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ABSTRACT
Synovial fluid is a viscous solution found in the cavities of synovial joints. The principal role of synovial fluid is to reduce friction 
between the articular cartilages of synovial joints during movement. The presence of high molar mass hyaluronan (HA) in this fluid 
gives it the required viscosity for its function as lubricant solution. Inflammation oxidation stress enhances normal degradation of 
hyaluronan causing several diseases related to joints.
This review describes hyaluronan properties and distribution, applications and its function in synovial joints, with short review for 
using thiol compounds as antioxidants preventing HA degradations under inflammation conditions.
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Cartilage functions also as a shock absorber. This 
property is derived from its high water entrapping capac-
ity as well as from the structure and intermolecular inter-
actions among polymeric components that constitute the 

Introduction

The human skeleton consists of both fused and individual 
bones supported and supplemented by ligaments, tendons, 
and skeletal muscles. Articular ligaments and tendons are 
the main parts holding together the joint(s). In respect of 
movement, there are freely moveable, partially moveable, 
and immovable joints. Synovial joints (Figure 1), the 
freely moveable ones, allow for a large range of motion 
and encompass wrists, knees, ankles, shoulders, and hips 
(Kogan, 2010).

Structure of synovial joints

Cartilage
In a healthy synovial joint, heads of the bones are encased 
in a smooth (hyaline) cartilage layer. These tough slippery 
layers – e.g. those covering the bone ends in the knee joint 
– belong to mechanically highly stressed tissues in the 
human body. At walking, running, or sprinting the strokes 
frequency attain approximately 0.5, 2.5 or up to 10 Hz.
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Figure 1. Normal, healthy synovial joint (adapted from Kogan, 
2010).
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cartilage tissue (Servaty et al., 2000). Figure 2 sketches 
a section of the cartilage – a chondrocyte cell that per-
manently restructures/rebuilds its extracellular matrix. 
Three classes of proteins exist in articular cartilage: col-
lagens (mostly type II collagen); proteoglycans (primarily 
aggrecan); and other noncollagenous proteins (including 
link protein, fibronectin, COMP – cartilage oligomeric 
matrix protein) and the smaller proteoglycans (biglycan, 
decorin, and fibromodulin). The interaction between 
highly negatively charged cartilage proteoglycans and 
type II collagen fibrils is responsible for the compressive 
and tensile strength of the tissue, which resists applied 
load in vivo.

Synovium/synovial membrane
Each synovial joint is surrounded by a fibrous, highly vas-
cular capsule/envelope called synovium, whose internal 
surface layer is lined with a synovial membrane. Inside 
this membrane, type B synoviocytes (fibroblast-like cell 
lines) are localized/embedded. Their primary function is 
to continuously extrude high-molar-mass hyaluronans 
(HAs) into synovial fluid.

Synovial fl uid 
The synovial fluid (SF) of natural joints normally func-
tions as a biological lubricant as well as a biochemical 

pool through which nutrients and regulatory cytokines 
traverse. SF contains molecules that provide low-friction 
and low-wear properties to articulating cartilage surfaces.

Molecules postulated to play a key role in lubrication 
alone or in combination, are proteoglycan 4 (PRG4) 
(Swann et al., 1985) present in SF at a concentration of 
0.05–0.35 mg/ml (Schmid et al., 2001), hyaluronan (HA) 
(Ogston & Stanier, 1953) at 1–4 mg/ml (Mazzucco et al., 
2004), and surface-active phospholipids (SAPL) (Schwarz 
& Hills, 1998) at 0.1 mg/ml (Mazzucco et al., 2004). 
Synoviocytes secrete PRG4 (Jay et al., 2000; Schumacher 
et al., 1999) and are the major source of SAPL (Dobbie 
et al., 1995; Hills & Crawford, 2003; Schwarz & Hills, 
1996), as well as HA (Haubeck et al., 1995; Momberger et 
al., 2005) in SF. Other cells also secrete PRG4, including 
chondrocytes in the superficial layer of articular cartilage 
(Schmid et al., 2001b; Schumacher et al., 1994) and, to a 
much lesser extent, cells in the meniscus (Schumacher et 
al., 2005).

As a biochemical depot, SF is an ultra filtrate of blood 
plasma that is concentrated by virtue of its filtration 
through the synovial membrane. The synovium is a thin 
lining (~50 μm in humans) comprised of tissue macro-
phage A cells, fibroblast-like B cells (Athanasou & Quinn, 
1991; Revell, 1989; Wilkinson et al., 1992), and fenes-
trated capillaries (Knight & Levick, 1984). It is backed 
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Figure 2. Articular cartilage main components and structure (adapted from Chen et al., 2006).
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by a thicker layer (~100 μm) of loose connective tissue 
called the subsynovium (SUB) that includes an extensive 
system of lymphatics for clearance of transported mol-
ecules. The cells in the synovium form a discontinuous 
layer separated by intercellular gaps of several microns 
in width (Knight & Levick, 1984; McDonald & Levick, 
1988). The extracellular matrix in these gaps contains 
collagen types I, III, and V (Ashhurst et al., 1991; Rittig et 
al., 1992), hyaluronan (Worrall et al., 1991), chondroitin 
sulphate (Price et al., 1996; Worrall et al., 1994), biglycan 
and decorin proteoglycans (Coleman et al., 1998), and 
fibronectin (Poli et al., 2004). The synovial matrix pro-
vides the permeable pathway through which exchange of 
molecules occurs (Levick, 1994), but also offers sufficient 
outflow resistance (Coleman et al., 1998; Scott et al., 
1998) to retain large solutes of SF within the joint cavity. 
Together, the appropriate reflection of secreted lubricants 
by the synovial membrane and the appropriate lubricant 
secretion by cells are necessary for development of a 
mechanically functional SF (Blewis et al., 2007).

In the joint, HA plays an important role in the protec-
tion of articular cartilage and the transport of nutrients 
to cartilage. In patients with rheumatoid arthritis (RA), 
(Figure 3) it has been reported that HA acts as an anti 
inflammatory substance by inhibiting the adherence of 
immune complexes to neutrophils through the Fc receptor 
(Brandt, 1970), or by protecting the synovial tissues from 
the attachment of inflammatory mediators (Miyazaki et 
al., 1983, Mendichi & Soltes, 2002).

Reactive oxygen species (ROS) (O2•–, H2O2, •OH) are 
generated in abundance by synovial neutrophils from RA 
patients, as compared with synovial neutrophils of osteo-
arthritis (OA) patients and peripheral neutrophils of both 
RA and OA patients (Niwa et al., 1983).

McCord (1973) demonstrated that HA was susceptible 
to degradation by ROS in vitro, and that this could be 
protected by superoxide dismutase (SOD) and/or catalase, 
which suggests the possibility that there is pathologic 
oxidative damage to synovial fluid components in RA 
patients. Dahl et al. (1985) reported that there are reduced 
HA concentrations in synovial fluids from RA patients. 
It has also been reported that ROS scavengers inhibit the 
degradation of HA by ROS (Soltes, 2010; Blake et al., 1981; 
Betts & Cleland, 1982; Soltes et al., 2004).

These findings appear to support the hypothesis that 
ROS are responsible for the accelerated degradation of HA 
in the rheumatoid joint. In the study of Juranek and Soltes 
(2012) the oxygen radical scavenging activities of synovial 
fluids from both RA and OA patients were assessed, and 
the antioxidant activities of these synovial fluids were 
analyzed by separately examining HA, d-glucuronic acid, 
and N-acetyl-d-glucosamine.

Hyaluronan

In 1934, Karl Meyer and his colleague John Palmer iso-
lated a previously unknown chemical substance from the 
vitreous body of cows’ eyes. They found that the substance 
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Figure 3. Normal, (healthy) and rheumatoid arthritis synovial joint.

contained two sugar molecules, one of which was uronic 
acid. For convenience, therefore, they proposed the name 
“hyaluronic acid”. The popular name is derived from 
“hyalos”, which is the Greek word for glass + uronic acid 
(Meyer & Palmer, 1934). At the time, they did not know 
that the substance which they had discovered would 
prove to be one of the most interesting and useful natural 
macromolecules. HA was first used com mercially in 1942 
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when Endre Balazs applied for a patent to use it as a substi-
tute for egg white in bakery products (Necas et al., 2008).

The term “hyaluronan” was introduced in 1986 to con-
form to the international nomenclature of polysaccharides 
and is attributed to Endre Balazs (Balazs et al., 1986) who 
coined it to encompass the different forms the molecule 
can take, e.g, the acid form, hyaluronic acid, and the salts, 
such as sodium hyaluronate, which forms at physiological 
pH (Laurent, 1989). HA was subsequently isolated from 
many other sources and the physicochemi cal structure 
properties and biological role of this polysaccharide were 
studied in numerous laborato ries (Kreil, 1995). This work 
has been summarized in a Ciba Foundation Symposium 
(Laurent, 1989) and a recent review (Laurent & Fraser, 
1992; Chabrecek et al., 1990; Orvisky et al., 1992).

Hyaluronan (Figure 4) is a unique biopolymer com-
posed of repeating disaccharide units formed by N-acetyl-
d-glucosamine and d-glucuronic acid. Both sugars are 
spatially related to glucose which in the β-configuration 
allows all of its bulky groups (the hydroxyls, the carbox-
ylate moiety, and the anomeric carbon on the adjacent 
sugar) to be in sterically favorable equatorial posi tions 
while all of the small hydrogen atoms occupy the less 
sterically favorable axial positions. Thus, the structure of 
the disaccharide is energetically very stable. HA is also 
unique in its size, reaching up to several million Daltons 
and is synthesized at the plasma membrane rather than in 
the Golgi, where sulfated glycosaminoglycans are added 
to protein cores (Itano & Kimata, 2002; Weigel et al., 1997; 
Kogan et al., 2007a).

In a physiological solution, the backbone of a HA mol-
ecule is stiffened by a combina tion of the chemical struc-
ture of the disaccha ride, internal hydrogen bonds, and 
interactions with the solvent. The axial hydrogen atoms 
form a non-polar, relatively hydrophobic face while the 
equatorial side chains form a more polar, hy drophilic face, 
thereby creating a twisting ribbon structure. Solutions of 
hyaluronan manifest very unusual rheological properties 
and are exceedingly lubricious and very hydrophilic. In 
solution, the hyaluronan polymer chain takes on the 
form of an expanded, random coil. These chains entangle 
with each other at very low concentrations, which may 
contribute to the unusual rheological proper ties. At 
higher concentrations, solutions have an extremely high 
but shear-dependent viscosity. A 1% solution is like jelly, 
but when it is put under pressure it moves easily and 
can be administered through a small-bore needle. It has 
therefore been called a “pseudo-plastic” material. The 
extraordi nary rheological properties of hyaluronan solu-
tions make them ideal as lubricants. There is evidence 

that hyaluronan separates most tissue surfaces that slide 
along each other. The extremely lubricious properties 
of hyaluronan have been shown to reduce postoperative 
adhesion forma tion following abdominal and orthopedic 
surgery. As mentioned, the polymer in solution assumes 
a stiffened helical configuration, which can be at tributed 
to hydrogen bonding between the hydroxyl groups along 
the chain. As a result, a coil structure is formed that traps 
approximately 1000 times its weight in water (Chabrecek et 
al., 1990; Cowman & Matsuoka, 2005; Schiller et al., 2011)

Properties of hyaluronan

Hyaluronan networks
The physico-chemical properties of hyaluronan were stud-
ied in detail from 1950 onwards (Comper & Laurent, 1978).

The molecules behave in solution as highly hydrated 
randomly kinked coils, which start to entangle at concen-
trations of less than 1 mg/mL. The entanglement point 
can be seen both by sedimentation analysis (Laurent et 
al., 1960) and viscosity (Morris et al., 1980). More recently 
Scott and his group have given evidence that the chains 
when entangling also interact with each other and form 
stretches of double helices so that the network becomes 
mechanically more firm (Scott et al., 1991). 

Rheological properties
Solutions of hyaluronan are viscoelastic and the viscosity 
is markedly shearing dependent (Morris et al., 1980; Gibbs 
et al., 1968). Above the entanglement point the viscosity 
increases rapidly and exponentially with concentration 
(~c3.3) (Morris et al., 1980) and a solution of 10 g/l may 
have a viscosity at low shear of ~106 times the viscosity of 
the solvent. At high shear the viscosity may drop as much 
as ~103 times (Gibbs et al., 1968). The elasticity of the 
system increases with increasing molecular weight and 
concentration of hyaluronan as expected for a molecular 
network. The rheological properties of hyaluronan have 
been connected with lubrication of joints and tissues 
and hyaluronan is commonly found in the body between 
surfaces that move along each other, for example cartilage 
surfaces and muscle bundles (Bothner & Wik, 1987).

Water homeostasis
A fixed polysaccharide network offers a high resistance 
to bulk flow of solvent (Comper & Laurent, 1978). This 
was demonstrated by Day (1950) who showed that hyal-
uronidase treatment removes a strong hindrance to water 
flow through a fascia. Thus HA and other polysaccharides 
prevent excessive fluid fluxes through tissue compart-
ments. Furthermore, the osmotic pressure of a hyaluronan 
solution is non-ideal and increases exponentially with the 
concentration. In spite of the high molecular weight of 
the polymer the osmotic pressure of a 10 g/l hyaluronan 
solution is of the same order as an l0 g/l albumin solu-
tion. The exponential relationship makes hyaluronan 
and other polysaccharides excellent osmotic buffering 
substances – moderate changes in concentration lead 
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Figure 4. Structural formula of hyaluronan – the acid form.
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to marked changes in osmotic pressure. Flow resistance 
together with osmotic buffering makes hyaluronan an 
ideal regulator of the water homeostasis in the body.

Network interactions with other macromolecules
The hyaluronan network retards the diffusion of other 
molecules (Comper & Laurent, 1978; Simkovic et al., 
2000). It can be shown that it is the steric hindrance which 
restricts the movements and not the viscosity of the solu-
tion. The larger the molecule the more it will be hindered. 
In vivo hyaluronan will therefore act as a diffusion barrier 
and regulate the transport of other substances through 
the intercellular spaces. Furthermore, the network will 
exclude a certain volume of solvent for other molecules; 
the larger the molecule the less space will be available 
to it (Comper & Laurent, 1978). A solution of 10 g/l of 
hyaluronan will exclude about half of the solvent to serum 
albumin. Hyaluronan and other polysaccharides therefore 
take part in the partition of plasma proteins between the 
vascular and extravascular spaces. The excluded volume 
phenomenon will also affect the solubility of other macro-
molecules in the interstitium, change chemical equilibria 
and stabilize the structure of, for example, collagen fibers.

Medical applications of hyaluronic acid
The viscoelastic matrix of HA can act as a strong bio-
compatible support material and is therefore commonly 
used as growth scaffold in surgery, wound healing and 
embryology. In addition, administration of purified high 
molecular weight HA into orthopaedic joints can restore 
the desirable rheological properties and alleviate some of 
the symptoms of osteoarthritis (Balazs & Denlinger, 1993; 
Balazs & Denlinger, 1989; Kogan et al., 2007). The success 
of the medical applications of HA has led to the produc-
tion of several successful commercial products, which 
have been extensively reviewed previously.

Table 1 summarizes both the medical applications and 
the commonly used commercial preparations containing 
HA used within this field. HA has also been extensively 
studied in ophthalmic, nasal and parenteral drug delivery. 
In addition, more novel applications including pulmonary, 
implantation and gene delivery have also been suggested. 
Generally, HA is thought to act as either a mucoadhesive 
and retain the drug at its site of action/absorption or to 
modify the in vivo release/absorption rate of the therapeu-
tic agent. A summary of the drug delivery applications of 
HA is shown in Table 2.

Table 1. Summary of the medical applications of hyaluronic acid (Brown & Jones, 2005).

Disease state Applications Commercial products Publications

Osteoarthritis Lubrication and mechanical 
support for the joints

Hyalgan® (Fidia, Italy)
Artz® (Seikagaku, Japan)

ORTHOVISC® (Anika, USA) 
Healon®, Opegan® and Opelead®

Hochburg, 2000; Altman, 2000; Dougados, 2000; Guidolin et al., 
2001; Maheu et al., 2002; Barrett & Siviero, 2002; Miltner et al., 

2002;Tascioglu and Oner, 2003; Uthman et al., 2003; Kelly et al., 
2003; Hamburger et al., 2003; Kirwan, 2001; Ghosh & Guidolin, 

2002; Mabuchi et al., 1999; Balazs, 2003;
Fraser et al., 1993; Zhu & Granick, 2003.

Surgery and 
wound healing

Implantation of artificial 
intraocular lens, 
viscoelastic gel

Bionect®, Connettivina® 
and Jossalind®

Ghosh & Jassal, 2002; Risbert, 1997; Inoue & Katakami, 1993; 
Miyazaki et al., 1996; Stiebel-Kalish et al., 1998; Tani et al., 2002; 

Vazquez et al., 2003; Soldati et al., 1999; Ortonne, 1996; Cantor et 
al., 1998; Turino & Cantor, 2003.

Embryo implantation Culture media for the use of 
in vitro fertilization EmbryoGlue® (Vitrolife, USA)

Simon et al., 2003; Gardner et al., 1999; Vanos et al., 1991; Kem-
mann, 1998; Suchanek et al., 1994; Joly et al., 1992; Gardner, 2003; 
Lane et al., 2003; Figueiredo et al., 2002, Miyano et al., 1994; Kano 

et al., 1998; Abeydeera, 2002; Jaakma et al., 1997; Furnus et al., 
1998;Jang et al., 2003.

Table 2. Summary of the drug delivery applications of hyaluronic acid.

Route Justification Therapeutic agents Publications

Ophthalmic
Increased ocular residence of drug, 

which can lead to increased 
bioavailability

Pilocarpine, tropicamide, timolol, gen-
timycin, tobramycin,

arecaidine polyester, (S) aceclidine

Jarvinen et al., 1995; Sasaki et al., 1996; Gurny et al., 1987; Camber 
et al., 1987; Camber & Edman, 1989; 

Saettone et al., 1994; Saettone et al., 1991; Bucolo et al., 1998; 
Bucolo & Mangiafico, 1999; Herrero-Vanrell et al., 2000; Moreira 

et al., 1991; Bernatchez et al., 1993; 
Gandolfi et al., 1992; Langer et al., 1997.

Nasal Bioadhesion resulting in increased 
bioavailability

Xylometazoline, vasopressin, 
gentamycin Morimoto et al., 1991; Lim et al., 2002.

Pulmonary Absorption enhancer 
and dissolution rate modification Insulin Morimoto et al., 2001; Surendrakumar et al., 2003.

Parenteral Drug carrier and facilitator of liposo-
mal entrapment

Taxol, superoxide dismutase, 
human recombinant insulin-like 

growth factor, doxorubicin

Drobnik, 1991; Sakurai et al., 1997; Luo and Prestwich, 1999; Luo 
et al., 2000; Prisell et al., 1992; Yerushalmi et al., 1994; Yerushalmi 

& Margalit, 1998; Peer & Margalit, 2000; 
Eliaz & Szoka, 2001; Peer et al., 2003.

Implant Dissolution rate modification Insulin Surini et al., 2003; Takayama et al., 1990.

Gene Dissolution rate modification 
and protection Plasmid DNA/monoclonal antibodies Yun et al., 2004; Kim et al., 2003.
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Cosmetic uses of hyaluronic acid
HA has been extensively utilized in cosmetic products 
because of its viscoelastic properties and excellent bio-
compatibility. Application of HA containing cosmetic 
products to the skin is reported to moisturize and restore 
elasticity, thereby achieving an antiwrinkle effect, albeit 
so far no rigorous scientific proof exists to substantiate 
this claim. HA-based cosmetic formulations or sun-
screens may also be capable of protecting the skin against 
ultraviolet irradiation due to the free radical scavenging 
properties of HA (Manuskiatti & Maibach, 1996).

HA, either in a stabilized form or in combination with 
other polymers, is used as a component of commercial 
dermal fillers (e.g. Hylaform®, Restylane® and Dermalive®) 
in cosmetic surgery. It is reported that injection of such 
products into the dermis, can reduce facial lines and 
wrinkles in the long term with fewer side-effects and 
better tolerability compared with the use of collagen 
(Duranti et al., 1998; Bergeret-Galley et al., 2001; Leyden 
et al., 2003). The main side-effect may be an allergic reac-
tion, possibly due to impurities present in HA (Schartz, 
1997; Glogau, 2000).

Biological function of hyaluronan 

Naturally, hyaluronan has essential roles in body func-
tions according to organ type in which it is distributed 
(Laurent et al., 1996). 

Space fi ller
The specific functions of hyaluronan in joints are still 
essentially unknown. The simplest explanation for its 
presence would be that a flow of hyaluronan through the 
joint is needed to keep the joint cavity open and thereby 
allow extended movements of the joint. Hyaluronan is 
constantly secreted into the joint and removed by the 
synovium. The total amount of hyaluronan in the joint 
cavity is determined by these two processes. The half-life 
of the polysaccharide at steady-state is in the order of 
0.5–1 day in rabbit and sheep (Brown et al., 1991; Fraser 
et al., 1993). The volume of the cavity is determined by the 
pressure conditions (hydrostatic and osmotic) in the cav-
ity and its surroundings. Hyaluronan could, by its osmotic 
contributions and its formation of flow barriers in the 
limiting layers, be a regulator of the pressure and flow rate 
(McDonald & Leviek, 1995). It is interesting that in fetal 
development the formation of joint cavities is parallel with 
a local increase in hyaluronan (Edwards et al., 1994).

Lubrication
Hyaluronan has been regarded as an ideal lubricant in 
the joints due to its shear-dependent viscosity (Ogston & 
Stanier, 1953) but its role in lubrication has been refuted 
by others (Radin et al., 1970). However, there are now 
reasons to believe that the function of hyaluronan is to 
form a film between the cartilage surfaces. The load on 
the joints may press out water and low-molecular solutes 
from the hyaluronan layer into the cartilage matrix. As a 

result, the concentration of hyaluronan increases and a 
gel structure of micrometric thickness is formed which 
protects the cartilage surfaces from frictional damage 
(Hlavacek, 1993). This mechanism to form a protective 
layer is much less effective in arthritis when the synovial 
hyaluronan has both a lower concentration and a lower 
molecular weight than normal. Another change in the 
arthritic joint is the protein composition of the synovial 
fluid. Fraser et al. (1972) showed more than 40 years ago 
that addition of various serum proteins to hyaluronan 
substantially increased the viscosity and this has received 
a renewed interest in view of recently discovered hyalad-
herins (see above). TSG-6 and inter-α-trypsin inhibitor 
and other acute phase reactants such as haptoglobin are 
concentrated to arthritic synovial fluid (Hutadilok et al., 
1988). It is not known to what extent these are affecting 
the rheology and lubricating properties.

Scavenger functions
Hyaluronan has also been assigned scavenger functions 
in the joints. It has been known since the 1940s that 
hyaluronan is degraded by various oxidizing systems 
and ionizing irradiation and we know today that the 
common denominator is a chain cleavage induced by free 
radicals, essentially hydroxy radicals (Myint et al., 1987). 
Through this reaction hyaluronan acts as a very efficient 
scavenger of free radicals. Whether this has any biological 
importance in protecting the joint against free radicals is 
unknown. The rapid turnover of hyaluronan in the joints 
has led to the suggestion that it also acts as a scavenger 
for cellular debris (Laurent et al., 1995). Cellular material 
could be caught in the hyaluronan network and removed 
at the same rate as the polysaccharide (Stankovska et al., 
2007; Rapta, et al., 2009).

Regulation of cellular activities
As discussed above, more recently proposed functions 
of hyaluronan are based on its specific interactions with 
hyaladherins. One interesting aspect is the fact that hyal-
uronan influences angiogenesis but the effect is different 
depending on its concentration and molecular weight 
(Sattar et al., 1992). High molecular weight and high 
concentrations of the polymer inhibit the formation of 
capillaries, while oligosaccharides can induce angiogen-
esis. There are also reports of hyaluronan receptors on 
vascular endothelial cells by which hyaluronan could act 
on the cells (Edwards et al., 1995). The avascularity of the 
joint cavity could be a result of hyaluronan inhibition of 
angiogenesis.

Another interaction of some interest in the joint 
is the binding of hyaluronan to cell surface proteins. 
Lymphocytes and other cells may find their way to joints 
through this interaction. Injection of high doses of hyal-
uronan intra-articularly could attract cells expressing 
these proteins. Cells can also change their expression of 
hyaluronan-binding proteins in states of disease, whereby 
hyaluronan may influence immunological reactions and 
cellular traffic in the path of physiological processes 
in cells (Edwards et al., 1995). The observation often 
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reported that intra-articular injections of hyaluronan 
alleviate pain in joint disease (Adams, 1993) may indicate 
a direct or indirect interaction with pain receptors.

Hyaluronan and synovial fl uid

In normal/healthy joint, the synovial fluid, which consists 
of an ultrafiltrate of blood plasma and glycoproteins con-
tains HA macromolecules of molar mass ranging between 
6–10 mega Daltons (Praest et al., 1997). SF serves also as a 
lubricating and shock absorbing boundary layer between 
moving parts of synovial joints. SF reduces friction and 
wear and tear of the synovial joint playing thus a vital role 
in the lubrication and protection of the joint tissues from 
damage during motion (Oates et al., 2002).

As SF of healthy humans exhibits no activity of 
hyaluronidase, it has been inferred that oxygen-derived 
free radicals are involved in a self-perpetuating process 
of HA catabolism within the joint (Grootveld et al., 
1991; Stankovska et al., 2006; Rychly et al., 2006). This 
radical-mediated process is considered to account for ca. 
twelve-hour half-life of native HA macromolecules in SF. 

Acceleration of degradation of high-molecular-weight 
HA occurring under inflammation and/or oxidative 
stress is accompanied by impairment and loss of its visco-
elastic properties (Parsons et al., 2002; Soltes et al., 2005; 
Stankovska et al., 2005; Lath et al., 2005; Hrabarova et al., 
2007; Valachova & Soltes, 2010; Valachova et al., 2013a). 
Low-molecular weight HA was found to exert different 
biological activities compared to the native high-molecu-
lar-weight biopolymer. HA chains of 25–50 disaccharide 
units are inflammatory, immune-stimulatory, and highly 
angiogenic. HA fragments of this size appear to func-
tion as endogenous danger signals, reflecting tissues 
under stress (Noble, 2002; West et al., 1985; Soltes et al., 
2007; Stern et al., 2007; Soltes & Kogan, 2009). Figure 5 
describes the fragmentation mechanism of HA under free 
radical stress. 

a. Initiation phase: the intact hyaluronan macromol-
ecule entering the reaction with the HO• radical 
formed via the Fenton-like reaction: 

 Cu+ + H2O2  Cu2+ + HO• + OH–
 H2O2 has its origin due to the oxidative action of 

the Weissberger system (see Figure 6)
b. Formation of an alkyl radical (C-centered hyal-

uronan macroradical) initiated by the HO• radical 
attack. 

c. Propagation phase: formation of a peroxy-type 
C-macroradical of hyaluronan in a process of 
oxygenation after entrapping a molecule of O2.

d. Formation of a hyaluronan-derived hydroper-
oxide via the reaction with another hyaluronan 
macromolecule. 

e. Formation of highly unstable alkoxy-type 
C-macroradical of hyaluronan on undergoing 
a redox reaction with a transition metal ion in a 
reduced state.

f. Termination phase: quick formation of alkoxy-
type C-fragments and the fragments with a termi-
nal C=O group due to the glycosidic bond scission 
of hyaluronan. Alkoxy-type C fragments may 
continue the propagation phase of the free-radical 
hyaluronan degradation reaction. Both fragments 
are represented by reduced molar masses (Kogan, 
2011; Rychly et al., 2006; Hrabarova et al., 2012; 
Surovcikova et al., 2012; Valachova et al., 2013b; 
Banasova et al., 2012).

Several thiol compounds have attracted much atten-
tion from pharmacologists because of their reactivity 
toward endobiotics such as hydroxyl radical-derived spe-
cies. Thiols play an important role as biological reductants 
(antioxidants) preserving the redox status of cells and 
protecting tissues against damage caused by the elevated 
reactive oxygen/nitrogen species (ROS/RNS) levels, by 
which oxidative stress might be indicated.

Soltes and his coworkers examined the effect of sev-
eral thiol compounds on inhibition of the degradation 
kinetics of a high-molecular-weight HA in vitro. High 
molecular weight hyaluronan samples were exposed 
to free-radical chain degradation reactions induced by 
ascorbate in the presence of Cu(II) ions, the so called 
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Figure 5. Schematic degradation of HA under free radical stress 
(Hrabarova et al., 2012).
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Weissberger’s oxidative system. The concentrations of 
both reactants [ascorbate, Cu(II)] were comparable to 
those that may occur during an early stage of the acute 
phase of joint inflammation (see Figure 6) (Banasova et 
al., 2011; Valachova et al., 2011; Soltes et al., 2006a; Soltes 
et al., 2006b; Stankovska et al., 2004; Soltes et al., 2006c; 
Soltes et al., 2007; Valachova et al., 2008; 2009; 2010; 2011; 
2013; Hrabarova et al., 2009, 2011; Rapta et al., 2009; 2010; 
Surovcikova-Machova et al., 2012; Banasova et al., 2011; 
Drafi et al., 2010; Fisher & Naughton, 2005).

Figure 7 illustrates the dynamic viscosity of hyaluro-
nan solution in the presence and absence of bucillamine, 
d-penicillamine and l-cysteine as inhibitors for free radi-
cal degradation of HA. The study showed that bucillamine 
to be both a preventive and chain-breaking antioxidant. 
On the other hand, d-penicillamine and l-cysteine dose 
dependently act as scavenger of •OH radicals within the 
first 60 min. Then, however, the inhibition activity is lost 
and degradation of hyaluronan takes place (Valachova et al., 
2011; Valachova et al., 2009; 2010; Hrabarova et al., 2009). 

l-Glutathione (GSH; l-γ-glutamyl-l-cysteinyl-glycine; 
a ubiquitous endogenous thiol, maintains the intracel-
lular reduction-oxidation (redox) balance and regulates 
signaling pathways during oxidative stress/conditions. 
GSH is mainly cytosolic in the concentration range of 
ca. 1–10 mM; however, in the plasma as well as in SF, the 
range is only 1–3 μM (Haddad & Harb, 2005). This unique 
thiol plays a crucial role in antioxidant defense, nutrient 
metabolism, and in regulation of pathways essential for 
the whole body homeostasis. Depletion of GSH results in 
an increased vulnerability of the cells to oxidative stress 
(Hultberg & Hultberg, 2006). 

It was found that l-glutathione exhibited the most 
significant protective and chain-breaking antioxidative 
effect against hyaluronan degradation. Thiol antioxida-
tive activity, in general, can be influenced by many factors 
such as various molecule geometry, type of functional 
groups, radical attack accessibility, redox potential, thiol 
concentration and pKa, pH, ionic strength of solution, as 
well as different ability to interact with transition metals 
(Hrabarova et al., 2012).

Figure 8 shows the dynamic viscosity versus time 
profiles of HA solution stressed to degradation with 
Weissberger’s oxidative system. As evident, addition of 
different concentrations of GSH resulted in a marked pro-
tection of the HA macromolecules against degradation. 
The greater the GSH concentration used, the longer was 
the observed stationary interval in the sample viscosity 
values. At the lowest GSH concentration used, i.e. 1.0 μM 
(Figure 8), the time-dependent course of the HA degrada-
tion was more rapid than that of the reference experiment 
with the zero thiol concentration. Thus, one could classify 
GSH traces as functioning as a pro-oxidant.

The effectiveness of antioxidant activity of 1,4-dithio-
erythritol expressed as the radical scavenging capacity was 
studied by a rotational viscometry method (Hrabarova et 
al., 2010). 1,4-dithioerythritol, widely accepted and used 
as an effective antioxidant in the field of enzyme and 
protein oxidation, is a new potential antioxidant standard 
exhibiting very good solubility in a variety of solvents. 
Figure 9 describes the effect of 1,4-dithioerythritol on 
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Figure 6. Scheme. Generation of H2O2 by Weissberger’s system 
from ascorbate and Cu(II) ions under aerobic conditions (Vala-
chova et al., 2011)

Figure 7. Eff ect of A) L-penicillamine, B) L-cysteine and C) bucillamine with diff erent concentrations (50, 100 μM) on HA degradation induced 
by the oxidative system containing 1.0 μM CuCl2 + 100 μM ascorbic acid (Valachova et al., 2011).
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degradation of HA solution under free radical stress 
(Hrabarova et al., 2010).

N-Acetyl-l-cysteine (NAC), another significant pre-
cursor of the GSH biosynthesis, has broadly been used as 
effective antioxidant in a form of nutritional supplement 
(Soloveva et al., 2007; Thibodeau et al., 2001). At low con-
centrations, it is a powerful protector of α1-antiproteinase 
against the enzyme inactivation by HOCl. NAC reacts 
with HO• radicals and slowly with H2O2; however, no 
reaction of this endobiotic with superoxide anion radical 
was detected (Aruoma et al., 1989).

Investigation of the antioxidative effect of N-Acetyl-
l-cysteine. Unlike l-glutathione, N-acetyl-l-cysteine was 
found to have preferential tendency to reduce Cu(II) ions to 
Cu(I), forming N-acetyl-l-cysteinyl radical that may sub-
sequently react with molecular O2 to give O2•– (Soloveva et 
al., 2007; Thibodeau et al., 2001). Contrary to l-cysteine, 
NAC (25 and 50 μM), when added at the beginning of the 
reaction, exhibited a clear antioxidative effect within ca. 60 
and 80 min, respectively (Figure 10A). Subsequently, NAC 
exerted a modest pro-oxidative effect, more profound 
at 25-μM than at 100-μM concentration (Figure  10A). 
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Figure 8. Comparison of the eff ect of L-glutathione on HA deg-
radation induced by the system containing 1.0 μM CuCl2 plus 
100 μM L-ascorbic acid. Concentration of L-glutathione in μM: 
1–1.0; 2–10; 3, 4, 5–50, 100, and 200. Concentration of reference 
experiment: 0–nil thiol concentration (Hrabarova et al., 2009; 
Valachova et al., 2010a).

Figure 9. Eff ect of 1,4-dithioerythritol (1) on HA degradation 
induced by Weissberger’s oxidative system (0) (Hrabarova et al., 
2010).

Figure 10. Evaluation of antioxidative eff ects of N-acetyl-L-cysteine against high-molar-mass hyaluronan degradation in vitro induced by 
Weissberger´s oxidative system. Reference sample (black): 1 μM Cu(II) ions plus 100 μM ascorbic acid; nil thiol concentration. N-Acetyl-L-
cysteine addition at the onset of the reaction (A) and after 1 h (B) (25, 50,100 μM). (Hrabarova et al., 2012).



120
Tamer Mahmoud Tamer
Hyaluronan and synovial joint

ISSN: 1337-6853 (print version) | 1337-9569 (electronic version)

Application of NAC 1 h after the onset of the reaction 
(Figure 10B) revealed its partial inhibitory effect against 
formation of the peroxy-type radicals, independently 
from the concentration applied (Hrabarova et al., 2012). 

An endogenous amine, cysteamine (CAM) is a cystine-
depleting compound with antioxidative and anti-inflam-
matory properties; it is used for treatment of cystinosis – a 
metabolic disorder caused by deficiency of the lysosomal 
cystine carrier. CAM is widely distributed in organisms 
and considered to be a key regulator of essential metabolic 
pathways (Kessler et al., 2008).

Investigation of the antioxidative effect of cysteamine. 
Cysteamine (100 μM), when added before the onset of the 
reaction, exhibited an antioxidative effect very similar to 
that of GSH (Figure 8A and Figure 11A). Moreover, the 
same may be concluded when applied 1 h after the onset 
of the reaction (Figure 11B) at the two concentrations (50 
and 100 μM), suggesting that CAM may be an excellent 
scavenger of peroxy radicals generated during the peroxi-
dative degradation of HA (Hrabarova et al., 2012). 
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