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Abstract

Background: Cryoablation (CRYO) is a novel catheter ablation technique for atrial fibrillation (AF). However, un-
certainty persists regarding the role of metabolic modifications associated with CRYO. This study was aimed at explor-
ing whether CRYO influences the metabolic signature – a possibility not previously investigated.
Methods: Paired serum samples from patients with AF (n = 10) were collected before and 24 h after CRYO. Untar-
geted metabolomic analysis was conducted with LC-MS. Univariate and multivariate analyses were applied to identify 
differential metabolites between samples. Pathway enrichment and Pearson correlation analyses were performed to 
reveal the perturbed metabolic pathways and potential interactions.
Results: Levels of 19 metabolites showed significant changes between baseline and 24 h after CRYO. Pathway 
analysis revealed that the perturbed metabolites were enriched in unsaturated fatty acid biosynthesis, retrograde en-
docannabinoid signaling, and neuroactive ligand-receptor interactions. Pearson correlation analysis indicated strong 
correlations among differential metabolites, biochemical markers, and clinical indicators.
Conclusions: CRYO induces systemic changes in the serum metabolome in patients with paroxysmal AF and pro-
vides potential metabolic benefits. Our findings might enable enhanced understanding of the pathophysiology and 
metabolic mechanisms involved in catheter ablation.

Keywords: cryoablation; metabolomics; atrial fibrillation; polyunsaturated fatty acids; neuroactive ligand-receptor 
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Introduction

Atrial fibrillation (AF), the most prevalent sus-
tained cardiac arrhythmia in adults, has occurred 
in 43.6 million cases worldwide in 2016 and tends 
to affect older age groups [1]. Pulmonary vein iso-
lation (PVI) is a safe and effective treatment for 
patients with AF. Cryoablation (CRYO) is a novel 
catheter ablation technique that has emerged as an 
effective and fundamental therapeutic strategy for 
PVI in patients with paroxysmal AF [2, 3]. Recent 
studies have shown that initial treatment with cry-
oablation in patients with paroxysmal AF is more 
effective than drug therapy, thus resulting in a lower 
incidence of atrial arrhythmias and a lower AF bur-
den at 3-year follow-up than observed with initial 
use of antiarrhythmic drugs [4]. The main princi-
ple of CRYO is freezing of the ablation site through 
the endothermic process of evaporation of liquid 
nitrous oxide, thus damaging the tissue surrounding 
the pulmonary veins in contact with the balloon and 
forming a continuous ring of transmural injury that 
isolates the pulmonary veins [5].

The main metric of CRYO success is the disappear-
ance of the pulmonary vein potential immediately 
after freezing. However, other potential  benefits 
of CRYO treatment beyond electrophysiological 
parameters are not fully understood. Extensive evi-
dence indicates that cold exposure enhances brown 
adipose tissue (BAT) activity, and that the high met-
abolic/thermogenic activity of brown fat regulates 
lipid and glucose metabolism, while consuming 
energy by accelerating the uptake and utilization 
of various metabolic substrates, including glucose, 
fatty acids, succinate, or lactate [6, 7]. Metabolomic 
profiling thus appears to be highly suitable for 
studying the effects of CRYO treatment on cardiac 
metabolism. Specifically, understanding the meta-
bolic traits of CRYO treatment enables inferences 
to be drawn regarding the metabolic pathways 
associated with cardiovascular benefits. Although 

previous metabolomic approaches in small sample 
studies of left atrial appendage closure in patients 
with AF have yielded important insights, studies on 
the metabolic signatures of CRYO have not been 
evaluated [8, 9]. Accordingly, this study was aimed 
primarily at using untargeted metabolomics to 
explore whether CRYO treatment in patients with 
paroxysmal AF might affect metabolic signatures.

Methods

Study Population

An investigator-initiated, observational clinical 
trial was conducted at Wuhan University’s Renmin 
Hospital. Patients with documented symptomatic 
paroxysmal AF were enrolled from October 2021 to 
January 2022. The patients underwent a first catheter 
ablation procedure with CRYO. Before enrollment in 
the trial, patients with paroxysmal AF were required 
to have had at least one episode of AF  documented 
by an electrocardiogram during the previous year. 
Before the procedure, each patient underwent medi-
cal history taking, physical examination, assess-
ment of arrhythmia symptoms,  medication review, 
12-lead ECG, transthoracic echocardiography, and 
transesophageal echocardiography. The two main 
requirements for study inclusion were a left ventric-
ular ejection fraction ≥ 50% and an anteroposterior 
left atrium diameter < 5.0 cm.

Detailed Inclusion and Exclusion Criteria

The exclusion criteria included persistent AF, sec-
ondary AF, cardiac procedures or implants, heart fail-
ure, coronary heart disease, structural heart disease, 
stroke or transient ischemic attack within 6 months, 
pericarditis or pericardial effusion, and malignant 
tumors. Patients provided signed informed consent 
forms before the procedure. The Renmin Hospital’s 
Ethics Committee at Wuhan University approved 
this study (approval No. WDRY2021-K147).

Cryoballoon Ablation Procedure

Subclavian vein and right femoral artery punctures, 
and the coronary sinus and ventricular electrodes 
were placed. After atrial septal puncture, a 28-mm 
cryoballoon catheter (Arctic Front Advance, 
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Medtronic, Minneapolis, USA) was advanced 
through the left atrium with a 15-Fr deflectable 
catheter over the wire. A spiral mapping catheter 
was placed in the targeted pulmonary vein, and 
the cryoballoon was placed at the pulmonary vein 
ostium. Under fluoroscopic guidance, the balloon 
was inflated, and venography was performed to 
confirm pulmonary vein occlusion, which was iden-
tified as the endpoint of ablation (Figure 1). Each 
pulmonary vein was administered two freezing pro-
cedures with targeted ablation times of 180 s. The 
superior vena cava underwent phrenic nerve pacing 
to ensure nerve integrity.

Blood Sample Preparation

All participants were required to fast for at least 8 h 
before sampling in both blood draws. Venous blood 
was collected from patients with AF before CRYO 
and 24 hours after CRYO for further analysis. 
Venous blood samples were collected into tubes. 
Within 30 min, blood samples were inverted five 
to eight times and centrifuged (3000 rpm, 15 min 
at 4 °C), and the serum was isolated and stored at 
−80 °C until analysis.

Serum Nerve Injury Marker Detection

Serum neurofilament light (NFL), glial fibrillary 
acidic protein (GFAP), S-100 protein beta chain 
(S100B), and brain fatty acid-binding protein 
(B-FABP) were measured with commercial ELISA 
kits (CUSABIO BIOTECH CO., Ltd., Wuhan, 
China) according to the manufacturer’s instructions.

Untargeted Metabolomic Profiling

After serum samples for metabolomic analysis were 
collected, 100 μL of blood was quenched in 300 μL 
of precooled methanol and acetonitrile (2:1, v/v). 
Each sample had internal standards added as a qual-
ity control measure. Samples were subjected to vac-
uum freeze-drying after 1 minute of vortex mixing. 
They were then resuspended in 150 μL 50% metha-
nol and centrifuged for 30 min at 4000 rpm to sepa-
rate the supernatants, which were then injected into a 
liquid chromatography-mass spectrometry (LC-MS) 
system. To evaluate the reproducibility of the entire 
LC-MS analysis, we prepared a quality control (QC) 
sample by pooling the same volume of each sample.

The metabolites were separated and detected with 
a Waters 2D UPLC system (Waters, USA) coupled 

Figure 1 Catheter Ablation Technologies.
(A) Fluoroscopic image depicting the cryoballoon catheter positioned at the pulmonary vein ostium. (B) Illustration depicting 
the principal design of the cryoballoon.
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to a Q Exactive high-resolution mass spectrometer 
(Thermo Fisher Scientific, USA). LC separation was 
performed on a Waters ACQUITY UPLC BEH C18 
column (1.7 μm, 2.1 mm × 100 mm, Waters, USA). 
The binary gradient model of the high- performance 
liquid chromatography system was used to main-
tain the column temperature at 45 °C. For sample 
analysis, positive and negative ion modes were used 
with spray voltages of 3.8 kV and 3.2 kV, respec-
tively. The mass scanning range was 70–1050 m/z, 
with a resolution of 70,000, and the automatic gain 
control target for MS acquisitions was set to 3e6 
with a maximum ion injection time of 100 ms. The 
nitrogen sheath gas and nitrogen auxiliary gas flow 
rates were set to 40 L/min and 10 L/min, respec-
tively. The pooled QC sample was initially injected 
five times to ensure system equilibrium. For further 
monitoring of the system’s stability, QC samples 
were interspersed every ten samples.

LC-MS Data Processing

Compound Discoverer 3.0 software (Thermo 
Fisher Scientific, USA) was used to measure the 
peak characteristics of relevant metabolites. Peak 
extraction, peak grouping, retention time correc-
tion, peak alignment, and metabolite identification 
were performed in the data processing and analysis 
workflow. For data quality assurance, QC sample 
analysis included investigation of the overlap in 
base peak chromatograms (BPCs), principal com-
ponent analysis (PCA), peak lift quantity, and peak 
response intensity. Through comparison of the exact 
molecular mass data (m/z) of the samples with those 
from the database, we identified the metabolites 
with the online mzCloud and HMDB databases. 
To understand the functional properties of various 
metabolites, and identify the primary biochemical 
metabolic pathways and signal transduction path-
ways in which the metabolites were involved, we 
performed metabolic pathway enrichment analysis 
of differential metabolites between groups with 
the Kyoto Encyclopedia of Genes and Genomics 
(KEGG) database.

Statistical Analysis

Categorical variables are presented as numbers 
and percentages, whereas continuous variables 

are presented as mean ± standard deviation (SD). 
Shapiro–Wilk test was used for small samples to 
assess normality. Depending on the data normal-
ity, independent continuous variables were com-
pared with either independent-sample parametric 
tests (paired Student’s t-test) or non- parametric 
tests (paired Wilcoxon signed-rank test). One-way 
analysis of variance with Tukey’s multiple com-
parisons test was used to assess the significance 
of differences among multiple time points. To 
search for differential metabolites between groups, 
a combination of multivariate statistical analysis 
(PCA and partial least squares-discriminant analy-
sis (PLS-DA)), univariate analysis (fold change 
[FC] and paired Wilcoxon signed-rank test) was 
used. Significant differential metabolites were 
identified on the basis of P < 0.05, FC < 0.83 or 
> 1.2, and VIP > 1. After log

2
-log conversion and 

Pareto scaling with seven-fold cross-validation, 
the PLS-DA model was created. Heat maps were 
constructed to show the standardized abundance 
data for each metabolite, and phenotype analysis 
was used to group significantly distributed metab-
olites. Pearson correlation analysis was performed 
between significant differential serum metabo-
lites and clinical indicators. GraphPad Prism 9 
(GraphPad Software, San Diego, CA, USA) or R 
(http://www.R-project.org, 4.2.2.) was used for 
statistical analyses. P < 0.05 was considered statis-
tically significant.

Results

Baseline Patient Characteristics and 
Procedural Data

Baseline patient characteristics were shown in 
Table S1. The mean age was 60.0 ± 12.3 years, and 
60% of patients were men. The mean left ventricu-
lar ejection fraction was 59.4 ± 1.8%, and the mean 
left atrial diameter was 3.9 ± 0.5 cm. Table S2 
provides an overview of the procedures’ charac-
teristics. Of the ten patients, 100% (40 of 40 PVs) 
met the primary feasibility endpoint of complete 
acute PVI, and no adverse events were attributed to 
CRYO. The mean total procedure time was 68.0 ± 
14.0 min, and the mean fluoroscopy time was 18.5 
± 5.6 min.
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Changes in Metabolites Associated with 
CRYO in Patients with AF

After screening compounds with a relative peak 
area CV of 30% more in QC samples, we iden-
tified 3755 and 1744 features in positive and 
negative modes, respectively, in the non-targeted 
metabolomic profiling (Figure S1A). The PCA of 
the pooled QC samples clustered together, and the 
BPC of all QC samples showed substantial over-
lap (Figure S1B), thus demonstrating the reliabil-
ity and stability of the LC-MS findings. Figure 
2A, B illustrates how PLS-DA distinguished the 
pre- and post-CRYO groups in both positive and 
negative modes. Serum levels of metabolites 
(Figure 2C) distinguished post-CRYO from pre-
CRYO patients, on the basis of statistical analy-
sis. A total of 79 metabolites were identified with 
the KEGG and HMDB databases (Table S3). The 
heat map and hierarchical clustering analysis 

illustrated the distribution patterns of differential 
metabolites between groups (Figure 2D). With an 
FC of 41.0491, tyramine was among the most sig-
nificant differential metabolites. Furthermore, we 
conducted correlation analysis with the corrplot 
package to reveal the potential interactions among 
the identified compounds, wherein metabolites 
tended to cluster together in the correlation matrix 
(Figure S2).

Differential Metabolite Identification and 
Pathway Analysis

To explore the identities and functional enrich-
ment of differential features, we entered the above 
differential metabolites as input data to perform 
the class identification and pathway enrichment 
analysis by using the HMDB and KEGG data-
bases. As shown in Figure 3A, B, the differential 
features were significantly associated with lipid 
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Figure 2 Non-Targeted Metabolomic Profiling Analysis of Human Serum.
(A, B) PLS-DA score plots pre- and post-CRYO in patients with AF. Validation plots of 200 permutation tests in positive mode 
(left) and negative mode (right) are shown. (C) Volcano plot of differential metabolites. Red, blue, and gray indicate increased, 
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metabolites, and columns indicate sample group.
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metabolism; amino acid metabolism; and signal-
ing molecules and interactions. The relevant mol-
ecules were primarily fatty acyls, alpha-amino 
acids, peptides, and benzene and substituted deriv-
atives. Pathway analysis was then performed to 
reveal detailed functional annotation through the 
clusterProfiler package, which indicated that the 
differential metabolites after CRYO were enriched 
in pathways including biosynthesis of unsaturated 
fatty acids, retrograde endocannabinoid (eCB) 
signaling, neuroactive ligand-receptor interac-
tion, thermogenesis, and linoleic acid metabolism 
(Figure 3C). To visualize the changes in the levels 
of metabolites involved in these differential path-
ways, we constructed a functional annotation heat 
map (Figure 3D). All differential metabolites (ara-
chidonic acid (AA), 8z, 11z, 14z-eicosatrienoic 

acid [dihomo-gamma- linolenic acid DGLA], 
11(z), 14(z)-eicosadienoic acid, 11(z)-eicosenoic 
acid, cis-5, 8, 11, 14,  17-eicosapentaenoic acid 
(EPA),  docosahexaenoic acid (DHA), and  linoleic 
acid) involved in unsaturated fatty acid biosyn-
thesis  pathways were consistently increased. 
AA, DGLA, linoleic acid, and (±)12(13)-dihome 
(Figure S3) participated in  linoleic acid metabo-
lism. Furthermore, eight differential metabolites 
were involved in the neuroactive ligand- receptor 
interaction pathway, among which tyramine  notably 
increased after CRYO. Interestingly, gamma- 
aminobutyric acid (GABA),  2-arachidonoyl glyc-
erol (2-AG), and anandamide (AEA) were also 
associated with retrograde eCB signaling, and, 
together with glycerin,  significantly increased 
after CRYO.

Figure 3 Differential Metabolite Identification and Pathway Analysis.
(A, B) Differential metabolomic profiling annotation with KEGG and HMDB database searching and metabolic network 
analysis. (C) KEGG pathway enrichment analysis showing altered metabolic pathways of differential metabolites. Each circle 
represents a pathway, and the size and color of each circle indicate the enriched counts and significance of the pathway, with 
red indicating the most significant changes after ablation. (D) Functional annotation heat map of the metabolites in altered 
pathways. Rows indicate pathways, and columns indicate metabolites. The color coding indicates the FC in the differentially 
present compound. Black indicates the FC of metabolites after log

10
-log conversion.
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Relative Changes in Individual Metabolites 
After CRYO

To focus on the main disrupted pathways, we fur-
ther investigated the abundance of metabolites 
involved in these pathways. We observed signifi-
cantly elevated unsaturated fatty acids after CRYO 
treatment. Specifically, the related detected metab-
olites were polyunsaturated fatty acids (PUFAs) 
belonging to the omega-6 and omega-3 series 
(Figure 4). Retrograde signaling is the principal 
mode through which eCBs mediate short- and 
long-term plasticity at both excitatory and inhibi-
tory synapses (Figure 5A). After CRYO, levels of 

the inhibitory neurotransmitter GABA increased. 
In addition, AA and AEA, the most relevant and 
prevalent regulators of synaptic function, increased 
after CRYO. These two CBs were further degraded 
into AA and GC, both of which were consist-
ently elevated in the post-CRYO group (Figure 
5C–G). Furthermore, a series of differential neu-
roactive ligands were involved in the neuroactive 
ligand-receptor interaction pathway (Figure 5B), 
including decreased D-erythro-sphingosine1-
phosphate  (D-erythro-S1P), and taurine, as well 
as increased GABA, 2-AG, tyramine, AEA, gly-
cine, and β-alanine (Figure 5E–L). Among these 

Figure 4 Differential Metabolites Involved in Unsaturated Fatty Acid Biosynthesis.
(A) Schematic representations of biosynthesis of unsaturated fatty acids; significant differential metabolites are shown in red. 
(B–H) Box and dot plot profiles of the differential PUFAs. PUFA, polyunsaturated fatty acids.
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metabolites, tyramine showed the most significant 
change. We hypothesized that CRYO therefore 
might affect neural function. We tested this hypoth-
esis by analyzing neural injury biomarkers across 
samples from patients with AF pre- and post-
CRYO. As expected, the levels of serum neuro-
filament light (NFL), GFAP, S100B, and B-FABP 

significantly increased both immediately and 24 h 
after CRYO (Figure S4). To gain insight into the 
involvement of these metabolites in all differen-
tial pathways, we confirmed correlations among 
differential metabolites, neural injury biomarkers, 
and clinical indicators with Pearson’s correlation 
coefficient (r) (Figure 6). In the subgroup analysis, 

Figure 5 Differential Metabolites Involved in Neuroactive Ligand-Receptor Interaction and Retrograde Endocannabinoid 
Signaling.
(A) Illustration of the neuroactive ligand–receptor interaction pathway. Red and blue circles represent increasing and decreas-
ing features, respectively. (B) Pattern of retrograde endocannabinoid signaling and metabolism. In brief, postsynaptic activity 
leads to the production of eCBs, such as 2-AG and AEA, which move backward across the synapse, bind presynaptic CBRs, 
and suppress neurotransmitter release. These molecules are further degraded into AA and GC. GABA, gamma-aminobutyric 
acid; 2-AG, 2-aeachidonoyl glycerol; AEA, anadamide; AA, arachidonic acid; GC, glycerin; eCBs: endocannabinoids; CBRs: 
cannabinoid receptors. (C–L) Box and dot plots of abundance of metabolites involved in neuroactive ligand-receptor interac-
tion and retrograde endocannabinoid signaling.
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seven differential PUFAs showed strong associa-
tions (0.971 > r > 0.838 and P < 0.001). Metabolites 
associated with retrograde eCB signaling (except 
GABA) showed highly positive correlations (0.911 
> r > 0.51 and P < 0.05). In addition, five metabo-
lites associated with neuroactive ligand-receptor 
interaction, such as taurine, tyramine, D-erythro-
S1P, and 2-arachidonoyl glycerol, clustered and 
showed high correlations (0.898 > r > 0.715 or 
−0.692 < r < −0.509, and P < 0.05). Interestingly, 
the above metabolites strongly correlated with the 
seven PUFAs. D-erythro-sphingosine 1-phosphate 
was negatively correlated with FUFAs (−0.645 < 
r < −0.41), whereas tyramine (0.779 > r > 0.576), 
2-AG (0.661 > r > 0.395), AEA (0.949 > r > 0.885), 

glycerin (0.958 > r > 0.849), and AA (0.964 > 
r > 0.84) were positively correlated with FUFAs. 
Moreover, neural injury biomarkers, particularly 
GFAP and S100B, were significantly positively 
correlated with tyramine and PUFAs, whereas 
GFAP and B-FABP were negatively associated 
with D-erythro-S1P. Among the echocardiographic 
parameters, only glycine, 2-AG, and thrombox-
ane b2 showed slight correlations. In addition, the 
level of 2-AG after CRYO (r = −0.679, P = 0.031, 
Figure S5) and its relative change (r = −0.670, 
P = 0.034, Figure S6) were negatively associated 
with recurrent AF. These results indicated that the 
increase in 2-arachidonoyl glycerol after CRYO 
might have beneficial effects on AF outcomes.

Figure 6 Correlation Analysis among Differential Metabolites in Pathways and Clinical Indicators.
Correlation analysis among differential metabolites, classical neural injury biomarkers and echocardiography parameters. 
Pearson correlation coefficients between pairs of compounds are shown in the lower left corners of the panels. Six subgroups 
are shown with frames in different colors. In the upper right corners, the degree of correlation and P values are shown for each 
pair. Red and blue indicate negative and positive correlations, respectively. *P < 0.05; **P < 0.01.
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Discussion

In this study, we showed that the CRYO proce-
dure is a cold-stress stimulus that induces systemic 
changes in the serum metabolome in patients with 
paroxysmal AF, thus reflecting the whole-body 
acute response to cryo-balloon ablation in these 
patients and potentially providing metabolic ben-
efits. The results indicated significant alterations in 
pathways associated with the biosynthesis of unsat-
urated fatty acids, retrograde eCB signaling, neu-
roactive ligand-receptor interaction, thermogenesis, 
and linoleic acid metabolism after CRYO – findings 
that may indirectly reflect the effects of successful 
CRYO. These metabolic changes may be unique to 
cryoablation, which was not available in previous 
studies of radiofrequency and other catheter abla-
tion [10, 11]. The identified differential metabolites 
may be worthy of investigation as candidate bio-
markers for monitoring CRYO efficacy in future 
studies.

Among the known risk factors for AF, obesity 
and visceral fat accumulation play important roles 
in stimulating arrhythmogenic substrates and thus 
predisposing people to AF. Numerous studies have 
shown that the amount of epicardial adipose tissue 
and peri-atrial adipose tissue is closely associated 
with AF development [12, 13]. Epicardial adipose 
tissue comprises predominantly white adipose tis-
sue, and cold stimulus induces the browning of 
white adipose tissue and changes white  adipose 
tissue gene expression and lipid metabolism, 
thereby promoting adaptive thermogenesis [14]. 
Cold stimulus promotes the secretion of the lipid 
mediator 12,13-dihome in BAT and consequently 
stimulates the thermogenic activity of BAT, reg-
ulation of lipid metabolism, and amelioration of 
cardiac function [15, 16]. In this study, we demon-
strated that CRYO, a cold stimulus, significantly 
increased 12,13-dihome levels after ablation, 
thereby activating BAT thermogenic lipokines, 
and providing a potential metabolic benefit from 
CRYO treatment.

The compound 12,13-dihome is an oxylipin. 
Oxylipins are bioactive lipids derived from the 
metabolism of PUFAs (omega-6 and omega-3) 
after the action of mono- or dioxygenases [17, 18]. 
Omega-6 is a precursor of 12,13-dihome biosynthe-
sis. Linoleic acid, an omega-6 PUFA, is converted to 

linoleic epoxide through CYP450-dependent metab-
olism and is finally metabolized to 12,13-dihome 
by soluble epoxide hydrolase [19]. CRYO signifi-
cantly alters the metabolism of PUFAs, including 
increases in AA, DGLA, 11(z), 14(z)-eicosadienoic 
acid, 11(z)-eicosenoic acid, EPA, DHA, and linoleic 
acid levels. Therefore, CRYO is likely to stimulate 
12,13-dihome synthesis and thus enhance fatty acid 
uptake by BAT, and stimulate the browning process 
in white adipose tissue.

PUFAs prevent cardiovascular diseases by regu-
lating serum triglyceride levels, lipoprotein size, 
inflammation, plaque stability, and arrhythmia risk 
[20]. A Cochrane review has revealed the effects of 
the increased omega-6 PUFAs on cardiovascular 
disease, thereby supporting the benefits in people at 
high risk of myocardial infarction [21]. In 11 pro-
spective cohort studies of omega-6 (mostly linoleic 
acid), higher linoleic acid concentrations have been 
associated with lower risk of all cardiovascular dis-
ease outcomes, including cardiovascular disease 
mortality [22, 23]. In addition, decreased levels of 
DGLA, an omega-6 PUFA derived from linoleic 
acid, strongly correlate with poor prognosis of car-
diovascular disease [24]. In particular, recent stud-
ies have associated higher circulating concentra-
tion and dietary intake of omega-6 fats with lower 
risk of AF among middle-aged or older patients in 
multi-ethnic populations [25, 26]. In agreement with 
these findings, our metabolomic profiles showed 
significant increases in linoleic acid, DGLA, and 
11(z),14(z)-eicosadienoic acid in omega-6 PUFAs 
after CRYO treatment, thus potentially contributing 
to cardioprotective effects. Notably, the consump-
tion of high proportions of dietary omega-6 versus 
omega-3 can have deleterious effects, particularly 
on inflammatory states, yet this concern is not gen-
erally supported by research evidence [20].

We also found that CRYO treatment markedly 
increased omega-3 PUFAs, particularly EPA and 
DHA. Omega-3 PUFAs are a component of the car-
diomyocyte membrane, where they exert not only 
stabilizing effects but also direct electrophysiologi-
cal effects [27]. Previous metabolomic analyses 
have demonstrated significantly diminished EPA 
in patients with AF [10]. Supplementation with 
omega-3 PUFAs has been reported to decrease the 
incidence of AF in various conditions, such as post-
cardiac surgery or cardioversion of AF [28, 29]. 
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Omega-3 PUFA decreases both the inducibility of 
AF and the duration of pacing-induced AF episodes 
by inhibiting two major mechanisms responsible 
for maintaining AF: reentry and rapid focal ectopic 
firing [30]. Moreover, inflammation and the associ-
ated immune response contribute to AF onset and 
maintenance, as well as electrical and structural 
atrial remodeling in AF [31]. Omega-3 PUFAs 
are precursors to resolvins, protective proteins, 
and other inflammation-resolving mediators. New 
research suggests that these mediators may have 
strong anti-inflammatory qualities and contribute to 
decreasing inflammation [32].

In addition, aging increases the risk of AF, par-
ticularly associated atrial electrical and structural 
remodeling [33]. The activity of PUFAs such as lin-
oleic acid, DGLA, EPA, and DHA decreases with 
age [34]. PUFA levels have been inversely associ-
ated with incident AF among older people in a pop-
ulation with the highest risk of AF [35]. Therefore, 
CRYO may effectively correct disorders of bioac-
tive fatty acids (linoleic acid, DGLA, EPA, and 
DHA), and consequently prevent AF and metabolic 
abnormalities associated with aging. Our findings 
suggested that CRYO-induced changes in the bio-
synthesis of unsaturated fatty acids might amelio-
rate the negative effects of AF ablation. Sustained 
homeostasis of PUFAs may improve AF treatment 
and long-term prognosis. However, this hypothesis 
must be verified through additional cohort studies 
with longer follow-up periods.

Recent studies have suggested that the immune-
modulatory lipid-signaling molecules eCBs may 
provide a missing link between the beneficial effects 
of PUFAs and the management of cardiometabolic 
diseases [36]. The eCBs mediate the beneficial 
effects of omega-3 fatty acids on cardiometabolic 
disorders, and increased levels of 2-AG and oxylipin 
enhance the anti-inflammatory effects of omega-3 
fatty acids. Activation of the cannabinoid receptor 
has been shown to stimulate an anti-inflammatory 
state by increasing anti-inflammatory cytokines and 
decreasing levels of pro-inflammatory cytokines 
[37]. In addition, the ability of cannabinoid recep-
tors to fine-tune and regulate GABAergic synaptic 
transmission through retrograde signaling has been 
found to inhibit neuronal activity, and neuronal acti-
vation plays an important role in the development 
of AF [37]. Interestingly, our results indicated that 

the eCB-mediated retrograde signaling pathway 
was also altered after CRYO, with 2-AG and AEA 
significantly elevated after ablation, thus potentially 
decreasing inflammation, and enhancing synaptic 
function and neurocognitive function.

Prior studies have shown that activation of the 
cardiac autonomic nervous system is often required 
for AF triggering and possibly maintenance [38]. 
Moreover, a recent study has indicated that exten-
sive autonomic denervation alone without PVI is 
as successful as PVI at maintaining sinus rhythm 
1 year postablation [39]. In the present study, we 
found elevated serum nerve injury markers after 
CRYO treatment, thus suggesting that freezing 
may damage the ganglion plexus in the fat pad 
around the pulmonary vein. KEGG analysis further 
revealed significant alterations in neuroactive ligand-
receptor interaction pathways after CRYO treat-
ment. Neuroactive ligands affect neuronal function 
by binding intracellular receptors, which in turn 
bind transcription factors and regulate gene expres-
sion [40]. Among them, tyramine, which is associ-
ated with tyrosine metabolism, was among the most 
significant differential metabolites, thus further 
indicating that CRYO results in neuron injury and 
affects cardiac sympathetic activity [41]. The cardi-
oprotective effects of neuroactive steroid have been 
associated with neuroactive ligand-receptor interac-
tion in patients treated with coronary artery bypass 
graft surgery [42]. In addition, another study has 
found that neuroactive ligand-receptor interaction is 
closely associated with arrhythmogenic right ven-
tricular cardiomyopathy [43]. On the basis of these 
findings, we infer that CRYO might play a crucial 
role in cardioprotection by affecting the neuroactive 
ligand-receptor interaction pathway.

This study has several limitations that should be 
noted. First, this study was cross-sectional, had a 
small sample size, and lacked a control group with-
out CRYO, thus potentially hindering strong con-
clusions from being drawn. Therefore, randomized 
controlled trial studies with larger sample sizes 
and deeper exploration of relevant mechanisms are 
required. Second, although untargeted platforms 
reveal many serum metabolites, the interpretability 
and quantification of findings are limited. Finally, 
this study performed the first exploration of the influ-
ence of successful CRYO on metabolic profiling and 
is therefore descriptive and hypothesis-generating.
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