
Sensors 2011, 11, 10522-10533; doi:10.3390/s111110522 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Effect of Inductive Coil Shape on Sensing Performance of 
Linear Displacement Sensor Using Thin Inductive Coil and 
Pattern Guide 

Norhisam Misron 1,*, Loo Qian Ying 1, Raja Nor Firdaus 1, Norrimah Abdullah 2,  

Nashiren Farzilah Mailah 1 and Hiroyuki Wakiwaka 3  

1 Electrical and Electronic Engineering Department, Faculty of Engineering, Universiti Putra 

Malaysia, 43400 Serdang, Malaysia; E-Mails: looqian@gmail.com (L.Q.Y.);  

kashfi_@hotmail.com (R.N.F.); nashiren@eng.upm.edu.my (N.F.M.) 
2 Malaysian France Institute, Universiti Kuala Lumpur, Section 14, Jln. Teras Jernang, 43650 Bandar 

Baru Bangi, Malaysia; E-Mail: norrimah@mfi.unikl.edu.my  
3 Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan;  

E-Mail: wakiwak@shinshu-u.ac.jp  

* Author to whom correspondence should be addressed; E-Mail: norhisam@eng.upm.edu.my;  

Tel.: +60-3-8946-6299; Fax: +60-3-8946-6323. 

Received: 27 September 2011; in revised form: 25 October 2011 / Accepted: 25 October 2011 /  

Published: 3 November 2011 

 

Abstract: This paper discusses the effect of inductive coil shape on the sensing 

performance of a linear displacement sensor. The linear displacement sensor consists of a 

thin type inductive coil with a thin pattern guide, thus being suitable for tiny space 

applications. The position can be detected by measuring the inductance of the inductive 

coil. At each position due to the change in inductive coil area facing the pattern guide the 

value of inductance is different. Therefore, the objective of this research is to study various 

inductive coil pattern shapes and to propose the pattern that can achieve good sensing 

performance. Various shapes of meander, triangular type meander, square and circle shape 

with different turn number of inductive coils are examined in this study. The inductance is 

measured with the sensor sensitivity and linearity as a performance evaluation parameter of 

the sensor. In conclusion, each inductive coil shape has its own advantages and 

disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a 

low linearity response. Meanwhile, the square shape inductive coil has a medium 

sensitivity with higher linearity. 
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1. Introduction 

In modern industrial production processes the actual displacement of fast moving objects often 

needs to be detected and is ideally done without the use of any mechanical contact [1]. A variety of 

suitable sensors are available that can provide an output signal (voltage or current) proportional to the 

displacement of target and sensor. Magnetic sensor and optical sensor are the most commonly used 

sensors in industrial applications. In some robust working environments, the thin displacement sensor 

type is required due to the limited space in the system and harsh environment. For this type of 

application, the magnetic base detection sensor is suitable since it has no contact between the sensor 

head and sensor guide. For example, Ong et al. have studied in details the resonance frequency which 

can be applied for various kinds of detection using magnetic based sensors [2-4]. Meanwhile, optical 

sensors are not suitable since they are highly sensitive to the working environment, even though it 

provides good accuracy. There are many types of magnetic based displacement sensor that are being 

marketed and are researched recently. Some researchers are based on the capacitive concept for linear 

displacement sensor [5-7], and some of them use the concept of magnetostrictive linear position  

sensor [8,9]. Magnetostrictive delay line (MDL) technique and the eddy currents induced on a soft 

magnetic material also are introduced in [10,11]. 

In the magnetic based displacement sensor area, many researchers use planar versions with meander 

coils to detect planar displacements. The capacitive planar displacement sensor is designed and 

fabricated for measurement for a small displacement with very high accuracy. This sensor is a kind of 

linear encoder with an array of microelectrodes made by micromachining processes. The two patterned 

electrodes on the sensor substrates are assembled facing each other after being coated with a thin 

dielectric film. The inductive planar sensor is developed using printed circuit board (PCB) technology 

due to the low cost and detect even small displacements of less than 0.5 mm. Similarly, planar sensor 

structures are realized in either thick or thin film PCB technology [12-14]. In a planar displacement 

inductive sensor, the sensor is composed of two sensor elements. The first meander coil sensor element 

detects the vertical displacement while the second meander coil element detects the horizontal 

displacement. Combining the information from these two sensor elements, it is possible to determine 

displacement in a plane [15]. However, since the detection of the displacement depends on both 

meander coil elements the overall detection is limited to small displacements and is not suitable for 

applications that requires large displacements, especially of the single-axis motion sensory type.  

A similar research regarding linear displacement sensor using a meander coil and pattern guide 

using an inductive concept is introduced in [16-19]. This kind of linear displacement sensor is almost 

identical to the planar type displacement sensor. However, only a single meander coil element is used 

whereas a solid structure named pattern guide is used as the second sensor element. In [16], the 

mathematical equation of the sensor output voltage is derived using a magnetic coupling method. In 

addition, the effect of input frequency on the output voltage is analyzed and compared with the 

measurement data.  
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In this paper a thin type inductive coil with a thin pattern guide is used as a linear displacement 

sensor. The position of the linear displacement sensor can be detected by measuring the coil 

inductance of the inductive coil. This linear displacement sensor exhibits superior advantages 

compared to other magnetic based sensor types rather than the optical based sensor type. Without a 

mechanical contact, it is good for usage with a longer lifetime and higher reliability. It has a simple 

structure due to its compact size and smaller thickness. These features allow the sensor to be embedded 

into the systems such as inside a linear motor for displacement applications. However, the sensitivity and 

linearity of this type of sensor can be further enhanced to achieve good sensory performance. One 

method of improvement is on the study of various inductive coil shapes and to propose a sensor 

structure that exhibits good accuracy that consequently reduces the signal processing time.  

This paper presents the effect of inductive coil shape on the sensing performance of the linear 

displacement sensor. In this research, inductive coils with different coil turn numbers and various 

shapes such as meander shape, rectangular type meander shape, square shape and circle shape were 

fabricated and tested for performance evaluation. The paper proposes the possible pattern of inductive 

coil shape that be implemented in the linear displacement sensor using a meander coil and pattern 

guide.  

2. Structure and Basic Principle of Linear Displacement Sensor 

Figure 1 shows the structure of a thin type linear displacement sensor. The sensor consists of a thin 

type inductive coil with a thin pattern guide. The inductive coil is made from printed circuit boards 

with a very tiny (35 µm) copper layer. The printing circuit board was supplied by Instagraphic 

Products Ltd. The copper layer is then shaped with various inductive coil structures by using the same 

etching process of printed electronic circuit board making. The meander shape of inductive coil is 

represented in Figure 1, but in practical applications any shape can be used as long as the inductance 

value of inductive coil change depends on the positioning of the pattern guide. The pattern guide shape 

is a triangular structure pointing in the sensing direction. This pattern guide is made of ferromagnetic 

material so that a large significant difference on the inductance value occurred when the displacement 

is varied. Such ferromagnetic material is soft iron (SS400) with fine thickness up to 1 mm. With a thin 

inductive coil structure and a simpler pattern guide structure it is suitable for tiny space application 

such as a linear motor displacement sensor. 

Figure 1. Structure of thin type of linear displacement sensor. 

 
For typical industrial applications, the sensor must meet pre-set requirements in terms of reliability, 

ruggedness, measuring range, supply voltage range, output signal and EMC requirements. Optical 
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sensors are one of the choices that are widely used in the modern industry because of their high 

accuracy. However in optical sensors, apart from being not suitable for operation in harsh 

environments, the accuracy decreases for any persistent obstacle in the detecting object. This major 

drawback is addressed with the proposed type of inductive coil based linear displacement sensor as it 

is highly insensitive to environmental influences such as oil, dirt and water.  

This linear displacement sensor can detect the position based on the inductance value of the 

inductive coil in each position. At each position this value is different depending on the inductive coil 

area that faces the pattern guide effective area, as shown in Figure 2. The inductive effective area 

decreases as the inductive coil moves to the right side. It can be seen in Figure 2(a) that the effective 

area of the inductive coil is bigger compared to the position presented in Figure 2(b). The inductance 

value of an inductive coil is given in Equation (1), where the inductance value depends on the effective 

area A as discussed in [16]: 

AnlAnlL ccr   0  (1)

where ur is relative permeability of iron, μ0 is relative permeability of air (4 × 10−7), n is number of 

turns of the coil, lc is length of the coil and A is the effective cross sectional area of the coil. In the 

explanation of Figure 2, the meander type inductance coil type is used, but the inductance coil can be 

of any shape. Different inductive coil shapes give different sensing performance sensitivity and 

linearity characteristics. The study of the effect of shape on the sensing performance is the core 

objective of this paper: 

Figure 2. Comparison of inductance effective area at difference position of inductive coil. 

 

The system controller of this displacement sensor is simple and is used to measure the inductance 

value of inductive coil and translate it to the displacement. As the controller continuously injects a high 

frequency sinusoidal voltage into the inductive coil, the current and the phase difference between 
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voltage and current is measured to derive the inductance value at each position. Therefore, the 

frequency value and injected voltage are also important parameters for the sensor system. 

3. Measurement and Evaluation of Various Shape of Inductive Coil 

Figure 3 shows the various inductive coil shapes used in this study. Each type of inductive coil has 

the same external 10 mm × 10 mm area with 0.3 mm of coil width. The spaces between coils are 

distributed evenly and the distance is determined by coil turn numbers as long it is inside the fixed 

external area.  

Figure 3. Various inductive coil shapes. 

 

A, B, C, M and N are of the meander shape inductive type with both vertical and horizontal position 

settings with different coil turn numbers. Type A, B and C are positioned in a vertical position and 

Type M and N are positioned along a horizontal axis. Type A and M have 10 coil turns, Type B and N 

have 16 coils and Type C has 20 coils. D, E, F, J, K and L are of meander inductive triangular coil 

type. Type D, E and F are set vertically and Type J, K and L are set in the horizontal position. Type D 

and J have 12 coils, Type E and K have 18 coils and Type F and L has 22 coils. Type G and H 

inductive coils are of square shape with 5 and 9 coils, respectively. Type I is circle shape inductive coil 

with 5 coils.  
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The inductance measurement at each position is obtained with the test bench set-up as shown in 

Figure 4. A servo motor with encoder connected to the ball screw of linear table is used to set the 

accurate position. The pattern guide is located at the top of linear table so that the position of the 

pattern guide can be controlled by the servo motor. In this experimental test bench setup the moving 

part is the pattern guide however in actual applications the inductive coil is the moving part. The 

inductive coil is held and fixed by jig stand on the top of pattern guide. The gap between the inductive 

coil and the pattern guide is 0.5 mm and it is set with a shim plate of 0.5 mm thickness. 

Figure 4. Measurement method of inductance at each position. 

 

The inductance values of the inductive coil measured for every 10.0 mm increment of pattern guide 

are measured for both forward and reverse direction using a LCR meter (LCR-819, GW INSTEK) 

where the frequency and the input voltage can be adjusted. The pattern guide moves up to the 

maximum displacement of 100 mm. Sensitivity and linearity of the sensor are used to evaluate the 

performance of inductive coils. Sensitivity is the ratio of a small change in electrical signal to a small 

change in physical signal and linearity is the maximum deviation of the sensor output from a Best Fit 

Straight Line (BFSL). A high linearity of the sensor performance reduces the signal processing time of 

a sensor system. The other sensor evaluation performance parameter such as noise, resolution, 

repeatability, hysteresis, accuracy, and dynamic range are discussed and examined as the sensor is 

connected to the complete system. 

4. Inductance Characteristic Analysis of Various Shape of Inductive Coil 

4.1. Effect of Operation Frequency 

Figure 5 shows the inductance characteristics as the operational frequency varies from 5 kHz to  

50 kHz for the meander shape inductive coil. The inductance value is inconsistent for less than 1 kHz 

and hence not examined. Since the same inductive coil is used for different operational frequencies, the 

only effect is on the sensor sensitivity is used as the same performance value of linearity is exhibited. 
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Figure 5. Effect of frequency on inductance characteristic for meander shape inductive coil 

(Vin = 1 V) (a) f = 5 kHz; (b) f = 10 kHz; (c) f = 15 kHz; (d) f = 20 kHz; (e) f = 25 kHz;  

(f) f = 50 kHz. 

 

For the measurement of operation frequencies of 5 kHz and above, the inductance value decreases 

as the inductive coil position moves from 0 cm to 10 cm for all operational frequency ranges. The 

inductance values at the starting position of 0 cm decreases when the frequency is high. A big drop of 

1.3 mH in the inductance value at the starting position can be seen between the operating frequencies 

of 5 kHz and 10 kHz. This big inductance value drop is because of the iron losses in the pattern guide 

due to the eddy current effect. For the other operational frequency ranges, the inductance value drop at 

the starting position is reasonably small. 

The sensor sensitivity varies inversely with respect to the operation frequency. The sensor 

sensitivity for operation frequencies of 5 kHz and 10 kHz are 36 H/cm and 6.5 H/cm respectively. 

The sensor sensitivity for 5 kHz is 5.5 times higher than at the operational frequency 10 kHz. For 

operation frequencies above 10 kHz, the sensor sensitivity is below 5 H/ cm, which is very small. 

4.2. Effect of Input Voltage 

Figure 6 shows the effect of input voltage to the inductance characteristics of the meander shape 

inductive coil at an operational frequency of 5 kHz. The evaluation for the effect of input voltage also 

uses the same consideration as that of evaluation of operational frequency. The input voltage is varied 

for values of 0.2 V, 0.5 V and 1.0 V. For the input voltages of 0.2 V and 0.5 V the inductance value 

shows almost the same characteristics and sensitivity is better when the input voltage is 1.0 V. The 

sensitivity for 1.0 V is 37 H/cm, which is 54% higher than the sensitivity for 0.5 V input voltage. 

Based on the above considerations on the effect of operation frequency and input voltage 5 kHz at  

1.0 V is used to examine the effect of the inductive coil shape on the performance of the linear 

displacement sensor. 
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Figure 6. Effect of input voltage to the inductance characteristic for the meander shape 

inductive coil (f = 5 kHz) (a) Vin = 0.2 V (b) Vin =0.5 V (c) Vin = 1.0 V. 

 

4.3. Effect of Inductive Coil Shape 

The characteristics of each type of inductive coil shape are discussed and presented in Figures 7 and 

8. Figure 7 shows the inductance characteristic for various shapes of inductive coil and Figure 8 shows 

the sensitivity and linearity of various shapes of inductive coil. Type A, B and C have the same 

inductive coil shape but with different coil turn numbers. The average inductance value for Type A, B 

and C are 1.3 mH, 30 mH and 45 mH, respectively. The increase average inductance value is due to 

the larger coil turn numbers in Type B and C. The sensor sensitivity for Type B is 2.15 mH/cm, which 

is bigger compared to Type A and C, even though Type C has a high average inductance value. The 

sensor linearity for this type inductive coil shape is more than 90% for Type A, B and C, whereas the 

Type C shows a better sensor linearity value of 94%. 

Figure 7. Inductance characteristic for various shapes of inductive coil (f = 5 kHz, Vin = 1 V) 

(a) Type A; (b) Type B; (c) Type C; (d) Type D; (e) Type E; (f) Type F; (g) Type G;  

(h) Type H; (i) Type I; (j) Type J; (k) Type K; (l) Type L; (m) Type M; (n) Type N. 
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Figure 7. Cont.  

 
 

Figure 8. The sensitivity and linearity of various shapes of inductive coil (a) Various shape 

inductive coil sensitivity; (b) Various shape inductive coil linearity. 

 
 

In the triangular type meander coils the average inductance value for Type D, E and F are 0.37 mH,  

0.75 mH and 2.5 mH, respectively. The average inductance is smaller compared to the meander shape 

presented before, but it shows the same characteristic with meander shape, where the average 
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inductance value is increasing due to the increase of coil numbers, but the increase of average 

inductance value is smaller compared to the meander shape. The sensor sensitivity for this type of 

inductive coils is smaller, with a value of less than 0.1 mH/cm. The linearity for Type D and F is about 

87% and for Type E the linearity is 92%.  

The square shape type G and H coils show a big difference in average inductance value, sensitivity 

and linearity with the same shape. The average inductance value for Type G is 1.3 mH and 38 mH for 

Type H. The sensitivity for type H is 2.8 mH/cm with 95%linearity when compared to Type G with 

sensitivity 0.24 mH/cm and 71% linearity. This big difference in average inductance value is due to the 

difference on coil turn numbers with Type G having 5 turns and Type H having 9 turns. It can be 

inferred that the turn number has a big effect on sensor performance for square shape inductive coils. 

Meanwhile, Type I has the highest sensor sensitivity of 3.4 mH/cm compared to other types of 

inductive coil used for this study, but the linearity for this shape is about 78%, which is less than the 

square shape inductive coils.  

In order to study the effect of horizontal and vertical position, the comparison of triangular type 

meander shape coils of Type D, E, F and Type J, K, L is performed. The sensor sensitivity and 

linearity show some improvement in Type J, K and L. For example, Type L has 0.3 mH/cm sensitivity 

with 94% linearity, but Type F only has 0.1 mH/cm sensitivity and 87% linearity. This sensitivity 

improvement is still low compared to other inductive coil shapes. The comparison has also been made 

for meander shape inductive coil Type A, B and Type M, N. The comparisons on sensitivity for both 

types show similar results. The highest linearity of 97% is exhibited by Type M.  

From the above discussion, the inductive coil with square shape gives a very good sensor 

performance effect. The sensitivity for this shape is 2.8 mH/cm with the linearity reaching up to 95%. 

The circle coil shape produces the highest sensitivity of 3.4 mH/cm, with the linearity being less than 

80%. The triangular type meander coil shape has low sensitivity of less than 0.1 mH/cm, although the 

coil numbers are increased. The sensor performance for the meander coil shape can be improved by 

increasing the coil numbers, however large coil numbers can reduce the sensor sensitivity.  

Sensor setting position does not have a high impact on the sensor performance whereas the sensor 

sensitivity for the triangular type meander shape coil showed some improvement, but still small 

compared to the square and circle shaped inductive coils. The meander shape also does not show any 

significant improvement in linearity even though the sensitivity exhibits almost the same result.  

5. Conclusions  

In this paper, the basic principle and the structure of the linear displacement sensor using a thin 

inductive coil and pattern guide is discussed. The effect of several inductive coil shapes such as the 

meander shape, rectangular type meander shape, square shape and circle shape are examined in this 

research study. All these various inductive coil shapes and coil turn numbers are fabricated and tested 

for evaluation of sensitivity and linearity performance. The inductive coil with square shape gives very 

good sensor performance effects, with sensitivity of 2.8 mH/cm and linearity reaching up to 95%. The 

circle coil shape produces the highest sensitivity in this study, with 3.4 mH/cm sensitivity, but the 

linearity is less than 80%. Even with the increase of coil numbers the triangular type meander coil 

shape has low sensitivity of less than 0.1 mH/cm. For the meander coil shape, the sensor performance 
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can be improved by increasing the coil numbers, but at the same time we have to consider that large 

coil numbers can reduce the sensor sensitivity. It is inferred that the circle shape inductive coil can 

produce high sensitivity but with lower linearity values. Meanwhile, square shape inductive coils 

exhibit medium sensitivity with higher linearity characteristics. Therefore, a suitable inductive coil 

pattern needs to be appropriately selected based on the required application. The calculation of 

inductance would be presented in future work. 
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