

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Epidemiology of SARS-CoV-2 in Healthcare Workers following the First Wave of the COVID-19 Pandemic

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051415
Article Type:	Original research
Date Submitted by the Author:	18-Mar-2021
Complete List of Authors:	Faller, Eamonn; Cork University Hospital Wyse, ADRIANNE; Cork University Hospital Barry, Rachel; Cork University Hospital Conlon, Kevin; Cork University Hospital Everard, Cormac; Cork University Hospital Finnegan, Paula; Cork University Hospital Foran, Claire; Cork University Hospital Herlihy, Emer; Cork University Hospital Kerr, Gerry; Cork University Hospital Lapthorne, Susan; Cork University Hospital McGreal-Bellone, Aimee; Cork University Hospital O'Sullivan, Deirdre; Cork University Hospital Eustace, Joseph; University College Cork; Cork University Hospital Dempsey, Catherine; University College Cork; Cork University Hospital Dempsey, Catherine; University College Cork; Cork University Hospital Prentice, Mike; University College Cork; Cork University Hospital Gallagher, John; Cork University Hospital Group, Occupational Health MacSharry, J.; University College Cork, Cork University Hospital Gallagher, John; Cork University Hospital Group, Occupational Health MacSharry, J.; University College Cork; Cork University Hospital Gallagher, John; Cork University Hospital Group, Occupational Health MacSharry, J.; University College Cork; Cork University Hospital Horgan, Mary; University College Cork; Cork University Hospital Spillane, Cork University Hospital Horgan, Mary; University College Cork; Cork University Hospital Horgan, Arthur; Cork University Hospital Sadlier, Corinna; Cork University Hospital
Keywords:	COVID-19, EPIDEMIOLOGY, Infection control < INFECTIOUS DISEASES, Diagnostic microbiology < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Epidemiology of SARS-CoV-2 in Healthcare Workers following the First Wave of the COVID-19 Pandemic

E. Faller^{1*}, A. Wyse¹, R. Barry¹, K. Conlon¹, C. Everard¹, P. Finnegan¹, C. Foran¹, E. Herlihy¹, G. Kerr¹, S. Lapthorne¹, A. McGreal-Bellone¹, E. Morrissey¹, D. O'Sullivan¹, G. O'Sullivan¹, J. Eustace^{1,2}, D. Spillane³, C. Dempsey³, J. Benson³, M.B. Prentice^{1,3-5}, J. Gallagher¹, J. MacSharry^{1,3-5}, L.J. Fanning^{1,4-6}, S.M.P. O'Riordan¹, M. Horgan^{1,4}, A. Jackson¹, C. Sadlier¹

Corresponding Author:

Dr Eamonn Faller Infectious Disease Dept, Cork University Hospital, Cork, Ireland **T12 EC8P** +353 21 4922795 eamonnfaller@gmail.com

Keywords:

- COVID-19
- SARS-CoV-2 Healthcare worker epidemiology

Word Count: 2,354

1		
2		
3 4	Αι	uthor Affiliations
5		
6	Dr Eamonn Faller ^{1*}	eamonnfaller@gmail.com
7	Dr Adrianne Wyse ¹	<u>wyse.adrianne@gmail.com</u>
8	Dr Rachel Barry ¹	rachel.barry3@hse.ie
9	Dr Kevin Conlon ¹	kevinmichaelconlon@gmail.com
10	Dr Cormac Everard ¹	cormac.everard@hse.ie
11	Dr Paula Finnegan ¹	pfinnegan03@qub.ac.uk
12	Dr Claire Foran ¹	drclaireforan@gmail.com
13	Dr Emer Herlihy ¹	emerherlihy95@gmail.com
14 15	Dr Gerald Kerr ¹	drgerrykerr@yahoo.co.uk
16	Dr Susan Lapthorne ¹	susan.lapthorne@hse.ie
17	Dr Aimee McGreal-Bellone ¹	aimee.mcgreal@hse.ie
18	Dr Edmond Morrissey ¹	morrisseyedmond@gmail.com
19	Dr Deirdre O'Sullivan ¹	
20	Dr Grainne O'Sullivan ¹	deirdre.osullivan@hse.ie
21		grainne_o_sullivan@yahoo.co.uk
22	Professor Joseph Eustace ^{1,2}	J.Eustace@ucc.ie
23	Mr Declan Spillane ³	declan.spillane@hse.ie
24 25	Ms Catherine Dempsey ³	catherine.dempsey@hse.ie
25	Mr John Benson ³	john.benson@hse.ie
27	Professor Mike P. Prentice ^{1,3-5}	m.prentice@ucc.ie
28	Professor John Gallagher ¹	john.gallagher@hse.ie
29	Dr John MacSharry ^{1,3-5}	j.macsharry@ucc.ie
30	Professor Liam J. Fanning ^{1,4-6}	1.fanning@ucc.ie
31	Dr Stephen M.P. O'Riordan ¹	stephen.oriordan@hse.ie
32	Professor Mary Horgan ^{1,4}	m.horgan@ucc.ie
33	Dr Arthur Jackson ¹	arthur.jackson@hse.ie
34	Dr Corinna Sadlier ¹	corinna.sadlier@hse.ie
35 36		
37	1: Cork Antibody Tracking of COV	/ID-19 in HCWs (CATCH) Group, Cork
38	University Hospital (CUH), Cork, I	
39	5 1 77 7	- Cork, University College Cork (UCC), Cork,
40	Ireland	·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····, ·····,
41	3. School of Microbiology, UCC, C	College Road Cork Ireland
42	4. School of Medicine, UCC, Colle	
43	5. APC Microbiome Ireland, UCC,	
44		l Sciences Building, UCC, CUH, Cork, Ireland
45 46	0. Department of Weaterne, ennied	i belences Bunding, Occ, Corr, Cork, Heland
40		
48		
49		
50		
51		
52		
53		
54		
55		
56 57		

Abstract

Objective

Our study aimed to measure seroprevalence of SARS-CoV-2 specific IgG antibodies, using the Abbott anti-nucleocapsid IgG CMIA assay, in five pre-specified HCW subgroups following the first wave of the COVID-19 pandemic.

Setting

An 800-bed tertiary level teaching hospital in the south of Ireland.

Participants

Serum was collected for anti-SARS-CoV-2 nucleocapsid IgG using the Abbott ARCHITECT SARS-CoV-2 IgG CMIA® qualitative assay, as per the manufacturer's specifications.

The groups were as follows:

- 1. HCWs who had RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR)
- 2. HCWs identified as close contacts of persons with COVID-19 infection and who subsequently developed symptoms (RT-PCR not detected on swab)
- 3. HCWs identified as close contacts of COVID-19 cases and who remained asymptomatic (not screened by RT-PCR)
- 4. HCWs not included in the above groups working in areas determined as high risk clinical areas
- 5. HCWs not included in the above groups working in areas determined as low risk clinical areas

Results

6 of 404 (1.49%) of HCWs not previously diagnosed with SARS-CoV-2 infection (groups 2-5) were seropositive for SARS-CoV-2 at time of recruitment in to the study.

Out of the 99 participants in Group 1, 72 had detectable IgG to SARS-CoV-2 on laboratory testing (72.73%). Antibody positivity correlated with shorter length of time between RT-PCR positivity and antibody testing.

C_q value on RT-PCR was not found to be correlated with antibody positivity.

Conclusions

Seroprevalence of antibodies in participants who had not previously tested RT-PCR positive was low compared to similar studies.

Strengths and Limitations of this Study

- We successfully recruited the numbers that we had aimed for in each of the pre-specified groups
- This was a single centre study in an area of relatively low prevalence
- Enrolment began eight weeks after peak regional prevalence and therefore IgG antibodies may have become undetectable in a proportion of participants
- Recruitment of groups 3-5 was by self-selection and therefore was not a true random sample of these groups

to beet terien only

Introduction

Healthcare workers (HCWs) at the frontline treating patients with suspected or confirmed coronavirus disease-2019 (COVID-19) have been heavily impacted by the pandemic. Due to potential occupational exposures, HCWs are at higher risk of infection from patients or from other HCWs than the general population. In a study published in July 2020, there was an estimated hazard ratio of 3.40 for COVID-19 infection in HCWs compared to risk of infection in the general population¹. Indeed, as of November 2020 in the Republic of Ireland, the health protection and surveillance centre put the number of HCW infections at 10,976 accounting for 16.6% of total infections²

The first case of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection was reported in Ireland on February 29th 2020 relating to travel. On March 5th, a patient was diagnosed with SARS-CoV-2 infection who had been ventilated in the intensive care unit of Cork University Hospital (CUH) with atypical pneumonia despite having no epidemiological link to a known case or area of high prevalence. This was the first documented community acquisition of SARS-CoV-2 in the Republic of Ireland and was an indication of potential widespread community transmission³. From this date additional infection prevention measures were instituted in CUH including testing and contact tracing of all symptomatic patients and staff, changes in hospital operations, and provision of personal protective equipment (PPE).

Seroprevalence studies can provide relevant information on the proportion of a population who have experienced a recent or past infection. Monitoring the prevalence of infection among HCWs is useful for assessing the level of exposure and identifying high-risk areas.

There have been a number of studies that have attempted to characterise the immunological response to COVID-19. Median time to seroconversion appears to be 9-12 days following onset of symptoms depending on the antibody measured, with up to 100% developing antibodies by day 21⁴. It has also been shown that sensitivity of assays measuring the anti-nucleocapsid antibodies begin to decline from 60 days following PCR positivity⁵. However correlation between seropositivity or antibody levels and protection against reinfection remains to be fully determined^{6,7}.

The aim of this study was to investigate seroprevalence of SARS-CoV-2 specific IgG antibodies, using the Abbott anti-nucleocapsid IgG CMIA assay, in five pre-specified HCW subgroups following the first surge of the pandemic in a region of relative low prevalence of COVID-19 infection.

1 2	
2 3	Methods
4	Ivicuious
5 6	Study Design and Participants
7	
8	This study was undertaken over a six week period from 27 May 2020 – 07 July 2020
9 10	in CUH [Cork University Hospital] an 800 bed university teaching hospital. CUH is the tertiary referral centre in the South West of Ireland; servicing a population of 1.1
11	million people. The study was designed to recruit 100 HCWs from five prespecified
12	subgroups as outlined below:
13 14	
15	HCW Subgroups:
16	1. HCWs who had RT-PCR confirmed COVID-19 infection (>1 month post
17 18	positive RT-PCR)
19	2. HCWs identified as close contacts of persons with COVID-19 infection and who subsequently developed symptoms (RT-PCR not detected on
20	swab)
21 22	3. HCWs identified as close contacts of COVID-19 cases and who remained
23	asymptomatic (not screened by RT-PCR)
24	4. HCWs not included in the above groups working in areas determined as
25 26	high risk clinical areas
20	5. HCWs not included in the above groups working in areas determined as
28	low risk clinical areas
29 30	Basic demographic data was collected by means of a self-administered questionnaire
31	(Appendix 1).
32	
33 34	HCWs from groups 1 (confirmed RT-PCR positive) and 2 (identified as a close
35	contact of confirmed case with SARS-CoV-2 not detected by RT-PCR when
36	symptomatic) were contacted by the occupational health department. As there were fewer than 100 HCWs with RT-PCR confirmed COVID-19 in CUH, HCWs with RT-
37	PCR confirmed COVID-19 from affiliated regional centres were invited to
38 39	participate.
40	FF
41 42	HCWs from group 3-5 were recruited by open invitation and group allocation was
42 43	confirmed by recruiting investigators.
44	Inclusion Criteria
45 46	HCWs aged 18 years or over working in CUH or affiliated centers in the region were
46 47	eligible to participate. HCWs were defined as those who deliver care and services to
48	patients, either directly as physicians or nurses, healthcare. attendants, or other
49 50	support staff (porters, administrative officers, cleaning, maintenance, etc.).
50	
52	Exclusion Criteria
53 54	HCWs who tested positive by RT-PCR for SARS-CoV-2 within 30 days of recruitment to the study or reporting symptoms of COVID-19 at time of recruitment
55	were deemed ineligible to participate. However there were no diagnosed infections
56	among staff in our institution in the 30 days prior to enrolment.
57 58	
59	Patient and public involvement
60	

Patients and public were not involved in the design of this study, however feedback was enlisted on the sampling procedures and appropriateness of sampling modalities that the researchers used as part of the study (venepuncture for antinucleocapsid antigen as well as saliva and point of care testing used in the validation of other testing modalities not included in this paper).

Laboratory procedures:

Serological testing

Serum was collected for anti-SARS-CoV-2 nucleocapsid IgG using the Abbott ARCHITECT SARS-CoV-2 IgG CMIA® qualitative assay, as per the manufacturer's specifications.

qRT-PCR for SARS-CoV-2

HCWs from group 1 and 2 who had close contact to a case of COVID-19 infection and developed symptoms had a combined nasopharyngeal and oropharyngeal swab undertaken as part of clinical care. Laboratory confirmation of SARS-CoV-2 infection was performed using the MagNA Pure 24/MagNA Pure LC (Roche diagnostics) extraction system and Realstar[®] (Altona Diagnostics, Hamburg, Germany) or EURORealTime (EUROIMMUN, Lübeck, Germany) SARS-CoV-2 qRT-PCR kits, as per the manufacturer's instructions. Target detection was reported on a LightCycler[®] 480 Instrument II (Roche) if the quantification cycle (C_q) value was <40. In the absence of assay standardisation with RNA copy number controls, the C_q value was used as a relative quantitative indication of viral load.

Ethical Considerations

Informed consent was obtained from HCWs using the document contained in the appendix. The Clinical Research Ethics Committee of the Cork Teaching Hospitals (CREC) granted ethics approval for this study (ECM 4 (a) 16/06/2020).

Statistical analysis

SPSS 26.0 and GraphPad Prism 8 was used for statistical analysis. Chi-square test was used to compare categorical variables. Independent samples T test was used to compare means of independent scale variables where frequencies were normally distributed and Mann-Whitney U test was used to compare continuous variables where frequencies were non-normally distributed. Results were deemed to be significant if P < 0.05.

1	
2	
3	Results
4	
5	Sample Characteristics
6	Sample Characteristics
7	
8	Of 4,500 staff employed directly in CUH, 503 HCWs were recruited to the study.
9	Baseline demographics of participants are outlined in Table 1.
10	
11	The age range of participants was 20-65 years (IQR 30-47 years), 77% female. There
12	were no significant between-group differences in age profiles. Nurses were the most
13	
14	represented professional group (41.7%) followed by doctors (35.0%).
15	
16	Overall level of co-morbidity was low across the groups with 58.8% of the study
17	population reporting no known/current medical issues. There were a significantly
18	greater number of ex-smokers among participants in Group 1 compared to other
19	groups ($P < 0.001$) and a significantly greater number of current smokers in Group 2
20	(P = 0.021). There was no significant between-group difference for any of the other
21	
22	comorbidities listed.
23	
24	Of the participants, 187 (187/503, 37.2%) worked in high-risk settings. These were
25	deemed to be areas in which HCWs were having daily contact with patients with
26	confirmed or suspected COVID-19 infection during the peak of the local epidemic.
27	
28	469 (469/503, 93.2%) of the participants were working in the institution, CUH, in
29	
30	which the study was conducted with 34 participants (all from group 1) recruited from
31	affiliated institutions within the South/Southwest Hospital Group.
32	
33	Seroprevalence
34	Overall 78 of 503 (15.5%) HCWs who participated in the study were seropositive for
35	SARS-CoV-2 at time of recruitment in to the study. Table 2 presents serology results
36	by HCW group.
37	by new group.
38	
39	Out of the 99 participants in Group 1, 72 had detectable IgG to SARS-CoV-2 on
40	laboratory testing (72.73%). Longitudinal IgG detection from date of positive RT-
41	PCR is displayed in Figure 1. The mean period of time from RT-PCR positivity to
42	IgG testing was significantly shorter in the IgG positive group, with a mean of 69.3
43	days compared to 77.0 days in those who were antibody negative ($P = 0.025$). There
44	was no correlation noted between antibody seropositivity and age ($P = 0.63$), gender
45	(P = 0.416) or presence of one or more comorbidities $(P = 0.935)$.
46	(r - 0.410) of presence of one of more comorbidities $(r - 0.955)$.
47	
48	Only 1 of 99 HCWs with RT-PCR confirmed COVID-19 required hospitalisation for
49	management of infection with the vast majority experiencing mild symptoms.
50	
51	RT-PCR C _q values were available for 69 of the participants in Group 1. This included
52	57 participants who were IgG positive and 12 who were IgG negative. There was no
53	correlation found between RT-PCR C_q values and SARS-CoV-2 IgG detection (P =
54	
55	0.943).
56 57	
57	Overall seroprevalence was low among Groups 2-5, with IgG antibodies detected in
58	only 6 out of 404 participants (1.49%). Prevalence was comparable between the four
59 60	
00	

groups with IgG antibodies detected in 2 participants in Group 2 (1.9%), 1 in Group 3 (1.1%), 1 in Group 4 (1.0%) and 2 in Group 5 (1.9%).

For peer terier only

59

60

1 2 3 Discussion 4 5 Of 99 HCWs with RT-PCR confirmed SARS-CoV-2 infection. 73% (72) had 6 detectable anti-nucleocapsid IgG antibodies to SARS-CoV-2. A single factor, time 7 interval from positive RT-PCR was associated with antibody detection. This is 8 9 consistent with much of the wider literature in indicating that anti-nucleocapsid IgG 10 antibodies to SARS-CoV-2 begin to decline from day 60 following positive PCR. 11 particularly in individuals with mild or asymptomatic primary infection^{7–9}. 12 13 We report a seroprevalence of SARS-CoV-2 IgG in HCWs in our institution not 14 previously diagnosed with COVID-19 by RT-PCR of 1.49%. The national Irish 15 population seroprevalence study (SCOPI) conducted over the same period estimated 16 17 seroprevalence in the general population at $1.7\%^{10}$, although this sample would have 18 included a small proportion of participants with previously had positive RT-PCR 19 tests. Regionally, HCW infections represented 23% of total infections during the first 20 wave. This was a smaller percentage than the figure seen nationally of 32.1% and 21 would indicate that there was a lower proportion of HCW infected in Cork¹¹. 22 23 Seroprevalence in HCWs without previously diagnosed COVID-19 study is lower 24 25 than in the majority of published international studies that report seroprevalence 26 among HCWs not previously diagnosed with COVID-19 (Groups 2-5) of anywhere 27 between 1.6% and 9.0%¹²⁻¹⁷. 28 29 In the US, a study of a multistate hospital network reported 6% seropositivity in 3,248 30 HCWs across thirteen geographically diverse institutions. Notably, 69% of those who 31 32 were antibody-positive did not have a prior diagnosis of COVID-19 infection (Self et 33 al., 2020). A study of 46,117 HCWs in the greater New York City area across 52 sites 34 revealed a 13.7% total seropositivity to SARS-CoV-2 specific IgG antibodies. 10.3% 35 of individuals who had previously tested RT-PCR negative as well as 9% of those 36 who were never tested were noted to have antibodies¹⁸. In Madrid, a large tertiary-37 level institution reported a seroprevalence of 11.2% in a random sample of HCWs at 38 the peak of the first wave in Europe (28th March – 9th April 2020). Of this cohort, 39 40 40.0% had not had previously diagnosed COVID-19 infection¹². However, one 41 smaller scale study of 316 HCWs in Essen in Germany found just 5 (1.6%) were 42 seropositive, none of whom had previously tested positive¹⁴. 43 44 45 This was particularly surprising given that rate of asymptomatic infection in COVID-46 19 is thought to be about 15%¹⁹. Only 6 out of 105 participants (5.7%) in our study 47 48 with laboratory evidence of SARS-CoV-2 infection were not diagnosed at time of 49 infection. This was despite guidelines applicable early in the pandemic which dictated 50 that only symptomatic individuals be tested for COVID-19 51 52 There are a number of factors that may have contributed to the low seroprevalence of 53 SARS-CoV-2 IgG in the previously undiagnosed cohort. 54 55 56 The number of patients assessed or hospitalised with COVID-19 (n=150) at our 57

The number of patients assessed or hospitalised with COVID-19 (n=150) at our institution was comparatively low during the first wave of the pandemic and therefore staff may have been exposed to a lower number of COVID-19 patients than in other institutions. The regional prevalence was also comparatively low with a total of 1,700

cases reported in Cork as of August 2020 with a peak incidence of 104 cases per 100,000 on 27 March 2020¹¹.

At no stage during the surge was there an interruption in personal-protective equipment (PPE) supply in our institution and high standards of infection prevention and control were employed throughout. At all times the guideline-recommended PPE was available to staff for the assessment of COVID-19 confirmed and suspected patients²⁰.

Public transport usage by CUH staff is comparatively low and there is no tram or commuter rail service serving the hospital. This would potentially reduce overall exposure of staff to tightly congregated environments. There is some data to suggest that use of public transport is positively correlated with antibody positivity²¹.

Easily accessible RT-PCR testing and recommendation for quarantine of symptomatic staff members was implemented locally from identification of our first case of COVID-19 on March 5th 2020. This enabled diagnosis of the vast majority of symptomatic infections from the outset with isolation of these cases minimising risk of onward transmission to patients or other HCWs.

As well as within hospitals, similar targeted epidemiological studies would undoubtedly be useful in high-risk high-prevalence settings such as universities, schools and other healthcare institutions to gain a better understanding of patterns of transmission.

Limitations of this study include that it was a single centre study undertaken in an area of relative low prevalence of COVID-19. Enrolment began eight weeks after peak regional prevalence and therefore IgG antibodies may have become undetectable in a proportion of participants²². The assay used in the study, Abbott Architect SARS-CoV-2 IgG CMIA, is a qualitative assay so therefore we were unable to quantify antibody levels in participants. Recruitment of groups 3-5 was by self-selection and therefore was not a true random sample of these groups.

Conclusion

In the face of the ongoing pandemic, it is crucial to protect frontline HCWs from infection with COVID-19. Hospital-wide antibody screening for antibodies to SARS-CoV-2 can profile transmission dynamics and inform infection control policies. It is essential we learn from our experience from the initial surge in the healthcare setting and maintain continued vigilance to protect vulnerable patients and HCWs from infection. With rollout of effective vaccination on the horizon, studies such as this may inform optimal strategy and who to target for immunisation in the context of potentially limited initial supplies.

to beet terien only

Bibliography

- 1. Nguyen LH, Drew DA, Graham MS, et al. Risk of COVID-19 among frontline health-care workers and the general community: a prospective cohort study. *Lancet Public Heal*. 2020. doi:10.1016/s2468-2667(20)30164-x
- 2. Health Protection and Surveillance Centre. *Report of the Profile of COVID-19 Cases in Healthcare Workers in Ireland.*; 2020.
- 3. Faller E, Lapthorne S, Barry R, et al. The Presentation and Diagnosis of the First Known Community- Transmitted Case of SARS-CoV-2 in the Republic of Ireland. *Ir Med J.* 2020;113(5):2-6. http://imj.ie/the-presentation-and-diagnosis-of-the-first-known-community-transmitted-case-of-sars-cov-2-in-the-republic-of-ireland/.
- 4. Van Elslande J, Decru B, Jonckheere S, et al. Antibody response against SARS-CoV-2 spike protein and nucleoprotein evaluated by four automated immunoassays and three ELISAs. *Clin Microbiol Infect*. 2020. doi:10.1016/j.cmi.2020.07.038
- Van Elslande J, André E, Van Ranst M, Lagrou K, Vermeersch P. Immunoassays for anti-SARS-CoV-2 antibodies: recent insights. *Lancet Infect Dis*. 2020. doi:10.1016/s1473-3099(20)30846-x
- 6. Abbasi J. The Promise and Peril of Antibody Testing for COVID-19. JAMA J Am Med Assoc. 2020. doi:10.1001/jama.2020.6170
- 7. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. *N Engl J Med.* 2020. doi:10.1056/NEJMc2025179
- 8. Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. *Nat Med.* 2020. doi:10.1038/s41591-020-0965-6
- 9. Muecksch F, Wise H, Batchelor B, et al. Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents. *medRxiv Prepr Serv Heal Sci.* 2020. doi:10.1101/2020.08.05.20169128
- 10. Health Protection and Surveillance centre. *Preliminary Report of the Results of the Study to Investigate COVID-19 Infection in People Living in Ireland (SCOPI): A National Seroprevalence Study , June-July.* Dublin; 2020. https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/scopi/SCOPI report preliminary results final version.pdf.
- 11. Ni Bhuachalla C, Murphy N, O'Sullivan M, et al. COVID-19: The First 100 Days in the South of Ireland. *Ir Med J*. 2020;113(9):185. http://imj.ie/covid-19-the-first-100-days-in-the-south-of-ireland/.
- 12. Garcia-Basteiro AL, Moncunill G, Tortajada M, et al. Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large Spanish reference hospital. *Nat Commun.* 2020. doi:10.1038/s41467-020-17318-x
- Self WH, Tenforde MW, Stubblefield WB, et al. Seroprevalence of SARS-CoV-2 Among Frontline Health Care Personnel in a Multistate Hospital Network — 13 Academic Medical Centers, April–June 2020. MMWR Morb Mortal Wkly Rep. 2020. doi:10.15585/mmwr.mm6935e2
- 14. Korth J, Wilde B, Dolff S, et al. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. *J Clin Virol*. 2020. doi:10.1016/j.jcv.2020.104437

1		
2		
3	15.	Stubblefield WB, Talbot HK, Feldstein LR, et al. Seroprevalence of SARS-
4	15.	
5		CoV-2 Among Frontline Healthcare Personnel During the First Month of
6		Caring for Patients With COVID-19—Nashville, Tennessee. Clin Infect Dis.
7		2020. doi:10.1093/cid/ciaa936
8	16.	Rudberg A-S, Havervall S, Manberg A, et al. SARS-CoV-2 exposure,
9	10.	symptoms and seroprevalence in health care workers. <i>medRxiv</i> . 2020.
10		
10		doi:10.1101/2020.06.22.20137646
12	17.	Steensels D, Oris E, Coninx L, et al. Hospital-Wide SARS-CoV-2 Antibody
		Screening in 3056 Staff in a Tertiary Center in Belgium. JAMA - J Am Med
13		Assoc. 2020. doi:10.1001/jama.2020.11160
14	18.	Moscola J, Sembajwe G, Jarrett M, et al. Prevalence of SARS-CoV-2
15	10.	
16		Antibodies in Health Care Personnel in the New York City Area. JAMA - J Am
17		Med Assoc. 2020. doi:10.1001/jama.2020.14765
18	19.	He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease
19		2019: A systematic review and meta-analysis. J Med Virol. 2020.
20		doi:10.1002/jmv.26326
21	20	
22	20.	Bedford J, Enria D, Giesecke J, et al. COVID-19: towards controlling of a
23		pandemic. Lancet. 2020. doi:10.1016/S0140-6736(20)30673-5
24	21.	Morcuende M, Guglielminotti J, Landau R. Anesthesiologists' and intensive
25		care providers' exposure to COVID-19 infection in a new york city academic
26		center: A prospective cohort study assessing symptoms and COVID-19
27		
28		antibody testing. Anesth Analg. 2020. doi:10.1213/ANE.000000000005056
29	22.	Seow J, Graham C, Merrick B, et al. Longitudinal observation and decline of
30		neutralizing antibody responses in the three months following SARS-CoV-2
31		infection in humans. Nat Microbiol. 2020. doi:10.1038/s41564-020-00813-8
32		
33		
34		
35		
36		
37		
38		
39		
40		
40		
41		
42 43		
43 44		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		

Conflict of Interests Statement

The authors have no conflicts of interest to declare.

for beer terien only

1 2 3 4 5 6 7	Funding This research received no funding or grant from any funding agency in the commercial, public or not-for-profit treatment.
8 9 10 11 12 13 14 15 16	
17 18 19 20 21 22 23 24 25	
25 26 27 28 29 30 31 32 33	
34 35 36 37 38 39 40 41	
42 43 44 45 46 47 48 49 50	
51 52 53 54 55 56 57 58 59 60	

1	
2	
3	Author Contributions Section
4	
5	Dr EF; Drafted paper, helped organise logistics of sample collection
6	Dr AW; Organised and oversaw sample collection for groups 2-5. Edited and signed
7	
8	off on paper
9	Dr RB; Edited and drafted sections of the paper pertaining to microbiological assays
10	Dr KC; Sample collection, paper edits
11	Dr CE; Sample collection, paper edits
12	Dr PF; Sample collection, paper edits
13	Dr CF; Sample collection, paper edits
14	
15	Dr EH; Sample collection, paper edits
16	Dr GK; Enlisted Groups 1 and 2 for participation, paper edits
17	Dr SL; Sample collection, paper edits
18	Dr AM; Sample collection, paper edits
19	Dr EM; Sample collection, paper edits
20	Dr DO'S; Sample collection, paper edits
21	
22	Dr GO'S; Enlisted Groups 1 and 2 for participation, paper edits
23	Professor JE; Edits to paper
24	DS; Validated and performed the Abbott assay for all these samples
25	CD; validated all the SARS-CoV-2 assays listed and personally performed many of
26	the assays from March and April
27	JB; Personally performed many of the assays from March and April
28	
29	Professor MP; Finalised aspects of paper pertaining to microbiology
30	Professor JG; Finalised aspects of paper pertaining to occupational health
31	Dr JMcS; Substantial edits and input in all sections of paper
32	Professor LF; Substantial edits and input in all sections of paper
33	Dr SO'R; Substantial edits and input in all sections of paper
34	Professor MH; Edited and helped finalise paper
35	
36	Dr AJ; Edited and helped finalise paper
37	Dr CS; Substantial edits and input to all sections. Finalised paper
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

1 2 3 4 5 6			Tables				
7	Characteristic	Total	Group	Group	Group 3 ^c	Group 4 ^d	Group 5 ^e
8		n = 503	1ª	2 ^b	n = 91	n = 100	n = 107
9 10			n = 99	n = 106			
11	Gender	115 (22.0)	24(242)	20(100)	$\mathcal{O}(\mathcal{O}\mathcal{O}\mathcal{O})$	20(200)	1((15.0))
12	Male	115 (22.9)	24 (24.2)	20(18.9)	26(28.6)	29 (29.0)	16 (15.0)
13	Female	388 (77.1)	75 (75.8)	86 (81.1)	65 (71.4)	71 (71.0)	91 (85.0)
14 15	Age Range in years	20-65	20-65	22-64	21-61	20-56	21-62
16	Interquartile range	20-03	20-03 31.0-	30.0-46.0	28.8-48.0	20-30	30.0-47.0
17	20-29 years	125 (24.9)	49.0	25 (23.6)	24 (26.4)	32 (32.0)	24 (22.4)
18	30-39 years	164 (32.6)	20 (20.2)	41 (38.7)	29 (31.9)	33 (33.0)	34 (31.8)
19	40-49 years	122 (24.3)	27 (27.3)	24 (22.6)	19 (20.9)	23 (23.0)	27 (25.2)
20 21	50-59 years	80 (15.9)	30 (30.3)	14 (13.2)	17 (18.7)	12 (12.0)	21 (19.6)
21 22	60-69 years	9 (1.8)	16 (16.2)	1 (0.9)	1 (1.1)	0(0.0)	1 (0.9)
23) (1.0)	6 (6.1)	1 (0.9)	1 (1.1)	0 (0.0)	1 (0.5)
24	Occupation		0 (011)				
25	Medical	176 (35.0)	18 (18.2)	29 (27.4)	38 (41.8)	55 (55.0)	36 (33.6)
26	Nursing	210 (41.7)	43 (43.4)	55 (51.9)	32 (35.2)	29 (29.0)	51 (47.7)
27 28	Healthcare assistant	27 (5.4)	11 (11.1)	7 (6.6)	3 (3.3)	4 (4.0)	2 (1.9)
20 29	Physiotherapy	15 (3.0)	5 (5.1)	1 (0.9)	5 (5.5)	3 (3.0)	1 (0.9)
30	Pharmacy	17 (3.4)	6 (6.1)	6 (5.7)	4 (3.8)	1 (1.0)	0 (0.0)
31	Other allied health professional	11 (2.2)	3 (3.0)	2 (1.9)	3 (3.3)	0 (0.0)	3 (2.8)
32	Administrative	12 (2.4)	4 (4.0)	1 (0.9)	1 (1.1)	0 (0.0)	6 (5.6)
33	Auxiliary staff	23 (4.6)	9 (9.1)	2 (1.9)	3 (3.3)	6 (6.0)	3 (2.8)
34 35	Other/not documented	12 (2.2)	0 (0.0)	3 (2.8)	2 (2.2)	2 (2.0)	5 (4.7)
36	Comorbidity						
37	Smoker	29 (5.8)	3 (3.0)	13 (12.3)	5 (5.5)	5 (5.0)	3 (2.8)
38	Ex-smoker	81 (16.1)	32 (32.3)	14 (13.2)	11 (12.1)	15 (15.0)	9 (8.4)
39	Hypertension	30 (6.0)	8 (8.1)	5 (4.7)	5 (5.5)	5 (5.0)	7 (6.5)
40	COPD ^a	5 (1.0)	1 (1.0)	3 (2.8)	0 (0.0)	1 (1.0)	0 (0.0)
41 42	Asthma	70 (13.9)	14 (14.1)	14 (13.2)	8 (8.8)	17 (17.0)	17 (15.9)
43	Diabetes mellitus	10 (2.0)	0 (0.0)	4 (3.8)	1 (1.1)	2 (2.0)	3 (2.8)
44	Heart disease	4 (0.8)	0 (0.0)	0 (0.0)	2 (2.2)	1 (1.0)	1 (0.9)
45	Other metabolic conditions	22 (4.4)	1 (1.0)	8 (7.5)	2 (2.2)	6 (6.0)	5 (4.7)
46	Chronic kidney disease	1 (0.2)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.0)	0 (0.0)
47	Chronic liver disease	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
48 49	Immunosuppressed	9 (1.8)	0 (0.0)	4 (3.8)	0 (0.0)	1 (1.0)	4 (3.7)
50	Blood disorder	5 (1.0)	0 (0.0)	2 (1.9)	0 (0.0)	1 (1.0)	2 (1.9)
51	Active cancer diagnosis	1 (0.2)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.9)
52	Neurological condition	7 (1.4)	1 (1.0)	2 (1.9)	2 (2.2)	1 (1.0)	1 (0.9)
53	None of the above	296 (58.8)	52 (52.5)	61 (57.5)	62 (68.1)	55 (55.0)	66 (61.7)
54 55	Risk profile by area of work						
55 56	High risk	187 (37.2)	10 (10.1)	43 (40.6)	34 (37.4)	100 (100)	0 (0.0)
57	Low risk	316 (62.8)	89 (89.9)	63 (59.4)	57 (62.6)	0 (0.0)	107 (100)
58	Institution						
59	Cork University Hospital	469 (93.2)	65 (65.7)	106 (100)	91 (100)	100 (100)	107 (100)
60	Other institution	34 (6.8)	34 (34.3)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)

Table 1: Participant demographics and comorbidities. Data are presented as n (% of total displayed at top of individual columns) unless otherwise stated

^a RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR) ^b Close contacts of persons with COVID-19 infection and who subsequently

developed symptoms (RT-PCR not detected on swab)

^cClose contacts of COVID-19 cases and who remained asymptomatic

^dHCWs working in areas determined as high risk clinical areas

^eHCWs working in areas determined as low risk clinical areas

^fChronic obstructive pulmonary disease

to beet teries only

Total	IgG positive
99	72 (72.73)
106	2 (1.9)
91	1 (1.1)
100	1 (1.0)
107	2 (1.9)
503	78 (15.5)
	99 106 91 100 107

Table 2: SARS-CoV-2 IgG seropositivity by study group. Data are presented as n (%), or total in first column.

^a RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR) ^b Close contacts of persons with COVID-19 infection and who subsequently

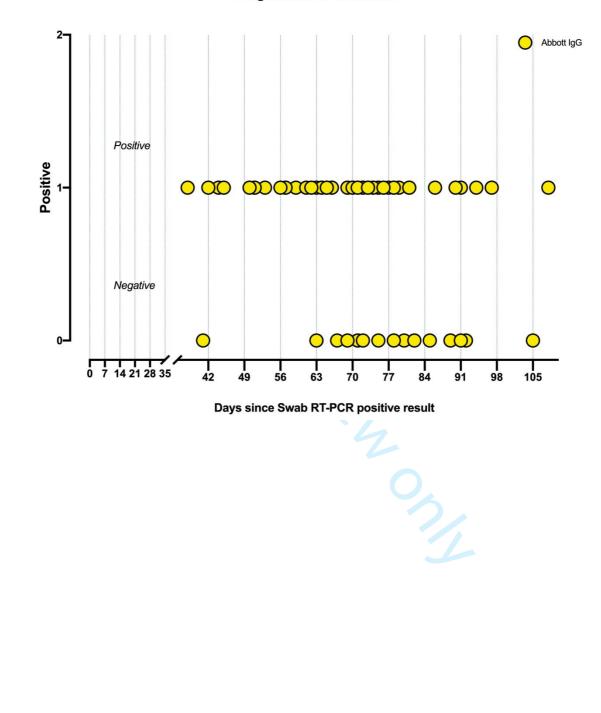
developed symptoms (RT-PCR not detected on swab)

^c Close contacts of COVID-19 cases and who remained asymptomatic

^d HCWs working in areas determined as high risk clinical areas

^e HCWs working in areas determined as low risk clinical areas

Figure Legend


Figure 1: Group 1 longitudinal SARS-CoV-2 IgG detection since date of positive RT-PCR. n=99

to peet terien ont

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Acknowledgements I'd like to acknowledge and thank the HRB Clinical Research Facility Cork for the resources and effort contributed towards this study. In particular Jennifer Connolly, Niamh Kelly, Maeve Kelsey and Lisa McSweeney
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	
49 50 51 52 53 54 55 56 57 58 59 60	

Figure

Longitudinal Ab detection

Appendix 1	
Demographic data	
Participant study Code (to be filled in by researchers): Date:	
Age	
Gender	
Healthcare occupation	
Healthcare location e.g. ED, ward	
COVID-19 contact risk	
Weight	
Height	
Participant co-morbidities; please tick	1
I have already had to stay overnight in a hospital because of COVID-19	Yes 🗆
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker	Yes 🗆
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker	Yes 🗆 Yes 🗆
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure	Yes □ Yes □ Yes □ Yes □
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis	Yes [] Yes [] Yes [] Yes []
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma	Yes Yes Yes Yes Yes Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes	Yes Yes Yes Yes Yes Yes Yes Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have heart disease (for example: angina/previous heart	Yes Yes Yes Yes Yes Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure)	Yes Yes Yes Yes Yes Yes Yes Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have heart disease (for example: angina/previous heart	Yes □
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid	Yes □
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have Aight blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease)	Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have immunosupression (from medications like chemotherapy or	Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have Chronic Liver Disease I have immunosupression (from medications like chemotherapy or biological agents, or from infection)	Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have Chronic Liver Disease I have immunosupression (from medications like chemotherapy or biological agents, or from infection) I have a blood disorder (such as Leukaemia, Haemophilia etc)	Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have Chronic Liver Disease I have immunosupression (from medications like chemotherapy or biological agents, or from infection) I have a blood disorder (such as Leukaemia, Haemophilia etc) I have an active cancer diagnosis	Yes Yes
I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have Chronic Liver Disease I have immunosupression (from medications like chemotherapy or biological agents, or from infection) I have a blood disorder (such as Leukaemia, Haemophilia etc)	Yes

| Name (Block Capitals)

| Participant Signature

| Date

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
Setting	5	recruitment, exposure, follow-up, and data collection	
Participants	6	(<i>a</i>) <i>Cohort study</i> —Give the eligibility criteria, and the sources and methods	6
	-	of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	
		of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6-7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	6-7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	6-7
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		Case-control study-If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study-If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	0
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive 14*		(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Seroprevalence of SARS-CoV-2 Antibodies in Healthcare Workers following the First Wave of the COVID-19 Pandemic in a Tertiary Level Hospital in the South of Ireland

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051415.R1
Article Type:	Original research
Date Submitted by the Author:	19-Apr-2021
Complete List of Authors:	Faller, Eamonn; Cork University Hospital Wyse, ADRIANNE; Cork University Hospital Barry, Rachel; Cork University Hospital Conlon, Kevin; Cork University Hospital Everard, Cormac; Cork University Hospital Finnegan, Paula; Cork University Hospital Foran, Claire; Cork University Hospital Herlihy, Emer; Cork University Hospital Kerr, Gerry; Cork University Hospital McGreal-Bellone, Aimee; Cork University Hospital Morrissey, Edmond; Cork University Hospital O'Sullivan, Deirdre; Cork University Hospital O'Sullivan, Grainne; Cork University Hospital Eustace, Joseph; University College Cork; Cork University Hospital Dempsey, Catherine; University College Cork; Cork University Hospital Dempsey, Catherine; University College Cork; Cork University Hospital Benson, John; University College Cork; Cork University Hospital Benson, John; Cork University Hospital Group, Occupational Health MacSharry, J.; University College Cork, Department of Medicine O'Riordan, Stephen; Cork University Hospital Horgan, Mary; University College Cork; Cork University Hospital Jackson, Arthur; Cork University Hospital Saller, Corinna; Cork University Hospital Saller, Corinna; Cork University Hospital Hospital
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diagnostics, Immunology (including allergy), Occupational and environmental medicine
Keywords:	EPIDEMIOLOGY, Infection control < INFECTIOUS DISEASES, Diagnostic microbiology < INFECTIOUS DISEASES, COVID-19

1	
2 3	
4	SCHOLARONE™
5	Manuscripts
6	Manascripts
7	
8	
9	
10 11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43	
44 45	
46	
47	
48	
49	
50	
51	
52 53	
53 54	
55	
56	
57	
58	
59	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60	ror peer review only - netp.//binjopen.binj.com/site/about/guideinles.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

RELEX ONL

Seroprevalence of SARS-CoV-2 Antibodies in Healthcare Workers following the First Wave of the COVID-19 Pandemic in a Tertiary Level Hospital in the South of Ireland

E. Faller^{1*}, A. Wyse¹, R. Barry¹, K. Conlon¹, C. Everard¹, P. Finnegan¹, C. Foran¹, E. Herlihy¹, G. Kerr¹, S. Lapthorne¹, A. McGreal-Bellone¹, E. Morrissey¹, D. O'Sullivan¹, G. O'Sullivan¹, J. Eustace^{1,2}, D. Spillane³, C. Dempsey³, J. Benson³, M.B. Prentice^{1,3-5}, J. Gallagher¹, J. MacSharry^{1,3-5}, L.J. Fanning^{1,4-6}, S.M.P. O'Riordan¹, M. Horgan^{1,4}, A. Jackson^{1,4}, C. Sadlier^{1,4}

Corresponding Author:

Dr Eamonn Faller Infectious Disease Dept, Cork University Hospital, <u>r@gmail.com</u> s: COVID-19 SARS-CoV-2 Healthcare worker epidemiology Anti-nucleocapsid IgG [°] 494 Cork. Ireland **T12 EC8P** +353 21 4922795 eamonnfaller@gmail.com

Keywords:

Word Count: 2,494

Dr Eamonn Faller ¹ *	eamonnfaller@gmail.com
Dr Adrianne Wyse ¹	<u>wyse.adrianne@gmail.com</u>
Dr Rachel Barry ¹	rachel.barry3@hse.ie
Dr Kevin Conlon ¹	kevinmichaelconlon@gmail.c
Dr Cormac Everard ¹	cormac.everard@hse.ie
Dr Paula Finnegan ¹	pfinnegan03@qub.ac.uk
Dr Claire Foran ¹	drclaireforan@gmail.com
Dr Emer Herlihy ¹	emerherlihy95@gmail.com
Dr Gerald Kerr ¹	drgerrykerr@yahoo.co.uk
Dr Susan Lapthorne ¹	susan.lapthorne@hse.ie
Dr Aimee McGreal-Bellone ¹	aimee.mcgreal@hse.ie
Dr Edmond Morrissey ¹	morrisseyedmond@gmail.cor
Dr Deirdre O'Sullivan ¹	deirdre.osullivan9@hse.ie
Dr Grainne O'Sullivan ¹	grainne_o_sullivan@yahoo.co
Professor Joseph Eustace ^{1,2}	J.Eustace@ucc.ie
Mr Declan Spillane ³	declan.spillane@hse.ie
Ms Catherine Dempsey ³	catherine.dempsey@hse.ie
Mr John Benson ³	john.benson@hse.ie
Professor Michael B. Prentice ^{1,3-5}	m.prentice@ucc.ie
Professor John Gallagher ¹	john.gallagher@hse.ie
Dr John MacSharry ^{1,3-5}	j.macsharry@ucc.ie
Professor Liam J. Fanning ^{1,4-6}	l.fanning@ucc.ie
Dr Stephen M.P. O'Riordan ¹	stephen.oriordan@hse.ie
Professor Mary Horgan ^{1,4}	<u>m.horgan@ucc.ie</u>
Dr Arthur Jackson ^{1,4}	arthur.jackson@hse.ie
Dr Corinna Sadlier ^{1,4}	corinna.sadlier@hse.ie

1: Cork Antibody Tracking of COVID-19 in HCWs (CATCH) Study Group, Cork University Hospital (CUH), Cork, Ireland

2: HRB Clinical Research Facility – Cork, University College Cork (UCC), Cork, Ireland

- 3. School of Microbiology, UCC, College Road, Cork, Ireland
- 4. School of Medicine, UCC, College Road, Cork, Ireland
- 5. APC Microbiome Ireland, UCC, Cork, Ireland
- 6. Department of Medicine, Clinical Sciences Building, UCC, CUH, Cork, Ireland

Abstract

Objective

This study investigated seroprevalence of SARS-CoV-2 specific IgG antibodies, using the Abbott anti-nucleocapsid IgG CMIA assay, in five pre-specified healthcare worker (HCW) subgroups following the first wave of the COVID-19 pandemic.

Setting

An 800-bed tertiary level teaching hospital in the south of Ireland.

Participants

Serum was collected for anti-SARS-CoV-2 nucleocapsid IgG using the Abbott ARCHITECT SARS-CoV-2 IgG CMIA® qualitative assay, as per the manufacturer's specifications.

The groups were as follows:

- 1. HCWs who had real time polymerase-chain-reaction (RT-PCR) confirmed COVID-19 infection (>1 month post positive RT-PCR)
- 1. HCWs identified as close contacts of persons with COVID-19 infection and who subsequently developed symptoms (virus not detected by RT-PCR on oro/nasopharyngeal swab)
- 2. HCWs identified as close contacts of COVID-19 cases and who remained asymptomatic (not screened by RT-PCR)
- 3. HCWs not included in the above groups working in areas determined as high risk clinical areas
- 4. HCWs not included in the above groups working in areas determined as low risk clinical areas

Results

6 of 404 (1.49%) HCWs not previously diagnosed with SARS-CoV-2 infection (groups 2-5) were seropositive for SARS-CoV-2 at time of recruitment in to the study.

Out of the 99 participants in Group 1, 72 had detectable IgG to SARS-CoV-2 on laboratory testing (72.73%). Antibody positivity correlated with shorter length of time between RT-PCR positivity and antibody testing.

C_q value on RT-PCR was not found to be correlated with antibody positivity.

Conclusions

Seroprevalence of SARS-CoV-2 antibodies in HCWs who had not previously tested RT-PCR positive for COVID-19 was low compared to similar studies.

Strengths and Limitations of this Study

- We successfully recruited the numbers that we had aimed for in each of the pre-specified groups
- This was a single centre study in an area of relatively low SARS-CoV-2 prevalence
- Enrolment began eight weeks after peak regional prevalence and therefore IgG antibodies may have become undetectable in a proportion of participants
- Recruitment of groups 3-5 was by self-selection and therefore was not a true random sample of these groups
- C_q values were only available for 69 of the 99 participants who were RT-PCR positive including only 12 of whom were IgG negative. It is therefore difficult to draw any firm conclusion as regards correlation between C_q value and antibody positivity

1	
2	
3	Introduction
4	
5 6 7 8 9 10 11 12 13 14 15 16	Healthcare workers (HCWs) at the frontline treating patients with suspected or confirmed coronavirus disease-2019 (COVID-19) have been heavily impacted by the pandemic. Due to potential occupational exposures, HCWs are at higher risk of infection from patients or from other HCWs than the general population. In a study published in July 2020, there was an estimated hazard ratio of 3.40 for COVID-19 infection in HCWs compared to risk of infection in the general population ¹ . Indeed, as of November 2020 in the Republic of Ireland, the Health Protection and Surveillance Centre (HPSC) put the number of HCW infections at 10,976 accounting for 16.6% of total infections ² .
17 18 19 20 21 22 23 24 25 26 27 28	The first case of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection was reported in Ireland on February 29 th 2020 relating to travel. On March 5 th , a patient was diagnosed with SARS-CoV-2 infection who had been ventilated in the intensive care unit of Cork University Hospital (CUH) with atypical pneumonia despite having no epidemiological link to a known case or area of high prevalence. This was the first documented community acquisition of SARS-CoV-2 in the Republic of Ireland and was an indication of potential widespread community transmission ³ . From this date additional infection prevention measures were instituted in CUH including testing and contact tracing of all symptomatic patients and staff, changes in hospital operations, and provision of personal protective equipment (PPE).
29 30 31 32 33 34	Seroprevalence studies can provide relevant information on the proportion of a population who have experienced a recent or past infection. Monitoring the prevalence of infection among HCWs is useful for assessing the level of exposure and identifying high-risk areas.
35 36 37 38 39 40 41 42 43	There have been a number of studies that have attempted to characterise the immunological response to COVID-19. Median time to seroconversion is estimated at 9-12 days following onset of symptoms depending on the antibody measured, with up to 100% developing antibodies by day 21 ⁴ . Sensitivity of assays measuring the anti-nucleocapsid antibodies have been shown to decline from 60 days following PCR positivity ⁵ . However correlation between seropositivity or antibody levels and protection against reinfection remains to be fully determined ^{6,7} .
44 45 46 47 48 49 50 51 52 53 54 55	The aim of this study was to investigate seroprevalence of SARS-CoV-2 specific IgG antibodies, using the Abbott anti-nucleocapsid IgG chemiluminescent microparticle immunoassay (CMIA), in five pre-specified HCW subgroups following the first surge of the pandemic in a region of relative low prevalence of COVID-19 infection.
56 57 58 59	

Methods

Study Design and Participants

This study was undertaken over a six week period from the 27th May 2020 - 07th July 2020 in CUH, an 800 bed university teaching hospital. CUH is the tertiary referral centre in the South West of Ireland serving a population of 1.1 million people. The study was designed to recruit 100 HCWs from five prespecified subgroups as outlined below:

HCW Subgroups:

- 1. HCWs who had RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR)
- 2. HCWs identified as close contacts of persons with COVID-19 infection and who subsequently developed symptoms (virus not detected by RT-PCR on oro/nasopharyngeal swab)
- 3. HCWs identified as close contacts of COVID-19 cases and who remained asymptomatic (not screened by RT-PCR)
- 4. HCWs not included in the above groups working in areas determined as high risk clinical areas
- 5. HCWs not included in the above groups working in areas determined as low risk clinical areas

Basic demographic data including age, gender, occupation, comorbid illness was collected by means of a self-administered questionnaire (Appendix 1).

HCWs from groups 1 (previous confirmed RT-PCR COVID-19 infection) and group 2 (close contact of COVID-19 case with virus not detected by RT-PCR on oro/nasopharyngeal swab when symptomatic) were contacted by the occupational health department. As there were fewer than 100 HCWs with RT-PCR confirmed COVID-19 in CUH, HCWs with RT-PCR confirmed COVID-19 from affiliated regional centres were invited to participate.

HCWs from group 3-5 were recruited by open invitation and group allocation was confirmed by recruiting investigators.

Inclusion Criteria

HCWs aged 18 years or over, fluent in English working in CUH or affiliated centers in the region were eligible to participate. HCWs were defined as those who deliver care and services to patients, either directly as physicians or nurses, healthcare. attendants, or other support staff (porters, administrative officers, cleaning, maintenance, etc.).

Exclusion Criteria

HCWs who tested positive by RT-PCR for SARS-CoV-2 within 30 days of recruitment to the study or reporting symptoms of COVID-19 at time of recruitment were deemed ineligible to participate. However there were no diagnosed infections among staff in our institution in the 30 days prior to enrolment.

Patient and public involvement

Patients and public were not involved in the design of this study, however feedback was enlisted on the sampling procedures and appropriateness of sampling modalities that the researchers used as part of the study (venepuncture for antinucleocapsid antigen as well as saliva and point of care testing used in the validation of other testing modalities not included in this paper).

Laboratory procedures:

Serological testing

Serum was collected for anti-SARS-CoV-2 nucleocapsid IgG using the Abbott ARCHITECT SARS-CoV-2 IgG CMIA® qualitative assay, as per the manufacturer's specifications.

qRT-PCR for SARS-CoV-2

HCWs from group 1 and group 2 who had close contact to a case of COVID-19 infection and developed symptoms had a combined oro/nasopharyngeal swab undertaken as part of clinical care. Laboratory confirmation of SARS-CoV-2 infection was performed using the MagNA Pure 24/MagNA Pure LC (Roche diagnostics) extraction system and Realstar[®] (Altona Diagnostics, Hamburg, Germany) or EURORealTime (EUROIMMUN, Lübeck, Germany) SARS-CoV-2 qRT-PCR kits, as per the manufacturer's instructions. Target detection was reported on a LightCycler[®] 480 Instrument II (Roche) if the quantification cycle (C_q) value was <40. In the absence of assay standardisation with RNA copy number controls, the C_q value was used as a relative quantitative indication of viral load.

Ethical Considerations

Written informed consent was obtained from HCWs using the document contained in the appendix. The Clinical Research Ethics Committee of the Cork Teaching Hospitals (CREC) granted ethics approval for this study (ECM 4 (a) 16/06/2020).

Statistical analysis

SPSS 26.0 and GraphPad Prism 8 was used for statistical analysis. Chi-square test was used to compare categorical variables. Independent samples T test was used to compare means of independent scale variables where frequencies were normally distributed and Mann-Whitney U test was used to compare continuous variables where frequencies were non-normally distributed. Results were deemed to be significant if P < 0.05.

Results

Sample Characteristics

Of 4,500 staff employed directly in CUH, 503 HCWs were recruited to the study. Baseline demographics of participants are outlined in Table 1.

The age range of participants was 20-65 years (IQR 30-47 years), 77% female. There were no significant between-group differences in age profiles. Nurses were the most represented professional group (41.7%) followed by doctors (35.0%).

Overall level of co-morbidity was low across the groups with 58.8% of the study population reporting no known/current medical issues. There were a significantly greater number of ex-smokers among participants in group 1 compared to other groups (P < 0.001) and a significantly greater number of current smokers in group 2 (P = 0.021). There was no significant between-group difference for any of the other comorbidities listed.

Of the participants, 187 (187/503, 37.2%) worked in high-risk settings. These were deemed to be areas in which HCWs were having daily contact with patients with confirmed or suspected COVID-19 infection during the peak of the local epidemic.

469 (469/503, 93.2%) of the participants were working in CUH, the institution in which the study was conducted with 34 participants (all from group 1) recruited from affiliated institutions within the South/Southwest Hospital Group.

Seroprevalence

Overall 78 of 503 (15.5%) HCWs who participated in the study were seropositive for SARS-CoV-2 at time of recruitment into the study. Table 2 presents serology results by HCW group.

Out of the 99 participants in group 1, 72 had detectable IgG to SARS-CoV-2 on laboratory testing (72.73%). Longitudinal IgG detection from date of positive RT-PCR is displayed in Figure 1. The mean period of time from RT-PCR positivity to IgG testing was significantly shorter in the IgG positive group, with a mean of 69.3 days compared to 77.0 days in those who were antibody negative (P = 0.025). There was no correlation noted between antibody seropositivity and age (P = 0.63), gender (P = 0.416) or presence of one or more comorbidities (P = 0.935).

Only 1 of 99 HCWs with RT-PCR confirmed COVID-19 required hospitalisation for management of infection with the vast majority experiencing mild symptoms.

RT-PCR C_q values were available for 69 of the participants in group 1. This included 57 participants who were IgG positive and 12 who were IgG negative. There was no correlation found between RT-PCR C_q values and SARS-CoV-2 IgG detection (P = 0.943).

Overall seroprevalence was low among groups 2-5, with IgG antibodies detected in only 6 out of 404 participants (1.49%). Prevalence was comparable between the four

groups with IgG antibodies detected in 2 participants in group 2 (1.9%), 1 in group 3 (1.1%), 1 in group 4 (1.0%) and 2 in group 5 (1.9%).

For peer terien only

Discussion

Of 99 HCWs with RT-PCR confirmed SARS-CoV-2 infection 73% (72) had detectable anti-nucleocapsid IgG antibodies to SARS-CoV-2. A single factor, time interval from positive RT-PCR was associated with antibody detection. This is consistent with much of the wider literature in indicating that anti-nucleocapsid IgG antibodies to SARS-CoV-2 begin to decline from day 60 following positive PCR, particularly in individuals with mild or asymptomatic primary infection^{7–9}. Although certain studies suggest a much higher sensitivity using this assay¹⁰, our data would suggest that sensitivity drops over time potentially limiting usefulness of this assay over the longer term.

We report a seroprevalence of SARS-CoV-2 IgG in HCWs in our institution not previously diagnosed with COVID-19 by RT-PCR of 1.49%. The national Irish population seroprevalence study (SCOPI) conducted over the same period estimated overall seroprevalence in the general population at 1.7%¹¹, with regional differences between urban Dublin (3.1%) and rural Sligo (0.6%). In Cork and Kerry, the two main counties served by our hospital, HCW infections represented 23% of total infections during the first wave. This was a smaller percentage than the figure seen nationally of 32.1% and would indicate that there was a lower proportion of HCW infected in Cork¹².

Seroprevalence in HCWs without previously diagnosed COVID-19 is lower than in the majority of published international studies that report seroprevalence among HCWs not previously diagnosed with COVID-19 (groups 2-5) of anywhere between 1.6% and $9.0\%^{13-18}$.

In the USA, a study of a multistate hospital network reported 6% seropositivity in 3,248 HCWs across thirteen geographically diverse institutions. Notably, 69% of those who were antibody-positive did not have a prior diagnosis of COVID-19 infection (Self et al., 2020). A study of 46,117 HCWs in the greater New York City area across 52 sites revealed a 13.7% total seropositivity to SARS-CoV-2 specific IgG antibodies. 10.3% of individuals who had previously tested RT-PCR negative as well as 9% of those who were never tested were noted to have antibodies¹⁹. In Madrid, a large tertiary-level institution reported a seroprevalence of 11.2% in a random sample of HCWs at the peak of the first wave in Europe (28th March – 9th April 2020). Of this cohort, 40.0% had not had previously diagnosed COVID-19 infection¹³. However, one smaller scale study of 316 HCWs in Essen in Germany found just 5 (1.6%) were seropositive, none of whom had previously tested positive¹⁵.

This was particularly surprising given that rate of asymptomatic infection in COVID-19 is thought to be about 15%²⁰. Only 6 out of 105 participants (5.7%) in our study with laboratory evidence of SARS-CoV-2 infection were not diagnosed at time of infection. This was despite guidelines applicable early in the pandemic which dictated that only symptomatic individuals be tested for COVID-19.

There are a number of factors that may have contributed to the low seroprevalence of SARS-CoV-2 IgG in the previously undiagnosed cohort.

The number of patients assessed or hospitalised with COVID-19 (n=150) at our institution was comparatively low during the first wave of the pandemic and therefore staff may have been exposed to a lower number of COVID-19 patients than in other institutions. The regional prevalence was also comparatively low with a total of 1,700 cases reported in Cork as of August 2020 with a peak incidence of 104 cases per 100,000 on 27 March 2020¹².

At no stage during the surge was there an interruption in personal-protective equipment (PPE) supply in our institution and high standards of infection prevention and control were employed throughout. At all times the guideline-recommended PPE was available to staff for the assessment of COVID-19 confirmed and suspected patients²¹.

Public transport usage by CUH staff is comparatively low and there is no tram or commuter rail service serving the hospital. This would potentially reduce overall exposure of staff to tightly congregated environments. There is some data to suggest that use of public transport is positively correlated with antibody positivity²².

Easily accessible RT-PCR testing and recommendation for quarantine of symptomatic staff members was implemented locally from identification of our first case of COVID-19 on March 5th 2020. This enabled diagnosis of the vast majority of symptomatic infections from the outset with isolation of these cases minimising risk of onward transmission to patients or other HCWs.

Given antibody positivity was only 73% in group 1, it is possible that some individuals in groups 2-5 may have been infected but have had undetectable antibodies at time of sampling. This would result in a slight underestimate of previously infected individuals in these groups.

As well as within hospitals, similar targeted epidemiological studies would undoubtedly be useful in high-risk high-prevalence settings such as universities, schools and other healthcare institutions to gain a better understanding of patterns of transmission.

Limitations of this study include that it was a single centre study undertaken in an area of relative low prevalence of COVID-19. Enrolment began eight weeks after peak regional prevalence and therefore IgG antibodies may have become undetectable in a proportion of participants²³. The assay used in the study, Abbott Architect SARS-CoV-2 IgG CMIA, is a qualitative assay so therefore we were unable to quantify antibody levels in participants. Recruitment of groups 3-5 was by self-selection and therefore was not a true random sample of these groups. Data regarding C_q was only available for 69 participants of whom only 12 were IgG negative. Therefore numbers would not be sufficient to draw a firm conclusion as to the lack of correlation between viral load and subsequent IgG positivity.

Conclusion

In the face of the ongoing COVID-19 pandemic, it is important to define the epidemiology of infection in the healthcare setting. Hospital-wide screening for antibodies to SARS-CoV-2 can profile transmission dynamics and inform infection control and prevention policies. With rollout of effective vaccination on the horizon, studies such as this may inform recommendations for prioritisation of immunisation in the context of potentially limited initial supplies.

It is essential that learning from experience of the initial surge of COVID-19 in the healthcare setting informs future practice and response to optimally protect HCWs and vulnerable patients.

to beet teries only

1	
2	
3 4	Conflict of Interests Statement
5	
6	The authors have no conflicts of interest to declare.
7	
8	
9	
10	
11	
12	
13 14	
14	
16	
17	
18	
19	
20	
21	
22	
23 24	
25	
26	
27	
28	
29	
30	
31 32	
33	
34	
35	
36	
37	
38	
39 40	
40	
42	
43	
44	
45	
46	
47 48	
48 49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
59	
60	

Funding

This research received no funding or grant from any funding agency in the commercial, public or not-for-profit treatment. The study was supported by Cork University Hospital, affiliated institutions in the hospital group and University College Cork.

For beet terien only

1	
2	
3	Data Availability Statement
4 5	
6	Data are available upon reasonable request. The authors are happy to share data with a
0 7	data repository if paper is accepted for publication.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
58 59	
59 60	
50	

Dr EF; Study concept and design, protocol development. Drafted paper, helped organise logistics of sample collection
Dr AW; Organised and oversaw sample collection for groups 2-5. Edited and signed
off on paper
Dr RB; Edited and drafted sections of the paper pertaining to microbiological assays
Dr KC; Sample collection, paper edits
Dr CE; Sample collection, paper edits
Dr PF; Sample collection, paper edits
Dr CF; Sample collection, paper edits
Dr EH; Sample collection, paper edits
Dr GK; Enlisted Groups 1 and 2 for participation, paper edits
Dr SL; Sample collection, paper edits
Dr AM; Sample collection, paper edits
Dr EM; Sample collection, paper edits
Dr DO'S; Sample collection, paper edits
Dr GO'S; Enlisted Groups 1 and 2 for participation, paper edits Professor JE; Edits to paper
DS; Validated and performed the Abbott assay for all these samples
CD; validated all the SARS-CoV-2 assays listed and personally performed many of the assays from March and April
the assays from March and April
JB; Personally performed many of the assays from March and April
Professor MP; Study concept and design, protocol development. Finalised aspects o
paper pertaining to microbiology
Professor JG; Study concept and design, protocol development. Finalised aspects of
paper pertaining to occupational health
Dr JMcS; Study concept and design, protocol development, substantial edits and inp
in all sections of paper
Professor LF; Study concept and design, protocol development, substantial input in
sections of paper
Dr SO'R; Study concept and design, protocol development, substantial edits and inp
in all sections of paper
Professor MH; Edited and helped finalise paper
Dr AJ; Edited and helped finalise paper
Dr CS; Study concept and design, protocol development and substantial edits and
input to all sections. Finalised paper
All authors approved the final manuscript.
····· ································

	Bibliography
1.	Nguyen LH, Drew DA, Graham MS, et al. Risk of COVID-19 among front-
1.	line health-care workers and the general community: a prospective cohort study. <i>Lancet Public Heal</i> . 2020. doi:10.1016/s2468-2667(20)30164-x
2.	Health Protection and Surveillance Centre. <i>Report of the Profile of COVID-19</i> <i>Cases in Healthcare Workers in Ireland.</i> ; 2020.
3.	Faller E, Lapthorne S, Barry R, et al. The Presentation and Diagnosis of the First Known Community- Transmitted Case of SARS-CoV-2 in the Republic of Ireland. <i>Ir Med J.</i> 2020;113(5):2-6. http://imj.ie/the-presentation-and-diagnosis-of-the-first-known-community-transmitted-case-of-sars-cov-2-in-the-republic-of-ireland/.
4.	Van Elslande J, Decru B, Jonckheere S, et al. Antibody response against SARS-CoV-2 spike protein and nucleoprotein evaluated by four automated immunoassays and three ELISAs. <i>Clin Microbiol Infect</i> . 2020. doi:10.1016/j.cmi.2020.07.038
5.	Van Elslande J, André E, Van Ranst M, Lagrou K, Vermeersch P. Immunoassays for anti-SARS-CoV-2 antibodies: recent insights. <i>Lancet Infect Dis</i> . 2020. doi:10.1016/s1473-3099(20)30846-x
6.	Abbasi J. The Promise and Peril of Antibody Testing for COVID-19. JAMA - J Am Med Assoc. 2020. doi:10.1001/jama.2020.6170
7.	Ibarrondo FJ, Fulcher JA, Goodman-Meza D, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. <i>N Engl J Med.</i> 2020. doi:10.1056/NEJMc2025179
8.	Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. <i>Nat Med.</i> 2020. doi:10.1038/s41591-020-0965-6
9.	Muecksch F, Wise H, Batchelor B, et al. Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents. <i>medRxiv Prepr Serv Heal Sci.</i> 2020. doi:10.1101/2020.08.05.20169128
10.	Bryan A, Pepper G, Wener MH, et al. Performance characteristics of the abbott architect SARS-CoV-2 IgG assay and seroprevalence testing in Idaho. <i>medRxiv</i> . 2020. doi:10.1101/2020.04.27.20082362
11.	Health Protection and Surveillance centre. <i>Preliminary Report of the Results of the Study to Investigate COVID-19 Infection in People Living in Ireland (</i> <i>SCOPI): A National Seroprevalence Study , June-July.</i> Dublin; 2020. https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/scopi/SCOPI report preliminary results final version.pdf.
12.	Ni Bhuachalla C, Murphy N, O'Sullivan M, et al. COVID-19: The First 100 Days in the South of Ireland. <i>Ir Med J</i> . 2020;113(9):185. http://imj.ie/covid-19-the-first-100-days-in-the-south-of-ireland/.
13.	Garcia-Basteiro AL, Moncunill G, Tortajada M, et al. Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large Spanish
14.	reference hospital. <i>Nat Commun</i> . 2020. doi:10.1038/s41467-020-17318-x Self WH, Tenforde MW, Stubblefield WB, et al. Seroprevalence of SARS- CoV-2 Among Frontline Health Care Personnel in a Multistate Hospital Network — 13 Academic Medical Centers, April–June 2020. <i>MMWR Morb</i> <i>Mortal Wkly Rep</i> . 2020. doi:10.15585/mmwr.mm6935e2
15.	Korth J, Wilde B, Dolff S, et al. SARS-CoV-2-specific antibody detection in

healthcare workers in Germany with direct contact to COVID-19 patients. J Clin Virol. 2020. doi:10.1016/j.jcv.2020.104437

- Stubblefield WB, Talbot HK, Feldstein LR, et al. Seroprevalence of SARS-CoV-2 Among Frontline Healthcare Personnel During the First Month of Caring for Patients With COVID-19—Nashville, Tennessee. *Clin Infect Dis.* 2020. doi:10.1093/cid/ciaa936
- 17. Rudberg A-S, Havervall S, Manberg A, et al. SARS-CoV-2 exposure, symptoms and seroprevalence in health care workers. *medRxiv*. 2020. doi:10.1101/2020.06.22.20137646

- 18. Steensels D, Oris E, Coninx L, et al. Hospital-Wide SARS-CoV-2 Antibody Screening in 3056 Staff in a Tertiary Center in Belgium. *JAMA J Am Med Assoc.* 2020. doi:10.1001/jama.2020.11160
- Moscola J, Sembajwe G, Jarrett M, et al. Prevalence of SARS-CoV-2 Antibodies in Health Care Personnel in the New York City Area. JAMA - J Am Med Assoc. 2020. doi:10.1001/jama.2020.14765
- 20. He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. *J Med Virol*. 2020. doi:10.1002/jmv.26326
- 21. Bedford J, Enria D, Giesecke J, et al. COVID-19: towards controlling of a pandemic. *Lancet*. 2020. doi:10.1016/S0140-6736(20)30673-5
- 22. Morcuende M, Guglielminotti J, Landau R. Anesthesiologists' and intensive care providers' exposure to COVID-19 infection in a new york city academic center: A prospective cohort study assessing symptoms and COVID-19 antibody testing. *Anesth Analg.* 2020. doi:10.1213/ANE.00000000005056
- 23. Seow J, Graham C, Merrick B, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. *Nat Microbiol*. 2020. doi:10.1038/s41564-020-00813-8

2							
3			Tables				
4							
5 6							
7	Characteristic	Total	Group	Group	Group 3 ^c	Group 4 ^d	Group 5 ^e
8		n = 503	1 ^a	2 ^b	n = 91	n = 100	n = 107
9			n = 99	n = 106			
10	Gender						
11 12	Male	115 (22.9)	24 (24.2)	20 (18.9)	26 (28.6)	29 (29.0)	16 (15.0)
12	Female	388 (77.1)	75 (75.8)	86 (81.1)	65 (71.4)	71 (71.0)	91 (85.0)
14	Age						
15	Range in years	20-65	20-65	22-64	21-61	20-56	21-62
16	Interquartile range	29.5-47.0	31.0-	30.0-46.0	28.8-48.0	28.0-42.0	30.0-47.0
17	20-29 years	125 (24.9)	49.0	25 (23.6)	24 (26.4)	32 (32.0)	24 (22.4)
18 19	30-39 years	164 (32.6)	20 (20.2)	41 (38.7)	29 (31.9)	33 (33.0)	34 (31.8)
19 20	40-49 years	122 (24.3)	27 (27.3)	24 (22.6)	19 (20.9)	23 (23.0)	27 (25.2)
20	50-59 years	80 (15.9)	30 (30.3)	14 (13.2)	17 (18.7)	12 (12.0)	21 (19.6)
22	60-69 years	9 (1.8)	16 (16.2)	1 (0.9)	1 (1.1)	0 (0.0)	1 (0.9)
23	2		6 (6.1)				
24	Occupation		· · · · ·				
25	Medical	176 (35.0)	18 (18.2)	29 (27.4)	38 (41.8)	55 (55.0)	36 (33.6)
26 27	Nursing	210 (41.7)	43 (43.4)	55 (51.9)	32 (35.2)	29 (29.0)	51 (47.7)
27	Healthcare assistant	27 (5.4)	11 (11.1)	7 (6.6)	3 (3.3)	4 (4.0)	2 (1.9)
29	Physiotherapy	15 (3.0)	5 (5.1)	1 (0.9)	5 (5.5)	3 (3.0)	1 (0.9)
30	Pharmacy	17 (3.4)	6 (6.1)	6 (5.7)	4 (3.8)	1 (1.0)	0 (0.0)
31	Other allied health professional	11 (2.2)	3 (3.0)	2 (1.9)	3 (3.3)	0 (0.0)	3 (2.8)
32	Administrative	12 (2.4)	4 (4.0)	1 (0.9)	1(1.1)	0 (0.0)	6 (5.6)
33	Auxiliary staff	23 (4.6)	9 (9.1)	2 (1.9)	3 (3.3)	6 (6.0)	3 (2.8)
34 35	Other/not documented	12 (2.2)	0 (0.0)	3 (2.8)	2 (2.2)	2 (2.0)	5 (4.7)
36	Comorbidity						
37	Smoker	29 (5.8)	3 (3.0)	13 (12.3)	5 (5.5)	5 (5.0)	3 (2.8)
38	Ex-smoker	81 (16.1)	32 (32.3)	14 (13.2)	11 (12.1)	15 (15.0)	9 (8.4)
39	Hypertension	30 (6.0)	8 (8.1)	5 (4.7)	5 (5.5)	5 (5.0)	7 (6.5)
40	COPD ^a	5 (1.0)	1 (1.0)	3 (2.8)	0 (0.0)	1 (1.0)	0 (0.0)
41 42	Asthma	70 (13.9)	14 (14.1)	14 (13.2)	8 (8.8)	17 (17.0)	17 (15.9)
42 43	Diabetes mellitus	10 (2.0)	0 (0.0)	4 (3.8)	1(1.1)	2 (2.0)	3 (2.8)
44	Heart disease	4 (0.8)	0 (0.0)	0 (0.0)	2 (2.2)	1 (1.0)	1 (0.9)
45	Other metabolic conditions	22 (4.4)	1 (1.0)	8 (7.5)	2 (2.2)	6 (6.0)	5 (4.7)
46	Chronic kidney disease	1 (0.2)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.0)	0 (0.0)
47	Chronic liver disease	0(0.0)	0(0.0)	0 (0.0)	0 (0.0)	0(0.0)	0 (0.0)
48	Immunosuppressed	9 (1.8)	0 (0.0)	4 (3.8)	0 (0.0)	1 (1.0)	4 (3.7)
49 50	Blood disorder	5 (1.0)	0 (0.0)	2 (1.9)	0 (0.0)	1 (1.0)	2 (1.9)
50 51	Active cancer diagnosis	1 (0.2)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.9)
52	Neurological condition	7 (1.4)	1 (1.0)	2 (1.9)	2 (2.2)	1 (1.0)	1 (0.9)
53	None of the above	296 (58.8)	52 (52.5)	61 (57.5)	62 (68.1)	55 (55.0)	66 (61.7)
54	Risk profile by area of work			- ()			
55	High risk	187 (37.2)	10 (10.1)	43 (40.6)	34 (37.4)	100 (100)	0 (0.0)
56	Low risk	316 (62.8)	89 (89.9)	63 (59.4)	57 (62.6)	0 (0.0)	107 (100)
57 58	Institution						
58 59	Cork University Hospital	469 (93.2)	65 (65.7)	106 (100)	91 (100)	100 (100)	107 (100)
60	Other institution	34 (6.8)	34 (34.3)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
		()	(()			· · · /

Table 1: Participant demographics and comorbidities. Data are presented as n (% of total displayed at top of individual columns) unless otherwise stated

^a RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR) ^b Close contacts of persons with COVID-19 infection and who subsequently

developed symptoms (RT-PCR not detected on swab)

^cClose contacts of COVID-19 cases and who remained asymptomatic

^dHCWs working in areas determined as high risk clinical areas

^eHCWs working in areas determined as low risk clinical areas

^fChronic obstructive pulmonary disease

to beet teries only

Total	IgG positive	
99	72 (72.73)	
106	2 (1.9)	
91	1 (1.1)	
100	1 (1.0)	
107	2 (1.9)	
503	78 (15.5)	
	99 106 91 100 107	

Table 2: SARS-CoV-2 IgG seropositivity by study group. Data are presented as n (%), or total in first column.

^a RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR) ^b Close contacts of persons with COVID-19 infection and who subsequently

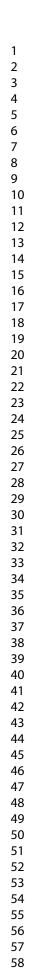
developed symptoms (RT-PCR not detected on swab)

^c Close contacts of COVID-19 cases and who remained asymptomatic

^d HCWs working in areas determined as high risk clinical areas

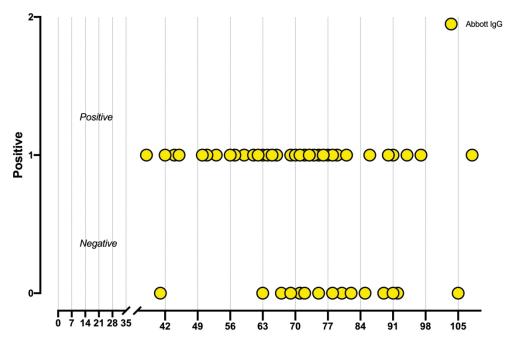
^e HCWs working in areas determined as low risk clinical areas

Figure Legend


Figure 1: Group 1 longitudinal SARS-CoV-2 IgG detection since date of positive RT-PCR. n=99

tor peer terien ont

Acknowledgements


We would like to acknowledge and thank the staff of CUH and affiliated hospitals in the South/Southwest hospital group who participated in this study. We would also like to thank the Health Research Board (HRB) Clinical Research Facility, Cork for the resources and effort contributed towards this study. In particular Jennifer Connolly, Niamh Kelly, Maeve Kelsey and Lisa McSweeney.

For peer teriew only

Longitudinal Ab detection

Days since Swab RT-PCR positive result

197x157mm (300 x 300 DPI)

2						
3						
4	Study Title: Prevalence of SARS-CoV-2 in Healthcare workers in the early					
5	stages of the pandemic					
6						
7	Appendix 1					
8						
9	Demographic data					
10						
11	Participant study Code (to be filled in by researchers):					
12 13	Date:					
14						
15	Age					
16						
17	Gender					
18						
19	Healthcare occupation					
20						
21 22	Healthcare location e.g. ED, ward					
23						
24	COVID-19 contact risk					
25						
26	Weight					
27						
28	Height					
29						
30 31	Participant co-morbidities; please tick					
32	r arterpant co-mororantes, prease tiek					
33	I have already had to stay overnight in a hospital because of COVID-19	Yes 🗆	No 🗆			
34			No 🗆			
35	I am a smoker	Yes 🗆	No 🗆			
36	I am an ex-smoker	Yes 🗆	No 🗆			
37	I have high blood pressure	Yes 🗆	No 🗆			
38 39	I have COPD/emphysema/bronchitis	Yes 🗆	No 🗆			
40	I have asthma	Yes 🗆	No 🗆			
41	I have diabetes	Yes 🗆	No 🗆			
42	I have heart disease (for example: angina/previous heart	Yes 🗆	No 🗆			
43	attack/stents/heart bypass surgery/heart failure)					
44	I have other metabolic conditions apart from diabetes (such as thyroid	Yes 🗆	No 🗆			
45	disease)					
46	I have Chronic Kidney Disease	Vec 🗆	No 🗆			
47		Yes 🗆	No 🗆			
48 49	I have Chronic Liver Disease	Yes 🗆	No 🗆			
50	I have immunosupression (from medications like chemotherapy or	Yes 🗆	No 🗆			
51	biological agents, or from infection)					
52	I have a blood disorder (such as Leukaemia, Haemophilia etc)	Yes 🗆	No 🗆			
53	I have an active cancer diagnosis	Yes 🗆	No 🗆			
54	I have a Neurological condition (such as Epilepsy or Stroke)	Yes 🗆	No 🗆			
55	I don't have any of the above risk factors or medical conditions	Yes 🗆	No 🗆			
56	,					

| Name (Block Capitals)

| Participant Signature

| Date

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what	3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods	6
-		of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale for	
		the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number	
		of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6-7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	6-7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	6-7
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was	
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6
		eligible, examined for eligibility, confirmed eligible, included in the study, completing	
		follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	8
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	8
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	8
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary	8
		measures of exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	8
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	8
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
		L.	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	1
		imprecision. Discuss both direction and magnitude of any potential bias	1
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	1
		multiplicity of analyses, results from similar studies, and other relevant evidence	1
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
			1
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

A Seroprevalence Study of SARS-CoV-2 Antibodies in Healthcare Workers following the First Wave of the COVID-19 Pandemic in a Tertiary Level Hospital in the South of Ireland

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-051415.R2
Article Type:	Original research
Date Submitted by the Author:	07-May-2021
Complete List of Authors:	Faller, Eamonn; Cork University Hospital Wyse, ADRIANNE; Cork University Hospital Conlon, Kevin; Cork University Hospital Everard, Cormac; Cork University Hospital Finnegan, Paula; Cork University Hospital Foran, Claire; Cork University Hospital Herlihy, Emer; Cork University Hospital Kerr, Gerry; Cork University Hospital Lapthorne, Susan; Cork University Hospital Morrissey, Edmond; Cork University Hospital O'Sullivan, Deirdre; Cork University Hospital Eustace, Joseph; University College Cork; Cork University Hospital Dempsey, Catherine; University College Cork; Cork University Hospital Benson, John; University College Cork; Cork University Hospital Prentice, Mike; University College Cork; Cork University Hospital Gallagher, John; Cork University Hospital Group, Occupational Health MacSharry, J.; University College Cork; Cork University Hospital Gallagher, John; Cork University Hospital Group, Occupational Health MacSharry, J.; University College Cork; Cork University Hospital Gallagher, John; Cork University Hospital Group, Occupational Health MacSharry, J.; University College Cork; Cork University Hospital Gallagher, John; Cork University Hospital Horgan, Mary; University College Cork; Cork University Hospital Horgan, Mary; University College Cork; Cork University Hospital Sadlier, Corinna; Cork University Hospital
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diagnostics, Immunology (including allergy), Occupational and environmental medicine
Keywords:	EPIDEMIOLOGY, Infection control < INFECTIOUS DISEASES, Diagnostic microbiology < INFECTIOUS DISEASES, COVID-19

1 2 3	
4 5	SCHOLARONE [™] Manuscripts
6 7	
8 9 10	
11 12	
13 14	
15 16 17	
17 18 19	
20 21	
22 23	
24 25 26	
20 27 28	
29 30	
31 32	
33 34 35	
36 37	
38 39	
40 41 42	
42 43 44	
45 46	
47 48 49	
50 51	
52 53	
54 55	
56 57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

A Seroprevalence Study of SARS-CoV-2 Antibodies in Healthcare Workers following the First Wave of the COVID-19 Pandemic in a Tertiary Level Hospital in the South of Ireland

E. Faller^{1*}, A. Wyse¹, R. Barry¹, K. Conlon¹, C. Everard¹, P. Finnegan¹, C. Foran¹, E. Herlihy¹, G. Kerr¹, S. Lapthorne¹, A. McGreal-Bellone¹, E. Morrissey¹, D. O'Sullivan¹, G. O'Sullivan¹, J. Eustace^{1,2}, D. Spillane³, C. Dempsey³, J. Benson³, M.B. Prentice^{1,3-5}, J. Gallagher¹, J. MacSharry^{1,3-5}, L.J. Fanning^{1,4-6}, S.M.P. O'Riordan¹, M. Horgan^{1,4}, C. Sadlier^{1,4}

Corresponding Author:

Dr Eamonn Faller Infectious Disease Dept, Cork University Hospital, r. 2795 r@gmail.com s: COVID-19 SARS-CoV-2 Healthcare worker epidemiology Anti-nucleocapsid IgG ^ 533 Cork. Ireland **T12 EC8P** +353 21 4922795 eamonnfaller@gmail.com

Keywords:

Word Count: 2,533

eamonnfaller@gmail.com
<u>wyse.adrianne@gmail.com</u>
rachel.barry3@hse.ie
kevinmichaelconlon@gmail.com
cormac.everard@hse.ie
pfinnegan03@qub.ac.uk
drclaireforan@gmail.com
emerherlihy95@gmail.com
drgerrykerr@yahoo.co.uk
susan.lapthorne@hse.ie
aimee.mcgreal@hse.ie
morrisseyedmond@gmail.com
deirdre.osullivan9@hse.ie
grainne_o_sullivan@yahoo.co.uk
J.Eustace@ucc.ie
declan.spillane@hse.ie
catherine.dempsey@hse.ie
john.benson@hse.ie
m.prentice@ucc.ie
john.gallagher@hse.ie
j.macsharry@ucc.ie
l.fanning@ucc.ie
stephen.oriordan@hse.ie
m.horgan@ucc.ie
corinna.sadlier@hse.ie

1: Cork Antibody Tracking of COVID-19 in HCWs (CATCH) Study Group, Cork University Hospital (CUH), Cork, Ireland

2: Health Research Board Clinical Research Facility (HRB-CRF) – Cork, University College Cork (UCC), Cork, Ireland

- 3. School of Microbiology, UCC, College Road, Cork, Ireland
- 4. School of Medicine, UCC, College Road, Cork, Ireland
- 5. APC Microbiome Ireland, UCC, Cork, Ireland
- 6. Department of Medicine, Clinical Sciences Building, UCC, CUH, Cork, Ireland

Abstract

Objective

This study investigated seroprevalence of SARS-CoV-2 specific IgG antibodies, using the Abbott anti-nucleocapsid IgG CMIA assay, in five pre-specified healthcare worker (HCW) subgroups following the first wave of the COVID-19 pandemic.

Setting

An 800-bed tertiary level teaching hospital in the south of Ireland.

Participants

Serum was collected for anti-SARS-CoV-2 nucleocapsid IgG using the Abbott ARCHITECT SARS-CoV-2 IgG CMIA® qualitative assay, as per the manufacturer's specifications.

The groups were as follows:

- 1. HCWs who had real time polymerase-chain-reaction (RT-PCR) confirmed COVID-19 infection (>1 month post positive RT-PCR)
- 1. HCWs identified as close contacts of persons with COVID-19 infection and who subsequently developed symptoms (virus not detected by RT-PCR on oro/nasopharyngeal swab)
- 2. HCWs identified as close contacts of COVID-19 cases and who remained asymptomatic (not screened by RT-PCR)
- 3. HCWs not included in the above groups working in areas determined as high risk clinical areas
- 4. HCWs not included in the above groups working in areas determined as low risk clinical areas

Results

6 of 404 (1.49%) HCWs not previously diagnosed with SARS-CoV-2 infection (groups 2-5) were seropositive for SARS-CoV-2 at time of recruitment into the study.

Out of the 99 participants in Group 1, 72 had detectable IgG to SARS-CoV-2 on laboratory testing (73%). Antibody positivity correlated with shorter length of time between RT-PCR positivity and antibody testing.

C_q value on RT-PCR was not found to be correlated with antibody positivity.

Conclusions

Seroprevalence of SARS-CoV-2 antibodies in HCWs who had not previously tested RT-PCR positive for COVID-19 was low compared to similar studies.

Strengths and Limitations of this Study

- We successfully recruited the numbers that we had aimed for in each of the pre-specified groups
- This was a single centre study in an area of relatively low SARS-CoV-2 prevalence
- Enrolment began eight weeks after peak regional prevalence and therefore IgG antibodies may have become undetectable in a proportion of participants
- Recruitment of groups 3-5 was by self-selection and therefore was not a true random sample of these groups
- C_q values were only available for 69 of the 99 participants who were RT-PCR positive including only 12 of whom were IgG negative. It is therefore difficult to draw any firm conclusion as regards correlation between C_q value and antibody positivity

1	
2	
3	Introduction
4	
5	Healthcare workers (HCWs) at the frontline treating patients with suspected or
6	
7	confirmed coronavirus disease-2019 (COVID-19) have been heavily impacted by the
8	pandemic. Due to potential occupational exposures, HCWs are at higher risk of
9	infection from patients or from other HCWs than the general population. In a study
10	published in July 2020, there was an estimated hazard ratio of 3.40 for COVID-19
11 12	infection in HCWs compared to risk of infection in the general population ¹ . Indeed, as
12	of November 2020 in the Republic of Ireland, the Health Protection and Surveillance
14	Centre (HPSC) put the number of HCW infections at 10,976 accounting for 16.6% of
15	total infections ² .
16	
17	The first case of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
18	infection was reported in Ireland on February 29 th 2020 relating to travel. On March
19	5 th , a patient was diagnosed with SARS-CoV-2 infection who had been ventilated in
20	
21	the intensive care unit of Cork University Hospital (CUH) with atypical pneumonia
22	despite having no epidemiological link to a known case or area of high prevalence.
23	This was the first documented community acquisition of SARS-CoV-2 in the
24	Republic of Ireland and was an indication of potential widespread community
25	transmission ³ . From this date additional infection prevention measures were instituted
26 27	in CUH including testing and contact tracing of all symptomatic patients and staff,
28	changes in hospital operations, and provision of personal protective equipment (PPE).
29	
30	Seroprevalence studies can provide relevant information on the proportion of a
31	population who have experienced a recent or past infection. Monitoring the
32	prevalence of infection among HCWs is useful for assessing the level of exposure and
33	identifying high-risk areas.
34	
35	There have been a number of studies that have attempted to characterise the
36	immunological response to COVID-19. Median time to seroconversion is estimated at
37	9-12 days following onset of symptoms depending on the antibody measured, with up
38 39	to 100% developing antibodies by day 21 ⁴ . Sensitivity of assays measuring the anti-
40	nucleocapsid antibodies have been shown to decline from 60 days following PCR
41	positivity ⁵ . However correlation between seropositivity or antibody levels and
42	protection against reinfection remains to be fully determined ^{6,7} .
43	protection against remnection remains to be fully determined?.
44	The aim of this study was to investigate seroprevalence of SARS-CoV-2 specific IgG
45	antibodies, using the Abbott anti-nucleocapsid IgG chemiluminescent microparticle
46	immunoassay (CMIA), in five pre-specified HCW subgroups following the first surge
47	
48	of the pandemic in a region of relative low prevalence of COVID-19 infection.
49	
50	
51 52	
53	
54	
55	
56	
57	
58	
59	
60	

Methods

Study Design and Participants

This study was undertaken over a six week period from the 27th May 2020 - 07th July 2020 in CUH, an 800 bed university teaching hospital. CUH is the tertiary referral centre in the South West of Ireland serving a population of 1.1 million people. The study was designed to recruit 100 HCWs from five prespecified subgroups as outlined below:

HCW Subgroups:

- 1. HCWs who had RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR)
- 2. HCWs identified as close contacts of persons with COVID-19 infection and who subsequently developed symptoms (virus not detected by RT-PCR on oro/nasopharyngeal swab)
- 3. HCWs identified as close contacts of COVID-19 cases and who remained asymptomatic (not screened by RT-PCR)
- 4. HCWs not included in the above groups working in areas determined as high risk clinical areas
- 5. HCWs not included in the above groups working in areas determined as low risk clinical areas

Basic demographic data including age, gender, occupation, comorbid illness was collected by means of a self-administered questionnaire (Appendix 1).

HCWs from groups 1 (previous confirmed RT-PCR COVID-19 infection) and group 2 (close contact of COVID-19 case with virus not detected by RT-PCR on oro/nasopharyngeal swab when symptomatic) were contacted by the occupational health department. As there were fewer than 100 HCWs with RT-PCR confirmed COVID-19 in CUH, HCWs with RT-PCR confirmed COVID-19 from affiliated regional centres were invited to participate.

HCWs from group 3-5 were recruited by open invitation and group allocation was confirmed by recruiting investigators.

Inclusion Criteria

HCWs aged 18 years or over, fluent in English working in CUH or affiliated centers in the region were eligible to participate. HCWs were defined as those who deliver care and services to patients, either directly as physicians or nurses, healthcare. attendants, or other support staff (porters, administrative officers, cleaning, maintenance, etc.).

Exclusion Criteria

HCWs who tested positive by RT-PCR for SARS-CoV-2 within 30 days of recruitment to the study or reporting symptoms of COVID-19 at time of recruitment were deemed ineligible to participate. However there were no diagnosed infections among staff in our institution in the 30 days prior to enrolment.

Patient and public involvement

Patients and public were not involved in the design of this study, however feedback was enlisted on the sampling procedures and appropriateness of sampling modalities that the researchers used as part of the study (venepuncture for antinucleocapsid antigen as well as saliva and point of care testing used in the validation of other testing modalities not included in this paper).

Laboratory procedures:

Serological testing

Serum was collected for anti-SARS-CoV-2 nucleocapsid IgG using the Abbott ARCHITECT SARS-CoV-2 IgG CMIA® qualitative assay, as per the manufacturer's specifications. The Abbott Elisa Kit (Abbott Diagnostics ®) uses a nucleocapsid protein as the antigen and report a 100% concordance (95% CI 95.89-100) with their RT-PCR positive panel >14 days after symptom onset and 99.6% negative on their historical pre-COVID-19 controls (95% CI 98.98-99.89)⁸

qRT-PCR for SARS-CoV-2

HCWs from group 1 and group 2 who had close contact to a case of COVID-19 infection and developed symptoms had a combined oro/nasopharyngeal swab undertaken as part of clinical care. Laboratory confirmation of SARS-CoV-2 infection was performed using the MagNA Pure 24/MagNA Pure LC (Roche diagnostics) extraction system and Realstar[®] (Altona Diagnostics, Hamburg, Germany) or EURORealTime (EUROIMMUN, Lübeck, Germany) SARS-CoV-2 qRT-PCR kits, as per the manufacturer's instructions. Target detection was reported on a LightCycler[®] 480 Instrument II (Roche) if the quantification cycle (C_q) value was <40. In the absence of assay standardisation with RNA copy number controls, the C_q value was used as a relative quantitative indication of viral load.

Ethical Considerations

Written informed consent was obtained from HCWs using the document contained in the appendix. The Clinical Research Ethics Committee of the Cork Teaching Hospitals (CREC) granted ethics approval for this study (ECM 4 (a) 16/06/2020).

Statistical analysis

SPSS 26.0 and GraphPad Prism 8 was used for statistical analysis. Chi-square test was used to compare categorical variables. Independent samples T test was used to compare means of independent scale variables where frequencies were normally distributed and Mann-Whitney U test was used to compare continuous variables where frequencies were non-normally distributed. Results were deemed to be significant if P < 0.05.

Results

Sample Characteristics

 Of 4,500 staff employed directly in CUH, 503 HCWs were recruited to the study. Baseline demographics of participants are outlined in Table 1.

The age range of participants was 20-65 years (IQR 30-47 years), 77% female. There were no significant between-group differences in age profiles. Nurses were the most represented professional group (41.7%) followed by doctors (35.0%).

Overall level of co-morbidity was low across the groups with 58.8% of the study population reporting no known/current medical issues. There were a significantly greater number of ex-smokers among participants in group 1 compared to other groups (P < 0.001) and a significantly greater number of current smokers in group 2 (P = 0.021). There was no significant between-group difference for any of the other comorbidities listed.

Of the participants, 187 (187/503, 37.2%) worked in high-risk settings. These were deemed to be areas in which HCWs were having daily contact with patients with confirmed or suspected COVID-19 infection during the peak of the local epidemic.

469 (469/503, 93.2%) of the participants were working in CUH, the institution in which the study was conducted with 34 participants (all from group 1) recruited from affiliated institutions within the South/Southwest Hospital Group.

Seroprevalence

Overall 78 of 503 (15.5%) HCWs who participated in the study were seropositive for SARS-CoV-2 at time of recruitment into the study. Table 2 presents serology results by HCW group.

Out of the 99 participants in group 1, 72 had detectable IgG to SARS-CoV-2 on laboratory testing (73%). Longitudinal IgG detection from date of positive RT-PCR is displayed in Figure 1. The mean period of time from RT-PCR positivity to IgG testing was significantly shorter in the IgG positive group, with a mean of 69.3 days compared to 77.0 days in those who were antibody negative (P = 0.025). There was no correlation noted between antibody seropositivity and age (P = 0.63), gender (P = 0.416) or presence of one or more comorbidities (P = 0.935).

Only 1 of 99 HCWs with RT-PCR confirmed COVID-19 required hospitalisation for management of infection with the vast majority experiencing mild symptoms.

RT-PCR C_q values were available for 69 of the participants in group 1. This included 57 participants who were IgG positive and 12 who were IgG negative. There was no correlation found between RT-PCR C_q values and SARS-CoV-2 IgG detection (P = 0.943).

Overall seroprevalence was low among groups 2-5, with IgG antibodies detected in only 6 out of 404 participants (1.49%). Prevalence was comparable between the four

groups with IgG antibodies detected in 2 participants in group 2 (1.9%), 1 in group 3 (1.1%), 1 in group 4 (1.0%) and 2 in group 5 (1.9%).

for peer terien ony

Discussion

Of 99 HCWs with RT-PCR confirmed SARS-CoV-2 infection 73% (72) had detectable anti-nucleocapsid IgG antibodies to SARS-CoV-2. A single factor, time interval from positive RT-PCR was associated with antibody detection. This is consistent with much of the wider literature in indicating that anti-nucleocapsid IgG antibodies to SARS-CoV-2 begin to decline from day 60 following positive PCR, particularly in individuals with mild or asymptomatic primary infection^{7,9,10}. Although a higher sensitivity has been reported for this assay¹¹, our data indicates that sensitivity drops over time potentially limiting usefulness of this assay over the longer term.

We report a seroprevalence of SARS-CoV-2 IgG in HCWs in our institution not previously diagnosed with COVID-19 by RT-PCR of 1.49%. The national Irish population seroprevalence study (SCOPI) conducted over the same period estimated overall seroprevalence in the general population at 1.7%¹², with regional differences between urban Dublin (3.1%) and rural Sligo (0.6%). In Cork and Kerry, the two main counties served by our hospital, HCW infections represented 23% of total infections during the first wave. This was a smaller percentage than the figure seen nationally of 32.1% and would indicate that there was a lower proportion of HCW infected in Cork¹³.

Seroprevalence in HCWs without previously diagnosed COVID-19 is lower than in the majority of published international studies that report seroprevalence among HCWs not previously diagnosed with COVID-19 (groups 2-5) of anywhere between 1.6% and 9.0%^{14–19}.

In the USA, a study of a multistate hospital network reported 6% seropositivity in 3,248 HCWs across thirteen geographically diverse institutions. Notably, 69% of those who were antibody-positive did not have a prior diagnosis of COVID-19 infection (Self et al., 2020). A study of 46,117 HCWs in the greater New York City area across 52 sites revealed a 13.7% total seropositivity to SARS-CoV-2 specific IgG antibodies. 10.3% of individuals who had previously tested RT-PCR negative as well as 9% of those who were never tested were noted to have antibodies²⁰. In Madrid, a large tertiary-level institution reported a seroprevalence of 11.2% in a random sample of HCWs at the peak of the first wave in Europe (28th March – 9th April 2020). Of this cohort, 40.0% had not had previously diagnosed COVID-19 infection¹⁴. However, one smaller scale study of 316 HCWs in Essen in Germany found just 5 (1.6%) were seropositive, none of whom had previously tested positive¹⁶.

This was particularly surprising given that rate of asymptomatic infection in COVID-19 is thought to be about 15%²¹. Only 6 out of 105 participants (5.7%) in our study with laboratory evidence of SARS-CoV-2 infection were not diagnosed at time of infection. This was despite guidelines applicable early in the pandemic which dictated that only symptomatic individuals be tested for COVID-19.

There are a number of factors that may have contributed to the low seroprevalence of SARS-CoV-2 IgG in the previously undiagnosed cohort.

The number of patients assessed or hospitalised with COVID-19 (n=150) at our institution was comparatively low during the first wave of the pandemic and therefore staff may have been exposed to a lower number of COVID-19 patients than in other institutions. The regional prevalence was also comparatively low with a total of 1,700 cases reported in Cork as of August 2020 with a peak incidence of 104 cases per 100,000 on 27 March 2020¹³.

At no stage during the surge was there an interruption in personal-protective equipment (PPE) supply in our institution and high standards of infection prevention and control were employed throughout. At all times the guideline-recommended PPE was available to staff for the assessment of COVID-19 confirmed and suspected patients²².

Public transport usage by CUH staff is comparatively low and there is no tram or commuter rail service serving the hospital. This would potentially reduce overall exposure of staff to tightly congregated environments. There is some data to suggest that use of public transport is positively correlated with antibody positivity²³.

Easily accessible RT-PCR testing and recommendation for quarantine of symptomatic staff members was implemented locally from identification of our first case of COVID-19 on March 5th 2020. This enabled diagnosis of the vast majority of symptomatic infections from the outset with isolation of these cases minimising risk of onward transmission to patients or other HCWs.

Given antibody positivity was only 73% in group 1, it is possible that HCWs in groups 2-5 were infected but have had undetectable antibodies at time of sampling. This would result in a potential underestimate of previously infected individuals in these groups.

As well as within hospitals, similar targeted epidemiological studies would undoubtedly be useful in high-risk high-prevalence settings such as universities, schools and other healthcare institutions to gain a better understanding of patterns of transmission.

Limitations of this study include that it was a single centre study undertaken in an area of relative low prevalence of COVID-19. Enrolment began eight weeks after peak regional prevalence and therefore IgG antibodies may have become undetectable in a proportion of participants²⁴. The assay used in the study, Abbott Architect SARS-CoV-2 IgG CMIA, is a qualitative assay so therefore we were unable to quantify antibody levels in participants. Recruitment of groups 3-5 was by self-selection and therefore was not a true random sample of these groups. Data regarding C_q was only available for 69 participants of whom only 12 were IgG negative. Therefore numbers would not be sufficient to draw a firm conclusion as to the lack of correlation between viral load and subsequent IgG positivity.

Conclusion

In the face of the ongoing COVID-19 pandemic, it is important to define the epidemiology of infection in the healthcare setting. Hospital-wide screening for antibodies to SARS-CoV-2 can profile transmission dynamics and inform infection control and prevention policies. With rollout of effective vaccination on the horizon, studies such as this may inform recommendations for prioritisation of immunisation in the context of potentially limited initial supplies.

It is essential that learning from experience of the initial surge of COVID-19 in the healthcare setting informs future practice and response to optimally protect HCWs and vulnerable patients.

to beet teries only

1	
2	
3 4	Conflict of Interests Statement
5	
6	The authors have no conflicts of interest to declare.
7	
8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18	
19	
20	
21	
22 23	
23 24	
25	
26	
27	
28	
29	
30	
31 32	
33	
34	
35	
36	
37	
38	
39 40	
41	
42	
43	
44	
45	
46 47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

Funding

This research received no funding or grant from any funding agency in the commercial, public or not-for-profit treatment. The study was supported by Cork University Hospital, affiliated institutions in the hospital group and University College Cork.

For beet terren ont

1	
2 3	
4	Data Availability Statement
5	
6	Data are available upon reasonable request. The authors are happy to share data with a
7	data repository if paper is accepted for publication.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25 26	
20	
28	
28	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2					
3	Author Contributions Section				
4					
5	Dr EF; Study concept and design, protocol development. Drafted paper, helped				
6	organise logistics of sample collection				
7					
8	Dr AW; Organised and oversaw sample collection for groups 2-5. Edited and signed				
9	off on paper				
10	Dr RB; Edited and drafted sections of the paper pertaining to microbiological assays				
11	Dr KC; Sample collection, paper edits				
12	Dr CE; Sample collection, paper edits				
13	Dr PF; Sample collection, paper edits				
14 15	Dr CF; Sample collection, paper edits				
16	Dr EH; Sample collection, paper edits				
17					
18	Dr GK; Enlisted Groups 1 and 2 for participation, paper edits				
19	Dr SL; Sample collection, paper edits				
20	Dr AM; Sample collection, paper edits				
21	Dr EM; Sample collection, paper edits				
22	Dr DO'S; Sample collection, paper edits				
23	Dr GO'S; Enlisted Groups 1 and 2 for participation, paper edits				
24	Professor JE; Edits to paper				
25	DS; Validated and performed the Abbott assay for all these samples				
26	CD; validated all the SARS-CoV-2 assays listed and personally performed many of				
27	the assays from March and April				
28					
29	JB; Personally performed many of the assays from March and April				
30	Professor MP; Study concept and design, protocol development. Finalised aspects of				
31	paper pertaining to microbiology				
32	Professor JG; Study concept and design, protocol development. Finalised aspects of				
33	paper pertaining to occupational health				
34	Dr JMcS; Study concept and design, protocol development, substantial edits and input				
35	in all sections of paper				
36 37	Professor LF; Study concept and design, protocol development, substantial input in all				
38	sections of paper				
39	Dr SO'R; Study concept and design, protocol development, substantial edits and input				
40					
41	in all sections of paper				
42	Professor MH; Edited and helped finalise paper				
43	Dr CS; Study concept and design, protocol development and substantial edits and				
44	input to all sections. Finalised paper				
45					
46	All authors approved the final manuscript.				
47					
48					
49					
50					

1		
2 3		
5 4		Bibliography
5		
6	1.	Nguyen LH, Drew DA, Graham MS, et al. Risk of COVID-19 among front-
7		line health-care workers and the general community: a prospective cohort
8		study. Lancet Public Heal. 2020. doi:10.1016/s2468-2667(20)30164-x
9	2.	Health Protection and Surveillance Centre. Report of the Profile of COVID-19
10		Cases in Healthcare Workers in Ireland.; 2020.
11	3.	Faller E, Lapthorne S, Barry R, et al. The Presentation and Diagnosis of the
12	5.	First Known Community- Transmitted Case of SARS-CoV-2 in the Republic
13		2
14		of Ireland. Ir Med J. 2020;113(5):2-6. http://imj.ie/the-presentation-and-
15		diagnosis-of-the-first-known-community-transmitted-case-of-sars-cov-2-in-
16		the-republic-of-ireland/.
17	4.	Van Elslande J, Decru B, Jonckheere S, et al. Antibody response against
18 10		SARS-CoV-2 spike protein and nucleoprotein evaluated by four automated
19 20		immunoassays and three ELISAs. Clin Microbiol Infect. 2020.
20 21		doi:10.1016/j.cmi.2020.07.038
22	5.	Van Elslande J, André E, Van Ranst M, Lagrou K, Vermeersch P.
23		Immunoassays for anti-SARS-CoV-2 antibodies: recent insights. Lancet Infect
24		Dis. 2020. doi:10.1016/s1473-3099(20)30846-x
25	6.	Abbasi J. The Promise and Peril of Antibody Testing for COVID-19. JAMA - J
26	0.	<i>Am Med Assoc.</i> 2020. doi:10.1001/jama.2020.6170
27	7.	Ibarrondo FJ, Fulcher JA, Goodman-Meza D, et al. Rapid Decay of Anti-
28	7.	SARS-CoV-2 Antibodies in Persons with Mild Covid-19. <i>N Engl J Med.</i> 2020.
29		
30	0	doi:10.1056/NEJMc2025179
31	8.	Roche. Roche's COVID-19 antibody test receives FDA Emergency Use
32 33		Authorization and is available in markets accepting the CE mark.
34		https://www.roche.com/dam/jcr:409cf75c-a33a-48f8-8a48-
35		c7d9a71fcfab/en/03052020-rochemediareleae-elecsys-covid19.pdf.
36	9.	Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of
37		asymptomatic SARS-CoV-2 infections. Nat Med. 2020. doi:10.1038/s41591-
38		020-0965-6
39	10.	Muecksch F, Wise H, Batchelor B, et al. Longitudinal analysis of clinical
40		serology assay performance and neutralising antibody levels in COVID19
41		convalescents. medRxiv Prepr Serv Heal Sci. 2020.
42		doi:10.1101/2020.08.05.20169128
43	11.	Bryan A, Pepper G, Wener MH, et al. Performance characteristics of the abbott
44		architect SARS-CoV-2 IgG assay and seroprevalence testing in Idaho.
45		<i>medRxiv</i> . 2020. doi:10.1101/2020.04.27.20082362
46 47	12.	Health Protection and Surveillance centre. <i>Preliminary Report of the Results of</i>
48	12.	
49		the Study to Investigate COVID-19 Infection in People Living in Ireland (
50		SCOPI): A National Seroprevalence Study, June-July. Dublin; 2020.
51		https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/scopi/SCOPI
52		report preliminary results final version.pdf.
53	13.	Ni Bhuachalla C, Murphy N, O'Sullivan M, et al. COVID-19: The First 100
54		Days in the South of Ireland. Ir Med J. 2020;113(9):185. http://imj.ie/covid-19-
55		the-first-100-days-in-the-south-of-ireland/.
56	14.	Garcia-Basteiro AL, Moncunill G, Tortajada M, et al. Seroprevalence of
57		antibodies against SARS-CoV-2 among health care workers in a large Spanish
58		reference hospital. Nat Commun. 2020. doi:10.1038/s41467-020-17318-x
59	15.	Self WH, Tenforde MW, Stubblefield WB, et al. Seroprevalence of SARS-
60		,

	CoV-2 Among Frontline Health Care Personnel in a Multistate Hospital Network — 13 Academic Medical Centers, April–June 2020. <i>MMWR Morb</i>
	Mortal Wkly Rep. 2020. doi:10.15585/mmwr.mm6935e2
16.	Korth J, Wilde B, Dolff S, et al. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. <i>J Clin Virol.</i> 2020. doi:10.1016/j.jcv.2020.104437
17.	Stubblefield WB, Talbot HK, Feldstein LR, et al. Seroprevalence of SARS- CoV-2 Among Frontline Healthcare Personnel During the First Month of Caring for Patients With COVID-19—Nashville, Tennessee. <i>Clin Infect Dis.</i> 2020. doi:10.1093/cid/ciaa936
18.	Rudberg A-S, Havervall S, Manberg A, et al. SARS-CoV-2 exposure, symptoms and seroprevalence in health care workers. <i>medRxiv</i> . 2020. doi:10.1101/2020.06.22.20137646
19.	Steensels D, Oris E, Coninx L, et al. Hospital-Wide SARS-CoV-2 Antibody Screening in 3056 Staff in a Tertiary Center in Belgium. <i>JAMA - J Am Med</i> <i>Assoc.</i> 2020. doi:10.1001/jama.2020.11160
20.	Moscola J, Sembajwe G, Jarrett M, et al. Prevalence of SARS-CoV-2 Antibodies in Health Care Personnel in the New York City Area. <i>JAMA - J Am</i> <i>Med Assoc</i> . 2020. doi:10.1001/jama.2020.14765
21.	He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. <i>J Med Virol</i> . 2020. doi:10.1002/jmv.26326
22.	Bedford J, Enria D, Giesecke J, et al. COVID-19: towards controlling of a pandemic. <i>Lancet</i> . 2020. doi:10.1016/S0140-6736(20)30673-5
23.	Morcuende M, Guglielminotti J, Landau R. Anesthesiologists' and intensive care providers' exposure to COVID-19 infection in a new york city academic center: A prospective cohort study assessing symptoms and COVID-19 antibody testing. <i>Anesth Analg.</i> 2020. doi:10.1213/ANE.000000000005056
24.	Seow J, Graham C, Merrick B, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. <i>Nat Microbiol</i> . 2020. doi:10.1038/s41564-020-00813-8

Characteristic	Total n = 503	Group 1 ^a n = 99	Group 2 ^b n = 106	Group 3 ^c n = 91	Group 4 ^d n = 100	Group 5 n = 107
Gender		n <i>))</i>	<u>n 100</u>			
Male	115 (22.9)	24 (24.2)	20 (18.9)	26 (28.6)	29 (29.0)	16 (15.0)
Female	388 (77.1)	75 (75.8)	86 (81.1)	65 (71.4)	71 (71.0)	91 (85.0)
Age						/
Range in years	20-65	20-65	22-64	21-61	20-56	21-62
Interquartile range	29.5-47.0	31.0-	30.0-46.0	28.8-48.0	28.0-42.0	30.0-47.0
20-29 years	125 (24.9)	49.0	25 (23.6)	24 (26.4)	32 (32.0)	24 (22.4)
30-39 years	164 (32.6)	20 (20.2)	41 (38.7)	29 (31.9)	33 (33.0)	34 (31.8)
40-49 years	122 (24.3)	27 (27.3)	24 (22.6)	19 (20.9)	23 (23.0)	27 (25.2)
50-59 years	80 (15.9)	30 (30.3)	14 (13.2)	17 (18.7)	12 (12.0)	21 (19.6)
60-69 years	9 (1.8)	16 (16.2)	1 (0.9)	1 (1.1)	0 (0.0)	1 (0.9)
		6 (6.1)				
Occupation						
Medical	176 (35.0)	18 (18.2)	29 (27.4)	38 (41.8)	55 (55.0)	36 (33.6
Nursing	210 (41.7)	43 (43.4)	55 (51.9)	32 (35.2)	29 (29.0)	51 (47.7
Healthcare assistant	27 (5.4)	11 (11.1)	7 (6.6)	3 (3.3)	4 (4.0)	2 (1.9)
Physiotherapy	15 (3.0)	5 (5.1)	1 (0.9)	5 (5.5)	3 (3.0)	1 (0.9)
Pharmacy	17 (3.4)	6 (6.1)	6 (5.7)	4 (3.8)	1 (1.0)	0 (0.0)
Other allied health professional	11 (2.2)	3 (3.0)	2 (1.9)	3 (3.3)	0 (0.0)	3 (2.8)
Administrative	12 (2.4)	4 (4.0)	1 (0.9)	1 (1.1)	0 (0.0)	6 (5.6)
Auxiliary staff	23 (4.6)	9 (9.1)	2 (1.9)	3 (3.3)	6 (6.0)	3 (2.8)
Other/not documented	12 (2.2)	0 (0.0)	3 (2.8)	2 (2.2)	2 (2.0)	5 (4.7)
Comorbidity	20 (5.0)	2 (2 0)	12 (10.2)		$ (\boldsymbol{\zeta}, \boldsymbol{\Omega}) $	2
Smoker	29 (5.8)	3(3.0)	13 (12.3)	5 (5.5)	5(5.0)	3(2.8)
Ex-smoker	81 (16.1)	32(32.3)	14 (13.2)	11(12.1)	15(15.0)	9(8.4)
Hypertension	30(6.0)	8 (8.1)	5(4.7)	5(5.5)	5(5.0)	7 (6.5)
COPD ^a	5 (1.0) 70 (13.9)	1(1.0)	3(2.8)	0 (0.0) 8 (8.8)	1(1.0)	0(0.0)
Asthma Disbatas mallitus	10 (13.9)	14(14.1) 0(0.0)	14(13.2)	8 (8.8) 1 (1.1)	17 (17.0) 2 (2.0)	17(15.9)
Diabetes mellitus Heart disease	· /	0 (0.0) 0 (0.0)	4(3.8)	2(2.2)		3(2.8)
Other metabolic conditions	4 (0.8) 22 (4.4)	0 (0.0) 1 (1.0)	0 (0.0) 8 (7.5)	2 (2.2) 2 (2.2)	1 (1.0) 6 (6.0)	1 (0.9) 5 (4.7)
Chronic kidney disease	1(0.2)	1(1.0) 0(0.0)	8 (7.3) 0 (0.0)	2(2.2) 0(0.0)	0 (0.0) 1 (1.0)	0(0.0)
Chronic liver disease	0(0.2)	0 (0.0)	0 (0.0)	0 (0.0)	0(0.0)	0 (0.0)
Immunosuppressed	9 (1.8)	0 (0.0)	4 (3.8)	0 (0.0)	1 (1.0)	4 (3.7)
Blood disorder	5 (1.0)	0 (0.0)	2 (1.9)	0 (0.0)	1 (1.0)	2(1.9)
Active cancer diagnosis	1 (0.2)	0 (0.0)	0(0.0)	0 (0.0)	0(0.0)	1(0.9)
Neurological condition	7 (1.4)	1 (1.0)	2 (1.9)	2 (2.2)	1 (1.0)	1 (0.9)
None of the above	296 (58.8)	52 (52.5)	61 (57.5)	62 (68.1)	55 (55.0)	66 (61.7
Risk profile by area of work		()	(-,)	(****)	()	
High risk	187 (37.2)	10 (10.1)	43 (40.6)	34 (37.4)	100 (100)	0 (0.0)
Low risk	316 (62.8)	89 (89.9)	63 (59.4)	57 (62.6)	0 (0.0)	107 (100
Institution			()	- ()	- (***)	. (100
Cork University Hospital	469 (93.2)	65 (65.7)	106 (100)	91 (100)	100 (100)	107 (100
Other institution	34 (6.8)	34 (34.3)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)

Table 1: Participant demographics and comorbidities. Data are presented as n (% of total displayed at top of individual columns) unless otherwise stated

^a RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR) ^b Close contacts of persons with COVID-19 infection and who subsequently developed symptoms (virus not detected by RT-PCR on oro/nasopharyngeal swab)

^c Close contacts of COVID-19 cases and who remained asymptomatic

^dHCWs working in areas determined as high risk clinical areas

^eHCWs working in areas determined as low risk clinical areas

^fChronic obstructive pulmonary disease

Study Group	Total	IgG positive
Group 1 ^a	99	72 (72.7)
Group 2 ^b	106	2 (1.9)
Group 3 ^c	91	1 (1.1)
Group 4 ^d	100	1 (1.0)
Group 5 ^e	107	2 (1.9)
Total	503	78 (15.5)

Table 2: SARS-CoV-2 IgG seropositivity by study group. Data are presented as n (%), or total in first column.

^a RT-PCR confirmed COVID-19 infection (>1 month post positive RT-PCR) ^b Close contacts of persons with COVID-19 infection and who subsequently developed symptoms (virus not detected by RT-PCR on oro/nasopharyngeal swab)

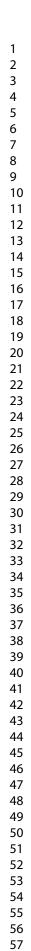
^c Close contacts of COVID-19 cases and who remained asymptomatic

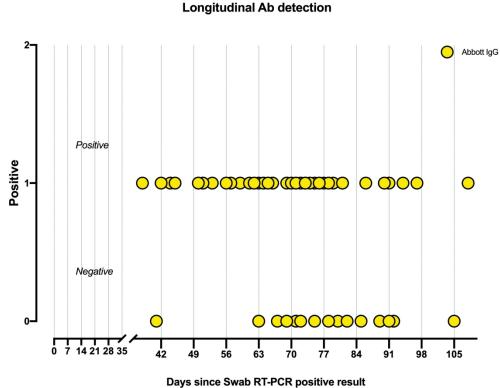
^dHCWs working in areas determined as high risk clinical areas

^eHCWs working in areas determined as low risk clinical areas

Figure Legend

Figure 1: Group 1 longitudinal SARS-CoV-2 IgG detection since date of positive RT-PCR. n=99


to peer terien ony


Acknowledgements

We would like to acknowledge and thank the staff of CUH and affiliated hospitals in the South/Southwest hospital group who participated in this study. We would also like to thank the Health Research Board (HRB) Clinical Research Facility, Cork for the resources and effort contributed towards this study. In particular Jennifer Connolly, Niamh Kelly, Maeve Kelsey and Lisa McSweeney.

For peer terien only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

197x157mm (300 x 300 DPI)

Appendix 1	
Demographic data	
Participant study Code (to be filled in by researchers): Date:	
Age	
Gender	
Healthcare occupation	
Healthcare location e.g. ED, ward	
COVID-19 contact risk	
Weight	
Height	
Participant co-morbidities; please tick	Yes 🗆
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19	Yes 🗆
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19	
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker	Yes 🗆
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker	Yes □ Yes □
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure	Yes □ Yes □ Yes □
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes	Yes Yes Yes Yes
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma	Yes Yes Yes Yes Yes Yes
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have heart disease (for example: angina/previous heart	Yes
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid	Yes
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease)	Yes
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have immunosupression (from medications like chemotherapy or	Yes
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have Chronic Liver Disease I have immunosupression (from medications like chemotherapy or biological agents, or from infection)	Yes
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have Chronic Liver Disease I have immunosupression (from medications like chemotherapy or biological agents, or from infection) I have a blood disorder (such as Leukaemia, Haemophilia etc)	Yes Yes
Participant co-morbidities; please tick I have already had to stay overnight in a hospital because of COVID-19 I am a smoker I am an ex-smoker I have high blood pressure I have COPD/emphysema/bronchitis I have asthma I have diabetes I have diabetes I have heart disease (for example: angina/previous heart attack/stents/heart bypass surgery/heart failure) I have other metabolic conditions apart from diabetes (such as thyroid disease) I have Chronic Kidney Disease I have Chronic Liver Disease I have immunosupression (from medications like chemotherapy or biological agents, or from infection)	Yes

| Name (Block Capitals)

| Participant Signature

| Date

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title	1
		or the abstract	
		(b) Provide in the abstract an informative and balanced summary of	3
		what was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation 5	
Objectives	3	being reported State specific objectives, including any prespecified hypotheses	5
	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	6
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the	
		rationale for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources	
		and methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	Not
		number of exposed and unexposed	applicable
		Case-control study—For matched studies, give matching criteria and	
		the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	6-7
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	6-7
measurement	Ū.	methods of assessment (measurement). Describe comparability of	
mousurement		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Not
Dias	7	Describe any enorts to address potential sources of bias	applicable
Study size	10	Explain how the study size was arrived at	Not
		r · · · · · · · · · · · · · · · · · · ·	applicable
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	6-7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	6-7
		(c) Explain how missing data were addressed	8
		(d) Cohort study—If applicable, explain how loss to follow-up was	Not
		addressed	applicable
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
			1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	taking account of sampling strategy	
	(\underline{e}) Describe any sensitivity analyses	Not applicab
Continued on next page		,

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
• •
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6-7
		eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	
		(c) Consider use of a flow diagram	Not
			applical
	Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)
data		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	8-9
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	8-9
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over	Not
		time	applical
		Case-control study—Report numbers in each exposure category, or summary	8-9
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	Not
			applica
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	8-9
		and their precision (eg, 95% confidence interval). Make clear which confounders	
		were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8-9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for	Not
		a meaningful time period	applical
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	8-9
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10-11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	10-11
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-11
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10-11
Other informatio	n		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	16
		applicable, for the original study on which the present article is based	

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.