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The increase in the prevalence of obesity represents a worldwide phenomenon in all 
age groups and is pathologically and genetically correlated with several metabolic and 
cardiovascular diseases, representing the most frequent age-related diseases. Obesity 
superimposed on aging drastically increases chronic low-grade inflammation (inflammag-
ing), which is an important link between obesity, insulin resistance, and age-associated 
diseases. Immune cells of both the innate and the adaptive immune systems infiltrate the 
adipose tissue (AT) and during obesity induce inflammatory responses associated with 
metabolic switches and changes in phenotypes and function of immune cell subsets. 
Obesity poses new health problems especially when it occurs in the context of other 
diseases, many of them frequently affect elderly subjects. An emerging problem is the 
decreased proportion of patients with obesity achieving clinical response to therapy.  
In this review, we will discuss the reciprocal influences of immune cell and AT inflamma-
tion in aging and age-associated diseases and the complex relationship of nutrient and 
energy-sensing homeostatic checkpoints, which contribute to shape the phenotype of 
the AT. We will specifically examine type-2 diabetes, rheumatoid arthritis, osteoarthritis, 
cognitive impairment, and dementia, where obesity plays a significant role, also in shap-
ing some clinical aspects.
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inTRODUCTiOn

The increase in prevalence of overweight and obesity represents a worldwide phenomenon, which 
is associated with several chronic diseases such as type-2 diabetes (T2D), cancer, rheumatoid 
arthritis and osteoarthritis (OA), cognitive impairment and dementia, and those affecting the 
cardiovascular (CV) system.

The global obesity pandemic affects all age groups. Recent studies examining body mass index 
(BMI) data in 68 million people in 195 countries showed both increased prevalence and disease 
burden of high BMI subjects globally over the past 20 years (1). Although the prevalence of obesity 
among children is lower than in adults, its rate of increase exceeds that of adults (2). The global 
burden of disease related to high BMI is calculated in individuals without underlying conditions, 
and it increases at a slower pace in adults mainly because of the reduction of other risk factors 
for CV diseases and for effective clinical intervention. However, increased BMI has been shown 
to be pathogenetically related to several diseases. Among these, insulin resistance (IR) and T2D 
have a strong link to obesity, and the metabolic syndrome represents a cluster of risk factors for 
severe CV events (coronary artery disease, stroke). Obesity superimposed on aging represents 
an additional risk factor for older age groups in which the prevalence of chronic disease as well 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.01745&domain=pdf&date_stamp=2017-12-07
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.01745
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:dfrasca@med.miami.edu
https://doi.org/10.3389/fimmu.2017.01745
https://www.frontiersin.org/Journal/10.3389/fimmu.2017.01745/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2017.01745/full
http://loop.frontiersin.org/people/449388
http://loop.frontiersin.org/people/23614
http://loop.frontiersin.org/people/40696


2

Frasca et al. Aging, Obesity, Inflammation, Diseases

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1745

as the occurrence of complications increases (3–5). The disease 
burden of high BMI in children (≤18 years of age) has not been 
addressed in the same detail.

The aging process is characterized by a state of chronic 
inflammation, known as inflammaging. Several factors contrib-
ute to inflammaging, including polymorphisms in the promoter 
regions of pro-inflammatory genes, chronic stimulation of 
immune cells with viruses such as cytomegalovirus, changes 
in the gut microbiome, and increased permeability from the 
intestine [reviewed in Ref. (6)]. It has been recently proposed 
that continuous engagement of innate receptors by endogeneous 
signals such as damage-associated molecular patterns drives a 
chronic state of background inflammation, which needs to be 
counterbalanced by anti-inflammatory mechanisms. Cellular 
senescence and the acquisition of the senescence-associated 
secretory phenotype (SASP) by fibroblasts (7) and endothelial 
(8) and immune cells (9–11) has also been pinpointed as a sig-
nificant contributor to inflammaging. Cell senescence induces 
the accumulation of terminally differentiated B, T, and NK cells 
with dysregulated function through the activation of pathways 
integrating senescence and energy-sensing signals.

Inflammaging is an important link among obesity, IR, aging, 
and age-associated diseases such as cognitive impairment, athero-
sclerosis, cancer, and autoimmunity. Elevated pro-inflammatory 
cytokines are associated with decreased insulin sensitivity. 
Chronic low-grade (sterile) inflammation causes IR, which leads 
to the transition from metabolically normal obesity to metabolic 
syndrome. This occurs through both systemic inflammation 
and metaflammation (12), a process whereby excess nutrients 
promote chronic low-grade inflammation, and whose metabolic 
hallmarks are high levels of lipids, free fatty acids (FFAs), glucose, 
and reactive oxygen species (ROS).

Immune cells of the innate and adaptive immune systems 
infiltrate insulin responsive tissues, such as the visceral adipose 
tissue (VAT) and with obesity incite inflammatory responses. 
Immune cells (macrophages, T, B, NK, NKT cells, and neutro-
phils) have been implicated in adipose tissue (AT) inflamma-
tion and IR (13–17). Inflammation leads to local and systemic 
increases in pro-inflammatory molecules, such as tumor necrosis 
factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, 
inflammatory adipokines, chemokines, and FFAs [reviewed in 
Ref. (16)].

LinKS OF OBeSiTY TO inSULin 
ReSiSTAnCe (iR) AnD T2D

IR is the lack of appropriate response to circulating insulin in 
several tissues, including liver, muscle, and AT (18). It frequently 
associates with obesity, hypertension (integrating features of the 
metabolic syndrome), and CV disease and typically precedes the 
onset of T2D. In the pancreas, β-cells adapt to hyperglycemia 
with an expansion of the total β-cell mass and with increased 
secretion of insulin (hyperinsulinemia), which is able not only to 
control normal levels of glycemia but also can induce β-cell stress, 
causing β-cell failure, and then T2D (19). Poor glycemic control 
in individuals with T2D results in severe complications, such as 
renal failure, blindness, neuropathy, and CV disorders (20).

It is not completely clear how obesity causes the develop-
ment of IR. Although many molecular mechanisms have been 
proposed, including ER stress, oxidative stress, dysregulation 
of lipid homeostasis, mitochondrial dysfunction, hypoxia, and 
impairment of the insulin signaling pathway in insulin-respon-
sive cells, there is evidence that obesity-induced inflammation 
may be a key factor for IR (21). Figure 1 summarizes the main 
pathways leading to inflammation in the obese AT.

Production of Pro-inflammatory  
Mediators in the Obese AT
High levels of TNF-α in the AT are associated with chronically 
elevated basal lipolysis, the process of hydrolysis of tryglyc-
erides to release FFAs and lipids (22). These provide chronic 
stimulation to macrophages leading to FFA-induced TNF-α 
production, causing IR. It has been proposed that adipocyte-
derived TNF-α contributes to elevated levels of FFAs in the 
blood of obese individuals (22), and neutralization of TNF-α 
in vivo in obese mice decreases circulating levels of FFAs (23). 
TNF-α has also been shown to reduce the expression of proteins 
stabilizing lipid droplet (perilipins) (24), leading to ectopic lipid 
deposition in insulin-sensitive tissues. Lipids and lipid-derived 
molecules have direct effects on insulin-sensitive tissues and 
induce IR (25).

Other major pro-inflammatory cytokines released by the 
obese AT are IFN-γ secreted by CD8+ T cells (26) and NK cells 
(27) and IL-17 secreted by CD4+ T cells (28).

Hypoxia and Release of “Self” Antigens  
in the Obese AT
During the development of obesity, the supply of oxygen to 
the expanding AT becomes inadequate, resulting in areas of 
hypoxia (29, 30). This phenomenon of poorly oxygenated AT 
not only activates the transcription factor hypoxia-inducible 
factor-1α (HIF-1α) and further release of pro-inflammatory 
cytokines (31) but also induces cell death and release of “self ” 
antigens, which stimulate class switch and the production of 
IgG pathogenic antibodies. Hypoxia in the AT has been the only 
mechanism suggested so far for the release of “self ” antigens in 
the obese AT.

immune Cell infiltration in the Obese AT
Data from obese mice and humans have indicated that the 
hypertrophied AT becomes heavily infiltrated by a variety of 
immune cells displaying a pro-inflammatory phenotype, char-
acterized by secretion of SASP markers (32), and their numbers 
inversely correlate with insulin sensitivity. Cells with an anti-
inflammatory phenotype have also been reported in the obese 
AT, but these cells are present at low frequencies. These are B1 
B cells producing IL-10 (15, 33) and innate lymphoid cells type 
2, which produce large amounts of Th2 cytokines such as IL-4, 
IL-5, and IL-13 (34). Tregs have also been reported but only in 
the lean AT (35).

Macrophage infiltration within the AT has been consid-
ered a major driver of inflammation, due to the secretion of 
pro-inflammatory cytokines and chemokines involved in the 
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FiGURe 1 | Model for regulation of inflammatory pathways in the obese adipose tissue (AT). Adipocytes (AD) in the obese AT are highly inflammatory and secrete 
several pro-inflammatory cytokines and chemokines, which recruit immune cells, thus contributing to the establishment and maintenance of local and systemic 
inflammation. Among these inflammatory mediators, tumor necrosis factor (TNF)-α released by both AD and immune cells induces lipolysis and release of free fatty 
acids (FFAs), which activate tissue-resident macrophages (MΦ) to release cytokines and chemokines. FFAs are also released in blood and cause both insulin 
resistance and inflammation in major insulin target tissues. Immune cells recruited to the obese AT differentiate into inflammatory subsets and secrete additional 
pro-inflammatory mediators. We hypothesize that these cells would generate suboptimal immune responses in obese individuals by circulating to peripheral 
lymphoid organs. Pathogenic antibodies may be secreted by B cells in the AT. These antibodies may form immune complexes with “self”-antigens, which in turn 
activate complement and Fc receptors on immune cells, leading to enhanced local inflammation, remodeling of the AT, impairment of adipocyte function and nutrient 
metabolism, and exacerbation of obesity-associated conditions. These antibodies can also exert additional detrimental effects both locally and systemically targeting 
distinct clusters of self proteins. One mechanisms for the release of “self”-antigens in the obese AT is the decreased supply of oxygen, resulting in areas of hypoxia, 
which leads to further release of pro-inflammatory cytokines, as well as to the release of “self”-antigens, such as intracellular proteins, cell-free DNA, and lipids.
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recruitment of immune cells to the AT. However, adipocytes also 
secrete pro-inflammatory mediators (cytokines, chemokines, 
and adipokines) and in larger amounts compared with immune 
cells (36). Therefore, with obesity, a crosstalk between adipocytes 
and the immune cells infiltrating the AT contributes to the 
establishment of chronic inflammation, a prerequisite for IR. 
Macrophages in the AT are almost exclusively M1, they depend 
on glycolysis for their inflammatory function, and their stimula-
tion in the AT induces glucose transporter expression and glucose 
intake and utilization (37). Hypoxia (via HIF-1α) potentiates 
glycolysis and stabilizes the inflammatory phenotype (38). In M1 
macrophages, the inflammasome NLRP3 activates caspase 1 and 
the secretion of IL-1β (39), which is directly toxic to pancreatic 
β-cells and induces IR (40). Increased inflammasome activity has  
been reported in monocyte-derived macrophages from T2D 
patients (41).

T cells in the AT are Th1 CD4+ and IFN-γ-producing CD8+ 
T  cells (26). These promote secretion of pro-inflammatory 
cytokines from M1 macrophages leading to both local and 
systemic IR (42). Similar to macrophages, T cell subset skewing 
in the AT occurs through modulation of substrate metabolism 
regulated by hormones (leptin) and intracellular nutrient sensing 
kinases, such as AMPK/mTOR (43). Th1 CD4+ T cells express 

high levels of membrane glucose transporters and are highly 
glycolytic (44), a trait supporting inflammatory responses.

Interferon-γ, the signature Th1 cytokine, induces macrophages 
and T cells to secrete chemokines, which recruit immune cells 
to the obese AT (45, 46). Moreover, IFN-γ facilitates the M2 to 
M1 polarization (47) and decreases insulin receptor signaling by 
reducing the expression of insulin receptors and glucose trans-
porters (48). IFN-γ production is regulated by T-bet, a T-box 
family transcription factor first identified as a transcriptional 
inducer of IFN-γ in CD4+ T cells (49). T-bet plays a critical role 
in the development of IR in animal models of obesity, and T-bet-
deficient mice fed a high-fat diet are refractory to the induction 
of IR (50). These mice show improved insulin sensitivity and 
glucose tolerance, reduced numbers of immune cells in the AT 
(CD4+/CD8+ T cells, NK cells, and macrophages), and reduced 
production of pro-inflammatory cytokines per gram of fat  
(IFN-γ, TNF-α, IL-1β, and IL-6).

Obese and T2D patients have alterations in the composition 
of their microbiome, with reduced proportions of Bacteroidetes 
(beneficial bacteria) in obese versus lean individuals (51). 
Moreover, it has been reported that the gut microflora regulates 
the development of obesity in animal models (52). T-bet regu-
lates mucosal T cell activation (53), and T-bet deficiency alters 
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the composition of microflora (54). T-bet deficiency may also 
alter the microbiome in individuals with obesity leading to the 
inflammatory and metabolic processes that regulate T2D.

B cells also accumulate in the obese AT (15, 55, 56). B cell 
recruitment can initiate T cell-induced M1 polarization and IR. 
Obesity and hyperglycemia have direct influence on antibody 
production, and IgG secretion from inflamed VAT modulate 
the function of resident macrophages. It has been reported that 
B  cells in AT are induced to produce pathogenic IgG autoan-
tibodies, due to the dysregulated expression of autoantigens 
by hypoxic adipocytes. B  cells also support the activation of 
inflammatory T cells, which are the main pathogenic drivers in 
systemic inflammation and IR.

Recently, a new lymphoid tissue called fat-associated lym-
phoid clusters (FALCs) has been identified in the mesenteric AT 
of mice and humans. FALCs are rapidly induced after inflamma-
tory stimuli and support B cell proliferation and differentiation 
regulating antibody production within the AT (57).

OBeSiTY AnD RHeUMATOiD ARTHRiTiS 
(RA): eviDenCeS AnD MeCHAniSTiC 
LinKS

RA is a debilitating chronic autoimmune disease that causes 
synovial inflammation and destruction of joints including the 
cartilage and the adjacent bone. It generally occurs between the 
fourth and sixth decades of life and affects more women than 
men. It is characterized by joint stiffness, pain, and swelling and 
is accompanied by extraarticular manifestations and systemic 
inflammation. RA has been associated with muscle wasting and 
cachexia due to uncontrolled inflammation driven by TNF-α, 
which fuels hypercatabolism (58). However, BMI rarely falls 
below normal because loss of lean tissue is compensated by 
increased AT, and this characterizes rheumatoid cachexia, also 
called “cachectic obesity” (59, 60). It has been observed that in 
RA patients, despite adequate nutrient intake, but inflammatory 
cytokine dominance and reduced activity due to pain, joint 
deformity, and decreased muscle strength (61), cachexia appears 
to be similar to that occurring in aged subjects with disability. 
Abnormal body composition in RA can be defined as a sarco-
penic obesity (62) with characteristic changes that in the elderly 
contribute to frailty (63, 64). Moreover, the percentage of obese 
RA patients has increased (65), and the impact of obesity on RA 
has become a relevant issue not much for the negligible risk of 
developing RA (66), but for its negative effects on disease activity, 
response to therapy, and CV risk. Obese RA patients are indeed 
less likely to achieve sustained remission in response to therapy 
with conventional chemical (4) or biologic (TNF-α inhibitors) 
agents (67). Despite opposite results with some treatments (68), 
obesity decreases the rate of remission in RA and negatively 
affects disease activity (69) and patient-reported outcomes dur-
ing therapy (70).

The “Obesity Paradox” in RA
Obesity represents an important link with comorbidities such 
as metabolic syndrome (71) and CV diseases (72); however, in 

some studies, increased BMI had the opposite effect of reduced 
mortality (70, 73), which has been described as the “obesity 
paradox” (74). Moreover, in overweight RA patients, progression 
of bone destruction was reduced (75, 76), the number of swollen 
joints is not increased, and better quality of life has been reported 
(77). Weight loss and cachexia represent major determinants for 
a greater risk of death (78) and worse quality of life (77), thus 
strengthening the paradoxical observation of lower mortality in 
obese patients. However, follow-up studies have demonstrated 
that in RA patients with a history of obesity reduced BMI is 
strongly associated with death. Therefore, the “obesity paradox” 
does not entail a biologically protective role of obesity (73), 
raising the question whether the use of BMI is a valid tool for 
assessing obesity in RA (65).

High BMI contributes to disease activity in RA by affecting 
both biomechanics and the metabolic status, and obese RA 
patients show worse subjective assessment of symptoms (79). 
Hyperglycemia, as a part of the metabolic syndrome, is more 
common in early RA (80), whereas active RA shows decreased 
lipid levels (81) despite an increased risk of CV events, due to the 
lipid-lowering effect of systemic inflammation (82). An increase 
in VAT, e.g., the epicardial fat (83), and the more abundant mac-
rophage infiltrate are associated with systemic inflammation, 
metabolic syndrome, and IR (84). Anti-TNF-α therapy improves 
insulin sensitivity in RA patients who are resistant, but despite 
controlling inflammation, it does not achieve the same extent 
of improvement in obese RA patients (85). In addition, even 
when therapy succeeds in the control of disease activity, it fails 
to restore the altered body composition and improve physical 
function (86). Adipokines (leptin, adiponectin, visfatin, resistin, 
and chemerin) have been postulated to be the mediators linking 
AT and RA activity (87). Adipokine imbalance may underlie the 
higher degree of inflammation (88), the levels of autoantibodies 
(leptin and adiponectin differentially regulate the generation of 
Treg cells, which are abundant in normal VAT), and also the 
lower amount of bone resorption observed in obese patients 
(89). On another level, the association of RA with both the 
metabolic syndrome and atherosclerosis is probably also medi-
ated by VAT through altered secretion of adipokines. Therefore, 
adipokines contribute decisively to the systemic inflammation 
underlying RA, which represents an independent risk factor for 
CV diseases.

Since weight reduction may have possible contraindications 
(lower BMI being associated with accelerated mortality in RA), 
and the assessment of the inflammatory milieu of VAT in RA 
patients is still incomplete, much research has been devoted to 
uncovering the metabolic changes occurring in the develop-
ment and chronicization of RA. This field has been recently 
reviewed (90) and can be summarized in the two distinct 
stages of early and chronic RA. In the first stage, there is a high 
metabolic demand in all cell types involved, due to proliferative 
signaling, angiogenesis, cellular de-differentiation, and unbal-
anced bone turnover. However, in RA T cells, at variance with 
other types of inflammatory metabolic changes, the glycolytic 
pathway is reduced in favor of the pentose phosphate shunt 
(91), reduced ROS generation, and decreased AMPK func-
tion. In early stages, AMPK activation (e.g., by Metformin) 
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may be an attractive target because its activity is decreased 
in several tissues of obese or IR patients. In the late (erosive) 
stage of RA, the inflamed joint is a hypermetabolic lesion (90), 
T  cells undergo a metabolic switch to aerobic glycolysis due 
to hypoxic conditions, and mitochondrial dysfunction with 
increased lactate production causes acidification of the synovia. 
The reprogramming of T cells accounts for pro-inflammatory 
Th1/Th17 phenotypes and premature T cell aging (92). Several 
aspects of immunosenescence have been found to be relevant 
in RA pathogenesis (93–96), and rejuvenation of the immune 
system has been proposed as therapy, including mTOR inhibi-
tors (97, 98).

Role of B Cells in RA Pathogenesis
The key role played by autoreactive B cells is highlighted by the 
presence of diagnostic autoantibodies, and rheumatoid factor 
(RF) (99) and anticyclic-citrullinated peptide antibodies (ACPAs) 
(100) are well-established indicators of disease and disease sever-
ity and may precede the onset of disease. The role of B cells in 
RA pathogenesis in the context of overweight/obesity has not 
been addressed yet and deserves thorough attention. A primary 
defect in early B cell tolerance has been detected since the major-
ity of naive B lymphocytes express polyreactive autoantibodies, 
including RF and ACPA. These B cells are resistant to Fas-induced 
apoptosis and therefore not suppressed by Treg (101). However, 
B cells are involved in RA by other mechanisms, in a bidirectional 
support of helper T lymphocytes, as self-antigen-presenting cells, 
with the release of inflammatory mediators, and with the promo-
tion of lymphoid neogenesis (which is prominent in RA synovitis).  
RF+ B cells are able to take up IgG-containing immune complexes 
and present antigen to T cells, thus activating a reciprocally rein-
forced response (102).

The phenotype of B lymphocytes in RA has been extensively 
studied in peripheral blood and in synovial tissue, with some 
discordant data owing to examination of different stages of 
the disease. The general consensus is the increased presence of 
memory (CD27+) B cells with an activated (CD95+, CD21low) phe-
notype both in peripheral blood and in the synovial compartment 
(103). These cells increased even more significantly after B cell 
depletion therapy (BCDT) with rituximab. There is also agree-
ment on the fact that response to BCDT relies on elimination of 
memory B cells, and their repopulation, along with transitional B 
lymphocytes, may predict relapse (103). The role of homeostatic 
lymphoproliferation of both memory B  cells and the extent of 
BCDT in bone marrow and synovial tissue represent critical 
points still to be elucidated. Since it has been observed that CD4+ 
T cell activation decrease after BCDT (104), changes in not only 
B cell subsets but also T cell subsets may underlie the response 
of RA patients to therapy. The Treg compartment is less affected 
by RA treatments (105), but the presence of Breg lymphocytes 
(decreased in untreated RA) seem to play a role in balancing 
immune abnormalities and predict the treatment outcome (106). 
Cytokine production by B  cell subsets is also relevant to RA 
pathogenesis and disease activity [reviewed in Ref. (107)], with 
inflammatory cytokines predominating in untreated severe RA, 
as activated memory B cells preferentially secrete TNF-α, whereas 
BCDT induced a shift to subpopulations producing IL-10. The 

recent identification of a subset of B cells able to produce large 
amounts of RANKL (108) provides a mechanistic link between 
activated memory B cells and bone resorption through induction 
of osteoclastogenesis. It is relevant to mention that ACPAs are 
associated with more joint and bone damage and that therapy 
does not eliminate ACPA-producing autoreactive B cells in the 
synovial tissue. The central role of B lymphocytes in RA patho-
genesis and in tissue damage makes these cells and their products 
attractive targets for treatment; however, there is still uncertainty 
about the beneficial or even protective effects of B cell subsets.

OSTeOARTHRiTiS (OA), AGinG,  
AnD OBeSiTY

In the elderly, arthritis is frequently associated with other diseases 
with multiple aging or degenerative features (109). OA and RA 
share common features in elderly patients and significantly con-
tribute to disability (110). OA is usually differentiated from RA 
by age at diagnosis, duration of morning stiffness, pattern of joint 
involvement, and radiographic findings. Distinguishing between 
the diseases can be challenging, but in the >60 years of age group, 
OA is by far more common. Despite the fact that OA directly 
correlates with age, the real cause of this association is not clear, 
and OA development can be separated into aging-dependent and 
aging-independent processes (111–114). Both increased produc-
tion of matrix metalloproteinases and cytokines, reduced levels 
of collagen type II synthesis, and increased production of ROS 
induce age-related changes in chondrocytes (114). These changes 
alter cartilage function, and sarcopenia further leads to decreased 
joint stability (115). Cellular senescence, impaired regeneration, 
and repair are recognized factors contributing to cartilage dam-
age with aging (115, 116).

In patients younger than 60 years of age with symptomatic 
OA, joint pain and disabilities are less recognized as inevitable 
consequences of growing old, compared to OA patients older 
than 70  years (117). Several factors contribute to the devel-
opment of OA: acute injury (including fracture), excessive 
mechanical overloading (113, 118), diabetes, and chronic 
tobacco smoking, all playing a role in the amplification of 
senescence-inducing stresses (118–121). These factors develop 
before symptoms appearance and may cause early onset of OA; 
multimorbidity including OA and obesity can be seen at an 
adult age (122). The prevalence of arthritis is increasing, with 
29.3% ever reported doctor-diagnosed arthritis in individuals 
aged 45–64 years versus 49.6% in individuals aged 65 or older 
in the United States (123). However, obesity prevalence did 
not change significantly over time among middle-aged and 
younger adults with doctor-diagnosed arthritis (124) despite 
increasing significantly over time among older adults with 
RA and remaining also higher when compared with adults 
without RA. Obesity impacts progression of OA and has a 
negative influence on outcomes (125). Exercise and loss of at 
least 10% of body weight can effectively lead to improvement in 
symptoms, pain relief, and physical function. Physical activity 
may reactivate a regenerative process by mobilizing stem cells 
and increase proteoglycan production, restoring the cartilage 
structure (113, 115, 126).
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COGniTive iMPAiRMenT, DeMenTiA, 
AnD ReLATiOnSHiP TO AGe-
ASSOCiATeD DiSeASeS AnD OBeSiTY

Our summary of conditions where inflammation, obesity, and 
aging converge in defining particular features and outcomes of 
disease must also briefly mention the dementias, whose preva-
lence has been reported to be declining among older US adults 
between 2000 and 2012 (127). However, dementia rates are grow-
ing at an alarming proportion in most regions of the world and 
are related to population aging (128). Prevalence varies in coun-
tries with different mean population ages. However, differences 
persist after adjusting for age (129). The decline in the United 
States occurred in those older than 65 years and was related to 
increased number of years in education despite the age- and sex-
adjusted increase in the prevalence of hypertension, diabetes, 
and obesity in the same years. There is a long unresolved debate 
on the prodromal phase of the neurodegenerative disorders with 
inflammatory features, such as Alzheimer’s dementia, but it is 
undisputed that prevalence of dementias of all types increase 
with old age, from about 2–3% among those aged 70–75 years to 
20–25% among those aged 85 years or more (130). The known 
risk factors include obesity, depression, diabetes, decreased 
physical activity, hypertension, smoking, hypercholesterolemia, 
coronary heart disease, and alcohol use; and assessment of these 
provide an estimate of the risk of developing dementia (131) 
despite the fact that in the oldest-old (80–97 years old), these 
factors did not increase the risk for dementia, so that age plays 
a major role.

Taken together for the two most frequent types of dementia 
(Alzheimer’s and Vascular) (129), vascular risk factors such as 
dietary fat intake, high cholesterol, obesity, T2D, and hyperten-
sion have emerged as the most important determinants (132). 
Vascular risk is seldom isolated and is accompanied by alterations 
in hormonal metabolism. Overweight/obesity, due to excess AT, 
increase the CV risk and also for late-onset dementia. This is 
exemplified in the prodromal phases of dementia, as vascular 
and metabolic parameters decline in direct relation to cognitive 
impairment and in a way which seems to differ from that occur-
ring in “normal” aging. With regard to obesity, its presence at 
midlife is associated with an increased risk of dementia and 
Alzheimer’s later in life (133), and in particular central obesity 
in midlife increases the risk of dementia independent of diabetes 
and CV comorbidities (134). The risk is reversed when late-life 
BMI is considered: underweight persons had an increased risk 
of dementia, whereas being overweight was not associated 
and being obese reduced the risk of dementia compared with 
normal BMI. This has been dubbed as an “obesity paradox” also 

in this case (135). A recent systematic review and meta-analysis  
suggests a positive association between obesity in mid-life and 
later dementia but the opposite in late life (136). A successive 
study confirmed the association of mid-life obesity and dementia, 
but that of being underweight and dementia remained contro-
versial (137). It is difficult to draw a clear distinction between 
visceral adiposity and total body fat in most studies, and this is 
reflected on the paucity of mechanistic hypotheses supported 
by experimental data. The attention has been focused on the 
role of several adipokines and mainly the two major hormones 
produced by the AT, leptin and adiponectin, that interact 
directly with the brain (138). They have the capability to cross 
the blood–brain barrier and influence dementia processes within 
the brain (139), but evidence for a direct role is missing. Another 
postulated link is through altered gut microbial flora, which may 
participate in the development of obesity, T2D, and subsequent 
initiation of AD (140). Also lacking is the evidence that weight 
reduction in mid-life may produce beneficial effects on demen-
tia development. However, in older adults, regular exercise pro-
vides numerous health benefits that include improvements in 
blood pressure, coronary artery disease, diabetes, lipid profile, 
OA, osteoporosis, mood, neurocognitive function, and overall 
morbidity so that studies in this area should be encouraged.

COnCLUDinG ReMARKS

Immunity and metabolism are highly integrated factors in aging 
and age-related diseases. This is an expanding field of investiga-
tion. Obesity and related complications are a major global epi-
demic. Scientific research must be a crucial part of the solution 
to understand all implications of obesity, but this research is still 
in its initial phase. The investigation of the mechanisms whereby 
inflammation and immune activation disrupt a functional 
immune response adds novel insights to the understanding of 
the relationship between inflammation and long-term metabolic 
disease outcome and opens new ways for effective therapeutic 
interventions.
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