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The endotoxin hypothesis of neurodegeneration is the hypothesis that endotoxin causes or contributes to
neurodegeneration. Endotoxin is a lipopolysaccharide (LPS), constituting much of the outer membrane of gram-
negative bacteria, present at high concentrations in gut, gums and skin and in other tissue during bacterial
infection. Blood plasma levels of endotoxin are normally low, but are elevated during infections, gut inflammation,
gum disease and neurodegenerative disease. Adding endotoxin at such levels to blood of healthy humans induces
systemic inflammation and brain microglial activation. Adding high levels of endotoxin to the blood or body of
rodents induces microglial activation, priming and/or tolerance, memory deficits and loss of brain synapses and
neurons. Endotoxin promotes amyloid 3 and tau aggregation and neuropathology, suggesting the possibility that
endotoxin synergises with different aggregable proteins to give different neurodegenerative diseases. Blood and
brain endotoxin levels are elevated in Alzheimer's disease, which is accelerated by systemic infections, including
gum disease. Endotoxin binds directly to APOE, and the APOE4 variant both sensitises to endotoxin and
predisposes to Alzheimer's disease. Intestinal permeability increases early in Parkinson’s disease, and injection of
endotoxin into mice induces a-synuclein production and aggregation, as well as loss of dopaminergic neurons in
the substantia nigra. The gut microbiome changes in Parkinson’s disease, and changing the endotoxin-producing
bacterial species can affect the disease in patients and mouse models. Blood endotoxin is elevated in amyotrophic
lateral sclerosis, and endotoxin promotes TDP-43 aggregation and neuropathology. Peripheral diseases that elevate
blood endotoxin, such as sepsis, AIDS and liver failure, also result in neurodegeneration. Endotoxin directly and
indirectly activates microglia that damage neurons via nitric oxide, oxidants and cytokines, and by phagocytosis of
synapses and neurons. The endotoxin hypothesis is unproven, but if correct, then neurodegeneration may be
reduced by decreasing endotoxin levels or endotoxin-induced neuroinflammation.
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Background

Neurodegeneration is progressive damage and death of
neurons, normally as a result of neurodegenerative dis-
eases, such as Alzheimer’s disease and Parkinson’s dis-
ease. Genetics affects the risk of these diseases, but there
is a strong non-genetic contribution to the risk, which is
poorly understood [1, 2]. There is accumulating evidence
(reviewed below) that one of these non-genetic triggers
for neurodegeneration is endotoxin. Endotoxin is
present in all of us, but levels in blood are very variable
and correlate with neurodegeneration. Injection of
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endotoxin into animals can induce neurodegeneration.
So, the hypothesis that endotoxin causes or contributes
to neurodegeneration is described and reviewed here, in
the hope that a more explicit statement of the hypoth-
esis will encourage testing of it.

Endotoxin structure and function

Endotoxin is a type of lipopolysaccharide (LPS), consist-
ing of lipid A (usually 6 acyl chains attached to a phos-
phorylated disaccharide), attached to the ‘core’ (a short
sugar chain with various modifications), which is at-
tached to the O-antigen (a long linear chain of sugars of
variable length). Endotoxin is a major component of the
outer membrane of gram-negative bacteria, with lipid A
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in the membrane and the O-antigen constituting the
outer-facing surface of the bacterium. Soluble endotoxin
is released when bacteria are destroyed, but is also re-
leased physiologically as outer membrane vesicles.

Different species of gram-negative bacteria have differ-
ent endotoxin structures, mainly due to differences in (i)
the O-antigen, which determines the antigenicity of
endotoxin, or (ii) lipid A, which is detected by the main
LPS receptor MD2/TLR4 (a complex of myeloid differ-
entiation factor 2 and toll-like receptor 4) and therefore
determines inflammation and toxicity [3]. Thus, not all
endotoxins are equivalent. LPS toxicity varies depending
on lipid A composition, and this depends on bacterial
species, strain and environmental conditions [3-5]. For
example, the opportunistic lung pathogen Pseudomonas
aeruginosa changes its lipid A structure from 5 to 6 acyl
chains in response to cystic fibrosis, and the resulting
hexa-acylated LPS activates MD2/TLR4 much more
strongly than penta-acylated LPS [4]. Both Escherichia
coli and Bacteroides dorei are common in human gut,
but LPS from E. coli has 6 acyl chains in the lipid A,
whereas B. dorei LPS has 4 or 5 acyl chains, and as a
consequence, E. coli LPS induces a strong inflammatory
response via MD2/TLR4, whereas B. dorei LPS does not
[5]. Moreover, because B. dorei LPS binds but does not
activate the MD2/TLR4 receptor complex, it can inhibit
the inflammatory response to E. coli LPS [5]. Thus, some
LPS species are MD2/TLR4 antagonists, and hence anti-
inflammatory, as a result of binding but not activating
MD2 and/or TLR4 [5].

Gram-negative bacteria, containing endotoxin, are
found at very high levels in the mammalian gut (mainly
lower intestine) [6]. They are also found in saliva, dental
plaque, skin, lungs, respiratory tract and urinary tract.
There is very roughly 1 g of endotoxin in the human gut
[6], whereas 100 ng of endotoxin injected into blood in-
duces inflammatory activation of the body and brain
(Table 1). Humans are orders of magnitude more
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sensitive to endotoxin than other mammals, such as
mice [16].

Endotoxin causes inflammatory activation mainly via
activating TLR4 (with co-receptor MD2) on the cell sur-
face, resulting in NF-kB transcriptional activation of
hundreds of inflammatory genes, including pro-inflam-
matory cytokines such as TNFa, IL-6 and pro-IL-1p [4,
17, 18]. Lipopolysaccharide binding protein (LBP) is a
soluble plasma protein that facilitates the transfer of LPS
to membrane-bound CD14, which in turn is required to
transfer LPS to TLR4 [18, 19]. Intracellular LPS can also
directly activate murine caspase-11 (caspase-4 or cas-
pase-5 in humans), which may then cleave and activate
caspase-1, which can cleave pro-IL-1f to IL-1f [20]. Ac-
tive caspase-1 and caspase-11 can also cleave and acti-
vate gasdermin D that permeabilises the plasma
membrane allowing IL-1p out, but also killing cells by
pyroptosis [20]. Other receptors for endotoxin include
RAGE [21], TREM2 [22], the macrophage scavenger re-
ceptors [23] and the B, integrins (CD11a/CD18, CD11b/
CD18 and CD11¢/CD18) [24, 25]. These pattern recog-
nition receptors may function to clear LPS and bacteria
expressing LPS from blood and tissues [22, 23, 26], but
may also promote inflammation and LPS toxicity [21].
For example, CD11b/CD18 (also known as compliment
receptor 3, CR3) mediates microglial ROS production,
neurotoxicity and phagocytosis of neurons, and CR3 is
implicated in neurodegeneration [27, 28].

High doses of endotoxin in blood (endotoxemia) cause
a ‘cytokine storm’, septic shock and death, via activating
TLR4, RAGE and caspases [16, 18, 20, 21]. Chronic low
doses of endotoxin can either promote low-grade in-
flammation, tolerance or resolution, depending on other
factors [17]. Endotoxin also induces inflammation and
other effects indirectly via the pro-inflammatory cyto-
kines TNFa, IL-6 and IL-1f induced by endotoxin. Note,
however, that cytokine induction by endotoxin depends
on the lipid A structure [3-5].

Table 1 Plasma endotoxin levels in different conditions and endotoxin levels causing various effects

Condition Endotoxin level Ref:
Healthy humans 10+ 20 pg/ml [7,8]
Atherosclerosis 30 pg/ml [8]
Peridonitis 45 pg/ml [9]
Amyotrophic lateral sclerosis 45 pg/ml [10]
Liver cirrhosis 60 pg/ml [11]
Alzheimer's disease 60 pg/ml [10]
HIV infection/AIDS 70 pg/ml 1121
Sepsis 500 pg/ml [13]
Monocyte and endothelial activation 10 pg/ml (added to isolated blood) [14]
Microglial activation, blood cytokines and sickness behaviour 1ng/kg (~ 15 pg/ml, iv injected) [15]
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Endotoxin was originally called ‘endotoxin’, because it
was a toxin within the bacteria, to distinguish it from
‘exotoxins’ that were released from bacteria. However,
we now know that (i) endotoxin is released by bacteria
and (ii) the toxicity of endotoxin is due to the host’s in-
flammatory over-reaction to it, rather than an intrinsic
toxicity to animal cells [3, 16, 18]. LPS constitutes much
of the surface of gram-negative bacteria, and thus, ani-
mals selected by bacterial diseases have evolved innate
immune receptors to detect it with high sensitivity, indu-
cing a strong innate (and adaptive) immune response.
This response protects against gram-negative bacterial
disease, by promoting the clearance of the bacteria, re-
moving the source of endotoxin. However, (i) if endo-
toxin levels are too high, they cause acute death by
septic shock, and (ii) if endotoxin is not cleared from the
blood, it can promote a chronic inflammatory state,
which may contribute to multiple chronic diseases [17]

(Fig. 1).

Serum endotoxin

Endotoxin is present in plasma of all healthy humans at
very variable levels between 0.01 and 0.5 EU/ml (mean
0.1 £ 0.2 EU/ml), equivalent to about 1 and 50 pg/ml [7,
8]. Note that endotoxin levels are normally measured
using a Limulus amebocyte lysate assay (LAL-test) in
endotoxin units (EU), a measure of activity not amount,
and there are normally between 2 and 50 EU/ng endo-
toxin, because different endotoxins have different activ-
ities (ie. potencies in the LAL test). Care is required
when applying the LAL to blood, as blood components
can interfere [29]. Note also that basal plasma levels of
endotoxin in rodents are higher than humans (typically
2 EU/ml) and rodents are much less sensitive than
humans to injected endotoxin [16].

Serum endotoxin levels are elevated in patients with
severe autism [30], liver cirrhosis [11], diabetes [31], car-
diovascular disease [8], chronic infection and ageing
[32], amyotrophic lateral sclerosis and Alzheimer’s dis-
ease [10]. The highest plasma endotoxin levels are found
in patients with sepsis, about 500 pg/ml [13].

How much blood endotoxin is required to cause a sig-
nificant effect in the body and brain? Addition of 10 pg
endotoxin/ml to human blood is sufficient to activate
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monocytes and endothelial cells [14]. Intravenous injec-
tion of 1 ng LPS/kg (equivalent to 15 pg/ml distributed
through the blood) into healthy human volunteers
caused increased blood cytokines (TNFa, IL-6, IL-8, IL-
10), increased sickness behaviour (fatigue, headache,
muscle pain, shivering) and decreased motivation (alert-
ness, energy, focus, pep, social interest) within 1-3 h, re-
versing at 4h [15]. Importantly, this intravenous
injection of 1 ng LPS/kg caused a robust microglial acti-
vation in most areas of the brain measured by PET
(positron emission tomography) imaging of a PBR (per-
ipheral benzodiazepine receptor) ligand 3 h after LPS in-
jection [15]. Thus, a relatively mild dose of blood
endotoxin (e.g. less than that found in Alzheimer’s pa-
tients) can cause acute microglial activation within the
brain. Note, however, that (at least in mice) repeated
doses of LPS greatly downregulate body responses to
LPS, but brain responses to LPS are less downregulated,
partly as a result of epigenetic changes [33]. So, it is dif-
ficult to extrapolate the chronic response to blood endo-
toxin from the acute response. Untreated healthy
humans with blood endotoxin at the top end of the nor-
mal range have activated monocytes and T cells, with
constitutive activation of the transcription factor STAT1
[34]. Thus, the very variable, normal range of blood
endotoxin in humans includes levels sufficient to acti-
vate the innate immune system.

Where does blood endotoxin come from? Active bacter-
ial infections may produce endotoxin, and for example,
urinary tract infections are associated with dementia, de-
lirium and other neuropsychiatric disorders [35]. How-
ever, in the absence of infection, endotoxin still crosses
the mucosal membranes of gut, gums, nose or lungs, the
main source being intestinal permeability [36, 37].

Endotoxin has a hydrophobic lipid A end, so endotoxin
aggregates into micelles or vesicles. Within the blood,
endotoxin binds to plasma albumin or chylomicrons or
high-density lipoproteins (HDL) mediated by LBP, CD14
and APOE [38-40]. Most endotoxin enters the body via
the gut and hepatic portal vein, and most of this endotoxin
is cleared by the liver [41]. Peripheral blood endotoxin is
also cleared and degraded by the liver [39, 41]. So, serious
liver disease increases peripheral blood endotoxin to po-
tentially toxic levels (60—80 pg/ml in cirrhosis) [11, 41].

Gut/gum

endotoxin ‘

or infections

Blood
endotoxin

Fig. 1 The central pathway of how endotoxin leads to neurodegeneration. Gut endotoxin may enter blood due to leaky gut, e.g. due to alpha-
synuclein aggregates. Gum endotoxin may enter blood as a result of gum inflammation or tooth brushing. Blood endotoxin may cause brain
inflammation via blood or brain cytokines, or by entering the brain, resulting in neurodegeneration

Neuro-
degeneration

Brain
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Peripheral endotoxin can drive brain pathology
Does endotoxin in blood cause neurodegeneration? It is
not ethical to test this directly in humans, but this ques-
tion has been tested in animals.

In rodents, a single intraperitoneal injection of 5mg
LPS/kg causes acute microglial activation in the
brains that persists for at least 12 months, and results
in loss of dopaminergic neurons in the substantia
nigra 10 months later [42, 43]. Multiple doses of 1 mg
LPS/kg (over several days), or chronic endotoxin,
cause more rapid neurodegeneration and have been
used as models of Parkinson’s or Alzheimer’s disease
[44, 45]. Direct injection of LPS into the rodent brain
is sufficient to induce neuronal loss [44, 46]. Note,
however, that (i) these levels of endotoxin would be
lethal in humans; (ii) E. coli LPS is normally used in
these studies, partly because it is the most inflamma-
tory; and (iii) peripheral endotoxin can dramatically
increase (‘priming’) or decrease (‘tolerance’) subse-
quent responses to inflammatory stimuli, including
endotoxin, depending on the dose and timing [33,
47].

It is not entirely clear how peripheral endotoxin enters
the brain. Endotoxin is found in rat brain in physio-
logical conditions and might cross the blood-brain bar-
rier bound to lipoproteins via lipoprotein transport
mechanisms [48]. High-dose endotoxin can induce an
increase in blood-brain barrier permeability, allowing
plasma components into the brain, potentially resulting
in neuroinflammation and neurodegeneration, but also
potentially allowing endotoxin into the brain [49-51].

Low and medium doses of endotoxin do not change
blood-brain barrier permeability and only minimally
enter the brain [52], suggesting that peripheral LPS may
induce brain inflammation indirectly by (i) LPS activa-
tion of peripheral nerves acting centrally; (ii) LPS activa-
tion of the blood-brain barrier, which then releases
cytokines within the brain, or recruiting immune cells
into the brain; or (iii) LPS activation of circumventricu-
lar organs. The mechanisms of LPS-induced neurode-
generation and the utility of LPS in modelling
neurodegenerative disease are reviewed in [53]. The ef-
fects of peripheral endotoxin on the brain can also be
mediated by the induced peripheral cytokines, particu-
larly TNFa and IL-1f, which then induce inflammation
within the brain [54]. However, sustained brain in-
flammation in response to blood endotoxin requires
brain TLR4, which may be on microglia, endothelium,
perivascular macrophages, meninges or circumventri-
cular organs [55]. This implies that the longer-term
effect of blood endotoxin on the brain is not medi-
ated by blood cytokines, but may be mediated in part
by endotoxin activating the above cells to produce cy-
tokines within the brain (Fig. 2).
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Multiple mechanisms have been described by which
endotoxin can induce neurodegeneration. Endotoxin
stimulates microglia to produce nitric oxide and pro-in-
flammatory cytokines via activation of TLR4 [56]. If LPS
is combined with IFNy (from recruited T cells), then
high levels of iNOS are induced in microglia and astro-
cytes, and the resulting NO can kill neurons when com-
bined with either hypoxia [57] or superoxide from the
NADPH oxidase [58]. However, treatment of glial-neur-
onal cultures with LPS alone results in little or no neur-
onal apoptosis or necrosis, but rather progressive loss
of neurons over several days due to microglial phago-
cytosis of stressed-but-viable neurons and blocking
the phagocytosis saves the neurons [59]. LPS-activated
microglia release NO, superoxide and peroxynitrite
that stresses the neurons to reversibly expose phos-
phatidylserine, which is bound by MFG-E8 released
from the astrocytes and microglia, and this MFG-E8
(bound to the stressed neurons) also binds the vitro-
nection receptor, which triggers microglial phagocyt-
osis of these neurons [59, 60]. Engulfment also
appears to require UDP released from the stressed
neurons to stimulate the P2Y6 receptor on microglia
[61]. Thus, blocking the P2Y6 receptor, the vitronec-
tion receptor or MFG-E8 prevents LPS-induced neur-
onal loss in culture or in vivo [59-61]. TNFa can
also induce microglia to phagocytose neurons in the
absence of LPS [62].

Neuronal loss is often preceded by synaptic loss in
neurodegenerative disease, for example in Alzheimer’s
disease, and this synaptic loss can be caused by excessive
microglial phagocytosis of neurons, driven in part by
complement tagging of synapses, triggered by neuroin-
flammation [28]. Peripheral endotoxin can activate the
classical complement system in the brain, resulting in
neuronal loss that can be prevented in complement C3-
deficient mice [63]. Peripheral endotoxin can also cause
microglial activation and loss of brain synapses, and the
endotoxin-binding protein APOE2 can protect against
this synaptic loss [64]. Synaptic loss may contribute to
cognitive deficits in disease, but if excessive might also
cause neuronal loss [65].

High plasma levels of endotoxin can increase perme-
ability of the blood-brain barrier, allowing toxic plasma
components, including amyloid p and a-synuclein into
the brain [49-51]. Endotoxin may also promote the pro-
duction or aggregation of amyloid B [66-68], tau [68,
69] and a-synuclein [70, 71]. This suggests the possibility
that endotoxin synergises with different aggregable pro-
teins to give different neurodegenerative diseases
(Fig. 3).

Blood endotoxin may ‘prime’ microglia to neurodegen-
erative stimuli (such as amyloid f, tau or a-synuclein),
or alternatively, neurodegenerative stimuli (such as
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Fig. 2 Different species of endotoxin arise from different sources, ending up in the blood or brain. Blood endotoxin increase pro-inflammatory
cytokines in blood, and inflammatory activates the blood-brain barrier (BBB) and circumventricular organs (CVO), recruiting leucocytes into the
brain and increasing brain cytokines that activate microglia, resulting in synaptic and neuronal loss

aggregating amyloid P, tau or a-synuclein) may prime
microglia to endotoxin challenge—either way they syner-
gise to induce neurodegeneration [33, 46]. There is clin-
ical evidence that systemic inflammation triggers
neurodegeneration in brains primed by neurodegenera-
tive disease [72]. For example, systemic infections accel-
erate cognitive decline in Alzheimer’s disease patients
[73], and systemic endotoxin precipitates brain path-
ology in mice expressing prions [74], APP variants [33]
or TAU variants [69] or mice with a-synuclein injected
in the brain [46].

Conversely, blood endotoxin may induce tolerance and
decrease activation of microglia, which may reduce brain
protective functions such as phagocytosis of protein ag-
gregate or debris [17, 33, 75, 76]. The concepts of micro-
glial ‘activation’, ‘priming’ and ‘tolerance’” are loose, but
all are reversible states of microglia, mediated by transla-
tional and epigenetic changes. In essence, ‘microglial ac-
tivation” refers to increased microglial motility,
phagocytosis, cytokine release and oxidant production,
while ‘microglial priming’ means the microglia are more
sensitive to agents causing activation, and ‘microglial tol-
erance’ means the microglia are less sensitive to agents

causing activation [33, 46]. In summary, endotoxin can
act at muliple steps to promote neurodegeneration
(Fig. 4).

Endotoxin and Alzheimer’s disease

Alzheimer’s disease (AD) is diagnosed by cognitive and
memory deficits during life, and amyloid plaques and
tau tangles after death, accompanied by neuroinflamma-
tion, synapse loss and neuronal loss. AD is also associ-
ated with endotoxin in a number of ways [45, 53, 77].
Mean blood endotoxin levels are increased threefold in
AD patients [10]. Brain endotoxin levels are increased
two- or threefold in AD patients [78, 79], and endotoxin
is also found in AD amyloid plaques [79]. Endotoxin can
drive amyloid beta production and aggregation [66—68]
and TAU hyperphosphorylation [68, 69]. Eliminating gut
bacteria can reduce plaque load and microglial activation
in an amyloid model of AD in mice [80].

If AD was in part mediated by endotoxin, then we
might expect gene variants associated with AD to inter-
act with endotoxin or endotoxin pathology. The main
genetic risk for AD is APOE isoform: APOE2 being
protective, APOE3 being neutral and APOE4 being

Aggregable protein X
in brain region Y

% Neurodegeneration :> Neurodegenerative

disease Z

’ in brain region Y
Endotoxin

Fig. 3 Endotoxin may give rise to different neurodegenerative disease by synergising with different aggregable proteins to induce
neurodegeneration. If endotoxin contributes to multiple different diseases, why are these different diseases different? The solution may be a two-
hit hypothesis, where the presence of endotoxin or an aggregable protein is not sufficient alone, but together, they induce neurodegeneration
and give rise to different neurodegenerative diseases dependent on the particular aggregable protein present and its distribution in the brain.
Note that the presence in the brain of an aggregable protein, such as AR, Tau or a-synuclein, is not normally sufficient to

induce neurodegeneration
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Fig. 4 Endotoxin may act at different steps to promote neurodegeneration. (1) Endotoxin may promote aggregates of AB, tau, a-synuclein and
TDP-43 by inhibiting removal or by increasing production, spread or aggregation (in part by stimulating ROS production). (2) Endotoxin may
prime microglia and stress neurons, making them more susceptible to disease-specific agents. (3) Endotoxin may activate microglia, already
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detrimental. Intravenous injection of LPS strongly in-
duces serum ApoE in rodents, and ApoE directly binds
LPS, causing LPS to be taken up and degraded by the
liver, such that ApoE-deficient mice are more sensitive
to LPS toxicity [81, 82]. Humans with the APOE4 vari-
ant are more sensitive to injected LPS than those with
APOES3, and similarly, mice with endogenous ApoE re-
placed with APOE4 are more sensitive to LPS than those
replaced with APOE3 [83]. Thus, there is a clear and dir-
ect link between APOE variants and endotoxin. Se-
quence variants of the LPS-receptor TLR4 [84] and the
LPS-binding receptor TREM2 [22] are also associated
with an increased risk of AD, indicating additional gen-
etic links between AD and endotoxin.

People with chronic gum disease (periodontitis) have
elevated blood endotoxin [85, 86], a higher risk of Alz-
heimer’s disease and a faster rate of cognitive decline
[87]. The most prevalent bacteria in periodontal diseases
are Porphyromonas gingivalis. LPS from P. gingivalis is
less inflammatory than that from E. coli on the first en-
counter; however, on the second encounter, the inflam-
matory response to E. coli is greatly downregulated
(‘tolerance’), whereas the response to P. gingivalis LPS is
not [88]. Chronic oral application of P. gingivalis or in-
jection of P. gingivalis LPS results in brain inflammation
and neurodegeneration in wild-type mice [70, 89]. There
is a large increase in bacterial load and bacterial species
in AD brains [79, 90], including P. gingivalis, which can
live intracellularly in glia and neurons [91]. The causes
and consequences of these brain bacteria are unclear,
but they are a potential source of brain endotoxin, and
thus of neuroinflammation and neurodegeneration.

Endotoxin and Parkinson’s disease

Parkinson’s disease (PD) is diagnosed by motor dysfunc-
tions in life, and after death by a-synuclein aggregates
(Lewy bodies) and loss of dopaminergic neurons in the
substantia nigra. During PD, «-synuclein aggregation
starts in the gut, and one of the earliest symptoms of PD
is gut dysfunction [2]. PD patients have increased gastro-
intestinal permeability [92] and LPS binding protein
(LBP) [92], and a proportion of PD patients have ele-
vated blood endotoxin [93]. The gut microbiome of PD

patients differs from controls [94]. And the gut micro-
biome affects motor symptoms in an «a-synuclein mouse
model of PD, such that eliminating gut bacteria prevents
motor deficits, while introducing the gut microbiome
from PD patients exacerbates pathology [95]. Gut colon-
isation with endotoxin-producing Helicobacter pylori is
associated with PD [96], and eradication of H. pylori im-
proved PD symptoms [97, 98].

A single dose of peripheral endotoxin in mice caused
increased expression of a-synuclein in neurons of the
large intestine, followed by an increase in large intestinal
permeability, in a manner similar to that observed in pa-
tients with PD [99]. Endotoxin increases a-synuclein
production by macrophages [100] and drives a-synuclein
fibrillization [70, 71]. A single injection of peripheral
endotoxin into wild-type mice and transgenic mice (ex-
pressing human A53T mutant a-synuclein) resulted in
indistinguishable acute neuroinflammation, but only the
transgenic mice treated with endotoxin developed per-
sistent neuroinflammation, aggregated o-synuclein, pro-
gressive degeneration of dopamine neurons and Lewy
body-like inclusions in nigral neurons [101]. This sup-
ports a dual-hit hypothesis for PD: elevated endotoxin
plus aggregable a-synuclein results in neurodegenera-
tion. However, endotoxin alone is sufficient to induce
loss of dopaminergic neurons in the substantia nigra in
mice after a delay of several months [42-44].

Endotoxin and other brain pathologies

Motor neuron disease is a group of diseases involving
neurodegeneration of motor neurons, of which the most
common is amyotrophic lateral sclerosis (ALS), which
shares genetic and pathological mechanisms with fronto-
temporal dementia (FID). In ALS, and many cases of
FTD, the motor neurons are filled with abnormal aggre-
gates of TAR DNA-binding protein 43 (TDP-43). Blood
endotoxin levels are elevated in ALS patients [10], pos-
sibly as a result of gut inflammation and microbiome
changes [102]. Addition of LPS to microglia or astro-
cytes in culture resulted in TDP-43 mislocalization and
aggregation, and addition of peripheral LPS to TDP-
43(A315T) transgenic mice resulted in TDP-43 aggrega-
tion in vivo [103]. This suggests a dual-hit hypothesis for
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ALS and FTD: increased endotoxin levels plus aggreg-
able TDP-43 results in neurodegeneration.

A variety of roles for endotoxin in multiple sclerosis
have been suggested, including (i) promoting microglial
damage to myelin and (ii) promoting the presentation of
myelin antigens [104].

Plasma endotoxin levels are increased in AIDS, HIV-
infected patients and SIV-infected rhesus macaques, as a
result of gut-wall damage [12]. HIV infection can pro-
gress to HIV-associated dementia, and this correlates
with plasma endotoxin levels, which may drive monocyte
activation and trafficking into the brain [105].

Chronic alcohol consumption and binge drinking in-
crease serum endotoxin and cytokine levels [106], which
might contribute to long-term cognitive deficits.

Bacterial meningitis can be caused by gram-negative
bacteria, such as Neisseria meningitidis, infecting the
brain meninges, often resulting in long-term cognitive
problems, and much of the pathology has been attrib-
uted to endotoxin [107].

Maternal infection is a risk factor for neurodevelop-
mental disorders such as autism and schizophrenia. A
single pre-natal exposure to LPS (of embryos, for ex-
ample as a result of maternal infection) or early post-
natal exposure can result in long-term activation of
brain microglia, lasting into adulthood [108], and behav-
ioural deficits reminiscent of autism or schizophrenia
[109]. Serious infections increase the risk of subse-
quently developing schizophrenia [110], and genetic risk
factors for schizophrenia increase microglial phagocyt-
osis of synapses [111], leading to the idea that schizo-
phrenia is triggered by excessive microglial phagocytosis
of synapses during adolescence [111], and one potential
cause of this is increased endotoxin. Perinatal infections
are also associated with autism [109], potentially due to
dysfunctional microglial phagocytosis of synapses [112],
which could in principle be driven by endotoxin. Blood
endotoxin levels are increased in autism [30].

Sepsis is often caused by gram-negative bacteria in the
blood, and therefore, blood endotoxin levels can be very
high (up to 500 pg/ml [13]). So, in principle, it is a good
test of whether high blood endotoxin can cause neuro-
degeneration in humans. Almost all patients with sepsis
have altered consciousness (confusion progressing to de-
lirium and loss of consciousness), and about half of the
people surviving serious sepsis have long-term cognitive
deficits (called sepsis-associated encephalopathy) [113].
However, it is still unclear that the cognitive deficits are
caused by the endotoxin, and it is difficult to extrapolate
from a relatively short exposure (days) of high levels
of blood endotoxin (as occurs in sepsis) to the long
exposure (years) of relatively low blood (or brain)
endotoxin that may occur with neurodegenerative dis-
ease. Additionally, sepsis is most often caused by
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bacteria such as E. coli or Pseudomonas aeruginosa
[113], both with highly inflammatory LPS lipid A
structures (6 to 7 acyl chains), making it difficult to
extrapolate to other diseases.

Liver failure may provide a better test of whether
chronically elevated levels of blood endotoxin can cause
neurodegeneration in humans. The liver is the main
organ for clearing blood endotoxin, so liver failure, as
occurs in cirrhosis, elevates blood endotoxin levels to
roughly the same level as occurs in Alzheimer’s disease
(Table 1). About half of patients with cirrhosis will de-
velop long-term cognitive deficits (called hepatic en-
cephalopathy), progressing from forgetfulness and
confusion to coma. However, although blood endo-
toxin levels correlate with hepatic encephalopathy, so
to do blood ammonia and cytokine levels, which are
also potentially causal for the encephalopathy, so we
still do not know whether endotoxin causes hepatic
encephalopathy [114].

Conclusions

Increased endotoxin is associated with neurodegenera-
tive disease, and increased endotoxin can cause neurode-
generation, but whether neurodegenerative disease is
caused by increased endotoxin is not known. Testing
this causal link depends on determining whether redu-
cing endotoxin levels or endotoxin actions reduces neu-
rodegenerative disease pathology. Possible means to do
this and therefore potential treatment targets include (i)
changing the gut microbiome to species with less or
less-toxic LPS, (ii) reducing intestinal permeability, (iii)
reducing peripheral, peridonatal and/or brain infections,
(iv) reducing blood endotoxin levels, (v) reducing LPS
actions on, or permeability across, the blood-brain bar-
rier, (vi) inhibiting TLR4 or other LPS receptors or (vii)
inhibiting endotoxin-induced microglial activation and
neurotoxicity.

The key tests of the plasma endotoxin theory of
neurodegeneration are the following: (a) do plasma
endotoxin levels correlate with and/or precede neurode-
generation in relevant diseases, and (b) does lowering
plasma endotoxin levels in patients reduce subsequent
neurodegeneration. We need larger studies of blood
endotoxin levels in a variety of neurodegenerative dis-
eases, and we need longitudinal monitoring over the
time course of the diseases. Luckily, monitoring blood
endotoxin is relatively easy and cheap. However, it will
also be important to know the various species of endo-
toxins in these diseases. Developing treatments that
lower blood endotoxin levels in the long term will be
difficult, but is likely to be useful for a wide range of
conditions, beyond neurodegeneration. LBP, APOE2,
polymyxin B or antibodies against LPS could be infused
into blood to lower LPS levels, but may be impractical
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long term. Albumin dialysis is already used to remove
endotoxin in patients with liver failure [115] and might
be used to test whether lowering endotoxin is beneficial
for neurodegeneration, but applying albumin dialysis for
several years would be challenging. Vaccines against LPS
might be feasible as a longer-term solution.

Animal models will also be important: firstly, to work
out how endotoxin causes neurodegeneration; secondly,
to test means of blocking endotoxin-induced neurode-
generation; and thirdly, to test potential treatments to
lower endotoxin.
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