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In survival analysis, a competing risk is an event whose occurrence precludes

the occurrence of the primary event of interest. Outcomes in medical research

are frequently subject to competing risks. In survival analysis, there are 2 key

questions that can be addressed using competing risk regression models: first,

which covariates affect the rate at which events occur, and second, which

covariates affect the probability of an event occurring over time. The cause‐

specific hazard model estimates the effect of covariates on the rate at which

events occur in subjects who are currently event‐free. Subdistribution hazard

ratios obtained from the Fine‐Gray model describe the relative effect of covar-

iates on the subdistribution hazard function. Hence, the covariates in this

model can also be interpreted as having an effect on the cumulative incidence

function or on the probability of events occurring over time. We conducted a

review of the use and interpretation of the Fine‐Gray subdistribution hazard

model in articles published in the medical literature in 2015. We found that

many authors provided an unclear or incorrect interpretation of the regres-

sion coefficients associated with this model. An incorrect and inconsistent

interpretation of regression coefficients may lead to confusion when compar-

ing results across different studies. Furthermore, an incorrect interpretation of

estimated regression coefficients can result in an incorrect understanding

about the magnitude of the association between exposure and the incidence

of the outcome. The objective of this article is to clarify how these regression

coefficients should be reported and to propose suggestions for interpreting

these coefficients.
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1 | INTRODUCTION

Survival analysis is concerned with outcomes that occur over time. Two key concepts in survival analysis are the survival
function and the hazard function. The survival function, denoted by S(t), is the probability that an individual survives to
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time t (ie, the probability that an event occurs after time t). The hazard function, denoted by h(t), is the instantaneous
rate of the occurrence of the event of interest in subjects who are currently at risk of the event (or for whom the event
has not yet occurred). The Kaplan‐Meier method can be used to obtain an estimate of the survival function,1 while the
Cox proportional hazards regression model is used to estimate the relative effect of covariates on the hazard function.2

While the regression coefficients from the Cox model describe the relative effect of the covariates on the hazard of the
occurrence of the outcome, the following relationship holds:

S tjXð Þ ¼ S0 tð Þ exp Xβð Þ; (1)

where S(t|X) denotes the survival function for an individual whose set of covariates is equal to X, S0(t) denotes the base-
line survival function (the survival function for a subject whose covariates are all equal to zero), and β denotes the vector
of regression coefficients from the Cox model. Thus, there is a direct correspondence between the effect of a covariate on
the hazard of the outcome and the effect of a covariate on the incidence of the outcome: If a covariate increases the haz-
ard of the occurrence of the outcome, it also will increase the incidence of the outcome (although the magnitude of the 2
effects can be expected to differ). Thus, making inferences about the direction of the effect of a covariate on the hazard
function permits one to make equivalent inferences about the direction of the effect of that covariate on the incidence (or
on the probability of the occurrence) of the outcome. This direct correspondence between the effect of a covariate on the
hazard function and the effect of the covariate on incidence has allowed authors to be imprecise in their language when
interpreting the fitted Cox regression model. Authors have been able to conclude that a given risk factor or covariate
increased the risk of an event, without specifying whether risk denotes the hazard of an event (ie, the rate of the occur-
rence of the event in those still at risk of the event) or the incidence of the event (ie, the probability of the occurrence of
the event). Strictly speaking, we would argue that risk refers to probabilities and that one should describe the effect of
covariates on the rate at which events occur.

We provide a brief example to which we will return throughout this commentary. The data consist of 16 237 patients
hospitalized with heart failure between 1999 and 2005 in the Canadian province of Ontario. The data were collected as
part of the EFFECT study.3 These data are described in greater detail in a recent tutorial on methods for the analysis of
survival data in the presence of competing risks.4 Subjects were followed for 5 years from the time of hospitalization, and
the timing of the occurrence of death (and cause of death) was recorded for each subject. Subjects were censored after
5 years if they had not yet died. Ten thousand two hundred fifteen subjects (62.9%) died within 5 years of hospitalization.
Using a Cox proportional hazards model, we regressed the hazard of all‐cause death on patient age and sex. The esti-
mated hazard ratios and associated 95% confidence intervals were 1.54 (1.51‐1.57) for a 10‐year increase in age and
1.18 (1.14‐1.23) for males compared to females. Thus, a 10‐year increase in age was associated with a 54% increase in
the rate of all‐cause death. Similarly, the rate of death was 18% higher for males than it was for females. Since the hazard
ratio for age is greater than 1, one can also conclude that a 10‐year increase in age is associated with an increase in the
incidence of all‐cause death, although one cannot formally quantify the magnitude of this association. Similarly, the inci-
dence of death is higher in males than in females.

In survival analysis, a competing risk is an event whose occurrence precludes the occurrence of the primary event of
interest. If the primary outcome of interest is time to death due to cardiovascular causes, then death due to
noncardiovascular causes is a competing risk (eg, subjects who die of cancer are no longer at risk of death due to cardio-
vascular causes).4-6 In the presence of competing risks, 2 different hazard functions have been defined: the cause‐specific
hazard function (formula 2) and the subdistribution hazard function (formula 3).4-6

λcsk tð Þ ¼ lim
Δ t→0

Prob t≤T<t þ Δt;D ¼ kjT≥tð Þ
Δt

; (2)

λsdk tð Þ ¼ lim
Δ t→0

Prob t≤T<t þ Δt;D ¼ kjT≥t∪ T<t∩K≠kð Þð Þ
Δt

: (3)

The cause‐specific hazard function for a given event type is the instantaneous rate of occurrence of the given type of
event in subjects who are currently event‐free. The subdistribution hazard function, introduced by Fine and Gray, for a
given type of event is defined as the instantaneous rate of occurrence of the given type of event in subjects who have not
yet experienced an event of that type.7 Note that for the subdistribution hazard function, we are considering the rate of
the event in those subjects who are either currently event‐free or who have previously experienced a competing event.
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The cause‐specific hazard model estimates the effect of covariates on the cause‐specific hazard function, while the Fine‐
Gray subdistribution hazard model estimates the effect of covariates on the subdistribution hazard function.

The cumulative incidence function (CIF) describes the incidence of the occurrence of an event while taking compet-
ing risks into account. The subdistribution hazard model has also been described as a CIF regression model. This latter
name makes explicit the link between the subdistribution hazard function and the CIF. Thus, the subdistribution hazard
model allows one to estimate the effect of covariates on the CIF for the event of interest. In particular, it permits one to
recover a relationship similar in form to that described in formula 1:

1−CIF tð Þ ¼ 1−CIF0 tð Þð Þ exp Xβð Þ; (4)

(where CIF0 denotes the baseline CIF). Thus, if a covariate is associated with an increase in the subdistribution hazard
function, it will also be associated with an increase in the incidence of the event. A survey of the medical literature
reported in this paper suggests that in the presence of competing risks, clinical researchers may misinterpret hazard
ratios from the Fine‐Gray subdistribution hazard model, similar to what often occurs when interpreting the proportional
hazards model in the absence of competing risks. This survey further suggests that such issues may arise in part because
of the lack of a clear understanding of the relationships of the subdistribution hazard and the cause specific hazard to the
CIF: There is a one‐to‐one relationship with the CIF for the subdistribution hazard but not for the cause‐specific hazard.

There are 2 objectives to this commentary. First, to provide guidance on the interpretation of regression coefficients
associated with the Fine‐Gray subdistribution hazard model. Second, to review papers published in 2015 in the medical
literature that reported using the Fine‐Gray subdistribution hazard model and examine how authors interpreted the
regression coefficients associated with the fitted model.
2 | INTERPRETING REGRESSION COEFFICIENTS FROM COMPETING RISK
REGRESSION MODELS

2.1 | Cause‐specific hazard model regression coefficients

The exponentiated regression coefficient from a cause‐specific hazard model denotes the magnitude of the relative
change in the cause‐specific hazard function associated with a 1‐unit change in the covariate. Therefore, the cause‐spe-
cific hazard ratio denotes the relative change in the instantaneous rate of the occurrence of the primary event in subjects
who are currently event‐free. The rate of the occurrence of the event denotes the intensity with which events occur.
Thus, the cause‐specific hazard ratio can be interpreted as a rate ratio. When using a cause‐specific hazard model in
the presence of competing risks, it is incorrect to infer that a given variable is associated with an increased or decreased
incidence of the event of interest, as formula 1 does not hold in the presence of competing risks.5,6 This is because one
must account for the effect of the covariates on the cause‐specific hazard function of each of the different types of events
when determining their effect on the CIF for the event of interest.8 On its own, the cause‐specific hazard function is
insufficient if the primary focus is on the CIF.

Formally, the CIF for the kth event type is defined as CIFk tð Þ ¼ ∫
t

0
λcsk sð ÞS sð Þds; where λcsk sð Þ denotes the cause‐specific

hazard function for the kth event type and S(s) denotes the overall survival function for survival free from the occurrence

of an event of any type.6 The overall survival function can be evaluated as S tð Þ ¼ exp − ∑
K

k¼1
Λk tð Þ

� �
; where

Λk tð Þ ¼ ∫
t

0
λcsk sð Þds denotes the cumulative cause‐specific hazard function for the kth event type.6 Thus, the overall sur-

vival function (S(t)) is a function of all of the cause‐specific hazard functions. Accordingly, the CIF for the kth event type
is implicitly dependent on all of the cause‐specific hazard functions; it is clear that estimating a single cause‐specific haz-
ard function is insufficient if the focus is on the CIF for the given type of event.

Returning to the empirical example introduced in Section 1, we used a cause‐specific hazard model to regress the
hazard of death due to cardiovascular causes on age and sex, treating death due to noncardiovascular causes as a com-
peting risk. The estimated cause‐specific hazard ratios and associated 95% confidence intervals were 1.63 (1.59‐1.68) for a
10‐year increase in age and 1.20 (1.14‐1.27) for males compared to females. Thus, a 10‐year increase in age was associated
with a 63% increase in the hazard of cardiovascular death in subjects who were currently alive. Similarly, the hazard of
cardiovascular death was 20% higher for males than it was for females. However, unlike in the setting without competing
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risks (when all‐cause mortality was the outcome), we can make no inferences about the association between age or sex
on the incidence of cardiovascular death. Thus, we are restricted to quantifying the magnitude of the association between
age or sex and the rate at which cardiovascular death occurs in subjects who are currently alive. We are unable to infer
that increasing age or male sex is associated with an increase in the incidence of cardiovascular death. For comparative
purposes, the cause‐specific hazard ratios for noncardiovascular death (with cardiovascular death treated as a competing
risk) for a 10‐year increase in age and for male sex were 1.42 (1.37‐1.46) and 1.15 (1.08‐1.22), respectively. Thus, increas-
ing age andmale sex were associated with an increased rate of noncardiovascular death in those who were currently alive.
2.2 | Subdistribution hazard model regression coefficients—effect on the subdistribution
hazard function

The exponentiated regression coefficient from a Fine‐Gray subdistribution hazard model denotes the magnitude of the
relative change in the subdistribution hazard function associated with a 1‐unit change in the given covariate. Therefore,
one is reporting the relative change in the instantaneous rate of the occurrence of the event in those subjects who are
event‐free or who have experienced a competing event. In accepting this interpretation, one needs to accept that those
who experienced competing events have been “cured” from the primary event of interest and that their being in the risk
set after the competing event represents “immortal” time. While such “cure” models have been widely adopted in set-
tings where “cure” is unobservable, in the competing risks set‐up where “cure” (eg, failure from other causes) is observ-
able, some practitioners may find this interpretation difficult to conceptualize. Accordingly, there may be a preference
for making inferences about the magnitude of the effects of covariates on the incidence of the outcome.

Using our empirical data, we regressed the subdistribution hazard of cardiovascular death on age and sex. The estimated
subdistribution hazard ratios and associated 95% confidence intervals were 1.50 (1.46‐1.54) for a 10‐year increase in age and
1.16 (1.10‐1.22) for males compared to females. Thus, a 10‐year increase in age was associated with a 50% increase in the
subdistribution hazard of cardiovascular death. Similarly, the subdistribution hazard of death was 16% higher for males than
it was for females. Wemay interpret this as evidence that a 10‐year increase in age is associated with a 50% increase in the rate
of cardiovascular death in subjectswho are either event‐free (eg, who are still alive) orwho have experienced a competing event
(eg, who have died of noncardiovascular causes). For comparative purposes, the subdistribution hazard ratios for
noncardiovascular death were 1.20 (1.17‐1.24) for a 10‐year increase in age and 1.09 (1.02‐1.15) for males.
2.3 | Subdistribution hazard model regression coefficients—effect on the CIF

An alternative interpretation of the coefficients from a subdistribution hazard model, as noted in Section 1, is to interpret
the covariates as having an effect on the incidence of the event (ie, on the CIF). This alternative interpretation may be
easier to understand and communicate to nonstatistical audiences. However, this interpretation is not without difficul-
ties. The primary difficulty lies in the interpretation of the numeric value of the subdistribution hazard ratios. It is impor-
tant to stress that the magnitude of the relative effect of the covariate on the subdistribution hazard function is different
from the magnitude of the effect of the covariate on the CIF. This is similar to data without competing risks, where
interpreting the hazard ratio in terms of the survival probabilities requires care. One can conclude that if a variable
increases the subdistribution hazard function, it will also increase the incidence of the event. However, one cannot infer
that the magnitudes of these 2 effects are of the same size, despite being in the same direction (we would note that the
same limitation exists for interpreting the coefficients from the Cox model in terms of their effect on cumulative inci-
dence in the absence of competing risks—researchers frequently make the erroneous claim that the magnitude of the
estimated hazard ratio denotes the magnitude of the effect on risk or the probability of the occurrence of the event).
In our empirical example, the subdistribution hazard ratios for age and male sex were both greater than 1. Thus, we con-
clude that a 10‐year increase in age is associated with an increase in the incidence of cardiovascular death, while the inci-
dence of cardiovascular death was higher in males than in females. Similarly, we conclude that a 10‐year increase in age
is associated with an increase in the incidence of noncardiovascular death, while the incidence of noncardiovascular
death was higher in males than in females. However, while we can describe the direction of these associations, we are
not able to directly quantify the magnitude of these associations. Despite this limitation, a test of statistical significance
of the subdistribution hazard ratio provides a test for the effect of the covariate on the CIF. This is something that is not
possible by using the corresponding cause‐specific hazard model. Neither the direction of the cause‐specific hazard ratio
nor its statistical significance provides information about the direction or the significance of the association of the covar-
iate with the CIF.8
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The regression coefficients from a Fine‐Gray subdistribution hazard model can be indirectly interpreted as the regres-
sion coefficients for a complementary log‐log generalized linear model for the CIF similarly to hazard ratios without
competing risks.7 Three link functions are used with generalized linear models for binary outcomes: the logit link, the
probit link, and the complementary log‐log link (see Table 1).

Of these 3, the logistic link function results in regression coefficients with which biostatistical analysts are the most
familiar: odds ratios describing the relative effect of the covariates on the odds of the occurrence of the outcome. Unfor-
tunately, regression coefficients from binomial regression models using the other 2 link functions are more challenging
to interpret.9 However, the sign of the regression coefficient (positive vs negative) provides information as to whether
increases in the covariate are associated with an increase or decrease in the probability of the occurrence of the outcome.
Thus, a positive regression coefficient indicates that a 1‐unit change in the variable is associated with an increase in the
incidence of the outcome. However, the magnitude of a regression coefficient does not, on its own, provide information
about the magnitude of the increase or decrease in the probability of the occurrence of the outcome over time. Instead,
the estimated regression coefficients can be used to compute the probability of the occurrence of the event. As has been
stressed previously, this holds true for the standard proportional hazards model in the absence of competing risks: The
direction of the hazard ratio denotes the direction of the effect of a given covariate on incidence, but not the magnitude of
the effect.

While the magnitude of the estimated regression coefficient does not provide information on the magnitude of the
effect of the covariate on the incidence of the outcome, the fact that the coefficients can be seen as arising from a com-
plementary log‐log model for the CIF does mean that one can make statements about the relative magnitudes of the
effects of different covariates on the incidence of the same outcome (this is because, in the absence of competing risks,
the log‐log model for the survival function of the event time results is a proportional hazards model for the hazard func-
tion. A similar result can be established with competing risks when assuming a log‐log model for 1 − F1 [where F1
denotes the CIF for events of type 1]. As the subdistribution hazard equals {dF1(t|X)/dt}/{1 −F1(t|X)}, one may replace
the numerator and denominator with their equivalents under the log‐log model. Upon simplification, this yields a pro-
portional hazards model for the subdistribution hazard, analogous to what is obtained in the absence of competing
risks). If one covariate has a larger regression coefficient than that of a second covariate, then the magnitude of the effect
of the first covariate on the incidence of the outcome will be greater than the magnitude of the effect of the second covar-
iate on the incidence of the outcome (see Appendix A for derivation). Thus, in our case study, the hazard ratio for car-
diovascular death for a 10‐year increase in age is 1.50, while the hazard ratio for males is 1.16. Thus, a 10‐year increase in
age has a greater effect on the incidence of cardiovascular death than does male sex compared to female sex. Further-
more, male sex is associated with an increase in the incidence of cardiovascular death that is equivalent to that associated
with an increase in age of 3.6 years.

Unfortunately, one cannot make conclusions about the relative magnitudes of the effect of the same covariate on
the incidence of different outcomes by comparing the relative magnitudes of the subdistribution hazard ratios. Since
the baseline CIF differs between the different types of events, one is not able to conclude that because the
subdistribution hazard ratio for a given covariate is larger in the first subdistribution hazard model than it is in
the second subdistribution hazard model, that the effect of the covariate on the incidence of the first type of event
is greater than on the incidence of the second type of event. In our empirical example, the subdistribution hazard
ratio for a 10‐year increase in age was 1.50 for cardiovascular death and 1.20 for noncardiovascular death. However,
we cannot infer that a 10‐year increase in age increases the incidence of cardiovascular death to a greater extent than
it increases the incidence of noncardiovascular death. For similar reasons, a comparison of the relative magnitude of
the subdistribution hazard ratios for the same type of event between different studies does not permit one to make
conclusions about the relative magnitude of the effect of the covariate on the incidence of the outcome in the differ-
ent studies.
TABLE 1 Generalized linear models for binary outcomes

Link Function Transformation of Probability Is A Linear Function of Covariates

Logit link
log

p
1−p

� �
¼ Xβ

Probit link Φ−1 pð Þ ¼ Xβ;where ΦðÞ denotes the normal cumulative distribution function

Complementary log‐log link log(− log(1− p)) =Xβ
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When the probability of an event is low, then the logistic link function and the complementary log‐log link function
are very similar.9 In particular, when the probability is less than 0.1, then these 2 link functions are almost indistinguish-
able, while when the probability is between 0.1 and 0.2, differences between them are very small (Figure 1). Thus, in set-
tings in which the probability of the occurrence of the event is low over meaningful durations of follow‐up, the
coefficients from a subdistribution hazard model can be interpreted as odds ratios for the CIF. Thus, if the
subdistribution hazard ratio is equal to 2, one can infer that a 1‐unit increase is associated with an approximate doubling
of the odds of the occurrence of the event in settings in which the cumulative incidence of events is less than 0.20 over
meaningful durations of follow‐up.
3 | LITERATURE REVIEW OF THE USE OF THE FINE ‐GRAY
SUBDISTRIBUTION HAZARD MODEL

In the previous section, we discussed the interpretation of regression coefficients from competing risk regression models.
In this section, we report on a literature review that examined how authors in the medical literature interpreted the esti-
mated coefficients from subdistribution hazard models. We searched the PubMed database (https://www.ncbi.nlm.nih.
gov/pubmed) on November 1, 2016, using the following search strategy: (“subdistribution hazard”[All Fields] OR “Fine‐
Gray”[All Fields]) AND (“2015/01/01”[PDAT] : “2015/12/31”[PDAT]) to identify papers published in 2015 that used the
Fine‐Gray subdistribution hazard model.

The search process identified 64 papers. Of these, we excluded 8 methodologically oriented publications and one
additional paper because it did not use the Fine‐Gray subdistribution hazard model. We examined the remaining 55
papers to see how the authors interpreted the regression coefficients arising from the Fine‐Gray subdistribution hazard
model.

Five (9%) papers interpreted the covariates as having an effect on the subdistribution hazard function. Strictly speak-
ing, it is correct to infer that covariates with a regression coefficient that is statistically significantly different from zero
have an effect on the subdistribution hazard function. However, as noted above, this interpretation may be nonintuitive
or difficult for some to understand, as it describes the rate of the occurrence of events in subjects who have not yet expe-
rienced the event of interest (but who may have experienced a competing event). Twenty‐four (44%) papers described the
model covariates as having an effect on risk. While the term “risk” is often used without clarifying the meaning of the
term, we interpret risk as meaning the probability of the occurrence of the event (cf. relative risk is the ratio of 2 prob-
abilities). As noted previously, the direction of the effect of the covariate on risk (incidence) will be in the same direction
as its effect on the subdistribution hazard function. However, the magnitude of the 2 effects need not coincide. Eleven
(20%) papers described the covariates as having an effect on the incidence of the outcome. As stated previously, the
subdistribution hazard model allows one to determine the effect of covariates on the CIF. However, as previously stated,
the estimated hazard ratio determines the direction of the effect on incidence, but not the magnitude of the effect on
FIGURE 1 Comparison of logit and

complementary log‐log link functions

[Colour figure can be viewed at

wileyonlinelibrary.com]

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
http://wileyonlinelibrary.com
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incidence. Seven (13%) papers described the covariates as having an effect on the rate of the outcome. This interpretation
is correct only with a caveat: that one is determining the rate of the outcome in those subjects who have not experienced
the given outcome (but who may have experienced a competing event and who thus contribute immortal time). If the
focus is on rates, authors may be better served by using the cause‐specific hazard model, which models the effect of
covariates on the rate of the outcome in subjects who are event‐free (and thus who have not experienced any type of
event). Rates may be of greater interest when the study has an etiological focus, while risks may be of greater interest
when the focus is on estimating patient prognosis and predicting patient outcome (eg, to inform the clinical management
of patients).5 Two papers (4%) described the covariates as having an effect on the time to the occurrence of the event.

When interpreting the numerical value of the estimated regression coefficients, 4 (7%) papers described it as denoting
the relative increase in incidence due to the covariate. Thus, if the subdistribution hazard ratio was equal to 2, this was
interpreted by the authors as meaning that the covariate was associated with a twofold increase in the incidence of the
event. One (2%) paper made a similar interpretation about the magnitude of the effect of the covariate on the risk of the
event. This is an incorrect interpretation of the magnitude of the subdistribution hazard ratio. The direction of the
subdistribution hazard ratio describes the direction of the effect of the covariate on the risk or incidence of the outcome,
but not the magnitude of this effect. When the event of interest is relatively infrequent, this subdistribution hazard ratio
is approximately the effect on the risk of the event.

The subdistribution hazard model is also referred to as a CIF regression model because of the link between the
subdistribution hazard and the effect on the incidence of the outcome. The reporting of a CIF provides context in which
to interpret the direction of the estimated regression coefficients from the associated Fine‐Gray regression model.
Because of this link, we examined whether studies that used the Fine‐Gray model also reported CIFs in the published
paper. Of the 55 studies, 44 (80%) displayed at least one CIF curve.
4 | DISCUSSION

The Fine‐Gray subdistribution hazard model is increasingly being used for the analysis of time‐to‐event outcomes in the
presence of competing events. The natural interpretation of the subdistribution hazard ratios arising from a fitted
subdistribution hazard is the relative change in the subdistribution hazard function. Thus, the associated hazard ratios
denote the relative change in the rate of the occurrence of the events in subjects who have not yet experienced the event
of interest (but who may have experienced a competing event). Due to the risk set containing subjects who have failed
due to a competing event and whose continued existence in the risk set can be construed as representing “immortal
time,” this interpretation may not appeal to some investigators and analysts.

We have highlighted that in the subdistribution hazard model, the covariates can be thought of as having an effect on
the CIF. However, it is important to note that magnitude of the subdistribution hazard ratio does not, strictly speaking,
convey the magnitude of the effect of the covariate on the CIF. This error in interpretation appears to occur moderately
frequently in the medical literature. In a study examining cardiovascular disease risk in a cohort of breast cancer survi-
vors, the authors estimated a subdistribution hazard ratio of 1.19 for the comparison of right‐sided radiation therapy
compared to left‐sided radiation therapy after mastectomy.10 The authors interpreted this as right‐sided radiation ther-
apy increasing the cumulative incidence 1.19‐fold (p 1066), which is only approximately correct. Similarly, in a study
examining the effect of hyponatremia on the incidence of cardiovascular events in peritoneal dialysis patients, the
authors estimated a subdistribution hazard ratio of 2.31.11 The authors interpreted this as meaning that patients with
hyponatremia had a 2.31‐fold higher risk of cardiovascular events (p 4/10). Similar examples can be found elsewhere
in the literature.12-14 We suggest that when reporting the effect of a covariate on the incidence of the primary outcome,
that the analyst and authors either restrict themselves to discussing the direction of the effect or be careful to note that
the quantification of the magnitude of the effect on the cumulative incidence is only approximately correct using the
subdistribution hazard ratios.

While some would argue that the material presented in this article is well known to statisticians, we think that such
an assessment is overly optimistic. We agree that the correct interpretation of the coefficients from the subdistribution
hazard model should be well‐understood by specialists in the analysis of survival data. However, not all analysts who
use the method are necessarily specialists in the analysis of survival data. Despite the Fine‐Gray model being introduced
nearly 20 years ago, we would argue that its use has not permeated the literature, nor are applied analysts as familiar
with it as they are with other regression methods. Furthermore, as our review of the medical literature indicated, even
when it is being used, the resultant model may be misinterpreted.
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The current review was based on published articles that reported the use of a Fine‐Gray subdistribution hazard
regression model. We focused on how authors interpreted the hazard ratios associated with this regression model. We
would like to stress that the presence of competing risks does not automatically imply that the Fine‐Gray subdistribution
hazard model is the most appropriate regression model. Lau et al suggest that there are 2 broad rationales for fitting a
regression model: The first is for etiological reasons (eg, is a given risk factor or characteristic associated with the rate
of the occurrence of the outcome in subjects who are currently event‐free), while the second is for prognostic reasons
(eg, what is an individual's probability of experiencing the outcome within a given duration of time).5 Lau et al suggest
that the cause‐specific hazard model is more appropriate for addressing etiological questions, while the Fine‐Gray model
is more appropriate for addressing questions around incidence and prognosis. Both we and Wolbers et al have echoed
this assertion.4,15 Thus, if the research objective is to derive a model for predicting the probability of the occurrence of
outcomes over time, then a subdistribution hazard model would be appropriate.16,17 Failure to use the Fine‐Gray model
for such a research objective can result in estimates of the probability of the occurrence of the outcome that are biased
upwards.17 When analyzing survival data in which competing risks are present, rather than beginning with a
predetermined type of regression model, the investigator and analyst should begin by carefully formulating the research
question and then selecting the model that is most appropriate for addressing the formulated question. In many
instances, particularly in epidemiological research, the most appropriate model will be the cause‐specific hazard model.
However, in settings in which it is important to make inferences about the effect of covariates on the incidence of the
outcome, then the Fine‐Gray model will be the most appropriate model. Some authors have suggested that to develop
a greater understanding of the relationship between covariates and outcomes, that both cause‐specific and
subdistribution hazard models be fit, for both the primary outcome and for the competing events.8 When doing so,
the principal message of the current study is that the regression coefficients from the subdistribution hazard model must
be interpreted correctly.

We recently published a review of how competing risks were addressed in reports of randomized controlled trials
(RCTs) published in 4 leading general medical journals.18 In this previous review, we estimated that 77.5% of RCTs with
a time‐to‐event outcome were potentially susceptible to competing risks. Amongst those studies that were potentially
susceptible to competing risks, we examined whether the statistical methods used were appropriate for the analysis of
competing risks survival data. We found that of those studies potentially susceptible to competing risks, 77.4% reported
the results of a Kaplan‐Meier survival analysis, while only 16.1% reported using CIFs to estimate the incidence of the
outcome over time in the presence of competing risks. We concluded our previous review of reported analyses in RCTs
with recommendations for analyzing RCTs in the presence of competing risks. The objective of the current review is dif-
ferent from that of our earlier review. The focus of the current review was to examine how authors interpreted the haz-
ard ratios arising from a Fine‐Gray subdistribution hazard model. We were not interested in the appropriateness of the
fitted model, but rather in how the resultant model was interpreted. As such, the current article makes the important
distinction between rates and risks or probabilities.

The key message of this paper for applied analysts and clinical researchers is that there is not an exact link between
the subdistribution hazard ratio and relative changes in the CIF except for settings in which the event of interest is rare.
The direction of the subdistribution hazard ratio denotes the direction but does not directly provide the magnitude of the
effect of the covariate on the CIF. Care is needed when attempting to make statements about the magnitude of the covar-
iate effects on the CIF using the subdistribution hazard ratios, as such statements are at best only approximately correct.
Furthermore, the relative magnitudes of different covariates from the same subdistribution hazard model allow one to
make inferences about the relative magnitudes of the effects of the covariates on the incidence of the given type of event.
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APPENDIX A

COMPLEMENTARY LOG ‐LOG MODEL FOR THE CIF—RELATIVE EFFECTS OF DIFFERENT
COVARIATES

Let us assume that we have a complementary log‐log model for the CIF with 2 covariates:
log(− log(1−p))=α0+α1X1+α2X2, where p denotes the probability that the event of interest occurs prior to time t

(we suppress the dependence on t to simplify the notation).
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Then we have that

− log 1−pð Þ ¼ eα0þα1X1þα2X2 ;

log 1−pð Þ ¼ −eα0þα1X1þα2X2 ¼ −eα0eα1X1eα2X2 ;

1−p ¼ e−e
α0 eα1X1 eα2X2 ;

p ¼ 1−e−e
α0 eα1X1 eα2X2 :

The above probability of the event occurring prior to time t is conditional on X1 and X2.
The probability of the event occurring given that X1= x1+1 is equal to

p∣x1 þ 1; x2 ¼ 1−e−e
α0 eα1 x1þ1ð Þeα2x2 ¼ 1−e−e

α0 eα1x1 eα1 eα2x2 .
The relative incidence of the event prior to time t for a subject with X1= x1+1 compared to a subject with X1= x1 (but

holding X2 fixed at x2) is equal to

1−e−e
α0 eα1x1 eα1 eα2x2

1−e−eα0 eα1x1 eα2x2
¼ 1− e−e

α0 eα1x1 eα2x2
� �eα1
1−e−eα0 eα1x1 eα2x2

.

We replace the common term in the numerator and denominator by B for simplicity. Thus, we have that the relative

incidence is equal to
1−Beα1

1−B
. Now, the quantity in the denominator is a probability and is thus between 0 and 1. There-

fore, we have that B is also between 0 and 1.
Similarly, the relative incidence of the event prior to time t for a subject with X2= x2+1 compared to a subject with

X2= x2 (but holding X1 fixed at x1) is equal to
1−Beα2

1−B
.

Now, if the regression coefficient for X1 is greater than the regression coefficient for X2, we have that

α1>α2
eα1>eα2 since the exponential function is an increasing functionð Þ
Beα1 <Beα2 since B is between 0 and 1; the direction of the inequality changesð Þ
−Beα1 >−Beα2

1−Beα1 >1−Beα2

1−Beα1

1−B
>
1−Beα2

1−B
:

Thus, if the first regression coefficient is larger than the second regression coefficient, the relative change in the inci-
dence of the outcome associated with a 1‐unit change in X1 is greater than the relative change in the incidence of the
outcome associated with a 1‐unit change in X2.


