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Abstract

Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease
and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or
pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this
model have realistic social contact networks, and transmission and infections are based on the current state of knowledge
of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian
A(H2N2) and 2009 pandemic A(H1N1) influenza viruses. We present examples of how this model can be used to study the
dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical
interventions and social distancing measures. Computer simulation models play an essential role in informing public policy
and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage
its use and further development.
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Introduction

Mathematical and computer models of epidemics have

contributed to our understanding of the spread of infectious

disease and the measures needed to contain or mitigate them

[1–9]. Detailed computer simulations will play an important role

in evaluating containment and mitigation strategies for future

epidemics [8]. Although many simulation models have been

described in the literature, few are publicly available. Releasing the

source code of models would allow others to evaluate the quality of

the simulation, replicate results, and alter and improve the model.

We have released the source code for a new stochastic model of

influenza epidemics, FluTE. FluTE is an individual-based model

capable of simulating the spread of influenza across major

metropolitan areas or the continental United States. The model’s

structure is based on previously published work [3,6], but FluTE

incorporates a more sophisticated natural history of influenza,

more realistic intervention strategies, and can run on a personal

computer. Here, we describe the new model and illustrate how it

can be used to study the dynamics of an epidemic and to

investigate the population-level effects of interventions.

Model

FluTE is an individual-based simulation model of influenza

epidemics. In this section, we describe the model’s community

structure, natural history of influenza, and simulated interventions.

Briefly, all individuals in the model are members of social mixing

groups, within which influenza is transmitted by random mixing.

The model can simulate several intervention strategies, and these

can either change the transmission characteristics of influenza

(e.g., vaccination) or change the contact probabilities between

individuals (e.g., social distancing). Interventions can occur before

the epidemic or in response to an ongoing epidemic.

Community structure and social contacts
The simulation creates synthetic populations based on typical

American communities. The population is divided into census

tracts, and each tract is subdivided into communities of 500–3000

individuals based on earlier models [6,10]. Each community is

populated by randomly generated households of size 1–7 using the

US-wide family size distribution from the 2000 Census (Table 1).

The household is the closest social mixing group, within which

contacts between individuals occur most frequently and thus

influenza is transmitted most often. The population is organized as

a hierarchy of increasingly large but less intimate mixing groups,

from the household cluster (sets of four socially close households),

neighborhoods (1/4 of a community), and the community.

Although the model results are not sensitive to the exact size of

these groups, including such groups creates a realistic contact

network for disease transmission [11]. At night, everyone can

make contact with other individuals in their families, household

clusters, home neighborhoods, and home communities. In the

daytime, individuals might interact with additional groups. During

the day, most children attend school or a playgroup, where there is

a relatively high probability of transmission. Preschool-age

children usually belong to either a playgroup of four children or

a neighborhood preschool, which typically has 14 students. Each
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community has mixing groups that represent two elementary

schools, one middle school, and one high school, which typically

have 79, 128, and 155 students, respectively.

Most working-age adults (about 72% of 19–64 year-olds) are

employed. Employment rates are determined on a tract-by-tract

basis using data from the US Census 2000’s Summary File 3, table

PCT35. Employed individuals often work outside of their home

communities. Each employed individual is assigned to work in a

destination census tract based on commuting data taken from Part

3 of the Census Transportation Planning Package (http://www.

fhwa.dot.gov/ctpp/dataprod.htm), which provides information on

the home and destination census tracts of workers in the United

States. We eliminated commutes over 100 miles from the data as

in [6] because many of these trips represent sporadic long-distance

travel rather than daily commutes. Working individuals are

assigned to communities and neighborhoods within their destina-

tion tracts to simulate casual community contacts during the day,

and a work group of about 20 people to represent their close

contacts at the workplace. Unemployed individuals remain in their

home communities and do not have close daytime contacts except

with members of their households who are not employed or

enrolled in school.

Individuals can engage in short-term, long-distance domestic

travel to represent vacations and other trips. Travel in our model is

based on the implementation in [6], which uses data from the

1995 American Travel Survey data available from the U. S.

Department of Transportation, Bureau of Transportation Statis-

tics (http://www.bts.gov/publications/national_transportation_

statistics/). Each day, an individual has a fixed probability of

starting a trip based on an age-specific probability of traveling:

0.0023 for 0–4 year olds, 0.0023 for 5–18, 0.0050 for 19–29,

0.0053 for 30–64, and 0.0028 for 65 and older. The traveler will

stay at the destination for 0–11 nights, with 23.9% of trips lasting

for a single day (and no nights), 50.2% including 1–3 nights away,

18.5% including 4–7 nights away, and 7.4% for 8–11 nights. We

do not include differences in travel frequency or duration during

different times of the year (e.g., summer and holiday trips). The

destination is a randomly selected census tract, in which a random

community, neighborhood, and workplace (if the traveler is

between 19 and 64 years old) are assigned to be the traveler’s

mixing groups. A random member of this community is assigned

to be the traveler’s contact person, and at night the traveler will

behave as if he/she belongs to the contact’s household, household

cluster, and neighborhood. The traveler may withdraw to this

household if ill. The exact implementation of short-term, long-

distance travel is not important, but some long-distance travel is

required in large populations for the epidemic to spread in a

realistic manner. For simulations of smaller regions, such as a

single county, there is no need to include long-distance travel.

New infected individuals are introduced to a simulation by

infecting randomly selected people. This epidemic seeding process

can occur once at the beginning of a simulation or daily. In

addition, one can simulate an epidemic that is seeded from

international travelers. In this scenario, randomly selected

individuals in the counties with one of the United States’ 15

busiest international airports are infected each day, proportional to

the daily traffic of these airports (see Table 2).

Influenza natural history and transmission
The current modeling of the natural history of influenza is as

follows: An individual is infectious for six days starting the day

after becoming infected. The individual’s infectiousness is

proportional to the log of the daily viral titers taken from a

randomly chosen one of the six experimentally infected patients

described in [12,13] (Figure 1). An individual is asymptomatic

during the incubation period, which lasts from one, two, or three

days (with 30%, 50%, and 20% probabilities, respectively). After

incubation, the individual has a 67% chance of becoming

symptomatic [14,15]. Symptomatic individuals are twice as

infectious as asymptomatic people and may withdraw to the

home after 0 to 2 days [16] (with probabilities summarized in

Table 3). People who withdraw interact only with their

households. Six days after infection, an individual recovers and

is no longer susceptible.

Table 1. Frequency of household sizes.

Frequency Family size

33% single adult

34% two people (two adults or a parent and child)

13% two adults, one child

10% two adults, two children

7% two adults, three children

2% two adults, four children

1% two adults, five children

Data from [6].
doi:10.1371/journal.pcbi.1000656.t001

Table 2. International traffic to the 15 US airports built into
FluTE.

Airport City Passengers/year

JFK New York, NY 21,842,544

LAX Los Angeles, CA 17,019,166

MIA Miami, FL 15,509,279

ORD Chicago, IL 11375367

EWR Newark, NJ 10,812,993

ATL Atlanta, GA 9,166,055

SFO San Francisco, CA 8,648,219

IAH Houston, TX 7,627,942

IAD Washington, DC 5,893,142

DFW Dallas/Ft. Worth, TX 4,872,207

DTW Detroit, MI 3,887,481

PHL Philadelphia, PA 3,734,127

BOS Boston, MA 3,673,748

FLL Fort Lauderdale, FL 3,062,384

SEA Seattle, WA 2,766,576

Data from [45].
doi:10.1371/journal.pcbi.1000656.t002

Author Summary

Computer simulations can provide valuable information to
communities preparing for epidemics. These simulations
can be used to investigate the effectiveness of various
intervention strategies in reducing or delaying the peak of
an epidemic. We have made a detailed influenza epidemic
simulator for the United States publicly available so that
others may use the software to inform public policy or
adapt it to suit their needs.

Influenza Epidemic Simulation
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The simulation runs in discrete time, with two time steps per

simulated day to represent daytime and nighttime social

interactions. The contact probability of two individuals in the

same mixing group is the probability that they will have sufficient

contact for transmission during a time step. Contact probabilities

of individuals within families were tuned so that the simulated

household secondary attack rates match estimates from [17]

(Table 4). Contact probabilities within other mixing groups were

tuned so that the final age-specific illness attack rates were similar

to past influenza pandemics (Table 5), particularly Asian A (H2N2)

and 2009 novel influenza A(H1N1) influenza, and the percentage

of transmissions that can be attributed to each mixing group

matched those in [6,18–20], although these values depend on the

transmissibility (R0) of the disease (Table 6). These contact

probabilities are in general agreement with other simulation

models [8] and with a recent study of physical contacts between

individuals [21]. Contact probabilities for all types of mixing

groups are summarized in Table 7.

Transmission probabilities in the simulation are adjusted by

multiplying all contact probabilities by a scalar, Ptrans, to obtain

the desired R0, the basic reproductive number, which is defined as

the average number of secondary infections from a typical infected

individual in a fully susceptible population [22]. To derive the

relationship between R0 and Ptrans, we infected a single

randomly selected person in an otherwise fully susceptible 2000-

person community with a 74% working-age adult employment

rate and counted the number of individuals that person infected,

repeating this procedure 1,000 times for several values of Ptrans.

The relationship between Ptrans the average number of

secondary cases was approximately linear for a biologically

plausible range of values: 4:768Ptransz0:040 (Figure 2). How-

ever, the average number of secondary cases was higher when the

index case was a child because children tend to infect more

individuals (and become infected more often) than adults.

Therefore, in a procedure borrowed from [6], we measured the

age distribution of secondary cases when the index case was

randomly selected and used this distribution to weight the

contribution from the various age groups to the R0 calculation

to define R0~5:592Ptransz0:068. The definition of R0 applies

to a population with no pre-existing immunity, an assumption that

may be violated for seasonal influenza. One can use the model to

simulate seasonal influenza epidemics by substituting R0 with the

desired R, the average number of people a typical infected case

infects in a population with pre-existing immunity.

The simulated case generation time, or the time between

infection of an individual and the transmission to susceptibles, was

3.4 days for a wide range of R0 in a fully susceptible population

(Figure 2B). This is consistent with other estimates for seasonal and

pandemic influenza [20,23].

Simulated interventions
The primary pharmaceutical intervention is vaccination.

Vaccinated individuals in the simulation have a reduced

Figure 1.The natural history of influenza of simulated individ-
uals in FLuTE. When a susceptible individual is infected (at time t),
that person will be infectious for six days with infectiousness
proportional to his or her viral load. The six possible viral load
trajectories are plotted. Most individuals become symptomatic, which
occurs after a 1, 2, or 3 day incubation period. Symptomatic individuals
are twice as infectious as asymptomatic individuals (i.e., infectiousness
is proportional to twice the viral load). Individuals recover six days after
infection and are immune.
doi:10.1371/journal.pcbi.1000656.g001

Table 3. Probabilities that an individual will withdraw to the
home 0, 1, or 2 days after becoming symptomatic.

Age group 0 days 1 day 2 days

Preschool-age children 0.304 0.575 0.324

School-age children 0.203 0.498 0.375

Adults 0.100 0.333 0.167

Data from [16].
doi:10.1371/journal.pcbi.1000656.t003

Table 4. Estimates of secondary household attack rates from
[17] and illness attack rates using FluTE, stratified by the ages
of the index and secondary cases.

Exposed

Addy 1991 simulated (R0~1:30)

child adult child adult

Infectious child 29.0% 14.2% 28.6% 13.5%

adult 10.3% 15.6% 9.3% 16.2%

doi:10.1371/journal.pcbi.1000656.t004

Table 5. Age-specific influenza illness attack rates in past
influenza epidemics (from [46]) and in a simulation of
metropolitan Seattle.

Age group
Asian A
(H2N2)

Hong Kong
A (H3N2) Age group simulated

1957–8 1968–9 (R0~1:6)

Pre-school
children

35% 34% 0–4 years 38%

School-age
children

55% 35% 5–18 years 53%

Young adults 25% 35% 19–29 years 26%

Middle adults 20% 32% 30–64 years 28%

Old adults 14% 31% §65 years 23%

Overall 31% 34% 33%

doi:10.1371/journal.pcbi.1000656.t005

Influenza Epidemic Simulation
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probability of becoming infected (VES), of becoming ill given

infection (VEP), and of transmitting infection (VEI) [24]. In the

model, these efficacy parameters are implemented by multiplying

the transmission probability per time step by (12VES) if the

susceptible individual is vaccinated and by (12VEI) if the

infectious individual is vaccinated. The probability of vaccinated

individuals becoming symptomatic (ill) after they are infected is the

baseline probability (67%) multiplied by (12VEP).

Vaccines do not reach full efficacy immediately – their

protective effects may gradually increase over several weeks. The

default behavior in the model is that the vaccine takes two weeks to

reach maximum efficacy, with the efficacy increasing exponen-

tially starting the day after the vaccination. Because of the delay in

reaching maximum efficacy, it may be necessary to vaccinate the

population early. In the simulation, vaccines can be administered

at least four weeks before the epidemic (i.e., pre-vaccination),

during the epidemic (reactive), or one dose can be administered at

least three weeks before the epidemic and the boost can be

administered reactively (prime-boost).

Antiviral agents (neuraminidase inhibitors) can be used for

treatment of cases and for prophylaxis of susceptibles. A single

course of antiviral agents is enough for 10 days of prophylaxis or 5

days of treatment. In the model, 5% of individuals taking antiviral

agents prophylactically stop after 2 days and 5% taking them for

treatment stop after 1 day [19]. As with vaccines, individuals

taking antiviral agents can have reduced susceptibility (AVES),

probability of becoming ill given infection (AVEP), and transmit-

ting infection (AVEI). However, unlike vaccines, the protective

effects of the antiviral agents last only as long as they are being

taken (5 to 10 days). When a case is ascertained, the individual is

treated with antiviral agents, and that individual’s household

members will also each be given a course if household targeted

antiviral prophylaxis (HHTAP) is in effect.

Several non-pharmaceutical interventions can be simulated in the

model. School closures are simulated by eliminating school group

contacts (including preschools and daycares but not playgroups) for

those enrolled in school, but adding daytime contacts with other

household members not in school or at work and doubling their

daytime neighborhood and community contact probabilities to

account for their non-school activities. Schools can be closed when

cases are ascertained in communities or in the schools, and they can be

closed for a fixed number of days or for the duration of the simulation.

During an epidemic, individuals may be requested to stay at home

if they become ill. When simulating isolation of cases, individuals

withdraw to the home one day after becoming symptomatic (with a

certain probability to represent the compliance probability). This will

eliminate any daytime social contacts that they have other than with

household members who are not working or at school. We simulate a

liberal leave policy in a similar manner: employed individuals withdraw

to the home with a pre-set compliance probability for one week one

day after becoming symptomatic.

During an epidemic, those living with symptomatic individuals

may be requested to stay home [25]. In simulations of household

quarantine, family members of symptomatic individuals will inde-

pendently decide (based on a compliance probability) whether to

obey quarantine for 7 days one day after the first individual becomes

symptomatic. Individuals electing to quarantine themselves with-

draw to the household and interact only with household members.

If other family members become ill during quarantine, household

members independently decide whether to obey quarantine for 7

days one day after each individual becomes symptomatic.

Implementation of the stochastic model
FluTE is written in C/C++ and is released under the

GNU General Public License (GPLv3, see http://www.gnu.org/

licenses/gpl.html). The source code is available at http://www.

csquid.org/software, https://www.epimodels.org/midas/flute.do,

Table 6. Major sources of influenza transmission in
simulations of metropolitan Seattle.

Mixing group Fraction of transmissions

R0~1:2 R0~1:6 R0~2:0

household 32% 31% 29%

schools/daycares 30% 24% 21%

workplace 10% 13% 15%

neighborhood/
community

18% 21% 23%

doi:10.1371/journal.pcbi.1000656.t006

Table 7. Person-to-person contact probabilities for all social mixing groups in FluTE.

Exposed

child 0–4 child 5–18 adult 19–29 adult 30–64 adult 65+

Family, infectious is child 0.8 0.8 0.35 0.35 0.35

Family, infectious is adult 0.25 0.25 0.4 0.4 0.4

Household cluster, infectious is child 0.08 0.08 0.035 0.035 0.035

Household cluster, infectious is adult 0.025 0.025 0.04 0.04 0.04

Neighborhood 0.0000435 0.0001305 0.000348 0.000348 0.000696

Community 0.0000109 0.0000326 0.000087 0.000087 0.000174

Workplace 0.05 0.05

Playgroup 0.28

Daycare 0.12

Elementary school 0.0348

Middle school 0.03

High school 0.0252

doi:10.1371/journal.pcbi.1000656.t007

Influenza Epidemic Simulation
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and the Models of Infectious Disease Agent Study (MIDAS)

repository [26]. The software includes two source code files that

are also freely distributable but may come with different licenses

because they were written by others: one for the pseudorandom

number generator (SIMD oriented Fast Mersenne Twister

(SFMT) pseudorandom number generator [27]) and one to

generate binomially distributed random numbers (from Numerical

Recipes in C [28]). Version 1.11 of FluTE was used to produce the

results in this manuscript.

A configuration file is used to specify the population to use for

the simulation, the parameters for starting the epidemic, the

transmissibility of the infectious agent, and the desired intervention

strategies. The configuration file is text-based and can be typed in

by a user or generated with a script. The simulation outputs results

to text files, which can be easily parsed for plotting or statistical

analysis.

A parallelized version of the code supports simulations of large

populations (up to the entire continental United States). This

version of the program assigns the populations of different counties

to different processors, and OpenMPI is used to update the status

of individuals who travel between communities that are located on

different processors and to update the global status of the epidemic

and the interventions (e.g., the total number of vaccines used). The

simulation uses approximately 80 megabytes of memory per

million simulated individuals.

The simulation was written with several competing goals: to

explicitly represent each individual in the population, to conserve

memory, to run quickly, and to be (relatively) easy to read and

modify. Each simulated individual is represented by a C structure

that includes unique identifiers for the person and for each of the

social mixing groups to which that person belongs, the age of the

individual, the person’s infection and vaccination status and dates,

and other attributes. For each infected individual, the simulation

identifies all susceptible individuals in that person’s community

who share a common mixing group, the infectiousness of the

infected individual, the susceptibility of the susceptible, and the

probability that transmission takes place for every time step.

Although comparing each individual with every other within a

community results in the number of comparisons increasing with

the square of the number of individuals, community sizes are

always smaller than 3,000 residents. Therefore, the number of

comparisons made between individuals scales approximately

linearly with the number of individuals in the simulation. More

sophisticated algorithms could improve the simulation’s perfor-

mance, but may do so at the expense of the code’s flexibility and

readability.

The running time depends on the number of individuals

infected during the course of a simulation. Simulating an epidemic

in a population of 10 million people can take up to two hours (on a

single processor on an Intel Core2 Duo T9400), but it may take

only seconds if the virus is not highly transmissible (low R0) or if

there are effective interventions (e.g., high vaccination rates). On a

cluster of 32 processors, simulating an epidemic covering the

continental United States (population of 280 million) takes about

6 hours (192 hours of total CPU time).

Results

We illustrate the use of the model by simulating epidemics in

metropolitan Seattle, a major metropolitan area with a

population of approximately 560,000 according to the US

2000 Census. We ran simulations with different values of R0,

starting with ten infected individuals chosen at random, and

found that the epidemic could peak as early as 45 days after the

start if R0 is high (R0~2:4) (Figure 3A). Pre-vaccination (with

vaccine efficacies of VES = 40%, VEP = 67%, VEI = 40%, which

correspond to a well-matched seasonal influenza vaccine [29]) is

likely to both lower and delay the epidemic peak (Figure 3B). Use

of antivirals alone (AVES = 30%, AVEP = 60%, and AVEI =

62% [11]) did not greatly reduce the epidemic peak, but they

could reduce illness and mortality in an epidemic. Non-

pharmaceutical interventions could be quite effective, but the

epidemic may spike immediately upon ending the intervention

(compare permanent school closure with school closure for 60

days in Figure 3B).

The illness attack rates in the simulation are lower than those in

a SIR model with random mixing (where 1{AR~e{R0AR [30],

where AR is the infection attack rate, and the illness attack rate is

0.67|AR) (Figure 3C). As observed in earlier studies, models with

community structure have lower attack rates than those with

random mixing [31–33].

Simulated epidemics struck school-age children earlier than

adults, which had been observed in earlier studies [6,34].

Therefore, we predict that early in an epidemic, the proportion

of cases who are school-age children will be higher than later in

the epidemic (Figure 4). This phenomenon might affect the

accuracy of R0 estimates in unfolding epidemics. For example,

most confirmed cases in the recent novel influenza A(H1N1)

outbreaks in the United States have been school-age children

[35] and several early estimates of R0 have been above 2

[36,37]. In our model, we observed that infected children

generate more secondary cases than infected adults (Figure 2A).

For example, infected school-age children would transmit to an

average of 2:53 other individuals in a simulated epidemic with

R0~1:6. Therefore, estimates of R0 could be high early in an

epidemic when a disproportionate number of infections are in

children.

One can simulate the population of the entire continental US

using the parallel version of FluTE (mpiflute). The continental US

had 280 million people in 64735 census tracts in 2000, based on

the US 2000 Census. In our simulations, we found that the final

illness attack rates for the US to be nearly identical to those of

metropolitan Seattle, but the epidemic peak for a given R0 is later

for the United States (e.g., 94 vs 65 days for R0~1:6) (Figure 5).

Therefore, simulations of a sufficiently large metropolitan area

may be adequate for determining the effect of a strategy on the

national level on final illness attack rates, but the nation-wide

peak of the epidemic may be later than in the major metropolitan

areas because of the time it takes the epidemic to reach outlying

areas.

Figure 2. Influenza transmission properties in the simula-
tion. (A) Observed secondary cases vs Ptrans by the age of the index
case and the weighted average. (B) Average case generation time vs
R0 .
doi:10.1371/journal.pcbi.1000656.g002

Influenza Epidemic Simulation
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Discussion

We have described a new publicly available influenza epidemic

simulator, FluTE. It explicitly represents every individual in the

simulation, so simulated epidemics can be studied in detail, even

tracing individual transmission events. We illustrated the use of FluTE

with examples in which we explored the effect of various intervention

strategies on influenza epidemics in the United States and showed how

transmissibility can be over-estimated early in an epidemic.

The simulation was written so that one can easily set the

transmissibility, vaccination policies (e.g., fraction of the popula-

tion to vaccinate), and other reactive strategies (e.g., school

closures). These settings can be used to investigate questions such

as: 1) What fraction of the population will become infected or ill?

2) How much vaccine coverage is required to mitigate an epidemic

with a given R0? 3) What segment of the population should be

vaccinated to reduce overall illness attack rates the most? 4) How

long can one wait before reacting to an epidemic? and 5) What

range of R0 can be managed by a particular pandemic strategy?

We have used FluTE to investigate some of these questions by

simulating vaccinating children against seasonal and pandemic

influenza [38] and pandemic mitigation [20].

The model was calibrated to simulate epidemics of a virus

similar to 1957/1958 Asian A(H2N2) and 2009 pandemic

A(H1N1). We attempted to model realistic pharmaceutical and

non-pharmaceutical interventions, but their effects on an

epidemic have not been well quantified. The model’s results are

plausible and likely to be qualitatively correct, but there is

insufficient data to calibrate it to produce quantitatively accurate

results for the various possible disease parameters and mitigation

strategies. Although the model generates realistic population-level

results, the spatial dynamics of the epidemics it produces should

be used for illustrative purposes only. When using the model to

evaluate mitigation strategies, it is important to consider one’s

goals. For example, using antiviral agents to treat cases does not

greatly reduce the final illness attack rate in the simulation, but it

could greatly reduce mortality. The model does not directly

evaluate the cost of interventions, but the numbers of cases in a

simulated epidemic can be linked to cost and healthcare

utilization data [39].

Differential equation models are the most popular approach to

disease modeling. The simplest of these (such as the SIR model

[40]) can be used to study epidemics analytically, and more

complex versions have been used to model the dynamics of

epidemics on a global scale [41,42]. However, if one wants to

include a complicated natural history of disease or detailed

Figure 3. Illness attack rates and daily prevalence of influenza
in simulations of metropolitan Seattle. (A) Daily prevalence of
symptomatic influenza in simulations of metropolitan Seattle for
various R0 and (B) for R0~2:0 with various interventions. The
interventions, which begin 30 days after the first case is detected, are:
giving a course of antiviral agents to ascertained cases, closing schools
either permanently or for 60 days, and pre-vaccination of 50% of the
population with a well-matched seasonal influenza vaccine. (C) Final
illness attack rates (180 days) vs R0 for FluTE (simulating metropolitan
Seattle) and a model with random mixing. Results for all panels are from
one run of metropolitan Seattle for each R0 or intervention strategy
except for the simulation for R0 = 1.4 in panel (A), which was run 5
times with different random number seeds and plotted to show
stochastic variability.
doi:10.1371/journal.pcbi.1000656.g003

Figure 4. The ratio of cumulative illness attack rates between
school-age children (ages 5–18) and adults (ages 19–64) over
time in simulated epidemics. Results plotted are from one
simulation of metropolitan Seattle for each value of R0 .
doi:10.1371/journal.pcbi.1000656.g004
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intervention strategies, individual-based models, such as FluTE,

may be more suitable.

The current software supports a limited set of configuration

options and is intended for batch runs using a scripting language.

Using the model for scenarios not supported by the existing code,

such as testing a novel intervention strategy or altering the contact

parameters for a different attack rate pattern, would require

modification of the source code, which we have released so that

others can make such changes if needed. We decided to adopt the

GNU General Public License (GPL), so that the source code of

derivative works must be released. We believe this will facilitate the

sharing of improvements. The availability of source code allows

others to adapt the model to simulate outbreaks of other airborne

infectious diseases such as smallpox [3,43,44] or to simulate other

regions of the world with different social structures [3].

In the future, we would like to make our model more accessible

to non-programmers. This may involve developing a user interface

or adding new parameters to the configuration file. We would also

like to include intervention strategies that best reflect government

pandemic mitigation plans. Achieving these goals would depend

upon close collaboration with public health officials to better

understand their needs and to carefully simulate existing pandemic

mitigation plans and capacities. Although we have calibrated our

model to the best available data, more detailed and reliable

information on the natural history of influenza, influenza

transmission, human behavior in response to infection, and

vaccine efficacy is needed. Sensitivity analyses of similar epidemic

models have shown that results are robust to uncertainty in many

parameters [3,5,6,11]. However, more accurate model inputs

would improve the quantitative predictions. Well-designed studies

are needed to acquire these data.
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