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Abstract The genus Calonectria includes many important plant pathogens with a wide global distribution. In order
to better understand the reproductive biology of these fungi, we characterised the structure of the mating type locus
and flanking genes using the genome sequences for seven Calonectria species. Primers to amplify the mating type
genes in other species were also developed. PCR amplification of the mating type genes and multi-gene phylogenetic
analyses were used to investigate the mating strategies and evolution of mating type in a collection of 70 Calonectria
species residing in 10 Calonectria species complexes. Results showed that the organisation of the MAT locus and
flanking genes is conserved. In heterothallic species, a novel MAT gene, MAT1-2-12 was identified in the MAT1-2
idiomorph; the MAT1-1 idiomorph, in most cases, contained the MAT1-1-3 gene. Neither MAT1-1-3 nor MAT1-2-12

was found in homothallic Calonectria (Ca.) hongkongensis, Ca. lateralis, Ca. pseudoturangicola and Ca. turangicola.
Four different homothallic MAT locus gene arrangements were observed. Ancestral state reconstruction analysis
provided evidence that the homothallic state was basal in Calonectria and this evolved from a heterothallic ancestor.
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INTRODUCTION

Calonectria is an Ascomycete genus that accommodates many
important plant pathogens having a broad global distribution
(Crous 2002, Lombard et al. 2010c). Approximately 335 plant
species residing in 100 plant families are hosts to these fungi
(Crous 2002, Lombard et al. 2010c). Calonectria species re-
side in two main phylogenetic groups. These are known as the
Prolate Group and the Sphaero-Naviculate Group, and they
are differentiated based on the shape of the vesicles in their
conidiogenous apparatuses (Lombard et al. 2010b, Pham et
al. 2019).

Ten species complexes are defined in Calonectria. Eight of these
are in the Prolate Group, which includes the Ca. brassicae,
Ca. candelabrum, Ca. colhounii, Ca. cylindrospora, Ca. mexi-
cana, Ca. pteridis, Ca. reteaudii and Ca. spathiphylli species
complexes. The remaining two species complexes reside in the
Sphaero-Naviculate Group and they include the Ca. kyotensis
and the Ca. naviculata species complexes (Lombard et al.
2010b, 2016). To date, 172 Calonectria species have been
identified based on comparisons of DNA sequence data. Of
these, approximately 99 were isolated from diseased tissues
and about 73 from soil samples (Lombard et al. 2010b, 2016,
Marin-Felix et al. 2017, Crous et al. 2019, Pham et al. 2019).

Both homothallic and heterothallic mating systems have been
reported in Calonectria spp., but their sexual morphs are rarely
seen in nature or in laboratory culture (Crous 2002, Lombard
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etal. 2010a). This is not unusual given that sexual reproduction
is a complex process that is commonly species-specific, and
strongly influenced by the environment and the compatibility
of isolates (Goodenough & Heitman 2014). Consequently, the
absence of sexual structures in Calonectria does not preclude
the fact that species may be capable of sexual outcrossing
(Billiard et al. 2012). This is an important consideration given
that sexual reproduction is the dominant mechanism generating
genetic diversity, eliminating deleterious mutations, ensuring
survival of species and their overall population health (Crow
1994, Gordo & Campos 2008, Lumley et al. 2015).

Ascomycetes have a bipolar mating system that is controlled
by mating type (MAT) genes at a single MAT locus (MAT1) with
two non-allelic forms referred to as the MAT1-1 and MAT1-2
idiomorphs (Turgeon & Yoder 2000). The MAT1-1 idiomorph
is characterised by a MAT1-1-1 gene, which encodes an alpha
box motif protein homologous to MATa1 of Saccharomyces
cerevisiae (Turgeon & Yoder 2000). The MAT17-2 idiomorph
contains a MAT7-2-1 gene that encodes a protein with a high
mobility group (HMG) domain (Wilson et al. 2015a). Eight ad-
ditional genes (MAT1-1-2 to MAT1-1-9) have been identified in
the MAT1-1 idiomorph and 10 genes (MAT1-2-2 to MAT1-2-11)
in the MAT1-2idiomorph (Wilken et al. 2017). These have been
named sequentially in the order of their discovery (Wilken et al.
2017). The expression of these genes is most often related to
the sexual life cycle of the fungi in which they occur (Ferreira
et al. 1998, Kim et al. 2012, Zheng et al. 2013).

In heterothallic Ascomycetes, the two opposite mating type
idiomorphs exist in different isolates. These individuals are self-
sterile and require a compatible partner to mate and produce
sexual spores. In contrast, homothallic species are self-fertile,
where a single individual possesses both mating type idio-
morphs, and can therefore complete the sexual cycle on its
own (Ni et al. 2011, Wilson et al. 2015b). Transitions between
homothallism and heterothallism are well-known in genera of
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the Ascomycetes (Labarere & Noel 1992, Lin & Heitman 2007,
Ni et al. 2011).

Mating strategy and the ratio of mating type genes are com-
monly used in population genetics and epidemiology studies
of plant pathogens (McDonald & Linde 2002, Alby et al. 2009,
Adamson et al. 2018). The MAT gene sequences have also
been used to track the evolutionary direction of mating systems
based on thallism and molecular phylogenies (James et al.
2006, Fraser et al. 2007, Nagel et al. 2018). These genes can
be used as molecular markers to establish species boundaries
and to delimitate cryptic species (O’Donnell et al. 2004, Lopes et
al. 2017). Mating strategies have consequently served as impor-
tant criteria in the taxonomy of Calonectria (Schoch et al. 1999,
Lombard et al. 2010a). Similarly, using genome sequences
and PCR amplification of MAT genes, populations of Calonec-
tria species have been defined based on their mating type
(Malapi-Wight et al. 2014, 2019). For example, Malapi-Wight
et al. (2019) showed in a collection from four continents, that
all isolates of Ca. henricotiae were MAT1-1 whereas all isolates
of Ca. pseudonaviculata were MAT1-2.

Some studies have considered the mating types of Calonectria
spp., however, sexual reproduction is still not well understood
in this genus. For example, it is not known which MAT genes
occur at the MAT loci of homothallic Calonectria species, how
they are arranged, or whether there is significant conservation
of MAT genes or gene sequences at these loci. Universal mating
type markers for MAT1-1 idiomorph are not available to enable
easy detection of the thallism in Calonectria species, although
MAT1-2-1 gene markers were designed for Calonectria by
Schoch et al. (2000). In addition, nothing is known regarding
the evolution of the mating systems in Calonectria and the
probable ancestral state (homothallism or heterothallism) has
not been determined.

An important basis to control the spread and prevalence of
plant pathogens is to understand their life cycles and modes
of reproduction. In order to further understand the possible
role of sexual reproduction in Calonectria, we identified and
characterised the MAT loci and flanking genes of seven species
of Calonectria using whole genome sequences. Mating type
primers were then designed to consider the mating strategies of
65 Calonectria species from 10 Calonectria species complexes.
The data were also used to consider the evolutionary history
of mating in the genus.

MATERIALS AND METHODS

Isolates, DNA extraction and identification

Atotal of 123 isolates, representing 65 Calonectria species re-
siding in 10 Calonectria species complexes (Lombard et al.
2010b, 2016) were utilised in this study (Table 1). Two isolates
were acquired from the culture collection of the China Eucalypt
Research Centre (CERC), Chinese Academy of Forestry (CAF);
32 from the culture collection (CBS) of the Westerdijk Fungal
Biodiversity Institute, Utrecht, The Netherlands and 89 from
the culture collection (CMW) of the Forestry and Agricultural
Biotechnology Institute (FABI), University of Pretoria, Pretoria,
South Africa. Cultures were incubated and maintained on 2 %
malt extract agar (MEA) at room temperature.

All cultures were purified using single hyphal tip transfers to
ensure that they represented a single genotype. After three to
five days of growth on MEA, the mycelium was harvested and
genomic DNA was extracted using Prepman™ Ultra Sample
Preparation Reagent (Thermo Fisher Scientific, Waltham, MA,
USA) following a protocol described by Duong et al. (2012).
DNA concentrations were determined using a NanoDrop ND-
2000 spectrometer (Thermo Fisher Scientific, Waltham, MA,
USA) and diluted to 25—50 ng/uL using sterile distilled water.

The translation elongation factor 1-alpha (fef1) gene region
was amplified for all 123 Calonectria isolates using the primers
and protocols described by Lombard et al. (2016). Amplification
reactions were conducted in 25 pL reaction volumes consis-
ting of 12.5 pL 2 x TopTag™ Master Mix (Qiagen Inc., Hilden,
Germany), 1 pyL of each of the two primers (10 mM), 2 pL
genomic DNA and 8.5 L sterile distilled water. The PCR
products were visualized under UV light after 2 % agarose gel
electrophoresis with 3 % SYBR Safe DNA gel stain (Thermo
Fisher Scientific Inc., USA). Amplicons were sequenced in both
directions using the same primers used for PCR amplification
by the Beijing Genomics Institution, Guangzhou, China. The
sequences were edited and assembled using Geneious v. 7.0
(Kearse et al. 2012). The tef1 sequences were used to confirm
the identification of isolates based on a pairwise similarity com-
parison with sequences published on NCBI (https://guides.lib.
berkeley.edu/ncbi/blast).

Analysis of the MAT loci in seven Calonectria species
and primer design

Genome sequences

The genome sequences of seven Calonectria species (eight
isolates) were used to analyse the MAT locus. Three of the
genomes were sequenced in this study. This included one iso-
late of Ca. hongkongensis (CMW 47271) that is self-fertile and
resides in the Sphaero-Naviculate Group of Calonectria (Crous
et al. 2004, Lombard et al. 2010b, Li et al. 2017) and two iso-
lates of Ca. pauciramosa (CMW 5683 and CMW 7592) known
to be self-sterile, of opposite mating type, and which reside in
the Prolate Group of Calonectria (Lombard et al. 2010a, b).
Genomic DNA was extracted using the phenol/chloroform
method described by Goodwin et al. (1992). Pair-end libraries
(350 bp average insert size) and mate pair libraries (5000 bp
average insert size) for CMW 47271 and CMW 5683, as well as
pair-end libraries (350 bp average insert size) for CMW 7592,
were prepared and sequenced using the lllumina HiSeq 2500
platform. Quality control procedures on the raw sequencing
reads, and the removal of adapters, were done using Trimmo-
matic v. 0.36 (Bolger et al. 2014). Genome assembly, assembly
of contigs into scaffolds and gap filling were conducted as
described by Duong et al. (in Wingdfield et al. 2016) for the
genome assembly of CMW 2644 (Grosmannia penicillata).
The completeness of assembly was evaluated with BUSCO
v. 3 (https://busco.ezlab.org/) using the Sordariomycetes odb9
dataset (Siméao et al. 2015). All three genomic sequences were
deposited in GenBank.

Sequences for the other five species, including Ca. henricotiae
(CBS 138102), Ca. leucothoes (CBS 109166), Ca. navicu-
lata (CBS 101121), Ca. pseudonaviculata (CBS 139394) and
Ca. pseudoreteaudii (YA51), were obtained from public genomic
databases at NCBI with accession numbers PGWR00000000,
NAJI00000000, NAGG00000000, JYJY00000000 and MOC-
D00000000, respectively (Malapi-Wight et al. 2016a, b, Ye et al.
2017). All additional available genome sequences for Calonectria
spp. published to date (Malapi-Wight et al. 2016a, b, 2019, Ye et
al. 2017, LeBlanc et al. 2019) were also screened for inclusion in
this study of the mating type locus. These included three genome
sequences of Ca. henricotiae (CB077, NLOO9 and NL0O17) with
NCBI accession numbers PGSE00000000, PGSF00000000 and
PHMY00000000, respectively, and seven genome sequences
of Ca. pseudonaviculata (CB002, CBS 114417, CBS 139395,
CT13, ICMP 14368, NC-BB1 and ODA1) with NCBI accession
numbers RQSK00000000, PHMX00000000, PGGA00000000,
PGWW00000000, PHNAOOOOOOOO, PHMZ00000000 and
PHNBO0000000O, respectively. All three genome sequences of
Ca. henricotiae harboured the same MAT7-1 idiomorph as the
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ex-type isolate of this species (CBS 138102) and all seven ge-
nome sequences of Ca. pseudonaviculata contained the same
MAT1-2 idiomorph as CBS 139394. The genome sequences
of CBS 114417, which is the ex-type culture for Ca. pseudo-
naviculata, harboured only partial MAT gene sequences while
CBS 139394 contained the full MAT gene sequences. Conse-
quently, isolates CBS 138102 (Ca. henricotiae) and CBS 139394
(Ca. pseudonaviculata) were chosen to describe their MAT loci.

Determination of the MAT locus structures

The MAT genes in each of the available eight Calonectria ge-
nome sequences were characterised using a tBLASTx search
on the CLC Main Workbench v. 7.9.1 using the MAT genes
(MAT1-2-1, MAT1-1-3, MAT1-1-2 and MAT1-1-1) reported in
Fusarium anguioides NRRL 25385 (heterothallic, NCBI ac-
cession number MH742713; Jacobs-Venter et al. 2018) and
F. graminearum 3639 (homothallic, NCBI accession number
AF318048; Yun et al. 2000). These Fusarium spp., for which
data are available regarding the MAT genes, are close relatives
of Calonectria in the Nectriaceae. The contigs that produced
hits with an E-value < 10-2 were used to predict MAT genes and
flanking regions using the online AUGUSTUS tool (http://bioinf.
uni-greifswald.de/augustus/; Stanke et al. 2004). The MAT
genes and their flanking regions were identified by BLASTp
(NCBI), and further confirmed by comparison of homologs
published on NCBI. The functional domains of the MAT genes
were determined using the Conserved Domain search on NCBI
(https://www.ncbi.nIm.nih.gov/Structure/cdd/wrpsb.cgi).

Comparison of MAT loci

A comparison of the MAT loci mined from genome sequences
of the eight Calonectria isolates was generated using BLASTn
with a maximum E-value cut off of 0.0001, and visualized using
Easyfig v. 2.2.2 (Sullivan et al. 2011). Easyfig is a Python ap-
plication used to create linear comparative figures of multiple
genomic loci with an easy-to-use graphical user interface.
Pairwise similarity comparisons (BLASTn, tBLASTx) between
multiple genomic regions were generated using the Easyfig
interface (Sullivan et al. 2011).

Primer design for MAT genes

MAT1-1-1 and MAT1-2-1 primers were designed to determine
the mode of sexual reproduction in a collection of 65 Calonectria
species residing in 10 Calonectria species complexes. In ad-
dition, the available genome sequences were used to design
primers for MAT1-1-3 or MAT1-2-12, which were present in
the heterothallic Calonectria isolates but absent in the one
homothallic species (Ca. hongkongensis, CMW 47271).

The sequences of the MAT1-1-1 and MAT1-1-3 genes extracted
from the genomes of Ca. henricotiae (CBS 138102), Ca. hong-
kongensis (CMW 47271, only for MAT1-1-1 due to absence
of MAT1-1-3), Ca. naviculata (CBS 101121) and Ca. paucira-
mosa (CMW 7592) were aligned. This alignment was used to
design primers using the primer design function in CLC Main
Workbench v. 7.9.1. following the software instructions. The
alpha box domain in the MAT7-1-1 gene and the HMG box
domain in the MAT1-1-3 gene were specifically targeted for
primer design because these regions had the greatest similarity
across all species.

The MAT1-2-1 primers designed previously by Schoch et al.
(2000) were based on the partial HMG box domain and pro-
duced fragments of approximately 170 bp. The whole MAT1-2-1
gene region was used to design MAT 1-2-1 primers again in this
study and aimed to obtain a longer MAT1-2-1 fragment. The
target areas for primer design for the MAT1-2-1 and MAT1-2-12
genes were based on the aligned sequences of the MAT1-2-1 or
MAT1-2-12 gene found in the genomes of Ca. hongkongensis

(CMW 47271, only for MAT1-2-1 due to absence of MAT1-2-12),
Ca. leucothoes (CBS 109166), Ca. pauciramosa (CMW 5683),
Ca. pseudonaviculata (CBS 139394) and Ca. pseudoreteaudii
(YA51) using CLC Main Workbench v. 7.9.1. The MAT1-2-1 pri-
mers were designed in HMG box domain and overlapped with
those designed by Schoch et al. (2000); MAT1-2-12 primers
were designed in the conserved areas.

MAT gene amplification and mating type assignment

All 123 isolates representing 65 Calonectria species were
screened for four MAT genes (MAT1-1-1, MAT1-1-3, MAT1-2-1
and MAT1-2-12). PCR amplification reaction conditions for
these MAT genes were as follows: initial denaturation at 95 °C
for 3 min, followed by 30 cycles of 95 °C denaturation for 30 s,
53 °C (MAT1-1-1) or 58 °C (MAT1-2-1) or 48 °C (MAT1-1-3
or MAT1-2-12) annealing for 30 s, and 72 °C extension for
1 min, followed by a final extension at 72 °C for 10 min. PCR
amplification mixtures, verification of PCR products, amplicon
sequencing and sequence editing, assembly tools for MAT
gene amplification and analyses were the same as those
used to obtain the fef1 gene regions described above. The
sequences were aligned using the online version of MAFFT
v. 7 (http://mafft.cbrc.jp/alignment/server/; Katoh & Standley
2013). Alignments of four MAT gene sequences were deposited
in TreeBASE (http://treebase.org).

The conserved domains for each MAT gene sequence in all
123 Calonectria isolates were determined by the Pfam domain
search on CLC Main Workbench v. 7.9.1. All of these sequences
were deposited in GenBank (Table 1). Species having both
MAT1-1-1 and MAT1-2-1 genes in a single isolate were desig-
nated as homothallic. Heterothallic species were identified
by the presence of either MAT1-1-1 or MAT1-2-1 in different
isolates. Species were considered to be putatively heterothallic
when only the MAT1-1-1 or MAT1-2-1 gene was detected in all
the isolates of a particular species (Duong et al. 2016).

Phylogenetic analysis and ancestral state reconstruction

To investigate the evolutionary history of sexual reproduction
in Calonectria, a multi-gene phylogenetic tree based on Maxi-
mum Likelihood (ML) analysis for the combined dataset of the
tef1, histone H3 (his3), calmodulin (cmdA) and partial B-tubulin
(tub2) gene regions was generated using PhyML v. 3.1 (Guin-
don & Gascuel 2003). A single isolate representing each of 70
Calonectria species (Table 1) was selected for the phylogenetic
analyses. These included the five species for which the genome
sequences are publicly available and for which cultures were not
used in this study (Table 1). All sequences used to construct the
phylogenetic tree were either downloaded directly from NCBI
(http://www.ncbi.nlm.nih.gov) or extracted from the genome se-
quences. Confidence levels for the nodes were determined with
1000 bootstrap replicates. Curvicladiella cignea (CBS 109167)
was used as the outgroup taxon in the analyses (Lombard et al.
2016). Alignment of sequence combination of four gene regions
was deposited in TreeBASE (http://treebase.org).

The homothallic or heterothallic mode of reproduction in each
of the 70 Calonectria species was mapped onto the backbone
of the multi-gene phylogenetic tree. Ancestral state recon-
struction based on the ML approach was performed using an
unordered parsimony model in Mesquite v. 3.5 (Maddison &
Maddison 2018).

RESULTS

Isolates and identification

The DNA for all 123 isolates representing 65 Calonectria spp.
was successfully extracted. Confirmation of these previously
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identified and published isolates was achieved based on a com-
parison of tef1 sequences generated in this study and published
on NCBI (Table 1).

Genome sequencing

For CMW 47271 (Ca. hongkongensis), CMW 5683 (Ca. pau-
ciramosa) and CMW 7592 (Ca. pauciramosa), the estimated ge-
nome sizes were 61.7 Mb, 62.4 Mb and 62.3 Mb, respectively. The
average coverage of all three assembled genomes were higher
than 736 x. The assembled genome of CMW 47271 (Ca. hong-
kongensis) had 76 scaffolds larger than 500 bp, a N50 contig
size of 1.7 Mb and a mean GC content 0of 49.0 %. The genomes
for CMW 5683 and CMW 7592 (Ca. pauciramosa) contained
83 scaffolds (> 500 bp) with N50 of 3.1 Mb, and 104 scaffolds
(> 500 bp) with N50 of 1.4 Mb, respectively. These two genomes
had a similar GC content of 49.3 %. The BUSCO analysis
indicated a high level of completeness for all three assemblies
based on the Sordariomycetes dataset and less than 1.2 %
BUSCO orthologs were missing. GenBank accession numbers
of these three genome sequences were JAACJA000000000,
JAACIZ000000000 and JAACIY000000000, respectively
(Table 1).

MAT locus structure and MAT genes in the eight
Calonectria genomes

The MAT idiomorphs in each of the eight selected Calonectria
isolates for which genome sequences were available were de-
tected in a single contig (scaffold) based on a tBLASTx search
on the CLC Main Workbench. Contigs from Ca. leucothoes
(CBS 109166), Ca. pauciramosa (CMW 5683), Ca. pseudo-
naviculata (CBS 139394) and Ca. pseudoreteaudii (YA51)
contained sequences very similar to those of the MAT1-2-1

APN2 MAT1-2-1

Ca. leucothoes CBS 109166 Hix mummmmm-)

gene sequences in F. graminearum 3639 (E-value: 2.31E-8
to 4.14E-5). None of the contigs had similarity to the gene
sequences of the MAT7-1 idiomorph. These isolates were
considered to contain only a MAT1-2 idiomorph. Calonectria
henricotiae (CBS 138102), Ca. naviculata (CBS 101121) and
Ca. pauciramosa (CMW 7592) were designated as containing
the MAT1-1 idiomorph based on the presence of a MAT1-1-1
gene and the absence of a MAT1-2-1 gene in the MAT locus
of each isolate. In addition, Ca. hongkongensis (CMW 47271)
was found to have both MAT7-1-1 and MAT1-2-1 in a single
scaffold and was confirmed as homothallic.

The length of the MAT idiomorph of Ca. hongkongensis (CMW
47271) was 4.66 kb. The MAT1-1 idiomorph of Ca. henricotiae
(CBS 138102), Ca. naviculata (CBS 101121) and Ca. paucira-
mosa (CMW 7592) were approximately 4.3 kb long, and the
length of the MAT 1-2idiomorph in Ca. leucothoes (CBS 109166),
Ca. pauciramosa (CMW 5683), Ca. pseudonaviculata (CBS
139394) and Ca. pseudoreteaudii (YA51) was approximately
3.3 kb. The structural arrangement of the MAT locus and
flanking genes was conserved in all isolates (Fig. 1). The MAT
locus was flanked by the genes APN2 (DNA lyase) and SLA2
(cytoskeleton assembly control protein) gene.

The MAT1-1and MAT1-2 idiomorphs in the genomes of the six
heterothallic Calonectria species were identical in order and
orientation (Fig. 1). The MAT1-1 idiomorph in Ca. henricotiae
(CBS 138102), Ca. naviculata (CBS 101121) and Ca. paucira-
mosa (CMW 7592) possessed the MAT1-1-1, MAT1-1-2 and
MAT1-1-3 genes. AMAT1-2-1 gene as well as an open reading
frame (ORF) of unknown function were observed in the MAT1-2
idiomorph of Ca. leucothoes (CBS 109166), Ca. pauciramosa
(CMW 5683), Ca. pseudonaviculata (CBS 139394) and Ca. pseu-
doreteaudii (YA51). The MAT1-1-3 gene and the ORF of un-

MAT1-2-12 SLA2
ol \

Ca. pseudonaviculata CBS 139394

Ca. pseudoreteaudii YA51

Ca. pauciramosa CMW 5683 s

Ca. hongkongensis CMW 47271 K-
Ca. pauciramosa CMW 7592 -

o e —

Ca. henricotiae CBS 13810

Ca. naviculata CBS 101121

1) O =

__ LTI

APN2 MAT1-1-3 MAT1-1-2 MAT1-1-1 SLA2

Fig. 1 Pairwise MAT loci comparison among eight Calonectria isolates representing seven species. Black horizontal lines represent genomic sequences.
Colour coded arrows represent annotated genes. Red or blue boxes between genomic sequences indicates pairwise similarity based on BLASTn; red suggest
that both regions are in the same orientation and blue are in opposite directions. Calonectria hongkongensis CMW 47271 represents the only homothallic

individual containing both MAT7-7 and MAT1-2 idiomorph.
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" The percentage of conserved nucleotides including exon and intron (length of conserved nucleotides/full-length of nucleotides).

2 The percentage of conserved amino acid (length of conserved amino acid/full-length of amino acid).

known function, found respectively in the MAT1-1 and MAT1-2
locus of the heterothallic species, were absent in the MAT locus
of homothallic Ca. hongkongensis (CMW 47271), which con-
tained the MAT1-1-1, MAT1-1-2 and MAT1-2-1 genes. The
ORF found in the MAT1-2 locus of heterothallic Calonectria
species was different to all other genes previously observed
at a MAT locus. This was consequently recognised as a new
mating type gene and is designated here as MAT1-2-12. This
gene was previously designated as MAT 1-2-2 by Malapi-Wight
etal. (2019).

The predicted MAT1-1-1 (1.2 kb) gene in the eight Calonectria
genomes contain two introns, and encode a 372 to 383 amino
acid (aa) protein with a conserved MATalpha_HMGbox domain
(GenBank: pfam04769) that spans a 49 bp intron. Both the
MAT1-1-3 (737 bp to 751 bp) and MAT1-2-1 gene (809 bp to
837 bp) encode an HMG box domain (GenBank: cd01389),
which is interrupted by an intron (about 50 bp). The predicted
MAT1-1-3 gene has a CDS approximately 600 bp in size and
contains three introns. The putative MAT71-2-1 gene has a CDS
of approximately 720 bp and contains two introns. A conserved
putative protein 1-1-2 domain (GenBank: pfam17043) was
found in all MAT1-1-2 (1.4 kb) genes. Although four introns
were present in the MAT1-1-2 gene, the conserved putative
protein 1-1-2 domain was not interrupted by any of them. The
novel mating type gene defined in this study as MAT71-2-12 was
approximately 910 bp long, has a predicted 60 bp intron and
encodes for a putative protein around 285 aa with unknown
domains.

A comparison of nucleotide and amino acid sequences of
mating type genes among the eight isolates for which whole
genome sequences were available, showed that non-coding
intronic regions were more variable than the coding regions.
This was with the exception of MAT7-1-2 and MAT1-2-12
(Table 2). The full nucleotide sequence (around 49 %) of the
MAT1-2-12 gene was more conserved than amino acid se-
quences (about 40 %), and both sequences had very similar
variation in MAT1-1-2 genes. The sequences of APN2 were
more variable than MAT1-1-1 and MAT1-1-3 in the eight
Calonectria isolates (Table 2) used in this study and for which
whole genome sequences were available.

MAT loci amplification and mating type assignment

Mating type markers designed in this study (Table 3) were
used in PCRs to amplify portions of the MAT71-1-1 (primers
Cal_MAT111_F and Cal_MAT111_R), MAT1-1-3 (primers
Cal_MAT113_F and Cal_MAT113_R), MAT1-2-1 (primers
Cal_MAT121_F and Cal_MAT121_R) and MAT1-2-12 (primers
Cal_MAT1212_F and Cal_MAT1212_R) genes in the 123 Ca-
lonectria isolates representing 10 Calonectria species com-
plexes. These resulted in PCR products of approximately 330
bp, 430 bp, 240 bp and 670 bp, respectively. The MAT1-1-1
DNA sequences produced by PCR amplification all encoded a
putative 110 amino acid sequence that included an alpha box
domain. The MAT1-1-3 encoded a sequence of 104 amino
acids and MAT1-2-1 encoded a sequence of 61 amino acids;
the former having two predicted introns of about 50 bp and the
latter an intron of 55 bp. Both sequences had an HMG domain
that was interrupted by a single intron (Table 3). The alignments
of each of the datasets of four MAT genes were deposited
in TreeBASE (TreeBASE no 25663; http://treebase.org). An
alignment analysis of the MAT1-1-1, MAT1-1-3, MAT1-2-1 and
MAT1-2-12 sequences revealed little or no sequence variation
in the genes within species but a high level of variation in the
genes between species.

Based on the MAT gene amplification profile, 21 species (36
isolates) were identified as homothallic and 22 isolates repre-
senting eight species were heterothallic (Table 1). The remain-
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Table 3 Primers for amplification of mating type gene fragments.

Target gene Primer name Primer sequence (5’ to 3’) Tm (°C) Fragment size (bp) Target area
MAT1-1-1 Cal_MAT111_F ATGCTTCCTCAGTCTTTGCT 53 330 N
Cal_MAT111_R CTTGAAYRGGGTTGGTGG _-__+
<=Cal_MAT111_R
MAT1-1-3 Cal_MAT113_F CCTCCAGAAGTACCGACT 48 430 ... *calmaTi3F
Cal_MAT113_R GCTGTCGTTCTTCTTCCT ] i
MAT1-1-3
Cal_MAT113_R=>
MAT1-2-1 Cal_MAT121_F GCAAGGAYCGCCACCRAAT 58 240 <-Cal_lMAT121_F
Cal_MAT121_R GACACCTCKGCGTTTCTTCTCAG ] L
Cal_MAT121_R=>
MAT1-2-12 Cal_MAT1212_F TCATCAGTTTCGCCCATT 48 670 Cal MAT1212 F—>
Cal_MAT1212_R CGTCGTACTTCTTCTTCCG - =WAT1-2-12 =
<—Cal_MAT1212_R
Thallism 0O Ca. aciculata (i)~ i
OHomothallism 0O Ca. honghensis (i) (i) N
W Heterothallism 0 Ca. eucalypti s+ oot | Ca. colhounii
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Fig. 2 Ancestral state reconstruction of sexual thallism of 70 Calonectria species. Homothallic species are marked with an open line, heterothallic species
are marked with a solid line. Green, purple, blue and yellow coded arrows represent the MAT1-1-1, MAT1-1-3, MAT1-2-1 and MAT1-2-12 gene, respectively.
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ing 36 species (65 isolates) were tentatively designated as
heterothallic because only a MAT1-1-1 ora MAT1-2-1 gene was
detected in isolates of these species. For the 21 homothallic
species, 17 were first described from China, two (Ca. eucalypti
CBS 125275 and Ca. bumicola CBS 143575) from Indonesia,
Ca. colombiensis CBS 112221 from Colombia and Ca. gracilis
CBS 111807 was from Brazil (Table 1).

The PCR amplification results revealed four different homothal-
lic MAT loci in Calonectria (Fig. 2). In the Prolate Group, the
MAT locus of most homothallic species contained the MAT1-1-1,
MAT1-1-3, MAT1-2-1 and MAT 1-2-12 genes. This was with the
exception of Ca. gracilis in which the MAT1-1-3 gene was not
detected. In the Sphaero-Naviculate Group, the MAT1-2-12
gene was absent in all homothallic species. In the clade repre-
sented by Ca. lateralis, the MAT1-1-3 gene was absent in all
of these species.

Ancestral state reconstruction of sexual thallism

The alignment of sequence combination of tef1, his3, cmdA
and tub2 genes was deposited in TreeBASE (TreeBASE no
25663; http://treebase.org). The ancestral state reconstruction
analysis suggested that heterothallism is the ancestral state in
Calonectria. This emerged from tracing the history of mating
type characters onto the multi-gene phylogenetic species tree
(Fig. 2). Three independent transitions from heterothallism to
homothallism appear to have occurred across the phylogeny.
One ftransition from homothallism to heterothallism was ob-
served in the Ca. kyotensis species complex. Either a homothal-
lic or a heterothallic lifestyle has occurred across Calonectria
species in both the Prolate and Sphaero-Naviculate Groups. In
most of the cases, the species with the same thallism grouped
together in the phylogeny. Heterothallism was the most com-
mon state across the genus but homothallism was dominant
for species in the Sphaero-Naviculate Group.

DISCUSSION

Analyses of genome sequences enabled the characterisation
of the MAT loci in eight isolates representing seven species of
Calonectria. In addition, the mating strategies of 65 Calonectria
species were revealed using primers developed for four MAT
genes. The MAT locus and flanking region was shown to have
a conserved APN2-MAT1-SLAZ2 structure, with differences ob-
served in the genes of the MAT locus. From these results, and
using ancestral state reconstruction, heterothallism was found
to represent the ancestral reproductive state in Calonectria.

MAT loci and mating type genes

Species residing in the Hypocreales have commonly been found
to harbour the MAT1-1-1, MAT1-1-2 and MAT1-1-3genes in the
MAT1-1 idiomorph (Bushley et al. 2013). This is consistent with
the results of the present study for heterothallic Calonectria spe-
cies. In the MAT1-2 idiomorph, in addition to the MAT7-2-1 gene
that was always present, the MAT1-2-12 gene was described
in this study. The discovery of this MAT gene in Calonectria
represents a third gene to be discovered in this idiomorph in
the Hypocreales. The other two genes include the MAT1-2-8in
Ustilaginoidea (Yu et al. 2015, Wilken et al. 2017) and MAT1-2-9
in Fusarium (Martin et al. 2011, Wilken et al. 2017). These
three genes have not been detected in any fungi outside the
Hypocreales, suggesting that they are probably restricted to
this order. Gene deletions showed the MAT1-2-9 (previously
named MAT1-2-3, Wilken et al. 2017) have a similar expression
pattern to the MAT1-1-1 and MAT1-2-1in F. graminearum and
F. asiaticum (Kim et al. 2012). The function of MAT7-2-8 and
MAT1-2-12 in sexual reproduction has yet to be determined
(Wilken et al. 2017, Malapi-Wight et al. 2019).

Neither the MAT1-1-3 nor MAT1-2-12 genes were observed in
the MAT locus of the homothallic Ca. hongkongensis, Ca. later-
alis, Ca. pseudoturangicola and Ca. turangicola. The MAT1-1-3
gene has been reported as absent in the MAT71-1 idiomorph of
other Hypocreales fungi (Yokoyama et al. 2006, Bushley et al.
2013). Interestingly the MAT1-1-3 gene was present in the vari-
ous closely related species including Ca. arbusta, Ca. bumicola,
Ca. colombiensis, Ca. expansa, Ca. guangxiensis, Ca. para-
kyotensis, Ca. pseudoyunnanensis, Ca. sphaeropedunculata
and Ca. yunnanensis. This could reflect two different branches
of evolution for the MAT locus in Calonectria spp. Mutation
analyses of MAT1-1-2 and MAT1-1-3 have shown that these
two genes have similar expression profiles and may possess
overlapping functions in sexual development (Ferreira et al.
1998, Zheng et al. 2013). In addition, species maintaining the
MAT1-1-3 gene in the Hypocreales are also located at a more
ancestral position in the mating type tree than species lacking
the MAT1-1-3 gene (Yokoyama et al. 2006). We consequently
hypothesize that the MAT locus lacking the MAT1-1-3 gene in
Calonectria may have evolved from an ancestral locus con-
taining all three genes (MAT1-1-1, MAT1-1-2 and MAT1-1-3).

Distribution of mating types

Previous studies have shown that most species in Calonectria
are heterothallic with a biallelic mating system (Crous et al.
1998, Crous 2002, Lombard et al. 2010a—c). This was support-
ed in the results of the present study, where 44 of 65 Calonectria
species were found to be heterothallic. These results also sug-
gest that heterothallism is the ancestral state in Calonectria. The
21 homothallic species reside primarily in the Ca. colhounii and
Ca. kyotensis species complexes. Butin both these complexes,
heterothallism is basal. This suggests that these species had
a common homothallic ancestor, which has evolved from a
heterothallic state.

The MAT genes observed in Ca. bumicola, Ca. crousiana and
Ca. gracilis suggest that these species are homothallic while
their closest neighbours in the same clade/group are all hetero-
thallic. This is unusual and in contrast to views in a previous
study (Duong et al. 2016) where species residing in the same
complex consistently shared the same mode of sexual repro-
duction. The fact that only the MAT71-1-1 or MAT1-2-1 genes
amplified in @ number of isolates of Calonectria, provides a
level of confidence in our results. It is, however, possible that
the primers designed for the MAT1-1-3 and MAT1-2-12 failed
to allow the detection of these genes and whole genome se-
quences would be needed to confirm this result.

Evolution of mating type

The results of this study indicated that heterothallism represents
the ancestral reproductive state in Calonectria. Furthermore,
that one independent transition from homothallism back to
heterothallism has occurred in the Ca. kyotensis species
complex. Evolution of homothallism from heterothallism has
apparently occurred due to unequal crossing over and trans-
location of the MAT idiomorphs in various Ascomycete fungi,
including Bipolaris = Cochliobolus (Yun et al. 1999), Stemphy-
lium = Pleospora (Inderbitzin et al. 2005), Crivellia = Alternaria
(Inderbitzin et al. 2006), Neurospora (Nygren et al. 2011, Gioti
et al. 2012) and Eutiarosporella (Thynne et al. 2017). In con-
trast, fewer studies have shown heterothallic fungi have been
derived from homothallic ancestors via gene loss. In this way,
partial gene sequences of the genes residing in the MAT1-2
idiomorph have been incorporated into the MAT7-1 idiomorph
or vice versa, such as Aspergillus fumigatus (Paoletti et al.
2005), Botrytis cinerea (Amselem et al. 2011) and Cordyceps
takaomontana (Yokoyama et al. 2003). Although it is possible
that the transition between homothallism and heterothallism in
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Fig.3 Evolution models of mating type in Calonectria spp.: Heterothallic origin hypothesis. a—d. Four scenarios under which the mating type loci of heterothallic
ancestors undergo an independent recombination event (unequal crossing over), resulting in the present homothallic mating type locus.
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Ascomycetes could occur in either direction, a switch from one
state should logically reflect an evolutionary advantage. In this
regard, heterothallism would offer the advantage of enhanced
genetic diversity and adaption to the environment (Lumley et
al. 2015). In contrast, homothallism offers the benefits of sexual
recombination without needing isolates of the opposite mating
type (Wilson et al. 2015b).

A proposed evolution model for mating type

The structure of mating type loci in Calonectria species revealed
in this study makes it possible to explain the evolution of the
mating types following two possible hypotheses (Fig. 3, 4). In
one case, which we consider as the recombination hypothesis,
there has been an ancestral shift from heterothallism to homo-
thallism in four independent unequal recombination events
(Fig. 3a—d). These would have resulted in the mating type idio-
morphs observed in the present study.

An alternative hypothesis would involve a shift from a homothal-
lic ancestor containing all the MAT genes (MAT1-1-1, MAT1-1-2,
MAT1-1-3, MAT1-2-12 and MAT1-2-1) to a heterothallic state
via at least two deletion events (Fig. 4a—d). In this case, the
homothallic ancestor would have also undergone three indepen-
dent deletion events to arrive at the currently identified homo-
thallic species. This hypothesis is less parsimonious than the
recombination hypothesis. Based on parsimony (Rasmussen
& Ghahramani 2001), a heterothallic origin hypothesis is more
probable than the homothallic origin hypothesis. However, it is
not possible to rule out the possibility that the original ancestor
of the heterothallic species was in fact not homothallic and that
species in this genus have evolved from homothallism to hetero-
thallism and then some have switched back to homothallism.

Reproductive modes and pathogenicity

Results of this study have made it possible to easily charac-
terise the mating type of important Calonectria spp. This will
enhance the value of population genetic studies on these fungi
where the presence or absence of sexual reproduction can be
considered. The results will also support quarantine regulations
that should seek to prevent the introduction of opposite mating
type strains in heterothallic Calonectria spp., where only one
of these is known to be present in a country. This can preclude
the generation of new genotypes of such pathogens and a
breakdown of resistance developed in the host (McDonald &
Linde 2002, Lombard et al. 2010a, Malapi-Wight et al. 2014).
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