.00

C286T AMK 17 89 1 0 0.06 0.00

KAN 20 86 1 0 0.05 0.00

CAP 18 88 1 0 0.06 0.00

T104G AMK 17 89 1 0 0.06 0.00

KAN 20 86 1 0 0.05 0.00

CAP 18 88 1 0 0.06 0.00

A254G AMK 17 89 1 1 0.06 0.01

KAN 20 86 1 1 0.05 0.01

CAP 18 88 1 1 0.06 0.01

All mutations in this table represent mutations found via sequence analysis in just one study [32].
*D Represents nucleotide deletion. SNPs were grouped for brevity.
R = Resistant isolates.
S = Susceptible isolates.
doi:10.1371/journal.pone.0033275.t006
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KAN and/or CAP was associated with a larger diversity of genes,

each with lower cumulative frequencies.

The rrs A1401G SNP was reported in about 75% of CAPR and

AMKR strains, and in less than 60% of KANR strains, and it was

only found in 7% of strains susceptible to CAP, suggesting this

mutation would be a very sensitive and specific marker for

phenotypic resistance to AMK, a very sensitive but moderately

specific marker for phenotypic resistance to CAP, and a

moderately sensitive but very specific marker for resistance to

KAN.

It appears that a single mutation, or even a set of mutations in a

single gene, does not adequately predict phenotypic resistance to

AMK, KAN and CAP. It is likely that a combination of different

gene mutations for each injectable drug will be needed to best

predict phenotypic resistance, as has been reported for the

molecular detection of INH resistance [45].

Based on the published mutation frequencies we report here,

KANR strains might be predicted with highest sensitivity and

specificity using a combination of rrs mutations (e.g. A1401G and

C517T) and eis promoter mutations (e.g. G-10A and C-14). Since

eis promoter mutations reportedly occur almost exclusively in

KANR strains with no 1401 rrs mutation [37,39] it is likely that this

approach will be considerably more sensitive than using the rrs

1401 mutation alone. CAPR strains, on the other hand, appear to

be best predicted by mutations in rrs gene (i.e., A1401G, C1402T,

G1158T) possibly together with mutations such as C-12T in the eis

promoter, which was reported in 5% of CAPR strains and only 1%

of CAPS strains. Another useful marker might be the insertion at

position 755 of the tlyA gene; however, future studies will be

needed to confirm the frequency of this, and other, mutations in

CAPR strains worldwide. For AMKR strains, a combination of the

A1401G rrs SNP together with the eis promoter mutations C-14T

or C-12T (reported in 9% and 6% of AMKR strains) could

increase sensitivity of resistance detection without decreasing

specificity. There was not sufficient data to evaluate the potential

role of double rrs mutations, but given that they were never

reported in injectable drug susceptible Mtb strains, these mutations

could significantly increase the positive predictive value of rapid

diagnostics when found.

It is important to note that resistance to streptomycin (SM), an

aminoglycoside with a similar mechanism to AMK and KAN [46],

was not evaluated in this review as it is not as well-studied as the

XDR-TB defining drugs. It is possible this exclusion may have

confounded some of our findings regarding mutations in gidB and

rrs. As SM is often administered together with AMK, KAN or

CAP, and SM resistance has been associated with mutations in

gidB [47] and the 500 region of rrs [48], that are not thought to

cross-react with AMK, KAN or CAP resistance; it is possible that

the associations we observed in these gene regions are a reflection

of underlying, but unevaluated SM resistance rather than true

associations with AMK, KAN and CAP resistance. Further study

of these mutations in the absence of SM resistance could shed

important light on the value of these mutations.

Improving the Detection of AMK, KAN and/or CAP
Resistance with Existing Molecular Diagnostics

In considering the implications of our findings, we focus upon

three commercially available molecular diagnostics employed to

detect resistance-related mutations in Mtb clinical isolates [49]:

hybridization-based tests, pyrosequencing, and molecular beacon

testing. Hybridization tests, such as the MTBDRplus and

MTBDRsl line probe assays (LPAs) (Hain Life Sciences, Tübin-

gen, Germany), are based on the hybridization of specific

mutations in clinical strains to a probe that is complimentary to

the mutated DNA. The MTBDRplus/sl assays are the only

commercially available rapid molecular diagnostics currently in

broad use for the detection of both MDR-TB and XDR-TB. They

have shown great promise in field studies for the detection of

MDR-TB [8,50–60], but variable sensitivity (40%–100% depend-

ing on the number of strains examined) for detection of injectable

drug resistance [9,10,29,36,61]. As the MTBDRsl LPA detects

only mutations in the 1401, 1402 and 1484 positions of the rrs

gene, the varying sensitivity of the test is in agreement with the

apparent cumulative frequency of these mutations in the published

literature. It would also seem from the very low cumulative

frequencies of the rrs 1402 and 1484 mutations reported, that their

inclusion in the MTBDRsl LPA as the only mutations outside of rrs

1401, might be limiting the potential sensitivity of this test for the

Table 7. Cumulative Frequencies of Multiple Mutations within the rrs Gene among Mycobacterium tuberculosis Isolates Resistant or
Susceptible to Amikacin (AMK), Kanamycin (KAN) and/or Capreomycin (CAP).

Mutation 1 Mutation 2
Drug
Tested #R Examined #S Examined

#R with
Mutation

#S with
Mutation

Frequency of
Mutation among R

Frequency of
Mutation among S

A1401G A514C AMK 200 263 10 0 0.05 0.00

KAN 269 236 10 0 0.04 0.00

CAP 195 273 10 0 0.05 0.00

A1401G A1338C AMK 293 473 5 0 0.02 0.00

KAN 404 405 5 0 0.01 0.00

CAP 288 482 5 0 0.02 0.00

A1401G A513C AMK 196 260 1 0 0.01 0.00

KAN 259 239 8 0 0.03 0.00

CAP 172 259 1 0 0.01 0.00

G1484T C1402A AMK 443 624 0 1 0.00 0.00

KAN 525 543 3 0 0.01 0.00

CAP 434 637 1 0 0.00 0.00

R = Resistant isolates.
S = Susceptible isolates.
doi:10.1371/journal.pone.0033275.t007
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detecting AMK, KAN and CAP resistance. Adding or replacing

probes could potentially increase MTBDRsl sensitivity by as much

as 10% without significantly decreasing specificity. In a recent

evaluation study of the MTBDRsl test, the inclusion of mutations

from a second gene, the eis promoter, increased field sensitivity for

KANR detection by about 30% [36].

Pyrosequencing is a rapid sequencing method used to detect

genetic mutations based on ‘‘sequencing by synthesis’’. It has been

established as a valid rapid method for detecting resistance-

associated SNPs in MDR-TB strains [62–66], but only one small

study reported on its use for XDR-TB detection [59]. A large,

multinational field study of suspected M/XDR-TB patients in

India, Moldova and South Africa [67] is currently evaluating the

effectiveness of pyrosequencing for detecting resistance to AMK,

KAN and CAP based on detection of mutations in the rrs gene

between base pair 1397 through 1406. Increasing the number of

mutations and genes currently being detected by pyrosequencing in

this study could significantly improve the next iteration of the assay.

Beacon-type sequencing, or SNP genotyping, has shown

excellent utility in the field [68–71] and is the basis of the

GeneXpert assay that was recently endorsed by WHO for

detecting RIF resistance in Mtb [72]. Unfortunately, this

technology is still being developed for XDR-TB detection, and

there is a risk that detection of second-line drug resistance may fall

behind unless the study of the appropriate mutations is

accelerated. Beacon technology is based on detection of short

stretches of genes that are different from the wild type genome,

rather than detecting point mutations like an LPA. Nonetheless, it

could similarly be developed to detect a variety of mutations in

short regions of the rrs, eis promoter, tlyA, and gidB genes if the

limitations in beacon development for these regions can be

overcome.

Limitations
The cumulative frequencies we calculated were based on several

assumptions, but the two we describe here are the most important.

First, we assumed that all the mutations reported were

independent of each other. If some isolates were misclassified as

independent when they were in fact not, this could have caused an

overestimation in our cumulative frequencies of that specific

mutation. Every effort was made to ensure that the isolates and the

mutations presented in one study were not also reported in

another study. All manuscripts were carefully examined to identify

isolates that were used in more than one study (e.g., same isolate

origin, same authors or organization, etc.) and to the best of our

knowledge, all isolates reported here are unique. A second

potential source of misclassification error was in our use of the

DST results as reported. For example, if an isolate was

misclassified as resistant based on faulty DST data, when it was

in fact susceptible, and it did not have the expected mutation, then

we would have underestimated the cumulative frequency of that

mutation among resistant isolates. To minimize the chances of

such misclassification, we excluded manuscripts without explicit

descriptions of their DST methods and clear definitions of what

constituted a resistant or susceptible isolate using accepted DST

drug concentrations and methodologies.

Conclusion
It is clear that the rrs 1401 mutation alone was not found with

sufficient frequency to detect more than 70–80% of global Mtb

strains resistant to AMK and CAP, and 60% of strains resistant to

KAN. While this is likely sufficient for a rapid screening test, future

molecular diagnostics will need to include more mutations in more

genes in order to accurately and sensitively detect resistance and

cross-resistance to AMK, KAN and CAP for clinical decision-

making purposes.

Other SNPs in the rrs, eis promoter, tlyA and gidB appear to be

very promising markers for improving both sensitivity and

specificity of detection of AMK, KAN and CAP resistance and

cross-resistance, but it is likely that each drug will need to be

considered independently (with independent mutation profiles) to

maximize the diagnostic and clinical utility of future molecular

diagnostics for these drugs.
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