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As the sequencing of healthy and disease genomes becomes more commonplace, detailed annotation provides interpretation
for individual variation responsible for normal and disease phenotypes. Current approaches focus on direct changes in
protein coding genes, particularly nonsynonymous mutations that directly affect the gene product. However, most in-
dividual variation occurs outside of genes and, indeed, most markers generated from genome-wide association studies
(GWAS) identify variants outside of coding segments. Identification of potential regulatory changes that perturb these sites
will lead to a better localization of truly functional variants and interpretation of their effects. We have developed a novel
approach and database, RegulomeDB, which guides interpretation of regulatory variants in the human genome. Reg-
ulomeDB includes high-throughput, experimental data sets from ENCODE and other sources, as well as computational
predictions and manual annotations to identify putative regulatory potential and identify functional variants. These data
sources are combined into a powerful tool that scores variants to help separate functional variants from a large pool and
provides a small set of putative sites with testable hypotheses as to their function. We demonstrate the applicability of this
tool to the annotation of noncoding variants from 69 full sequenced genomes as well as that of a personal genome, where
thousands of functionally associated variants were identified. Moreover, we demonstrate a GWAS where the database is able
to quickly identify the known associated functional variant and provide a hypothesis as to its function. Overall, we expect
this approach and resource to be valuable for the annotation of human genome sequences.

[Supplemental material is available for this article.]

The increasing number of sequenced human genomes is providing

a catalog of the large number of individual variations present in the

human genome (The International HapMap Consortium 2005,

2007; The 1000 Genomes Project Consortium 2010). Many of

these variants are expected to be responsible for normal and dis-

ease phenotypes. Similarly, large, genome-wide association studies

(GWAS) continue to map diseases to associated genomic regions

from large cohorts of individuals (Hindorff et al. 2012). Initial in-

terpretation of results generated by both of these approaches has

been limited to DNA regions that cause disruption of gene func-

tion through coding sequence changes typically identified using

an application such as PolyPhen-2 (Adzhubei et al. 2010). How-

ever, ;95% of known variants within sequenced genomes and

88% of those variants from GWAS studies fall outside of coding

regions and have been difficult to interpret (Hindorff et al. 2009).

Both large consortia and individual labs are generating a signifi-

cant amount of regulatory information that is providing a better in-

terpretation of the noncoding portions of the genome. The ENCODE

Project, in particular, has mapped open chromatin and protein bind-

ing regions for large numbers of factors across many cell types, and

many individual labs are generating similar types of data (The

ENCODE Project Consortium 2012). These data can be utilized

to provide a powerful resource to help demonstrate functional

consequences of variants outside of genic regions. However, these

results are often scattered in a variety of online resources, and their

use to annotate personal genomes has not been previously described.

Here, we provide both a database, RegulomeDB, which in-

tegrates a large collection of regulatory information, and an

approach that enables the functional assignment of regulatory

information onto any set of variants derived from genomic se-

quencing or GWAS studies. These efforts demonstrate which var-

iants have potential or demonstrated regulatory functions and

through which mechanisms those functions might work. To gen-

erate these functional assignments, we make use of large sets of

data including the following: (1) Manually curated regions that

have been experimentally characterized to be involved in regula-

tion; (2) ChIP-seq information for a variety of important regulatory

factors across a diverse set of cell types; (3) chromatin state in-

formation across over 100 cell types; and (4) expression quantita-

tive trait loci (eQTL) information allowing the association of distal

sites with gene promoters.

In addition to the experimentally measured evidence, com-

putational processing and machine learning can improve our

predictive capabilities for regulatory variants. To further assist

in functional annotation, we provide computational predictions

through the following methods: (1) DNase footprinting to dem-

onstrate exact protein binding sites; and (2) potential binding

motif alterations of nucleotide variants.

To demonstrate the utility of our approach in annotating

genomes for regulatory information, we describe the results from

analysis of 69 fully sequenced genomes recently determined by

Complete Genomics as well as one deeply sequenced genome from
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the HapMap project. Thousands of variant regions can be assigned

to potential regulatory functions, and we demonstrate that there is

likely as much variation affecting regulatory function as that af-

fecting gene function. In addition, we are able to reproduce the

results from a recent GWAS study showing a single nucleotide

variant (SNV) as a likely causative variant in lupus (Adrianto et al.

2011). Furthermore, we are able to provide a testable hypothesis for

this SNV by comparing the same region in our database. Overall,

we demonstrate that much variation is likely to affect regulatory

function and that our approach and RegulomeDB will be powerful

tools for assigning information to genomic variants discovered in

projects that sequence personal genomes and map the genetic

basis of human disease.

Results
Our overall approach is to align variants with regulatory infor-

mation from a variety of sources. To do this, we first developed

a comprehensive database which can help assign functional roles

to variants. We then use this database to identify functional variants

in the genomes of 69 normal individuals and identify regulatory

variants associated with a GWAS region. We further present an

online tool which rapidly annotates and classifies variants as well

as a queue system for annotating entire personal genomes.

Data sources for RegulomeDB

We first created an integrated database, RegulomeDB, which pro-

vides a flexible platform for the addition of various data sources.

We currently include all available ENCODE transcription factor

(TF) ChIP-seq, histone ChIP-seq, FAIRE, and DNase I hypersensi-

tive site data (The ENCODE Project Consortium 2012). In addition,

we have included transcription factor ChIP-seq data available from

the NCBI Sequence Read Archive (Hollenhorst et al. 2009; Jolma

et al. 2010; Verzi et al. 2010; Wei et al. 2010; Hu et al. 2011; Lo et al.

2011; Novershtern et al. 2011; Palii et al. 2011; Yu et al. 2011). We

also include a large collection of eQTL (Myers et al. 2007; Stranger

et al. 2007; Schadt et al. 2008; Veyrieras et al. 2008; Dimas et al.

2009; Gibbs et al. 2010; Montgomery et al. 2010; Pickrell et al.

2010; Zeller et al. 2010), dsQTL (Degner et al. 2012), and ChIP-exo

(Rhee and Pugh 2011) data. A total of 962 experimental data sets

are included, covering over 100 tissues and cells lines and repre-

senting nearly 60 million annotations (Table 1).

We extended the relevant biological assays with two com-

putational predictors. First, we predict TF binding in a cell-type–

specific manner by predicting DNase footprints from the DNase-

seq data sets (Boyle et al. 2011; Pique-Regi et al. 2011). These results

indicate a specific DNA–protein interaction event and, when

combined with variant information, increase the confidence that a

SNV in this region is functional. Secondly, we scanned the genome

at a reasonable threshold for added positional weight matrices

(PWMs) (Berger et al. 2006, 2008; Matys et al. 2006; Bryne et al.

2008; Badis et al. 2009; Scharer et al. 2009; Wei et al. 2010), which

were further used to intersect with other functional data (see

Methods). For these computational predictions of protein binding,

1158 motifs were considered, which resulted in over 365 million

additional annotations in RegulomeDB.

We supplemented these high-throughput data sources through

manual curation of literature sources. These provide valuable in-

formation from low-throughput but high-quality assays to aid in

assigning function to SNVs. As an initial release, RegulomeDB con-

tains manual curation from 97 papers focused on six loci, resulting in

188 genomic annotations. We have also included 1448 validated

enhancer regions from the VISTA Enhancer Browser (Visel et al.

2007) and 855 SNVs shown to directly affect NFKB and RNA Pol 2

binding in lymphoblastoid cells (Kasowski et al. 2010; Karczewski

et al. 2011).

We refer to the January 1, 2012 release of information with

;425 million entries as RegulomeDB v1.0. RegulomeDB will

continue to be improved through continual manual curation

as well as the automated monitoring of high-throughput data

sources.

Variant classification system

Although the catalog of information is important, its inter-

pretation is even more so. To assist comparison among annota-

tions, we developed a heuristic scoring system based on functional

confidence of a variant. The scoring system represents with in-

creasing confidence that a variant lies in a functional location and

likely results in a functional consequence (i.e., alteration of TF

binding and a gene regulatory effect) (Table 2). As such, we con-

sider variants that are known eQTLs for genes, and thus have been

shown to be associated with expression, as most likely to be sig-

nificant and label these variants as Category 1. However, 58%

of eQTL SNVs are not associated with any other functional

Table 1. Database content

Data type Types Features Genomic coverage (bp)

Transcription factor ChIP-seq (ENCODE) 495 conditions/cell lines 7,721,822 230,795,743
Transcription factor ChIP-seq (non-ENCODE) 32 conditions/cell lines 397,534 140,534,725
Transcription factor ChIP-exo 1 condition 35,161 2,604,066
Histone modifications 284 conditions/cell lines/marks 23, 055, 241 2,805,205,184
DNase I hypersensitive sites 114 conditions/cell lines 20,710,098 614,973,579
FAIRE sites 25 conditions/cell lines 4,816,196 476,386,909
DNase I footprints 50 cell lines 128,266,803 178,722,370
Predicted binding (PWMs) 1158 motifs 239,713,973 1,151,732,122
eQTLs 142,945 SNPs 142,945 142,945
dsQTLs 6069 SNPs 6069 6069
Manual annotations 6 genomic regions 282 11,607
VISTA enhancers 1448 enhancers 1325 1,658,146
Validated SNPs affecting binding 855 SNPs 855 855

Sources of data currently included in RegulomeDB. (Features) Specific entries in the database. (Genomic coverage) Total unique base pairs covered by
each data type.
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annotation and are labeled Category 6. Within Category 1, sub-

categories indicate additional annotations from the most confi-

dent (1a, which has TF binding, a motif for that TF, and a DNase

footprint) to the least confident (1f, which has only TF binding or

a DNase peak).

The additional categories represent analogous annotations to

Category 1 but without eQTL data and, thus, no known direct ef-

fect on binding. Category 2(a–c) demon-

strates direct evidence of binding through

ChIP-seq and DNase with either a matched

PWM to the ChIP-seq factor or a DNase

footprint. Category 3(a–b) is considered

less confident in affecting binding due to a

more incomplete set of evidence. These

sites have ChIP-seq evidence and either a

motif that matches the ChIP-seq data but

no DNase evidence, or DNase evidence

and any other motif. Finally, Categories

4–6 lack evidence of the variant actually

disrupting the site of binding. These

include DNase and ChIP-seq evidence

(Category 4), DNase or ChIP-seq evidence

(Category 5), or any single annotation

not in the above categories (Category 6).

As a verification of the heuristic sys-

tem, we compared the enrichment of

SNVs associated with a GWAS (Supple-

mental Table S1; Hindorff et al. 2009). In

all cases, SNVs in perfect linkage with

GWAS lead SNVs are significantly enriched

for the heuristic categories, and the

level of this enrichment increases in

tandem with higher-confidence cate-

gories. Detailed analysis of the applica-

tion of RegulomeDB to GWAS and the

enrichment of GWAS SNVs in functional

regions is available as an additional ENCODE

companion paper (Schaub et al. 2012).

Regulatory variation across 69 individuals

Access to the deep whole genome sequences

of 69 individuals from Complete Genomics

(Drmanac et al. 2010) allows us to investigate

the average frequency of variants that in-

tersect functional DNA elements. These

genomes collectively contain 19,124,349

SNVs and 3,040,170 insertion/deletions.

The average individual contains 3,870,827

variants, of which ;56.23% fall within any

of our annotations (excluding histones,

which alone cover 99.5% of the SNVs, stan-

dard deviation = 0.005). This count is sub-

stantially higher than those SNVs that affect

protein coding sequences alone (;9%). As

expected, variants intersect multiple regula-

tory annotations. An example is shown in

Figure 1; this variant falls within several reg-

ulatory elements, resides in several genomes,

and has been shown to directly affect binding

of NFKB (Kasowski et al. 2010).

The incidence of variants falling into

each RegulomeDB category is remarkably stable across individuals

particularly when comparing heterozygous and homozygous var-

iant calls. On average, 11.20% of variants fall into ChIP-seq peaks,

21.53% into DNase peaks, 1.29% into eQTLs, 6.15% into foot-

prints, and 39.25% into PWM matches (Supplemental Table S2).

Of significance is the difference in rates of annotations for het-

erozygous and homozygous variant calls (Fig. 2A). In the cases of

Table 2. RegulomeDB variant classification scheme

Category scheme

Category Description

Likely to affect binding and linked to expression of a gene target
1a eQTL + TF binding + matched TF motif + matched DNase footprint + DNase peak
1b eQTL + TF binding + any motif + DNase footprint + DNase peak
1c eQTL + TF binding + matched TF motif + DNase peak
1d eQTL + TF binding + any motif + DNase peak
1e eQTL + TF binding + matched TF motif
1f eQTL + TF binding/DNase peak

Likely to affect binding
2a TF binding + matched TF motif + matched DNase footprint + DNase peak
2b TF binding + any motif + DNase footprint + DNase peak
2c TF binding + matched TF motif + DNase peak

Less likely to affect binding
3a TF binding + any motif + DNase peak
3b TF binding + matched TF motif

Minimal binding evidence
4 TF binding + DNase peak
5 TF binding or DNase peak
6 Motif hit

Lower scores indicate increasing evidence for a variant to be located in a functional region.
Category 1 variants have equivalents in other categories with the additional requirement of eQTL
information.

Figure 1. A SNV (rs9261424) overlapping many regulatory features. (A) This SNV falls within peak
regions for many ChIP-seq factors as well as DNase-seq peaks from multiple cell lines. (B) The same SNV
overlaps a motif match to the NFKB motif and has been shown to alter binding. The signal tracks
represent ChIP-seq peaks of NFKB at the SNV site for three individuals: homozygous to reference allele
(G), heterozygous, and homozygous to alternate allele (C ) (Kasowski et al. 2010).

Boyle et al.
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PWMs, DNase HS sites, FAIRE regions, histone modifications,

DNase footprints, and TF ChIP-seq data, the rate of homozygous

and heterozygous variants compared to the total count of homo-

zygous/heterozygous variants in each is consistently and signifi-

cantly different in that homozygous variants in these regulatory

annotations are significantly less than those of heterozygous var-

iants (paired, two-tailed t-test; P < 5 3 10�15) (Supplemental Table

S2). A genomic background would expect equal fractions of ho-

mozygous and heterozygous variants to be covered by regulatory

features. Thus, these results indicate a purifying selection is oc-

curring in the RegulomeDB annotated regions.

The SNV rate within the variant classification system is also

stable (standard deviations < 0.004). On average, 0.55% of variants

are Category 1, 1.48% Category 2, 1.16% Category 3, 4.44% Cat-

egory 4, 17.96% Category 5, and 30.67% Category 6 (Fig. 2B;

Supplemental Table S3). As expected, the significant enrichment of

the rate of heterozygous and homozygous variants in RegulomeDB

features is also evident in the enrichment of variants in the score

categories of 2–6 (paired, two-tailed t-test; P < 5 3 10�15) (Supple-

mental Table S3). However, Category 1 variants show an opposite

bias, likely due to the lack of rare variants in eQTL studies.

Although several cases of common variants associated with

complex diseases have been identified, there is a growing interest

in the effect of rare variants on common diseases (Manolio et al.

2009). Susceptibility to many complex diseases could be attributed

to multiple rare variants rather than a single causative polymor-

phism. To capture these rare variants, it is necessary to sequence

entire genomes rather than using array-based genotyping. The April

2010 release from the 1000 Genomes Project contains genotype

data from 629 individuals worldwide (The 1000 Genomes Project

Consortium 2010). We use this information to assign global MAFs

(minor allele frequency) to the variants annotated in each of the

categories annotated by RegulomeDB. The variants are classified as

‘‘Rare’’ if the MAF is <1%, ‘‘Less Common’’ if the MAF is between

1 and 5%, and ‘‘Common’’ if the MAF is >5%.

Interestingly, the proportions of rare (;20%), less common

(;30%), and common (;50%) variants show little difference across

each category other than Category 1. Category 1, which requires

eQTL information, has very few rare variants due to the bias in se-

lection of candidates on the arrays used (Supplemental Table S4).

Regulatory annotation of an individual genome

We next determined whether our database can perform a detailed

analysis of the personal genome of a sequenced individual. We

examined the cell line GM12878, a European female, which has

been deeply sequenced as part of the 1000 Genomes Project and is

included in the Complete Genomics samples. This individual is

also a Tier 1 cell line of the ENCODE Project allowing for verifi-

cation of the annotation of its genome. A diploid map of this in-

dividual’s genome has recently been generated, and it has been

mapped with allele-specific expression and allele-specific binding

(Rozowsky et al. 2011).

In order to obtain an overview of the distribution of regula-

tory variants, we annotated the SNVs of GM12878 from Complete

Genomics with RegulomeDB (Fig. 2C,D) and mapped them onto

genes and noncoding regions using the GENCODE v7 gene infor-

mation (available from UCSC Table Browser) (Harrow et al. 2012).

We find that a majority of variants are noncoding, with only

77,214 (2.1%) falling within exons. The coding variants can be

further classified as those likely to cause damaging mutations in

genes as predicted using PolyPhen-2 (Fig. 3; Supplemental Fig. S1;

Adzhubei et al. 2010). In total, 2457 coding variants (0.07%) are

predicted to cause damaging mutations in genes (PolyPhen-2

prediction of probably or possibly damaging). Of these, 626 (0.01%)

are homozygous and likely to affect the gene product of both alleles.

In contrast to functional coding variants, RegulomeDB allows

us to focus on noncoding variants that are likely to directly affect

binding (Category 1 and 2), resulting in 70,216 SNVs (18,842

[0.51%] and 51,374 [1.47%] in Categories 1 and 2, respectively). Of

these, 25,654 (0.69%) are homozygous and likely to affect gene

Figure 2. Incidence of SNVs in features and categories. Average percent count of SNVs in each genomic feature (A) and in each RegulomeDB category
(B). Although the differences between homozygous and heterozygous SNV counts are small, they are nevertheless significant (P < 5 3 10�15). Actual SNV
count in features (C ) and categories for the cell line GM12878 (D).

RegulomeDB
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expression of both alleles. Therefore, many variants are predicted

to affect regulatory elements in noncoding regions, and this figure

is more than 30 times higher than those that are predicted to

disrupt gene function using current methods. However, these

regulatory variants can only be associated with altered expression

levels of genes and may not be as disruptive as the damaging var-

iants in coding regions which may alter or destroy gene products.

By combining heterozygous damaging variants in the coding

regions with associated heterozygous regulatory variants on the

opposite allele (matched to genes by being an eQTL), we find 667

SNVs in possible instances of compound heterozygotes which di-

rectly affect the function of 93 genes. In these situations, binding

site variants could inactivate gene expression in one allele, and a

damaging mutation in the other allele might effectively completely

disrupt gene function, thereby inactivating gene expression by

regulatory/coding region compound heterozygosity. Furthermore,

we find that, of the 40 genes in GM12878 that have heteroallelic

expression and potential damaging mutations, half also have as-

sociated compound heterozygous mutations in a regulatory region

(Supplemental Table S5).

Of these compound heterozygotes with allele specific ex-

pression, rs10895991 is of particular interest as it contains a dam-

aging SNV on the preferentially expressed maternal allele in the

CAPN1 gene and also contains two SNVs which are eQTLs for

this gene and score as Category 1a (likely to affect binding and

linked to expression of a gene target). The CAPN1 gene codes for

a calcium-sensitive cysteine protease present in brain synapses,

the inhibition of which has been shown to be protective against

Alzheimer’s disease (Trinchese et al. 2008). Thus, the CAPN1

gene is likely to be a hypomorph in this individual relative to

others. This demonstrates the power of combining regulatory

information with coding information in annotating personal

genomes.

Application to GWAS

Classifying variants based on the above criteria is also highly in-

formative to genome-wide association studies. We demonstrate

this by repeating the search for a causative SNV for systemic lupus

erythematosus in a 500-KB region around the TNFAIP3 gene

(Adrianto et al. 2011).

In the initial 500-KB region, there are ;2604 SNVs pres-

ent at >1% MAF (dbSNP132), of which 109 are classified by

RegulomeDB as having a potentially

functional consequence. Using an asso-

ciation test on 113 SNVs in the tested

European and Asian populations, we are

able to identify 28 SNVs in association

with the disease in common between

Europeans and Asians. Of these SNVs,

our approach classifies three as having

potential functional consequence—each

of which provides an easily testable

hypothesis.

Furthermore, the study authors fur-

ther reduced the size of the risk haplotype

to a 16.3-kb region through use of LD

structure and conditional association anal-

ysis, which resulted in eight SNVs only

one of which is assigned as putatively

functional by RegulomeDB. This SNV is

the same one that the study authors con-

clude to be the most likely functional polymorphism.

The supporting evidence for this likely functional SNV

(rs117480515) is detailed in Figure 4A. A set of immune-associated

proteins are shown by ChIP-seq to bind regions overlapping this

SNV: NFKB, BCL11A, BCLAF1, EBF1, MEF2A, and MEF2C (Fig.

4B,C). However, there is only one putative binding site (based on

PWMs) overlapping this SNV and that belongs to the BCL family,

indicating that BCL binding is disrupted by this polymorphism.

In fact, the actual TT>A polymorphism decreases the information

content match to the BCL consensus site by 3.24 bits and moves it

below our PWM call threshold. The study authors demonstrate a

decrease in NFKB binding with the polymorphism and conclude

that this variant is likely to influence TNFAIP3 expression by de-

creasing factor binding in response to pro-inflammatory signals.

However, in our analysis, any NFKB binding sites are intact, and we

find it likely that the actual cause of the binding disruption is due to

a BCL motif disruption. It is possible that BCL binding assists NFKB

binding at this genomic location.

Querying the database

Access to the database and scoring method is publically available

via a web interface at http://RegulomeDB.org/. The integrated da-

tabase is fully searchable using common variant formats (VCF, BED,

GFF3, rsIDs) and through file upload of the same formats (Supple-

mental Fig. S2A). In addition, a user may input broad regions of

interest which are converted to variants using dbSNP132 vari-

ants at >1% allele frequency. The initial results table provides a

list of the coordinates of the variants, a dbSNP rsID (if it exists), a

score assigned by our method, and links to external resources for

each variant (Supplemental Fig. S2B). The list is sorted by our

classification scheme, with the SNVs most likely to be functional

listed first. This list of SNVs is also downloadable by the user for

their own analysis.

In addition, by clicking on a score, the SNV summary page is

displayed which provides all evidence of function associated with

a SNV (Supplemental Fig. S2C). This display includes six major

categories: Protein Binding, Motifs, Chromatin Structure, eQTLs,

Histone Modifications, and Related Data (which includes gene

information and other manual annotations). Each of these cate-

gories provides detailed information about the transcription fac-

tor, cell line, and a literature source of the information to provide

the user with direct access for addressing their hypothesis.

Figure 3. Protein coding and noncoding SNVs can be classified as potentially functional by Polyphen-2
and RegulomeDB, respectively. Heterozygous, damaging coding SNVs can act in conjunction with a
heterozygous regulatory SNV on the opposite allele to create a compound heterozygote and loss of
function on both alleles (one regulatory, the other coding).

Boyle et al.
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Discussion

We present here an approach using an integrated database to

quickly generate prioritized hypotheses for the function of vari-

ants affecting both coding and noncoding regions in a genome by

combining a large array of data sources into a single, integrated

database. In particular, we include extensive information on an-

notated and computed regulatory elements in the human ge-

nome. Access to this novel approach via a simple and straight-

forward interface allows for easy query submission, and the

scoring system provides for instant classification of significant

variants. In addition, the SNV summary page will allow a user to

quickly form a hypothesis as to the true functional consequence

of a variant.

Recently, Ward and Kellis (2012) published the HaploReg

database which aims to provide a similar annotation by providing

an intersect of SNVs with chromatin state (Ernst and Kellis 2010).

Our database provides additional information well beyond this by

prioritizing SNVs within general regulatory regions based on spe-

cific TF, chromatin, eQTL, and PWM information. Furthermore, we

allow for a query of personal SNPs which account for a large pro-

portion of variation in the population.

We have shown the utility of RegulomeDB by providing two

types of examples of common experiments using variant infor-

mation. First, we demonstrate that personal genomes can be

annotated with SNVs of functional consequence and allow for

individual genomic interpretation. This example highlights a po-

tential damaging allele that might merit further investigation in

the individual. In many cases, the interpretation needs to be

combined with damaging alleles in coding sequences. Given the

large number of personal genomes sequences that are expected in

the foreseeable future, a comprehensive analysis of both coding

and regulatory information will be essential for clinical and phe-

notypic genome interpretation (Chen et al. 2012). Second, we

showed that a GWAS study can derive a valid hypothesis in a

straightforward manner. We compare a literature case and show

that RegulomeDB rapidly generates the same result and suggests

the specific cause of the decrease of binding of a transcription

factor.

While our examples deal with single nucleotide variants

only, the database can also be used to annotate insertions and

deletions. Using the online resource, these data would be inserted

in the same manner as SNVs and are not distinguished as being

of a different category. However, because the database is searched

for a feature that overlaps the region that contains the inser-

tion or deletion, the same information will be returned as to

potential binding sites being disrupted by the insertion/deletion.

Integration of all types of variants (SNVs, Indels, and SVs)

with all types of noncoding and coding variants will provide

detailed functional interpretation of personal and nonpersonal

genomes.

The scoring system of our approach is a simple heuristic

which can be improved over time as more functional SNVs are

validated. Our analysis method and database are centered around a

likely disruption of a protein–DNA interaction and/or expression.

Therefore, a majority of our confidence in scoring comes from TF

ChIP-seq data, particularly when a TF matches a PWM in the same

context. We also derive confidence from SNVs overlapping eQTLs

which have been shown to alter expression. It is likely that there

are additional sources of data that reinforce each other in a differ-

ent manner which should be explored. However, as shown when

comparing to GWAS-lead and linkage SNVs, the scoring system

provides significant enrichment concurrent with better category

scores. As such, we believe that the database and scoring scheme

provide the best current system for annotating and prioritizing

variants.

Furthermore, our system still represents an early functional

annotation of the genome. Once enough data are available, it will

be possible to match annotations from specific tissues allowing for

even more detailed hypotheses. Also, with the limited number of

Figure 4. TNFAIP3-associated SNV. (A) RegulomeDB results for rs117480515 which is likely a functional variant associated with systemic lupus
erythematosus. (B) This SNV was the most likely to be functional in the associated region but might be missed in a standard study because it lies >20 kb
downstream from its target. (C ) An enlargement of the region around rs117480515 (red line) shows the overlap with a large number of functional
elements (NFKB, purple; BCL, light blue; and DNase, green) as well as the motif for BCL.

RegulomeDB
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conditions that are presently covered, it is very difficult to score a gain

of a regulatory site. In this scenario, we might show a new PWM, but

there will be no additional functional data, resulting in a poor score

for the site. Nonetheless, the database and approach have significant

value in their present form. As additional functional data are collected

from a variety of sources, these limitations will diminish. A collective

community goal is to have sufficient information such that func-

tional information is available on every base in the human genome at

a level to be predictive of molecular and phenotypic outcomes.

Methods

Data from ENCODE
For this analysis, we only use ENCODE data from the January 2011
freeze. ChIP-seq peaks determined using SPP (Kharchenko et al.
2008) at a loose threshold and a cutoff was selected based on the
IDR method (A Kundaje, Q Li, B Brown, J Rozowsky, A Harmanci,
S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney, et al., in prep.).
DNase-seq data were based on ‘‘peak’’ calls from both Duke Uni-
versity and the University of Washington (this excludes hotspots).

Data from other sources

The FASTQ files for ChIP-seq assays were downloaded from NCBI
Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) with
searching key word: ‘‘chip-seq transcription factor human.’’ Data
sets were frozen by July 25, 2011. Experiments that were over-
lapped with the ENCODE Project were removed to avoid re-
dundancy. All the FASTQ files were mapped to hg19 by BWA with
the default setting. Only uniquely mapping reads (with q > 0) were
used for the peaks calling. For ChIP-seq with replicates, the peaks
were called by SPP-IDR pipeline with FDR less than 0.01 (Kharchenko
et al. 2008). For ChIP-seq without replicates, peaks were called by
MACS with parameter –p equal to 1 3 10�7 (Zhang et al. 2008).

PWM matching

All positional weight matrices from TRANSFAC (Matys et al. 2006),
JASPAR CORE (Bryne et al. 2008), and UniPROBE (Berger et al. 2006,
2008; Badis et al. 2009; Newburger and Bulyk 2009; Scharer et al.
2009; Wei et al. 2010) were used to call motif matches in the genome.
The PWMs were scored with a 1% added pseudocount and a uni-
form background. The TFM P-value program was used to determine
a threshold at 4 3 10�8 for each PWM (Touzet and Varré 2007).
All possible kmers that are above this threshold are aligned to the
genome using Bowtie to give a final motif mapping (Langmead
et al. 2009).

Footprinting

PWMs combined with all ENCODE DNase-seq data sets were run
through CENTIPEDE to generate footprint calls (Pique-Regi et al.
2011). In addition to the DNase-seq data, the PWM score and
conservation score (average phastCons score across the aligned
bases) were provided to CENTIPEDE. Only those footprints with
a posterior probability $ 0.99 were retained.

Detection of damaging SNVs

Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/) was run on
all exonic SNVs from GM12878 to determine their likelihood of
causing a damaging mutation (Adzhubei et al. 2010). Mutations
that were both damaging and heterozygous were examined to
determine if they formed compound heterozygous damaging
mutations with RegulomeDB SNVs.

Identification of literature for manual annotation

Literature relevant to the genes were identified by querying
PubMed using the approved HGNC gene symbol, name, and alias,
including a set of noncoding regions (introns OR promoter OR
UTR OR miRNA OR insulator OR enhancer OR silencer) and re-
stricted to abstracts that have been indexed to the MeSH term
‘‘human.’’ The full texts of these papers were downloaded via
PubGet (http://pubget.com/) and EndNote (http://www.endnote.
com/) and converted into plain text using pdf2text (http://
www.foolabs.com/xpdf/home.html).

The full text of these articles was searched for word stems
‘‘bind’’ and ‘‘muta’’ in a single paragraph. The pdf2text conversion
software keeps paragraphs together as a single line. Therefore, both
words did not need to exist in a single sentence. The word stem
‘‘bind’’ was chosen because it can represent DNA binding or RNA
binding activities independent of an assay, while the word stem
‘‘muta’’ (for mutated or mutant or mutagenesis) indicates that
studies were performed to assess whether that nucleotide or region
is necessary and sufficient for activity.

Manual curation of nucleotide regions

Nucleotide sequences from publications that demonstrated their
function were mapped to the H. sapiens hg19 assembly using BLAST.
The coordinates of these sequences were curated with the following
data types when available: mutant sequence or sequence variant,
experimental method, cell line or tissue, regulatory factors, and ef-
fect on gene expression. References for each manual annotation are
available in the database as a link from overlapping SNVs.

Data access
The RegulomeDB database is accessible at http://www.regulomedb.
org/. All ENCODE data are available through the ENCODE portal at
http://encodeproject.org/. Complete Genomics data are available
from http://www.completegenomics.com/ using Complete Geno-
mics assembly software version 1.10.0.17.
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