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1 Morbidity 
 

1.1 Data 

 

1.1.1 Raster covariates 

 

A number of rasterised environmental and anthropological covariates at 2.5 arcminute (approximately 5km × 5km) 

resolution were used. The covariates and their associated references and processing notes are given in the table 

below. 
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Table S1: Covariates used 
 

 Covariate Source Processing 
 

    
 

 IGBP Combined Forest MODIS MCD12Q11 Process 1 
 

 EVI Mean MODIS MCD43B42 Process 2 
 

 EVI SD MODIS MCD43B42 Process 2 
 

 LST Daytime Annual Mean MODIS MOD11A23 Process 2 
 

 LST Daytime Annual SD MODIS MOD11A23 Process 2 
 

 LST Night Annual Mean MODIS MOD11A23 Process 2 
 

 LST Night Annual SD MODIS MOD11A23 Process 2 
 

TCB Annual Mean MODIS MCD43B42 Process 2 
 

TCB Annual SD MODIS MCD43B42 Process 2 
 

 Precipitation WorldClim4 Overall local mean 
 

Accessibility Weiss et al.5 2.5 arcminute spatial 
 

   mean 
 

 Nighttime lights (2010 stable lights) DMSP F18 Satellite 2.5 arcminute spatial 
 

  

SRTM 3 arcsecond Digital Elevation Model6 

mean 
 

 Elevation 2.5 arcminute spatial 
 

  

Zomer et al.7 

mean 
 

 CGIAR-CSI Global PET Database 2.5 arcminute spatial 
 

   mean 
 

    
 

 
 
1.1.1.1 Raster covariates processing notes 
 

• Process 1: The MODIS MCD12Q11 data were downloaded for the closest available relevant year (2013: the 

data are not available for subsequent years) and the IGBP landcover band was extracted, reprojected, and 

merged to a global lat/lon GeoTIFF grid at 15 arcsecond (approximately 500m) resolution. The various IGBP 

classes representing types of forest (Evergreen Needleleaf forest, Evergreen Broadleaf forest, etc) were 

selected and reclassified to a single forest/not-forest grid. This grid was then aggregated by a factor of 10 to 

2.5 arcminute (approximately 5km) resolution, where the output cell value represents the percentage of the 

100 input cells that were classified as any forest. 
 

• Process 2: The MODIS MCD43B4 (BRDF reflectance)2 and MOD11A2 (land surface temperature)3 products 

are available at an 8-daily interval. These were downloaded for the entire period of data availability and were 

converted to GeoTIFFs for the relevant metric by extracting the relevant bands and performing the necessary 

calculations to convert to the required indices such as EVI, before reprojecting and merging to global lat/long 

GeoTIFFs at 30 arcsecond resolution. All of these grids were then gap-filled using the algorithm published 

by Weiss et al8. These 8-daily 30 arcsecond grids were then aggregated to 8-daily 2.5 arcminute (taking the 

spatial mean value of the 25 source pixels) and then those were aggregated (temporally) to annual 

summaries (using the spatial mean and SD values derived from the 25 source pixels). 

 

1.1.2 Population data 

 

Population figures were provided by the Institute of Health Metrics and Evaluation (IHME), the University of 

Washington, Seattle. The IHME population figures are derived from the United Nations (UN) official estimates of 

population. Figures were provided at national level for all countries and at administration level one for Kenya, Saudi 

Arabia, Brazil, India, China, Mexico, and Indonesia. 
 
Initial global raster surfaces of population were created using a hybrid of data from GPWv49 and WorldPop10, with 

the latter taking priority for those pixels where both had population data. A raster was created in this manner for 

each year in which GPWv4 and WorldPop data were available (2000, 2005, 2010, 2015). For the intervening years 

(i.e. 2001-2004, etc), initial population rasters were created by linear interpolation of the surrounding five-yearly 

rasters. 
 
For each model year, a raster of IHME population was then created by distributing the IHME population figures 

for country/administrative units across the pixels bounded by each country/administrative unit, in the same 

proportions 
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as the corresponding pixels in the hybrid GPWv4 / WorldPop raster for the corresponding year. That is, for a given 

IHME administrative unit for which a population figure was available, we calculated the total of the pixels in the 

initial raster for that year, divided this by the corresponding IHME figure for that administrative unit / year, and then 

divided the value of all the pixels in that administrative unit by the resulting number to ensure that the total of the 

pixels matched the IHME figure. As IHME values were available for years prior to 2000 but initial population grids 

were not, for years prior to 2000 we used the 2000 grid as the initial value. This process produced rasters matching 

total administrative population values from IHME with the pixel-level population values determined by the 

proportions of the initial rasters. 
 
MAP has previously published a global limits layer outside which transmission of malaria is highly unlikely.11 This 

layer was based on environmental factors, travel guidelines, and statements by the countries regarding their 

malaria-endemic status in 2010.  
An amended version of this global limits layer was created excluding the malaria-endemic status of the country. 

This exclusion was necessary because the research project covered data extending back to 2000 during which 

time the status of many countries have changed.  
This new global limits layer was applied over the IHME-adjusted population rasters to set population values in 

pixels outside the limits of transmission to be zero, resulting in population-at-risk grids. 
 
Rasterized versions of GADM12 geometry files for both sub-national administrative units and national borders were 

then used to provide a set of pixels in the IHME raster to sum to produce the population-at-risk for those sub-

national units. Eritrea was an exception in that GAUL13 geometry files were used rather than GADM. 

 

1.1.3 PR data collection 

 

Plasmodium vivax and Plasmodium falciparum parasite rate (PvPR and PfPR) data came from geopositioned 

community-based survey measurements of (parasite rate) PR identified available from surveys like those 

conducted by the Demographic and Health Survey (DHS) program and through periodic literature searches from 

published data sources and direct communication with malaria specialists for unpublished measurements of PR. 

Further details of the collation of this data can be found in previous publications.14,15 

 

1.1.4 Treatment-seeking data 

 

1.1.4.1 Data assembly 
 
Data on treatment-seeking behaviours in malaria endemic countries were gathered from DHS and Malaria Indicator 

(MIS) surveys that were conducted from the year 1995 onwards. Treatment-seeking rates were determined from 

the number of children reported to have fever in the past two weeks for which treatment was sought. Response 

codes were manually classified into treatment at public points of care, such as government hospitals, clinics and 

community health workers; and any treatment, which included all public treatment as well as private and non-

governmental organization (NGO) facilities. Friends, family and traditional and homeopathic healers were not 

considered as treatment. Data downloading, extraction and processing was automated using Feature Manipulation 

Engine (FME), version 2017, by Safe Software, using data obtained from the DHS online platform 

(https://dhsprogram.com/).16 Sampling weights were extracted and applied at the individual level following DHS 

guidelines17 and the total number of children, fever cases and cases that sought treatment (public- and any-) were 

summarized nationally. Where data were extreme outliers, the value from the survey report was used instead as 

the extreme difference pointed to some error in the automation (e.g. Bolivia, 2008). 
 
Data were extracted from a total of 152 surveys from 56 countries. These spanned the six WHO regions with 95 

surveys in the African region (AFRO), two in the Eastern Mediterranean (EMRO), three in Europe (EURO), 27 in 

the Americas (PAHO), 17 in the South-East Asian region (SEARO) and 8 in the Western Pacific (WPRO). For 

descriptive purposes, countries in the African region were separated into the sub-African regions reported in the 

World Malaria Report: West Africa (AFRO-W), Central Africa (AFRO-C), East Africa and high-transmission areas 

in Southern Africa (AFRO-E), and low-transmission Southern African countries (AFRO-S).18 
 
Treatment-seeking rates were reported as national mean values for the percentage of children under the age of 

five with fever occurring in the two weeks before the survey, that were taken for treatment at a public or any type 

of facility. Treatment-seeking rates for India were reported as subnational (ADMIN1) mean values. These were 
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calculated from the weighted individual child records from each survey. Upper and lower confidence intervals 

(95% CIs) for the national rates were calculated using the ‘survey’ package in R.19 
 
Socio-economic indicator data were obtained from the World Bank.20 The variables selected had been identified 

as strong indicators of treatment-seeking rates from a previous literature review and statistical analysis.21 These 

included indicators of wealth and health infrastructure: gross domestic product (GDP) growth, health expenditure 

(% of GDP) and out-of-pocket health expenditure (% of total expenditure on health). Accessibility of care shown by 

the proportions of pregnant women that sought prenatal care and children immunized for diphtheria pertussis and 

tetanus (DPT). Finally, overall level of education was represented from rates of primary education completion. 

Matching indicator data to treatment-seeking rates was also done using the FME tool. 

 

1.1.5 Surveillance data collection 

 

The suitability, availability and quality of PvPR and routine case reporting data, as well as detailed intervention 

coverage information, differs markedly inside versus outside Africa that separate modelling strategies were 

developed for countries inside Africa versus those outside. The exceptions were Algeria, Egypt, Morocco, 

Comoros, Mauritius, Cape Verde, São Tomé and Príncipe, Botswana, Namibia, Eritrea, Djibouti, and South Africa. 

The modelling strategy use for most of Africa does not work well for island nations. The other countries have data 

availability that made modelling them with non-African countries more appropriate. 
 
Malaria endemic countries outside Africa tend to have less PvPR data than those inside, in part because 

prevalence is generally lower and thus PvPR becomes an inefficient way to measure malaria risk. Conversely, 

routine surveillance systems outside Africa are generally stronger, meaning that reports of malaria cases from 

health systems are more reliable and provide some insight into the total malaria burden in the community. The 

protocol for collecting this surveillance data is detailed below. 

 

1.1.5.0.1 Data selection criteria 
 
Rules for data selection were developed to address conflicts arising between data sources for any given 

administrative unit in a country for a given year. Where there was consistency in the data reported between 

sources, it would be possible to apply a simple rule – e.g. favouring, the most recently published source. However, 

it is justifiable to assign a greater preference to some sorts of data over others regardless of the publication date. 

For example, two different sources might report the following conflicting data for a given administrative unit and 

year: 
 

• Microscopy figures for explicitly stated indigenous species-specific cases  
• A figure for API, with no indication on how this figure was calculated and whether or not it included only 

indigenous cases 
 
In this example, the microscopy-based figures offer estimates that are more robust for that administrative unit for 

that year, even if the overall API figures were published more recently. 
 
In order to determine which figures should feed into the model in cases of conflict, data was assessed using up 

to three steps of processing with the following rules: 
 

1. Allocate all data for a given admin unit-year combination to a ‘band’ according to its perceived usefulness 

and reliability.  
• If the highest-ranking band for which there are data contains data from only one source, that data is 

used.  
• If the highest-ranking band for which there are data contains conflicting data from multiple sources, 

these data are processed as per step 2 – all data from lower-ranking bands are discarded 

2. Each set of figures from the same band is allocated points, according to the points table applicable to that 

band, as shown in Table S3. This avoids giving points for irrelevant data – the points are for figures that are 

relevant for computing API with the data from that band  
• If a set of figures from one source has higher points than all other sources, then that set of figures is 

preferred. 

• If two or more sources have equally high points, then those are processed as per step 3 and the other 

lower-scoring sources for that band are discarded.  

3. For sets of figures from equally-scoring sources, the most recently published source is preferred. If the              

sources have the same publication date, one is chosen at random 
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We allocate all data for a given admin unit-year combination to a ‘band’ according to its perceived usefulness and 

reliability. Table S2 details the variety of data reported ranked in descending order of perceived usefulness and 

reliability.  
A row in a higher band will always be preferred over a row in a lower band. 
 

Table S2: Data bands  
 

Band Band name Band description   
1 Has indigenous microscopy or 

RDT confirmed cases by species  
2 Has non-explicitly indigenous microscopy 

or RDT by species but no imported cases 

 

3 Has non-explicitly indigenous microscopy 

or RDT by species and species specific 

imported cases 

 
 

 

4 Has non-explicitly indigenous microscopy 

or RDT by species and has non-species-

specific imported cases 

 
 
 
 
 
 

 

5 Has indigenous microscopy with no 

species breakdown 

 

6 Has non-explicitly indigenous microscopy 

or RDT with no species breakdown but no 

imported cases 
 

7 Has non-explicitly indigenous microscopy 

or RDT with no species breakdown and 

imported cases 

 
 

8 Has confirmed cases without diagnostic 

details by species and no imported 

cases 

 

9 Has unjustified confirmed cases by 

species and imported cases by species 

 

10 Has unjustified confirmed cases by 

species and imported cases not broken 

down by species 

  
Indigenous microscopy or RDT confirmed cases 

by species is always the most desirable data.  
The fact these microscopy and RDT results are not 

explicitly stated to be indigenous is not an issue 

where there are no imported cases, so these are 

second only to explicitly indigenous results.  
Microscopy or RDTs with species breakdowns but 

not explicitly stated to be indigenous are slightly less 

ideal if there are imported cases, even if these are 

by species, since it forces the assumption that these 

need to be taken off, when this may actually vary by 

source reporting practice.  
Microscopy or RDT results with species breakdowns 

but not explicitly stated to be indigenous are less 

ideal if there are imported cases, especially where 

these are not by species, since a) it forces the 

assumption the imported cases should be subtracted 

from the total cases identified by the test results – 

i.e. we have to assume the test results include both 

indigenous and imported cases because it is not 

otherwise stated in the source b) these have to be 

taken off by species according to the ratio.  
Microscopy or RDT results are better than confirmed 

cases without justification as to how they were 

confirmed. The best of these are explicitly 

indigenous, since there are no worries about 

imported cases. Microscopy or RDT results which 

are not broken down by species or explicitly stated to 

be indigenous where there are no imported cases to 

take off anyway are the next best results.  
Microscopy or RDT results which are not broken 

down by species and are not explicitly stated to be 

indigenous where there are imported cases to 

remove, whether or not these imported cases are 

species specific.  
Confirmed cases by species are preferred less 

than data with microscopy or RDT, because their 

confirmation method is unspecified. Those without 

imported cases to take off are preferred.  
Where there are imported cases to take off 

confirmed cases by species, it is better to know the 

species breakdown of the imported cases than to 

have to compute an estimate.  
Here there are confirmed cases by species, but 

the imported cases must be taken off based on 

the proportion of Pf:Pv:Other as given in the 

report if provided, or by a national estimate 

otherwise. 
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Band Band name Band description  

11 Has unjustified confirmed cases not broken Confirmed cases without justification or species  

 down by species and no imported cases breakdown must be reallocated by species; there are no 

  imported cases to take off, though, which is preferred. 

12 Has unjustified confirmed cases not broken Confirmed cases without justification or species 

 down by species and imported cases breakdown must be reallocated by species, and the 

  imported cases taken off (and reallocated by species 

  where these are not reported by species). 

13 Has total cases explicitly stated to be local Where the only cases are unconfirmed, those explicitly 

 population stated to come from the local population take 

  precedence. 

14 Has explicit unconfirmed cases not stated to Where the only cases are unconfirmed, and this is not 

 be local, or total cases not stated to be local explicitly stated to come from the local population. 

15 Has reported API The lowest band is where only API is reported, and 

  must be transformed back into cases via the 

  administrative unit population taken from IHME (and 

  hence UN) figures. 
    

 

When there are competing sources within a single band, these are tie broken according to points system in: 

Table S3: Tie-break points 

Bands Condition Points  
    

1,5 Has an accompanying figure for number of tests undertaken 1  

2–4, 6–7 Has microscopy confirmation 1000 

 Has RDT confirmation 100 

 Has microscopy results and an accompanying figure for number of microscopy tests 10  

 undertaken, plus unconfirmed or total cases (local pop or not) values   

 
Has RDT results and an accompanying figure for number of RDT tests undertaken, 
plus 1  

 unconfirmed or total cases (local pop or not) values   

8–10 Has a figure for both P. falciparum and P. vivax 10  

11–12 Has a reported percentage or proportion of P. falciparum or P. vivax 1  

13–15 Has a reported slide positivity rate (SPR) or test positivity rate (TPR) to allow 10  
 estimation of percentage confirmed cases   

 Has a reported percentage or proportion of P. falciparum or P. vivax 1  
    

 

In the event of all the above criteria being equal for two or more competing sets of values, one was chosen at 
random. 
 

1.2 Methods 

 

1.2.1 Incidence to prevalence conversion 

 

In a number of contexts throughout the analysis, we wish to convert data from incidence (per person per year, in 

the interval [0, ∞]) to prevalence (P. vivax parasite rate in ages 1–99 [PvPR1-99], in the interval [0, 1]). To do this 

we fitted a Bayesian mixed-effects model as an update to Battle, et al (2015)22. In addition to the matched 

prevalence-incidence point surveys from22 we matched polygon API data with PvPR point surveys. For each 

PvPR survey we matched it with the API value of the lowest administrative level data available in the API 
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database. Given that subnational API data is incomplete through time, we selected the temporally nearest data 

each time.  

The data was very left skewed with respect to API. To constrain the model so that API = 0 goes to 

prevalence = 0, we transformed the API as follows: log(api + min / 2) - min(log(api + min / 2)).  

The incidence-prevalence model is given by 

logit(𝑃) = 𝛽0 + 𝛽1𝐼𝑡 + 𝛽2𝑠 + 𝛽3𝑠𝐼𝑡 + 𝑢0 + 𝑢𝐼𝐼𝑡 + 𝜖 

where 𝑃 is prevalence, 𝐼𝑡 is the transformed incidence and 𝜖 is the binomial error term. The model was fitted 
using INLA23. 

In the model definition, 𝛽0 denotes the intercept. Due to the logit transform, we can’t remove the intercept to force 

the model through 𝑃 = 𝐼𝑡 = 0 so instead we put a strong prior on 𝛽0. We set 𝛽0 ∼ 𝑁(−10,0.0001) which implies 

that when 𝐼𝑡 = 0, 𝑃 = logit−1(−10) = 4.5 × 10−5. 

𝛽1 is the fixed effect for transformed incidence. 

𝛽2 is the fixed effect for the categorical variable for “data source”, 𝑠 with 𝑠 = 1 when the data comes from the 

polygon API data and 𝑠 = 0 otherwise. This variable is important for accounting for some of the outlier values 
from the PvPR matched with polygons data. The final conversions from incidence to prevalence, i.e. the 

predictions from the fitted model, are made with 𝑠 = 0.  

𝛽3 is the fixed effect for the interaction between data source and incidence. Data from the polygon API dataset 
get this as an additional slope for incidence while data from the matched data, and final predictions, get no 
additional slope. 

𝛽1, 𝛽2 𝛽3 are given the INLA default vague priors.  

𝑢0 is the random intercept for the relapse zones as shown in Figure S1. It is given by 

𝑢0 ∼ 𝑁(0, 𝜎0
2) 

where 𝜎0 is the standard deviation of the random effect. 𝜎0 is given a penalised complexity prior (low values of 𝜎0 

are preferred) such that the probability that 𝜎0 > 0.001 is 0.001. This is a strong prior as we do not want this 
intercept to vary much at all based on the same logic as the strong prior for the intercept. 

𝑢𝐼 is the random slope for incidence given the relapse zone and comes from a distribution 

𝑢𝐼 ∼ 𝑁(0, 𝜎𝐼
2) 

𝜎𝐼 is again given a penalised complexity prior such that the probability that 𝜎𝐼 > 1 is 0.01. This is a relatively soft 
prior which allowed a reasonable balance between allowing the regions to vary and ensuring that the estimates 
are robust against outliers. Sensitivity testing was conducted to check that the model was not too sensitive to this 
choice of the prior. 

Based on the fitted model, we have separate incidence to prevalence conversion formulae for each of the relapse 
regions. Their corresponding curves are plotted in orange in Figure S2.  

1.2.2 Treatment-seeking model 

 

1.2.2.1 Gaussian process to gap-fill the World Bank indices 
 
In order to predict treatment-seeking rates for the period 2000–2016, it was necessary to build a gap-filled time-

series of the World Bank indices. The approach used to create this was based on Gaussian process regression 

(GPR).25 To keep each index independent, the GPR was performed using only time (‘year)’ as a covariate. This 

reduced the possibility of introducing circularity in the time-series which could have been created by using other 

World Bank indices as covariates for the regression process. A GPR, based on a Gaussian process (GP),26 is well-

suited for estimating missing data and making forecasts in of time-series. A detailed mathematical description of 

GP procedures and its implementation can be found in.25 The GP implemented to estimate missing data in each 

World Bank index had the following form: 

𝑦 = 𝑓(Year) + 𝑁(0, 𝜎2) 
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Figure S1: Relapse zones 
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Figure S2: Prevalence incidence relationship by relapse zone. Plot shows the fitted curves for polygon data and 

matched points data but only the matched points curves are used for model predictions. The pooled curves are 

obtained by setting the additional intercept and slope for the relapse zones to zero. Comparison with the other 

curves demonstrates the effects of specifying the relapse zones.
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Where 𝑦 is the missing point in the World Bank index, 𝑓(Year) is the non-linear effect of year and 𝑁(0, 𝜎2) is 

Gaussian noise. The GPR was performed using R26 package GPfit27 which performs GPR using algorithm 

described in.28 For countries with greater than 90% missing data for the World Bank indices time-series, 

information was borrowed from other countries belonging to the same WHO region. These were made by 

performing a GPR on the indices using the limited data available from said country and randomly selected points 

from countries of the same region. All GPR processes were performed 1000 times to calculate the uncertainty of 

the estimates. 

 

1.2.2.2 Model approach 
 
Generalized additive mixed models (GAMM)29 were applied to obtain estimates of treatment-seeking rates for 

malaria endemic countries for the years 2000 to 2016. To calculate the proportion of children under five with fever 

that sought treatment at any type of provider or at public/government points of care, two GAMMs were built using 

information from indicator variables described above following covariate selection as described previously.21 The 

GAMM for seeking treatment at any type of facility included the proportions of the population that completed primary 

education and pregnant women that received prenatal care as covariates. Treatment-seeking at public facilities 

were predicted using public health expenditure and proportion of pregnant women given prenatal care. To account 

for temporal and spatial autocorrelation, both models included the survey year as a non-linear effect and the WHO 

region. To calculate uncertainty of predicted treatment-seeking estimates, the models were run 1000 times. Each 

run sampled from the range of the 95% CIs of the observed treatment-seeking rates and indicator variable values 

as described above. 

 

1.2.3 API estimation 

 

1.2.3.1 AVI formulae 
 
Annual Plasmodium vivax incidence per 1000 population per year (AVI), was calculated at the national level for all 

countries and at every available sub-national level for which record sets could be obtained. The formula used for 

calculating non-species-specific annual parasite incidence per 1000 population per year (API) for a given 

administrative unit and year is trivial: 

API = 1000
𝑀

population
 

where M is the number of cases for that administrative unit and year. However, the data gathered only includes 
cases that have been captured by the healthcare reporting systems of the respective countries. For countries 
with poorly developed health management information systems (HMIS), this might represent an under-reporting 
of cases. To obtain an estimate closer to the true number of cases for a given area, the formulae published by 30 
were used (with some additional considerations noted for India in a subsequent section). This approach takes the 
number of cases to be the mean of higher and lower estimates that each use treatment-seeking and slide 
positivity rates to adjust the stated number of cases: 

𝑀 =
𝑀upper + 𝑀lower

2
 

Where: 

𝑀upper =
𝐶 + 𝑠𝑈

𝑟𝑝
 

𝑀lower =
(𝐶 + 𝑠𝑈)(1 − 𝑛)

𝑟𝑝
=

𝑎(𝐶 + 𝑠𝑈)

𝑟𝑝
 

And: 

𝐶 - Reported number of confirmed malaria cases in a year. 

𝑈 - Reported number of unconfirmed cases in a year 
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𝑠 – Slide positivity rate 

𝑟 - Reporting completeness 

𝑝 - The proportion of the population with fever that seeks treatment from health facilities covered by the public 
reporting system. 

𝑛 - The proportion of the population with fever that does not seek treatment from any health facility. 

𝑎 - The proportion of the population with fever that seeks treatment from any health facility (public and private). 

Regarding the variables 𝑝, 𝑛, and 𝑎, the occurrence of fever is taken as a proxy for malaria.30 
 
The source data gathered seldom provided the data in a format corresponding directly with the variables in the 

above formulae. In many cases, interpretation of the data with a predefined set of rules was required to determine 

appropriate values. These rules are set out in subsequent sections. 

 

1.2.3.2 Calculating the proportion of P. vivax cases from raw data 
 
The above equations relate to non-species-specific API calculations. In order to calculate AVI, these equations 

need to be used with figures specific to P. vivax. Wherever possible, figures from the primary sources were used 

to calculate the proportion of P. vivax cases.  
However, in many cases, only non-species-specific figures were available. In some cases, the source provided a 

figure for the proportion of cases that were P. vivax. Often they did not, so national level figures for species 

breakdowns from the World Health Organization’s annual World Malaria Reports for 2016, 2015 and 201318,31,32 

were obtained. These were used to derive the proportion of P. vivax malaria in each country and allow the 

calculation of confirmed and unconfirmed cases of P. vivax. 
 
The figures in these sets of World Malaria Report annexes list the number of P. falciparum, P. vivax, and other 

malaria cases, from which a proportion can be calculated. There were two issues: 
 

 The dates covered by the reports overlapped: the 2015 report covered the years 2000–2014 and the 2012 

report covered the years 1990–2011. For the period of overlap (2000–2011), the 2015 report figures had 

precedence. The figures for 2015 were taken from the 2016 report.  
 No country had a complete set of species breakdown figures for the entire period. 

 
In summary, if no species-specific case figures were available in the source, the P. vivax cases were calculated 

by multiplying the total cases by the best available species-proportion figures as follows: 
 

 An explicitly stated proportion/percentage in the source  
 If there was nothing in the source paper, the World Health Organization national species proportions from 

the annexes of the World Malaria Reports for the year of the source were used. 

 If the WHO does not have a national species proportion for the year of the source, the mean species 

proportion over all years for that country was used. 

 

1.2.3.3 Reported testing regimes 
 
The principle testing regimes reported in sub-national data sources were microscopy tests and rapid diagnostic 

tests (RDT).  
Only one source reported polymerase chain reaction (PCR) figures as a subset of microscopy tests. Since there 

was a lack of additional PCR results from other sources, the PCR values were not used. The vast majority of 

reported tests were microscopy.  
In a minority of cases, different sources reported conflicting figures for a given admin unit/year combination via 

microscopy tests versus RDTs.  
In these cases, the values from the microscopy tests took precedence over the RDT results. 
 
1.2.3.4 Reported number of confirmed malaria cases in a year 
 
Confirmed cases were identified from sources where available and fell into the following six categories, listed in 

descending order of perceived quality: 
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Table S4: Confirmed cases fell into the following categories, 

listed in descending order of perceived quality. 
 

Category of data Derivation of P. vivax confirmed cases  
  

Species-specific cases confirmed via a testing Confirmed cases were taken directly from the data provided.  

regime (microscopy, RDT, or a combination of   

both), with figures of the numbers of tests   

undertaken and species-specific results.   

Species-specific cases confirmed via a testing Confirmed cases were taken directly from the data provided. 

regime (microscopy, RDT, or a combination of   

both) but without providing figures of the   

total number of examinations.   

Non-species-specific cases confirmed via a If the proportion of P. vivax cases is stated in the source, 

testing regime (microscopy, RDT, or a it was used to calculate the number of confirmed cases. If not, 

combination of both), with figures of the the national proportion of P. vivax cases was used for the 

numbers of tests undertaken and year of the source. If no national proportion was available for 

species-specific results. the year, the mean proportion for those years available was 

 used. 

Non-species-specific cases confirmed via a If the proportion of P. vivax cases is stated in the source, 

testing regime (microscopy, RDT, or a it was used to calculate the number of confirmed cases. If not, 

combination of both) but without providing the national proportion of P. vivax cases was used for the 
the figures on the number of tests undertaken. year of the source. If no national proportion was available for  
 the year, the mean proportion for those years available was 

 used. Species-specific cases, without indicating a testing 

 regime or providing raw figures. 

Note that an indication of species implies that Confirmed cases were taken directly from the data provided. 

a test process must have occurred and so the   

cases are confirmed.   

Non-species-specific cases explicitly stated as If the proportion of P. vivax cases is stated in the source, 

confirmed, without indicating a testing regime it was used to calculate the number of confirmed cases. If not, 

or providing raw figures. Note the the national proportion of P. vivax cases was used. If no 

requirement for the figures to have been national proportion was available for the year, the mean 

explicitly stated as confirmed. This is distinct proportion for those years available was used. 

from the data described in the next section,   

where malaria case figures were provided   

without indicating they were confirmed.   
   

 

The number of confirmed cases was taken as follows: 
 

• If there were just microscopy figures, these were used as the number of confirmed cases  
• If there were just RDT figures, these were used as the number of confirmed cases  
• If there was no indication of the method used, the figures stated as confirmed were taken as the number of 

confirmed cases 

• If there were microscopy and RDT figures, the total number of confirmed cases was taken as the sum of 

the microscopy and RDT figures 
 
The result of the above was a species-specific number of confirmed cases but consideration needed to be taken 
to exclude cases that were imported.  
This depended on the source: 
 

• If the number of cases by microscopy / RDT / unstated method were explicitly stated as being indigenous, 

they were taken as the final figure for the number of confirmed cases 

• If the number of cases by microscopy / RDT / unstated method were not explicitly stated as being indigenous 

and the source paper included species-specific figures of imported cases, these imported cases were 

subtracted from the appropriate species-specific number of confirmed cases to give a final figure for the 

number of confirmed cases 
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• If the number of cases by microscopy / RDT / unstated method were not explicitly stated as being indigenous 

and the source paper included non-species-specific figures of imported cases, these imported cases were 

divided into species-specific figures by applying the same proportion of species indicated by the test results. 

 

1.2.3.5 Reported number of unconfirmed cases in a year (U) 
 
Many sources provided figures for malaria cases without explicitly stating these were confirmed cases. These 

figures might be provided in addition to figures for confirmed cases (such as microscopy tests or simply explicitly 

stated confirmed figures) and were likely cases treated following a presumptive diagnosis based on symptoms. 

Case figures not explicitly stated to be confirmed were assumed to be unconfirmed. Where additional confirmed 

cases were provided by a source, these were subtracted from the total case figures to provide a calculated number 

of unconfirmed cases. Consideration was given to figures for imported cases: 
 

• If the source included figures for confirmed cases, the imported cases were subtracted from those in 

accordance to the proportion of species in the confirmed cases. 

• If the source figures did not indicate any confirmed cases, the imported cases were subtracted from the 

unconfirmed cases to provide a calculated figure for unconfirmed cases. 
 
Once a figure for unconfirmed cases had been calculated, it was used to calculate an estimate of the number of 

unconfirmed cases that were P. vivax. This was done using the proportions described earlier in this document. 

 

1.2.3.6 Reporting completeness (r) 
 
Reporting completeness represents the number of health facilities reporting relative to the number of reports 

expected. Sub-national figures for reporting completeness were rare in the government sources collected. Our 

search only managed to find publicly available sub-national figures for Nepal.  
The National Malaria Control Programme in Eritrea also provided figures on request and on condition of keeping 

these figures confidential. 
 
Sub-national reporting completeness figures are submitted by countries to the World Health Organization as part 

of the annual data collection exercise for the World Malaria Report. However, the World Health Organization does 

not have the permission of the countries donating the data to share these sub-national level reporting figures to 

the research community. 
 
For those countries where sub-national reporting completeness figures were not available, national reporting 

completeness values derived from the World Health Organizations’ 2015 World Malaria Reports were used.18 
 
Most countries only had figures for between three and eight years. These figures were not necessarily for 

consecutive years. To fill in the gaps between years, a mean value of all available years was used. To deal with 

the missing data prior to the earliest year for which a figure was available, the earliest reporting completeness 

available was assigned to one of the following bands: 
 

• > 80%  
• 50%-80%  
• < 50% 

 
The values for the missing earlier years were then calculated using a linear progression back to the base of the 

reporting completeness band the figure fell into.  
For example, if the earliest year for which data was available was 2005 and this figure was 65% reporting 

completeness, the years 2000 to 2004 would be calculated by decreasing the reporting completeness by even 

steps from 65% to 50% for the years 2004 to 2000 (with each year 1·5% less than the previous one): The 

justification for this is the assumption that reporting completeness has improved over time. For the < 50% band, a 

floor of 10% reporting completeness was assumed. 

 

1.2.3.7 Slide Positivity Rate (s) 
 
Slide Positivity Rate is defined as the number of microscopy slides positive for malaria divided by the total number 

of slides examined. For the purposes of calculating AVI, the SPRPv was required (i.e. the number of slides positive 

for P. vivax divided by the total number of microscopy examinations undertaken). 
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Where figures were available in the source for the total number of examinations undertaken and the resultant slide-

positives for P. vivax, these were used to calculate SPRPv. Where the number of examinations and slide-positivity 

figures were available but did not specify a species, SPR was calculated and then multiplied by the best available 

figure for the proportion of P. vivax. 
 
If the source did not have slide examinations and slide-positivity figures available, national figures were used 
instead. The national figures were derived from the slide figures in the appendices of the World Health 
Organization’s annual World Malaria Reports for 2016, 2015 and 201218,31,32 . Because the data in these reports 
overlaps, the data in the most recent report took precedence over the earlier ones. 
 
No country reported slide figures for the entire period under research, so a mean value was calculated for each 

country based on the years for which there were figures. This mean value was then used for the missing years for 

the country. 

 

1.2.3.8 Population figures 
 
Most of the sub-national case data collected from Ministry of Health reports had associated population figures. 

However, while these population figures were collected, they were disregarded in favour of figures provided by 

IHME because of the latter’s provenance to the UN. For the purposes of calculating AVI, the population-at-risk 

was used as the denominator (see above). 

 

1.2.3.9 Treatment-seeking figures (p, n, a) 
 
Treatment-seeking rates are estimated as the proportion of children under five with fever that were taken to 

treatment (see section “Treatment-seeking model”). These values were used as representative of the population 

as a whole.21 
 
These figures provide an upper, lower, and mean figure for each of: 
 

• The proportion of children under five with fever seeking treatment from health facilities covered by the 

public reporting system. 

• The proportion of children under five with fever seeking treatment from any health facility (public and 
private). 

 
To reflect the uncertainty in the reliability of the data sources collected, the following assignments were made to 
the  
AVI calculations to reflect -the widest possible range of estimates: 
 
For the calculation of 𝑀upper: 
 
p was set to the lower estimate of the proportion of children under five with fever seeking treatment from health 

facilities covered by the public reporting system. The formula for the upper cases estimate adjusts for cases being 

missed due to persons with fever who did not seek treatment from the public healthcare system: both those who 

sought treatment from the private sector, and those who sought no treatment. Using the lower estimate for this 

proportion amplifies the estimated number of fevers omitted from the public sector reporting and, accordingly, the 

upper cases estimate by the largest amount. The upper cases estimate assumes the same slide positivity rate, s, 

among those who do and do not seek treatment.30  
For the calculation of 𝑀lower: 
 
p was set to the upper estimate of the proportion of children under five with fever seeking treatment from health 

facilities covered by the public reporting system. a was set to the lower estimate of the proportion of children under 

five with fever seeking treatment from any health facility (public and private). 
 
The formula for the lower cases estimate adjusts for cases missed by persons with fever who did not seek 

treatment from the public healthcare system. The upper estimate for public treatment-seeking is used, since this 

provides the most optimistic view of treatment-seeking from the public healthcare system, and therefore of the 

completeness of the reported figures from the public sector. This reduces the number of fevers to be added to 

those from the public sector, and therefore the lower cases estimate. 
 
By the same logic, the lower estimate for any treatment-seeking is used since, in combination with the upper public 

treatment- seeking estimate, this minimises the number of persons with fever estimated to have sought treatment 

within the private sector. Multiplying the slide positivity rate (s) used to adjust the unconfirmed cases by the 
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proportion of persons with fever who sought any treatment applies the assumption that only fever cases that sought 

treatment had malaria and those that did not seek treatment had no malaria (s = 0). 

 
1.2.3.10 Special considerations for India 
 
A large number of malaria cases in India are treated in the private sector and hence go unreported by the HMIS.33 

The figures for cases and microscopy examinations in the appendices of the World Health Organization’s World 

Malaria Reports are those reported in the public sector and are therefore not representative of the total case burden 

in the country. Furthermore, the World Malaria Report figures represent data from both passive case detection 

(PCD – i.e. people presenting at hospital with symptoms) and active case detection (ACD – i.e. public healthcare 

going and screening everyone in a village).33 
 
This means that although we can calculate a slide positivity rate (SPR) from the figures of slides positive/slides 

examined in the public sector (published in the World Malaria Reports), we have no way of knowing what the SPR 

is for ACD or PCD – it is just a combined figure. The SPR for PCD will be higher than that for ACD – people are 

detected by PCD when they go to a hospital because they are ill. The ACD rates are based on active screening of 

fevers in the community meaning the febrile denominator population is likely to be larger than the subset that may 

seek care. 
 
The World Malaria Reports include figures for the high, low, and mean case estimates for countries for selected 

years, based on the formulae discussed in section 2.1. The inputs for these estimates are the cases and number 

of slides reported in the appendices and unpublished treatment-seeking estimates calculated from Measure DHS 

(http://www.dhsprogram.com/) survey results.33 
 
However, because the World Malaria Report figures for India do not include the totals for the significant number 

of cases treated in the private care sector and it is impossible to determine an appropriate value for SPR because 

of the high levels of ACD in the public sector, a different approach is taken for India for the high, low, and mean 

estimates in the World Malaria Reports.33 Estimates of the number of private sector cases and cases where no 

treatment was sought are calculated by scaling up the public cases figures by the ratio of private treatment-seeking 

rates to public treatment-seeking rates and non-treatment-seeking rates to public treatment-seeking rates 

respectively.  
Because all cases in the private sector are passively detected, the private figures have to be modified upwards 

again by a factor to reflect that the PCD SPR is unknown.  
This factor is also applied to the non-treatment-seeking cases. The World Health Organization do this using 

unpublished figures from the private sector that are not available publically.33 
 
In order to provide credible national case figures for India, we adopted the same approach as the World Health 

Organization, taking the following steps: 
 

• The low, high, and mean case estimates for India published in the 2015, 2016 and 2017 World Malaria 

Reports18,32,34 were taken as anchor points. The years for which there are estimates are 2000, 2005, 2010, 

2012, 2013, 2014, 2015, and 2016.   
• The public sector case figures from the World Malaria Reports and treatment-seeking estimates (see section 

“Treatment-seeking model”) were used to estimate private sector cases and non-treatment-seeking cases 

for the years 2000, 2005, 2010, 2012, 2013, and 2015.  
• The private and non-treatment-seeking cases were then scaled up by adjusting the SPR applied to them: 

the SPR was increased until the sum of reported public sector cases, estimated private sector cases, and 

estimated non-treatment-seeking cases approximated the point estimates published by in the 2015, 2016, 

and 2017 World Malaria Reports18,32,34.  
We could not use the actual SPR adjustments used by the World Health Organization in the World Malaria 

Reports because these are unpublished. 

• The final national figures used by MAP were therefore the sum of reported public sector cases, estimated 

private sector cases scaled up by a modified SPR, and estimated non-treatment-seeking cases scaled up 

by a modified SPR. 
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1.2.3.11 Special Considerations for countries in Elimination Phase 
 
Countries classified by the World Health Organization as being in “Malaria Elimination Phase” (i.e. API < 0·001)  
had their data treated as follows for the years they were in elimination phase: 
 

• The reporting completeness was taken as 1 (i.e. 100% of cases reported), regardless of the reporting 

completeness reported by sources  
• The treatment-seeking values were taken to be 1 (i.e. 100% of patients seek treatment via the public 

healthcare system), regardless of the modelled treatment-seeking rates 

• All reported case figures were treated as confirmed, regardless of whether the sources explicitly reported 

them as such 
 
Countries classified by the World Health Organization as being in “Pre-Elimination Phase” (i.e. API < 0·005) 

received no additional treatment during the calculation of AVI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S3: Countries reporting no local P. vivax malaria cases since 2000. Fill colour indicates the year in which 

they attained three years of zero local cases. 

 
 

1.2.3.12 Outlier removal 
 
Outlier removal was performed by two processes. At the national level, data were examined and removed if they 

were considered unreliable. Unreliability was inferred by large changes year to year within a country and 

comparisons to other published estimates. The table of national data exclusions is given below. 
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Table S5: National level data exclusion years 

 

Country Excluded year(s) 
  

Afghanistan 1994 
Bangladesh < 2000 
Belize 1990–1999 

Bolivia 1990–1999 

Botswana < 1990 

Brazil < 1990 

Bhutan < 1998 

Colombia < 1990 

Comoros < 2004 

Djibouti < 1990 

Algeria < 2000 

Eritrea < 1990 

French Guiana < 1990 

Guyana < 1990 

Haiti 1993, 1999, 2002, 2003 

Indonesia < 2000 

India All but 2000, 2005, 2010, 2012-2016 

Iran < 1990 

Kyrgyzstan < 1990 

Cambodia < 1990 

South Korea < 2000 

Laos < 1990 

Sri Lanka < 1990 

Mexico < 1990 

Myanmar < 1990 

Namibia < 2000 

Oman < 1991 

Pakistan < 2000 

Peru < 2000 

Papua New Guinea < 2000 

Paraguay < 1990 

Solomon Islands < 2008 

Sao Tome Principe 1982 

Suriname < 2000 

Swaziland < 2000 

Tajikistan < 2000 

East Timor 1998 

Tanzania 2016 

Vietnam < 2000 

Yemen < 2001 

South Africa < 2000 
 

 

 

A further outlier rule was applied to subnational data. Data were removed if they either had an AVI of > 600; or 

had an AVI of > 100 and a population at risk of less than 10% of its population. Indian subnational units were 

exempt from this rule. 
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1.2.3.13 Post-hoc masking 
 
This step creates a raster cube that indicates where pixels should be exactly zero. 
 
Any administrative unit, year pair with zero AVI is included in the mask (i.e. set to zero) unless: 
 

• The zero is due to a population at risk value of zero.  
• A child administrative unit (i.e. a smaller administrative unit fully contained by the large unit) has a non-zero 

AVI value. 
 
Furthermore, if a unit is included in the mask and all later data in that unit is zero AVI or missing, the mask is 

extrapolated forward in time. This is particularly needed because many areas stop reporting malaria cases once 

they have reached elimination. 
 
For example: 
 
If Goa had a zero AVI in 2011 and 2014 and an AVI of 0.1 in 2015, then the algorithm would: 
 

• Do nothing 
 
If Goa had a zero AVI in 2011 and 2014 and nothing for 2015, then the algorithm would: 

• Do nothing until 2011  
• Add 2011 to the mask, since it is reported as zero cases  
• Add 2012-2015 to the mask, since the most recent previous value was a zero, and there are no future 

values 
 
If Goa had a zero AVI in 2011 and 2014 and a zero AVI for 2015, then the algorithm would: 
 

• Do nothing until 2011  
• Add 2011 to the mask, since it is reported as zero cases  
• Add 2012-2014 to the mask, since the most recent previous value was a zero, and the next reported value 

in 2015 was zero 

• Add 2015 to the mask, since it is reported as zero cases 
 
Finally, all administrative unit, year pairs that are included in the mask are combined with the environmental limits 

to create a raster cube mask. 

 

1.2.4 Outside of Africa: time-series models 

 

For estimating malaria incidence outside of Africa, we first fitted time-series models to national API data. These 

time-series estimates were then included as data in the subsequent disaggregation regression models. A flowchart 

of the modelling process for surveillance countries, i.e. countries outside of Africa as well as Djibouti and Eritrea, 

is shown in Figure S36. 
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Figure S4: API data availability at different years for ADMIN1 (green), ADMIN2 (yellow) and ADMIN3 (red). 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure S5: The number of years with API data available (2000-2017) at administrative levels used for time 
series modelling 
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1.2.4.1 National time-series 
 

The basic model for a national time-series includes short term (ST) and long term (LT) moving average 
elements to capture short range and long range variation. In hierarchical Bayesian notation, the API for 
country 𝑖 in year 𝑗 is modelled as: 

𝐴𝑃𝐼𝑖,𝑗 ∼ {
𝑁(𝜇𝑖,𝑗 , 𝜎𝑖,𝑗

2 )

𝑁(𝜇𝑖,𝑗 , (0.001𝜇𝑖,𝑗 + 0.001)2) for fixed data.

log(𝐴𝑃𝐼𝑖,𝑗) = {

offset𝑖 , for 𝑗 = 1,

offset𝑖 + ∑ 𝛽𝑙

𝑝

𝑙=1

𝑋𝑙,𝑖,𝑗 + 𝑤𝑖,𝑗−1
(𝑆𝑇)

+ 𝑤𝑖,𝑗−1
(𝐿𝑇)

for 𝑗 > 1.

where 𝑤𝑖,𝑗
(𝑆𝑇)

=
∑ exp𝑘<𝑗 (−

(𝑗 − 𝑘)2

0.52 )𝜖𝑖,𝑘
(𝑆𝑇)

∑ exp𝑘<𝑗 (−
(𝑗 − 𝑘)2

0.52 )
,

𝑤𝑖,𝑗
(𝐿𝑇)

=
∑ exp𝑘<𝑗 (−

(𝑗 − 𝑘)2

2.52 )𝜖𝑖,𝑘
(𝐿𝑇)

∑ exp𝑘<𝑗 (−
(𝑗 − 𝑘)2

2.52 )
,

𝜖𝑖,𝑗
(𝑆𝑇)

∼ 𝑁(0, 𝜏𝑖
2𝜌),

𝜖𝑖,𝑗
(𝐿𝑇)

∼ 𝑁(0, 𝜏𝑖
2(1 − 𝜌)),

logit(𝜌) ∼ Uniform(−∞, ∞)

log(𝜏𝑖
2) ∼ 𝑁(𝛾𝑖 , 𝜁𝑖

2),

𝛾𝑖 ∼ 𝑁(−4,1),

log(𝜁𝑖
2) ∼ 𝑁(−4,1),

offset𝑖 ∼ 𝑁(0,10),
and 𝛽𝑙 ∼ 𝑁(0,1).

 

Here, 𝜇𝑖,𝑗 and 𝜎𝑖,𝑗
2  denote the API mean and standard deviation from the API data. The latter is calculated 

using the upper and lower bounds of the API estimates. 

{𝑋𝑙,𝑖,𝑗} represents the 𝑙th covariate for country 𝑖 in year 𝑗. The covariates considered are the gap-filled 

World Bank indices: 

The covariates considered are the gap-filled World Bank indices: 
 

1. Health expenditure, total (% of GDP)  
2. Immunization, DPT (% of children ages 12-23 months)  
3. GDP growth (annual %)  
4. Pregnant women receiving prenatal care (%)  
5. Primary completion rate, total (% of relevant age group) 
6. Health expenditure, public (% of GDP) 

 

The covariates are normalised before testing and only significant covariates with negative coefficients are 

used in the final model. 

The above model is used for countries with large amounts of data over the study period. For countries with 

many missing values, we borrow information from countries in the same region by setting the long-term 

moving average ( 𝑤(𝐿𝑇) ) as a shared regional trend. IHME superregions, which are based on 

epidemiological similarity and geographic closeness, were used as regions. If there are conflicting trends 

within the IHME superregions (e.g. increasing versus decreasing), countries with similar trends were 

grouped and treated as separate regions. 

Note that the basic model presented above cannot predict zero API values. To account for zeros especially 

in low API settings, we introduce a Tobit factor. If log(𝐴𝑃𝐼𝑖,𝑗) < 𝑐, where 𝑐 is the smallest log(𝐴𝑃𝐼) value 

corresponding to a non-zero API value for that country, we set the API estimate to zero. 
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The models were defined with the R package Template Model Builder (TMB)35 and optimised in R. Once 

a model has been fit, we generate 1000 realisations of the API time series using the posterior distributions 

of the estimated parameters. These enable us to create 95% credible intervals. 

 

1.2.4.2 Subnational time-series 
 
The models for subnational time-series modelling in subnational units of Brazil, China, Indonesia, India, 

Iran and Mexico are based on the regional time-series model. (Kenya and Ethiopia use the cartographic 

approach and aggregate administrative level API via the pixels.) Now, instead of countries in one region 

sharing a LT moving average, subnational units in one country share the LT moving average. 

The main difference between the national models and the subnational models is that for the latter, the 

modelled subnational (ADMIN1) counts need to add up to the national count where we have national API 

data. That is, for subnational unit 𝑖 in year 𝑗, we require that: 

𝐶𝑜𝑢𝑛𝑡𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙,𝑗 = ∑ 𝐶

𝑖

𝑜𝑢𝑛𝑡𝑖,𝑗

where 𝐶𝑜𝑢𝑛𝑡𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙,𝑗 =
𝐴𝑃𝐼𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙,𝑗

1000
× 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖,𝑗 ,

and 𝐶𝑜𝑢𝑛𝑡𝑖,𝑗 =
𝐴𝑃𝐼𝑖,𝑗

1000
× 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖,𝑗

 

Model variants involve the Tobit factor and omitting unit-specific ST moving averages. 

For units where we have sufficient years with both subnational and national data, we proportionally adjust 
the subnational API data so that the subnational counts add up to the national count so as to help the 
model convergence (“prop_adj” = “Yes”). 

 
Instead of the World Bank covariates, we use analogous IHME covariates which are available at the 
ADMIN1 level: 
 

1. Fraction of children born in a given country-year who have received 3 doses of DPT3  
2. GDP per capita (with 2010 as the base year and in international dollars)  
3. Proportion of pregnant women receiving any antenatal care from a skilled provider  
4. Proportion of pregnant women receiving 4 or more antenatal care visits including 1 or more from a 

skilled provider 

5. Age standardized educational attainment for males  
6. Age standardized educational attainment for females  
7. Education in years per capita for males  
8. Education in years per capita for females 

 
As before, the covariates are normalised before testing and only significant covariates with negative 

coefficients are used in the final model. 
 
Additional covariates used are: 
        9.  Mean national modelled API 

10. Indicator for the time period after 2012 
11. Indicator for the time period after 2013  
12. Indicator for the time period before 2000 

 
Note that we do not model subnational units without API data or which only have data zeros but set their 

API values to zeros since we do not have data to suggest otherwise (“zeros” = “Yes”). 
 
9. If the national trend aggregated from the subnational time series differs significantly from that suggested 

by the national model, we proportionally adjust the subnational model draws using the national model 

draws (“draws” = “Yes”). This approach can be seen as using the subnational models to model the changes 

in the subnational proportions instead. Alternatively, we considered using the means of the national API 

estimates from the national model as a covariate. Note that a sensible coefficient sign for this would be 

positive. 
 
The details for the final models for the national and subnational models can be found in Tables S6 - S9 
where the abbreviated region names for the national models correspond to the IHME superregions and 
the covariates are numbered according to the bulletpoints above. 
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1.2.4.2.1 Special case: India 
 
The API data for Indian ADMIN1 units have different features (fluctuating, steady decrease, drops in 

different years) which are difficult to capture with one subnational model. Instead, we group the units 

according to these features and model these ‘clusters’ separately. Since the clusters also have different 

degree of API variability from year to year, we allow the bandwidth of the moving averages (“st_bw”) to vary 

between clusters. Since the subnational API data have been adjusted proportionally against the national 

API data, we can aggregate the subnational API estimates via counts to get the final India national API 

estimates (“aggr.” = “Yes”). 

To get the India urban and rural time series we split the state level time series based on population densities. 

For each admin unit, the population density of urban and rural portions are calculated from the gridded 

population raster and IHME shapefiles that define urban and rural boundaries. The population densities are 

then linked to incidence rate via an empirical relationship. These urban and rural incidence rates are 

subsequently scaled, taking population into account, such that they are consistent with incidence rate for 

the entire admin unit.  

 
 

Table S6: National time-series model variant descriptions 

 Long- Short-     
 

 term term     
 

Model trend trend Covariates Tobit Comments 
 

      
 

pv Country- Country- No No Trends governed by moving averages of  
 

 specific specific   differing smoothness. (Original model since 
 

     no significant covariates upon fitting.) 
 

rt Region- Country- Yes No LT trend acts as averaging between 
 

 shared specific   countries but favours those with more data; 
 

     ST trend accounts for remaining variability 
 

nc Region- Country- No No 
in country. 

 

  
 

 shared specific     
 

simple_tobit_nc Region- Country- No Yes   
 

 shared specific     
 

standalone_tobit Country- Country- No Yes   
 

 specific specific     
 

standalone_tobit_c Country- Country- Yes Yes   
 

 specific specific     
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Table S7: National time-series model variants by country 

 

country national_region model covariates 
    

Peru AmLA rt 5 
Brazil AmLA rt 5 
Colombia AmLA rt 5 
Guyana AmLA rt 5 
Suriname AmLA rt 5 
Oman Bespoke standalone_tobit_c 4 
Armenia CEECA rt 3, 6 
Azerbaijan CEECA rt 3, 6 

Georgia CEECA rt 3, 6 

Kyrgyzstan CEECA rt 3, 6 

Uzbekistan CEECA rt 3, 6 

Turkmenistan CEECA rt 3, 6 

China EAsia rt 2, 4 

South Korea EAsia rt 2, 4 

Tajikistan EAsia rt 2, 4 

Djibouti ESA rt 1, 5 

Eritrea ESA rt 1, 5 

Yemen ESA rt 1, 5 

Bolivia LAC nc NA 

Paraguay LAC nc NA 

French Guiana LAC nc NA 

Belize LAC nc NA 

Guatemala LAC nc NA 

Mexico LAC nc NA 

Nicaragua LAC nc NA 

Honduras LAC nc NA 

Comoros MCM rt 3, 4 

Mayotte MCM rt 3, 4 

Madagascar MCM rt 3, 4 

Algeria NAME 1 rt 1, 2 

Morocco NAME 1 rt 1, 2 

Iran NAME 2 standalone_tobit_c 1, 5 

Iraq NAME 2 standalone_tobit_c 1, 5 

East Timor Oceania rt 1 

Vanuatu Oceania rt 1 

Bangladesh SA rt 5 

Bhutan SA rt 5 

India SA rt 5 

Nepal SA rt 5 

Pakistan SA rt 5 

Sri Lanka SEAsia 1 nc NA 

Malaysia SEAsia 1 nc NA 

Thailand SEAsia 1 nc NA 

Papua New Guinea SEAsia 2 rt 4 

Solomon Islands SEAsia 2 rt 4 

Indonesia SEAsia 2 rt 4 

Cambodia SEAsia 2 rt 4 

Laos SEAsia 2 rt 4 

Myanmar SEAsia 2 rt 4 

Vietnam SEAsia 2 rt 4 

Ecuador Standalone pv NA 

Costa Rica Standalone pv NA 

North Korea Standalone pv NA 

    



23 

 

country national_region model covariates 
    

Botswana Standalone pv NA  

Namibia Standalone pv NA 

Swaziland Standalone pv NA 

Afghanistan Standalone pv NA 

Cape Verde Standalone pv NA 

Panama Standalone pv NA 

El Salvador Standalone pv NA 

Venezuela Standalone pv NA 

Argentina Standalone Tobit standalone_tobit NA 

Saudi Arabia Standalone Tobit standalone_tobit NA 

South Africa Standalone Tobit standalone_tobit NA 

Dominican Republic Standalone Tobit standalone_tobit NA 

Haiti Standalone Tobit standalone_tobit NA 

Philippines Standalone Tobit standalone_tobit NA 

Syria Standalone Tobit standalone_tobit NA 

Turkey Standalone Tobit standalone_tobit NA 

Sao Tome And Principe Standalone Tobit standalone_tobit NA 
     

 

 

 
 

Table S8: Subnational time-series model variant descriptions 
      

 Long-term Short-term    

Model trend trend CovariatesTobit Comments 
      

pv Country- ADMIN1- Yes No ADMIN1 units are modelled as a region 

 shared specific   (that is the country) similar to rt of the 

national models; the corresponding national  
API is calculated from the sum of the subnational 
counts. 

pv_nrt No ADMIN1- Yes No ADMIN1 units are modelled as individual 
 

  specific   units whose count sum is used to calculate 
 

pv_nrt_nc No ADMIN1- No No 
the national API. 

 

 
 

  specific    
 

pv_nsubt Country- No Yes No  
 

 shared     
 

pv_nsubt_nc Country- No No No  
 

 shared     
 

pv_onec Country- Yes 1 No  
 

 shared     
 

pv_nsubt_onec Country- No 1 No  
 

 shared     
 

pv_nc Country- ADMIN1- No No  
 

 shared specific    
 

pv_tobit Country- ADMIN1- Yes Yes ADMIN1 units are given a latent log(API) 
 

 shared specific   process and cut-off (based on the smallest 
 

     positive value) to be able to account for and 
 

pv_tobit_nc Country- ADMIN1- No Yes 
predict data zeros. 

 

 
 

 shared specific    
 

cluster_sep No ADMIN1- Yes No This model is the same as pf_nrt but allows 
 

  specific   the bandwidth of the moving averages to be 
 

     varied more easily. 
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Table S9: Subnational time-series model variants by country 

 

country subnational_units prop_adj zeros model covs st_bw draws aggr. 
        

Brazil All Yes No 

pv_nsubt      
_onec            9 0.5 No No 

China All No Yes pv_nrt_nc      NA 0.5 No No 

Indonesia All No No pv 1, 6, 7, 0.5 Yes No 

     8    

India Kerala, Madhya Pradesh, Yes No cluster_sep 2, 5 1 No Yes 

 Maharashtra, Mizoram,        

 Uttar Pradesh,        

 Uttarakhand        

India Jammu and Kashmir, Yes No cluster_sep 2, 8 1.4 No Yes 

 Bihar, Nagaland, Himachal        

 Pradesh, Andhra Pradesh,        

 Arunachal Pradesh, Goa,        

 Karnataka, NCT of Delhi,        

 

Tamil Nadu 
 
        

         

India 

Assam, Chhattisgarh, 
Odisha, Meghalaya, 
Tripura Yes No cluster_sep 4, 10 1 No Yes 

         

India 
The Six Minor 
Territories, Yes No cluster_sep 1, 11 1 No Yes 

 
Telangana 
        

India Gujarat, Haryana, Yes No cluster_sep 11, 12 1.4 No Yes 
 Jharkhand, Manipur,        

 
Punjab, Rajasthan, 
Sikkim,        

 
West Bengal 
        

Iran All No Yes pv_tobit_nrt 2, 7, 9 0.5 No No 
         
         
         
Mexico All Yes Yes pf_tobit 1, 2, 3, 0.5 No No 

     4, 5, 6,    
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1.2.5 Outside of Africa: disaggregation regression 

 

1.2.5.1 Machine learning with PR points 
 
In order to incorporate information from parasite prevalence surveys, we fitted a number of machine learning 

models to PR survey data and environmental covariates. Models were fitted using the ‘caret’ package.36 We then 

predicted these models globally. The new predicted surfaces were then used as covariates for the spatial 

disaggregration model. A flowchart summarising the process is shown in Figure S37.  
 
We used all data in the MAP PvPR database as described above. The prevalence proportion was converted to 

incidence rate using the prevalence-incidence model. 

 

1.2.5.1.1 Model validation 

5-fold cross validation was used to select hyperparameters and measure model accuracy. For each model, grid 
search was used to create candidate hyperparameter sets. That is, for each hyperparameter a number of values 
were chosen and then models were fitted with all possible combinations of these values. Root mean squared error 
was used as the metric of model accuracy. 

 

1.2.5.1.2 Models and hyperparameters 

We fitted a number of regression models to predict incidence from the set of covariates. The models fitted were 
elastic nets,37 random forests,38 k-nearest neighbour, robust linear models,39 gradient boosted trees40, and neural 
networks.39 As the predictions from these models are to be used as covariates by later models, models with 
uncorrelated predictions are the most useful. These models were selected as they cover a number of underlying 
model structures (tree-based methods, nearest neighbour methods, linear models, neural networks) which gives 
them the best chance at making uncorrelated predictions. Finally, we selected five models by fitting an elastic net 
model using prevalence as the response variable and out-of-sample predictions from the models as covariates. 
The alpha parameter (fraction of LASSO penalty vs ridge penalty) was set to 0.05. As the ridge penalty is strong, 
this will penalise correlated covariates, while including the LASSO penalty allows the model to force coefficients to 
exactly zero and therefore perform covariate selection. 

1.2.5.2 Disaggregation regression 
 
 
1.2.5.2.1 Data 
 
The response data is malaria incidence rate (per person per year) for an associated spatial polygon. The data 

comes from two sources. 
 
The first set of data comes from time-series models fitted previously. These time-series models are fitted to data 

at the national level and to the ADMIN1 level for a select few countries (Brazil, China, India, Indonesia, Iran, Mexico, 

and South Africa). In the case of India, each state is split into two, a rural polygon and an urban polygon. These 

are the results published as part of the GBD2017 study.41 Therefore, the results here are required to exactly match 

these results. As the data are from a time-series model, they are complete and have associated uncertainty 

estimates. In the subsequent disaggregation modelling, these datapoints are considered equally whether they are 

at the national or subnational level and are referred to collectively as “ADMIN0”. 
 
The second set of data are any additional subnational incidence rate data (sub-ADMIN1 for Brazil, China, India, 
Indonesia, Iran, Mexico, and South Africa). These data have upper and lower bounds based on 𝑀upper and 

𝑀lower as described in section “AVI formulae”. The mean of the upper and lower bound is used as the point 
estimate of incidence. The polygons associated with these data range from ADMIN1 to ADMIN3 levels. They 
form a hierarchy with each polygon being considered a child of the larger polygon that it is within. 
 

 

 

 

 

 

 

https://mail.google.com/mail/u/0/#m_-8599726883819803522_page64
https://mail.google.com/mail/u/0/#m_-8599726883819803522_page64
https://mail.google.com/mail/u/0/#m_-8599726883819803522_page64
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Table S10: Summary of the most important aspects of the PvPR 

data by region. 
 

  PAHO AFRO SEARO EMRO WPRO EURO Total 
        

 Total records of input 564 3712 6017 1207 2906 6 14412 

data set        

PvPR values        

Number of zero 290 3024 2843 976 1238 5 8376 

records        

Mean PvPR 0.03 0.007 0.03 0.006 0.04 0.003 0.03 

Median PvPR 0 0 0.003 0 0.01 0 0 

Inter-quartile range 0.00-0.03 0.00-0.00 0.00-0.03 0.00-0.00 0.00-0.05 0.00-0.00 0.00-0.02 

Primary source of        

PvPR data        

Peer reviewed sources 367 439 982 499 802 6 3232 

Unpublished work 119 824 4716 204 1755 0 7557 

Reports† 78 2449 319 504 349 0 3623 

Time period of        

surveys        

< 1985 0 0 17 0 0 0 17 

1985-1989 48 27 130 77 73 0 355 

1990-1994 40 53 184 37 279 0 593 

1995-1999 91 66 143 51 485 0 836 

2000-2004 87 84 436 146 827 0 1580 

2005-2009 132 2100 3742 615 848 6 7443 

2010-2015 166 702 1365 281 372 0 2886 

2015-2018 0 680 0 0 22 0 702 

Upper age sampled        

<=10 43 1425 77 39 271 6 1861 

>10 and <=15 10 218 111 81 210 0 632 

>15 and <=20 6 138 117 102 102 0 463 

>20 505 1931 5712 985 2323 0 11456 

Diagnostic method        

Microscopy 483 3164 3468 1194 2505 6 10820 

RDT 0 216 2440 5 30 0 2691 

RDT – slide 0 0 98 0 1 0 99 

confirmed        
 Other 81 332 11 8 370 0 802 

Denominator        

No denominator 0 0 0 0 0 0 0 

1-49 207 2650 860 168 907 0 4792 

50-100 97 366 1438 307 713 6 2927 

101-500 226 646 2513 619 1148 0 5152 

>=500 34 50 1206 113 138 0 1541 

Median (IQR) 90 31 136 150 85 61 91 

  (33-166) (17-61) (76-386) (77-160) (40-163) (60-61) (35-197) 
         

 

†Ministry of Health reports, theses and other unpublished sources. 
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Figure S6: PvPR global data summary 
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1.2.5.2.2 Model definition 
 
We define a multi-level, disaggregation regression model inspired by Sturrock et al.42 This model uses 

polygon-level incidence rate data with pixel-level covariates and a spatial random field. Throughout, we 

index polygon-level variables with j and pixel level variables with i. 

We start by defining the linear predictor which contains an intercept (𝛽0), covariates (𝛃𝐗), a spatial random 

field (GP(𝑠𝑖)) and an iid random effect (𝑢𝑗). 

𝜂𝑖 = 𝛽0 + 𝛃𝐗𝑖 + GP(𝑠𝑖) + 𝑢𝑗 

Here, 𝛃 is a vector of 𝑀 regression slope parameters and 𝐗𝑖 is a vector of 𝑀 covariate values at pixel 𝑖. 
The grouping for the iid random effect is the ADMIN0 polygon that each polygon is within. The one 
exception to this is India as dividing the states into rural and urban means polygons no longer fit into a 
clear hierarchy. Therefore in India there is one group per state and each group will contain two ADMIN0 
polygons.  
The spatial random effect is a continuous random field. For tractability the random field is implemented as 

a Gaussian Markov Random Field approximation to the full continuous field using the SPDE approach.43 

We used the Matérn covariance function (as required by this approximation) and created triangular meshes 

for each separately modelled region. 

We then define the link-function between the linear predictor and 𝐼𝑖. We constrain the model to be defined 

between an incidence of 0 and 𝐼𝑚𝑎𝑥. This constraint is important for getting sensible estimates, especially 

in areas with only very large polygon data units. A different 𝐼max was used for each fitted model. In most 

cases, 𝐼𝑚𝑎𝑥 was set as either double the largest incidence rate in the dataset or 1, whichever was smaller. 

For South America, there were some datapoints with very large incidence estimates due to the small size 

of the polygons. Therefore for South America, we used 𝐼max = 0.375 which was based on the maximum 

incidence rate in22. We then have pixel-level incidence 𝐼𝑖 given by 

𝐼𝑖 = 𝐼maxlogit(𝜂𝑖) 

We define the relationship between polygon-level incidence, 𝐼𝑗, and pixel-level incidence, 𝐼𝑖. 

𝐼𝑗 =
∑ 𝐼𝑖𝑖∈𝑗 × pop𝑖

∑ pop𝑖𝑖∈𝑗

 

with pop𝑖 being the pixel-level population and the summations going over all pixels in polygon 𝑗. 

 

1.2.5.2.3 Likelihood definition 
 

We use a pseudo-likelihood that captures the uncertainty in incidence values. For each incidence value 

we have an upper bound and lower bound, 𝐼𝑗
𝑈 and 𝐼𝑗

𝐿. For ADMIN0 data these bounds are given by the 

95% uncertainty intervals from the time-series models. For subnational data the bounds are given by 
incidence rates calculated using 𝑀upper and 𝑀lower as described in section “AVI formulae”. We define the 

likelihood for each incidence value as 

log(𝐼𝑗) ∼ Norm(𝜇𝑗, 𝜎𝑗
2) 

𝜇𝑗 = log (
𝐼𝑗

𝑈 + 𝐼𝑗
𝐿

2
) 

𝜎𝑗
2 =

log(𝐼𝑗
𝑈) + log(𝐼𝑗

𝐿)

2 × 1.96
 

For data with 𝐼𝑗
𝑈 = 𝐼𝑗

𝐿 we assign 𝜎𝑗
2 as the smallest non-zero value of 𝜎𝑗

2. 
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Figure S7: Arabia 2005 input data facetted by admin level. 
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Figure S8: Arabia 2005 input data overplotted such that lower admin level data is on top.
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Figure S9: Arabia 2015 input data facetted by admin level. 
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Figure S10: Arabia 2015 input data overplotted such that lower admin level data is on top. 
 
 
 
 
 
 
 
 
 
 
 

 



33 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S11: Central America 2005 input data facetted by admin level. 
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Figure S12: Central America 2005 input data overplotted such that lower admin level data is on top. 
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Figure S13: Central America 2015 input data facetted by admin level. 
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Figure S14: Central America 2015 input data overplotted such that lower admin level data is on top. 
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Figure S15: East and South-East Asia 2005 input data facetted by admin level. 
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Figure S16: East and South-East Asia 2005 input data facetted by admin level. 
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Figure S17: East and South-East Asia 2015 input data facetted by admin level. 
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Figure S18: East and South-East Asia 2015 input data overplotted such that lower admin level data is on 
top. 
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Figure S19: Indo-Pacific 2005 input data facetted by admin level. 
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Figure S20: Indo-Pacific 2005 input data overplotted such that lower admin level data is on top. 
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Figure S21: Indo-Pacific 2015 input data facetted by admin level. 
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Figure S22: Indo-Pacific 2015 input data overplotted such that lower admin level data is on top. 
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Figure S23: South America 2005 input data facetted by admin level. 
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Figure S24: South America 2005 input data overplotted such that lower admin level data is on top. 
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Figure S25: South America 2015 input data facetted by admin level. 
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Figure S26: South America 2015 input data overplotted such that lower admin level data is on top. 
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Figure S27: South Asia 2005 input data facetted by admin level. 
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Figure S28: South Asia 2005 input data overplotted such that lower admin level data is on top. 
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Figure S29: South Asia 2015 input data facetted by admin level. 
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Figure S30: South Asia 2015 input data overplotted such that lower admin level data is on top. 
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1.2.5.2.4 Priors 
 

We set the priors on the fixed effects, 𝛽0 and 𝛃 as 

𝛽0 ∼ Norm(−4,2) 

and 

𝛽𝑚∈1:𝑀 ∼ Norm(0,2). 

The weakly informative, zero centred priors on the regression parameters help to regularise the model. 
This is particularly important due to the large number of covariates being used relative to the number of 
data points being included in each modelled region. 

The spatial random field has a Gaussian process prior with hyperpriors 

log(𝜅) ∼ Norm(−3,0.5) 

and 

log(𝜏) ∼ Norm(−0.5,2). 

Finally, the iid random effect has prior 

𝑢𝑗 ∼ Norm(0,0.5). 

Again, the zero-centred, informative prior helps to prevent overfitting. 

1.2.5.2.5 Weighting by admin level 
 
The polygon data has a hierarchical structure with ADMIN0 polygons and nested, subnational ADMIN1 and 

ADMIN2 polygons. The data within these levels is very imbalanced and varies from country to country. One 

country may have an ADMIN0 data value and thousands of subnational data values, while another may 

only have data for ADMIN0. 
 
To address this imbalance, we weight the data by admin level. We weight ADMIN0 data by 5, ADMIN1 by 

1, ADMIN2 by 0·01 and ADMIN3 by 0·005. Given that only around 10 countries are included in each 

regional analysis, we could not weight ADMIN0 data by 1 and downweight all other data as this would give 

unreasonable weight to the priors. It was decided that ADMIN1 data are reliable enough to be weighted by 

1 with ADMIN0 data upweighted accordingly so that the summed weight of ADMIN1 data for a country is 

rarely much greater than the weight of the ADMIN0 unit. Similarly, the downweighting values for ADMIN2 

and ADMIN3 units are determined so that the summed weight of these data rarely outweigh the higher-

level, more reliable data they are below in the hierarchy. 

 

 

1.2.5.2.6 Computational model fitting 
 
To find the maximum a posteriori estimate for the model, we optimise a vector θ of all parameters and 

hyperparameters such that we find the values that minimise −log(𝑝(𝐼|𝜃)𝑝(𝜃)). As this is proportional to 

the true posterior, the parameter values that minimise this expression are also the mode of the posterior. 
 
The model was defined with the R package Template Model Builder (TMB)35 and optimised in R. 

 
1.2.5.2.7 Temporal Interpolation 
 
To allow the malaria surface to change through time we fit two models per region (2005 and 2015). After 

fitting, both these models are predicted globally and malaria surfaces for other year are calculated by 

linearly interpolating between them. However it is only the underlying surface that it interpolated linearly as 

the results from the time-series models are raked over these surfaces. 
 
For the covariates other than precipitation, night-time lights, elevation, accessibility and PET, the 

appropriate year data are used for both model fitting and prediction. 
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We then linearly interpolate between the two models. For an incidence value at pixel 𝑖 and year 𝑡 we have 

𝐼𝑖,𝑡 = 𝑤2015𝐼𝑖,2015 + (1 − 𝑤2015)𝐼𝑖,2005 

where 𝑤2015 is the 2015 weight and is given by 

𝑤2015 = {

0, if 𝑡 ≤ 2005
1, if 𝑡 ≥ 2015

𝑡 − 2005

2015 − 2005
, if 2005 < 𝑡 < 2015

 

 
 

1.2.5.2.8 Masking and population 
 
After the models have been predicted and interpolated, such that we have a full space-time cube of 

incidence, we use a mask (see section “Post-hoc masking”) to ensure that areas known to be malaria free 

are predicted as such. This is particularly required because the model cannot predict a true zero. For all 

region-year pair in the post-hoc mask table, we set all incidence and prevalence pixels in the appropriate 

polygons to zero. 
 
Pixels with zero population-at-risk are also set to incidence and prevalence of zero as these metrics are 

undefined with a denominator of zero. 

 

1.2.5.2.9 Raking 
 

In order that our final results exactly match the results given in the Global Burden of Disease 201741 we 
rake the published incidence counts over the final predicted raster so that for a given polygon 𝑗, the 

predicted cases, ∑ 𝐼𝑖𝑖∈𝑗 × pop𝑖, equals the data value 𝜇𝑗. However we want the raking to obey 𝐼𝑖 ∈

[0, 𝐼max]. We increase or decrease the 𝑃𝑖 values by a nonlinear factor governed by 𝜙 so that ∑ 𝐼𝑖𝑖∈𝑗 ×

pop𝑖 = 𝜇𝑗. 

If ∑ 𝐼𝑖𝑖∈𝑗 × pop𝑖 > 𝜇𝑗 we simply chose 𝜙 such that 

𝜙 =
∑ pop𝑖𝑖∈𝑗 𝐼𝑖

𝜇𝑗

 

However, if ∑ 𝐼𝑖𝑖∈𝑗 × pop𝑖 < 𝜇𝑗 we have to make sure that 𝐼𝑖 never goes above 𝐼max. Therefore we define 

𝑓(𝐼𝑖) = −𝑙𝑜𝑔 (
2

(𝐼𝑖/𝐼max)𝛼 + 1
− 1) 

and its inverse 

𝑓−1(𝑧𝑖) = 𝐼max (
2

1 + exp(−𝑧𝑖)
− 1)

1
𝛼
 

Here 𝛼 is a parameter that governs how fast small incidence values increase relative to large incidence 

values. This parameter is set to 0.00001. This value was chosen as it seemed to avoid creating very large 
incidence values too readily. 

Again we chose 𝜙 such that 

∑ (pop𝑖 × 𝑓−1(𝜙𝑓(𝐼𝑖)))

𝑖∈𝑗

= 𝜇𝑗 

Therefore, for a given ADMIN0 polygon, we increase incidence by 𝜙 in the transformed space between 0 

and infinity. After the inverse trasformation, all values of 𝐼𝑖 are therefore still within [0, 𝐼max]. 
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1.2.5.2.10 Bootstrap uncertainty 
 
After finding the maximum a posteriori estimate of the posterior we need a method to draw 100 independent 

samples from the posterior. However, the Laplace approximations calculated by Template Model Builder 

failed to find estimates for a multivariate normal approximation to the posterior. We also attempted to use 

Hamiltonion Markov Chains (HMC) to draw samples from the posterior, but the chains mixed very poorly, 

and given the slow evaluation of, the expected runtime to get 100 independent samples was prohibitively 

high. Similarly, attempts at importance sampling and relative importance sample failed.  
Instead we used bootstrapping to obtain 100 samples that characterise the uncertainty in the model. In 

designing the bootstrap resampling scheme, care was taken to account for both the fact that the ADMIN0 

data raked over predicted maps come from a separate time-series model and the hierarchical nature of the 

polygon data. 
 
For each bootstrap resample, the following scheme was used: 
 

11. For each ADMIN0 unit, sample the posterior of the time-series models.  
12. Select polygons with probability 0·05.  
13. Remove all data that are descendants of selected polygons (i.e. admin units below the selected 

polygons).  
14. Remove the selected polygons themselves unless the polygon is ADMIN0.  
15. Fit the model to the remaining data and rake the surface back to the resampled ADMIN0 values. 

 
Therefore, for each bootstrap, there is always complete ADMIN0 data. This is required as the model is 

raked to these values in each case. Given that the bootstrap is characterising the uncertainty in the spatial 

pattern of incidence within ADMIN0 units, this is reasonable. 
 
This sampling scheme also means that the amount of missing data per bootstrap iteration is highly variable: 

some ADMIN0 units have thousands of descendants polygons while some have none. Furthermore, as 

each polygon is selected independently, different bootstrap iterations will have different numbers of 

ADMIN0 polygons that have all their descendants removed. In fact there is no guarantee that any ADMIN0 

polygons are selected. 
 
We also note that we did not run 100 separate bootstraps of the machine learning prevalence models. 

Given their role as fixed covariates, similar to the modelled and gap filled environmental covariates, we 

deemed this unnecessary. 

 
1.2.5.2.11 Prevalence estimates 
 
Finally, to estimate prevalence for each pixel and year we use the model as described in Section 1.2.1. 

This conversion takes incidence and a relapse zone and returns a prevalence value. 

 

1.2.6 Africa prevalence model 

 

For Ethiopia, Somalia, Sudan and Madagascar, estimates were made by using estimates of P. falciparum 

prevalence, converting to P. falciparum incidence44 and then converting to P. vivax incidence using national 

ratios of the two species32,34  (see Figure S31). PvPR1-99 was then estimated using the incidence-prevalence 

conversion fitted above. This procedure is summarised in a flowchart as shown in Figure S38. 
 
The model for estimating P. falciparum prevalence uses a large assembly of geolocated PfPR surveys 

maintained by MAP (see Figure S32). The data was used in a Bayesian spatiotemporal geostatistical model 

to predict PfPR for every pixel-year in sub-Saharan Africa, representing an update to earlier work.14 The 

model took into account (i) PfPR survey participant age ranges and diagnostic type; (ii) coverage of ITNs, 

IRS and treatment with an effective antimalarial drug and how these metrics changed through time at each 

data and prediction location; (iii) environmental conditions at each data and prediction location (including 

density of vegetation, temperature, humidity, rainfall, elevation, proximity to populated areas). The outcome 

was a predicted space-time ‘cube’ of PfPR, standardized to the 2–10 age range, for each year 2000–2016. 

The PfPR cube was then converted into an equivalent cube of the predicted incidence rate of clinical 

malaria using the P. falciparum prevalence-incidence relationship 44. 
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Figure S31: Percentage of malaria cases in Africa attributed to P. vivax as reported by the World Malaria 
Report32,34. 
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Figure S32: PfPR AFRO data summary 
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1.3 Results 
 
 
 
 

 Any risk  Stable risk Unstable risk 

 2000 2005 2017 2000 2005 2017 2000 2005 2017 

Region n % n % n % n % n % n % n % n % n % 

AFRO 425 64·5 491 64·8 627 61·8 67 10·2 75 9·9 100 9·9 358 54·3 416 54·9 527 51·9 

EMRO 217 57·1 253 58·7 311 67·8 98 25·6 102 23·6 216 47·2 120 31·5 151 35·1 95 20·7 

EURO 31 25·1 33 25·7   8 6·4 6 4·2   23 18·6 28 21·5   

PAHO 153 32·7 162 32 81 15·4 48 10·2 34 6·7 34 6·5 106 22·5 128 25·3 47 8·9 

SEARO 1,421 90·6 1,535 90·5 1,573 80·5 1,031 65·7 1,027 60·6 1,138 58·2 391 24·9 508 29·9 435 22·2 

WPRO 685 44·5 712 44·6 661 38·8 139 9 99 6·2 19 1·1 546 35·5 613 38·4 642 37·7 

Total 2,933 61·9 3,184 62·3 3,253 57·4 1,390 29·3 1,342 26·2 1,507 26·6 1,543 32·6 1,843 36 1,745 30·8 

 
Table S11: Populations at risk of Plasmodium vivax malaria in 2000, 2005 and 2017 in millions. 

The populations at risk in millions are given for each WHO region for those areas that are at any risk, stable 
risk (≥0·1 cases per 1,000 per year) or unstable risk (<0.1 cases per 1,000 per year). The percentages of 
populations at risk show the ·percent of the total population of each region within each risk stratum. AFRO = 
African Region Office, EMRO = Eastern Mediterranean Region Office, EURO = European Region, PAHO = 
Pan American Health Organization, SEARO = South East Asian Regional Office, WPRO = Western Pacific 
Regional Office. 
 
 
 

 
 
 

Figure S33: Relative uncertainty in PvPR for the years 2005 and 2017. 
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Figure S34: CI range in PvPR for the years 2005 and 2017. 
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Figure S35: CI range in incidence for the years 2005 and 2017. 
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1.4 Schematic diagrams 
 

 
Figure S36: Flowchart of the prevalence and incidence modelling process for surveillance countries. 

 

 
Figure S37: Flowchart of the spatial disaggregation process for surveillance countries. 
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Figure S38: Flowchart of the prevalence and incidence modelling process for cartographic countries. 
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1.5 GATHER Checklist  

   
 Item  

 No. Checklist item Reference 
    

  Objectives and funding  

1 Define the indicator(s), populations (including age, sex, and Main text (page 6) 

  geographic entities), and time period(s) for which estimates  

  were made.  
 

2 List the funding sources for the work. 

 
Data Inputs 

 
From multiple sources that are synthesized as part of the study: 

 

3 Describe how the data were identified and how the data 

were accessed. 

 

4 Specify the inclusion and exclusion criteria. Identify all ad-

hoc exclusions. 
 

5 Provide information on all included data sources and their 

main characteristics. For each data source used, report 

reference information or contact name/institution, population 

represented, data collection method, year(s) of data 

collection, sex and age range, diagnostic criteria or 

measurement method, and sample size, as relevant. 
 

6 Identify and describe any categories of input data that have 

potentially important biases (e.g., based on characteristics 

listed in item 5). 

 
Main text (funding statement) 
 
 
 
 
 
 
Main text (pages 4 - 5), 

Supplementary Appendix (section 

1.1) 
 
Main text (page 4) 
 

 

Supplementary Appendix (section  
1.1) and online data citation tools  
from http:  
//ghdx.healthdata.org/gbd-2017 and  
https://map.ox.ac.uk/gather-  
compliance/ 

 

Main text (discussion, pages 11-12) 

 

Which contribute to the analysis but were not synthesized as  

 part of the study:  

7 Describe and give sources for any other data inputs. Supplementary Appendix (section 

  1.1) 

 For all data inputs:  

8 Provide all data inputs in a file format from which data can be http://ghdx.healthdata.org/gbd- 

 efficiently extracted (e.g., a spreadsheet rather than a PDF), 2017 and https: 

 including all relevant meta-data listed in item 5. For any data //map.ox.ac.uk/gather-compliance/ 

 inputs that cannot be shared because of ethical or legal  

 reasons, such as third-party ownership, provide a contact  

 name or the name of the institution that retains the right to  

 the data.  

 Data analysis  

9 Provide a conceptual overview of the data analysis method. A Main text (Methods overview) 

 diagram may be helpful.  
 

 

http://ghdx.healthdata.org/gbd-2017
http://ghdx.healthdata.org/gbd-2017
https://map.ox.ac.uk/gather-compliance/
https://map.ox.ac.uk/gather-compliance/
http://ghdx.healthdata.org/gbd-2017
http://ghdx.healthdata.org/gbd-2017
https://map.ox.ac.uk/gather-compliance/
https://map.ox.ac.uk/gather-compliance/
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Item   

No. Checklist item Reference 
   

10 Provide a detailed description of all steps of the analysis, Supplementary Appendix (section 

 including mathematical formulae. This description should 1.2) 

 cover, as relevant, data cleaning, data pre-processing, data  

 adjustments and weighting of data sources, and mathematical  

 or statistical model(s).   
 

11 Describe how candidate models were evaluated and how 

the final model(s) were selected. 

 

12 Provide the results of an evaluation of model performance, if 

done, as well as the results of any relevant sensitivity analysis. 
 

13 Describe methods for calculating uncertainty of the 

estimates. State which sources of uncertainty were, and 

were not, accounted for in the uncertainty analysis. 

 
 
Main text (page 6-7) and 

Supplementary Appendix (section 

1.2) 
 
Main text (page 12) 
 

 

Main text (page 7) 

 

14 State how analytic or statistical source code used to 

generate estimates can be accessed. 
 

Results and Discussion 

 

15 Provide published estimates in a file format from which data 

can be efficiently extracted. 
 

16 Report a quantitative measure of the uncertainty of the 

estimates (e.g. uncertainty intervals). 

 

17 Interpret results in light of existing evidence. If updating a 

previous set of estimates, describe the reasons for changes 

in estimates. 
 

18 Discuss limitations of the estimates. Include a discussion 

of any modelling assumptions or data limitations that affect 

interpretation of the estimates. 
 

 
Main text (page 8) 
 
 
 

 

Available from  
www.map.ox.ac.uk/malaria-burden 

 

Main text (Results, Table 2, Figures 

1 – 3) and Supplementary 

Information (section 1.3) 
 
Research in context, Main text 

(discussion, page 12) 

 

Main text (discussion, pages 11-12) 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

http://www.map.ox.ac.uk/malaria-burden
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