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OBJECTIVE—Oxidative stress is implicated in cardiac insulin
resistance, a critical risk factor for cardiac failure, but the direct
evidence remains missing. This study explored a causal link
between oxidative stress and insulin resistance with a focus on
a regulatory role of redox sensitive transcription factor NF-E2–
related factor 2 (Nrf2) in the cardiac cells in vitro and in vivo.

RESEARCH DESIGN AND METHODS—Chronic treatment of
HL-1 adult cardiomyocyte with hydrogen peroxide led to insulin
resistance, reflected by a significant suppression of the insulin-
induced glucose uptake. This was associated with an exaggerated
phosphorylation of extracellular signal–related kinase (ERK).
Although U0126, an ERK inhibitor, enhanced insulin sensitivity
and attenuated oxidative stress–induced insulin resistance,
LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), wors-
ened the insulin resistance. Moreover, insulin increased Nrf2
transcriptional activity, which was blocked by LY294002 but en-
hanced by U0126. Forced activation of Nrf2 by adenoviral over-
expression of Nrf2 inhibited the increased ERK activity and
recovered the blunted insulin sensitivity on glucose uptake in
cardiomyocytes that were chronically treated with H2O2. In the
hearts of streptozotocin-induced diabetic mice and diabetic
patients Nrf2 expression significantly decreased along with signif-
icant increases in 3-nitrotyrosine accumulation and ERK phosphor-
ylation, whereas these pathogenic changes were not observed in
the heart of diabetic mice with cardiac-specific overexpression of
a potent antioxidant metallothionein. Upregulation of Nrf2 by its
activator, Dh404, in cardiomyocytes in vitro and in vivo pre-
vented hydrogen peroxide– and diabetes-induced ERK activation
and insulin-signaling downregulation.

CONCLUSIONS—ERK-mediated suppression of Nrf2 activity
leads to the oxidative stress–induced insulin resistance in adult
cardiomyocytes and downregulated glucose utilization in the di-
abetic heart. Diabetes 60:625–633, 2011

I
nsulin resistance usually refers to a defect in the
ability of insulin to stimulate glucose uptake. Im-
portantly, insulin resistance is not only a character-
istic feature of type 2 diabetes but also implicated in

the heart of type 1 diabetes (1,2). The severity of insulin
resistance independently predicts mortality in patients
with heart failure (3,4). At a molecular level, insulin re-
sistance is characterized by impairment of the insulin-
induced activation of insulin receptor substrate (IRS)/
phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)
pathway, the major player of the metabolic action of in-
sulin, leading to suppression of the insulin-induced glucose
uptake in the insulin-sensitive organs, including the heart
(3,4). Indeed, reduced IRS-1 associated PI3K activity in
skeletal muscle has been demonstrated to contribute to
whole body insulin resistance in diabetes (5). These results
reveal a unique feature of cardiac insulin resistance that
might play a crucial role in the pathogenesis of diabetic
cardiomyopathy.

Although a pivotal role of insulin resistance in cardiac
dysfunction appears to be recognized, the mechanisms
contributing to insulin resistance are poorly understood.
Notably, increasing evidence has suggested that oxidative
stress plays a causal role in the cardiac complications of
insulin resistance, and the overgenerated reactive oxygen
species (ROS) or reactive nitrogen species (RNS) and in-
sulin resistance may be coconspirators in cardiac dys-
function, each capable of triggering or worsening the other
(6–8). However, a direct, clear, and causal relationship
between oxidative stress and insulin resistance in the
heart is not yet established.

Cells have evolved endogenous defense mechanisms
against sustained oxidative stress such as the redox sen-
sitive transcription factor NF-E2–related factor 2 (Nrf2),
which regulates antioxidant response element (ARE/
EpRE)-mediated expression of detoxifying and antioxidant
enzymes and the cystine/glutamate transporter involved in
glutathione biosynthesis (9). Diminished Nrf2/ARE activity
contributes to increased oxidative stress and mitochon-
drial dysfunction in the vasculature, leading to endothelial
dysfunction, insulin resistance, and abnormal angiogenesis
observed in diabetes (10). Recently we have demonstrated
the critical role of Nrf2 expression in protecting the car-
diac cells from oxidative damage and death caused by high
levels of glucose (11).

Herein, we demonstrate that oxidative stress directly in-
duces insulin resistance in cardiomyocytes via exaggerating
extracellular signal–related kinase (ERK) activity in vitro. In
the heart of streptozotocin (STZ)-induced type 1 diabetic
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mice, cardiac expression of Nrf2 was significantly depressed
at the late stage of diabetes, the time period at which the
heart showed a significant decrease in glucose metabolism
along with the development of significant diabetic cardio-
myopathy (12–14). Depressed expression of cardiac Nrf2
was associated with significant increases in nitrosative
damage and phosphorylation of ERK, all of which were
prevented in the hearts of diabetic mice with cardiac over-
expression of a potent antioxidant metallothionein (MT). In
addition, upregulation of cardiac Nrf2 by its activator dihydro-
CDDO-trifluoroethyl amide (Dh404) significantly prevented
diabetes-induced nitrosative damage, ERK activation, and
insulin signaling downregulation. These findings suggest that
oxidative stress–depressed expression of cardiac Nrf2 is
associated with cardiac activation ERK and downregulation
of glucose metabolism. Therefore, Nrf2, a master transcrip-
tional factor of antioxidative defense system (15), may be
a novel negative regulator of oxidative stress–mediated in-
sulin resistance in cardiomyocytes and the heart.

RESEARCH DESIGN AND METHODS

Cell culture and adenoviral infection. HL-1 cells were obtained from Dr.
Claycomb (Louisiana State University Health Science Center, New Orleans,
LA), who first established and characterized the cell line derived from adult
murine atrial cardiomyocyte tumor lineage, and cultured in Claycomb Medium
(Sigma-Aldrich) (16). Cells were infected with adenovirus of b-galactosidase
(Ad-bGal) or murine Nrf2 (Ad-Nrf2) as previously described (15).
Glucose uptake assay. Cells were incubated in Krebs-Ringer-HEPES buffer (15
mmol/L HEPES [pH 7.4], 105 mmol/L NaCl, 5 mmol/L KCl, 1.4 mmol/L CaCl2,
1 mmol/L KH2PO4, 1.4 mmol/L MgSO4, and 10 mmol/L NaHCO3) for 30 min. Cells
next were incubated with insulin (100 nmol/L) in Krebs-Ringer-HEPES buffer for
30 min and then added to 2-deoxy-D-glucose (0.2 mmol/L) and 2-deoxy-D-[3H]
glucose (2-DG) (1 mCi/mL, MP Biomedicals) for an additional 10 min. The cells
were washed three times with ice-cold PBS, solubilized in 0.5 mol/L NaOH, and
neutralized with 0.5 mol/L HCl, and the radioactivity in aliquots from cell extracts
was measured using a liquid scintillation counter. Protein concentration of the
cell extracts was measured using a protein assay kit (Bio-Rad). Deoxyglucose
uptake was expressed as counts per minute per microgram of protein.
Nrf2 transcriptional reporter assay. Cells were transfected with Nrf2
transcription reporter gene ARE-luc (firefly luciferase) and internal control
pRL-TK-luc (renilla luciferase) plasmids, and Nrf2 transcriptional activity was
quantified by measuring luciferase activities as previously described (17).
Diabetes models and drug administration. MT-overexpressing transgenic
(MT-TG) mice were produced from the FVB mice that have been well charac-
terized (12–14). Both 8- to 10-week-old MT-TG positive mice (heterozygotes)
and negative littermates (wild type [WT]) were kept in the same cages with free
access to rodent chow and tap water. All animal procedures were approved by
the Institutional Animal Care and Use Committee of the University of Louisville,
which is certified by the American Association for Accreditation of Laboratory
Animal Care. STZ (Sigma, St. Louis, MO) was dissolved in sodium citrate buffer
(pH 4.5). Male mice were given an intraperitoneal injection of STZ at 40 mg/kg
body wt daily for five days. Whole blood glucose obtained from the murine tail
vein was detected using a SureStep complete blood glucose monitor (LifeScan,
Milpitas, CA) five days after the last STZ injection. STZ-injected mice with
glucose levels .12 mmol/L were considered diabetic, and mice serving as
controls were given the same volume of sodium citrate (12–14).

Two animal studies were performed. The first study was to investigate the
diabetic effect on cardiac Nrf2 expression along with nitrosative damage,
measured by 3-nitrotyrosine (3-NT) and ERK expression, using MT-TG and WT
diabetic mice at 2 and 5 months after diabetes onset. The second study was to
investigate the preventive effect of Nrf2 activator Dh404 (provided by Reata
Pharmaceuticals) on cardiac Nrf2 expression and 3-NT as well as insulin sig-
naling targets including phosphorylation of Akt and glycogen synthase kinase-3b
(GSK-3b) at 2 weeks after diabetes onset. For Dh404 treatment, diabetic and
age-matched nondiabetic mice were administrated with Dh404 (10 mg/kg body
wt) or vehicle (sesame oil; Sigma) every other day by gavage. Two weeks later,
6 h after the last dose administration, mice were killed and heart tissues were
collected for the study.
Immunochemical staining and immunoblot analysis. Staining and Western
blot analysis for Nrf2, total and phosphor-ERK1/2, total and phosphor-Akt, total
and phosphor-GSK-3b, and 3-NT were performed as previously described
(9,12–14). Briefly, heart tissues were homogenized in lysis buffer using ho-
mogenizer. Tissue proteins were collected by centrifuging at 12,000g at 4°C in

a Beckman GS-6R centrifuge for 15 min. The protein concentration was
measured by Bradford assay. The sample, diluted in loading buffer and heated
at 95°C for 5 min, was then subjected to electrophoresis on 10% SDS-PAGE gel
at 120 V. After electrophoresis of the gel and transfer of the proteins to ni-
trocellulose membrane, the membranes were rinsed briefly in Tris-buffered
saline, blocked in blocking buffer (5% milk and 0.5% BSA) for 1 h, and washed
three times with Tris-buffered saline containing 0.05% Tween 20. The mem-
branes were incubated with different primary antibodies at a dilution of
1:1,000 for 2 h and then washed and reacted with secondary horseradish
peroxidase–conjugated antibody for 1 h. Antigen-antibody complexes were
then visualized using an ECL kit (Amersham, Piscataway, NJ).
Human heart specimens. Tissue sections of left ventricles were prepared from
autopsy heart specimens of humanswith orwithout a disease history or diabetes.
All diabetic males had histories of hypertension and cardiac dysfunction
(Supplementary Table 1). This study was approved by the Institutional Review
Board for human subject research at the University of South Carolina School of
Medicine and the Memorial Medical Center of Johnstown.
Statistical analysis. Values are expressed as means 6 SD. The data were
analyzed using ANOVA with the Newman-Keuls test. Values of P , 0.05 were
considered to be statistically significant.

RESULTS

Oxidative stress induces insulin resistance via
overactivation of ERK in adult cardiomyocytes.
Chronic treatment with H2O2 has been demonstrated to
induce oxidative stress leading to insulin resistance in
various cell types (18); therefore, we tested whether such
a treatment induces insulin resistance in HL-1 adult car-
diomyocytes. Consistent with a previous report (19), in-
sulin stimulated 20–30% increases in glucose uptake in
HL-1 cells (Fig. 1A), and treatment with H2O2 at a nontoxic

FIG. 1. H2O2-induced insulin resistance in HL-1 cells. Cells were pre-
treated with H2O2 (100 mmol/L) with or without NAC (1 mmol/L) in
0.1% FBS medium in the absence of norepinephrine for 16 h and then
subjected to basal or insulin (100 nmol/L for 10 min)-stimulated 2-DG
uptake assay (A), followed by Western blotting of phosphorylated and
total ERK (B). Results are representatives of 3 separated experiments
(n = 4). *P < 0.05 vs. control (H2O22 and insulin2), #P < 0.05 vs. H2O2

(+) without NAC; otherwise statistical difference was indicated. (A
high-quality color representation of this figure is available in the online
issue.)
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dose of 100 mmol/L for 16 h suppressed not only the basal
but also the insulin-induced glucose uptake (Fig. 1A). Pre-
treatment of N-acetyl-cysteine (NAC), a ROS scavenger,
partially reversed H2O2-induced inhibition of the basal and
insulin-induced glucose uptake (Fig. 1A), suggesting that
oxidative stress directly causes insulin resistance in adult
cardiomyocytes.

Potential link of ERK1/2 with oxidative stress and in-
sulin resistance in cardiomyocytes has been documented
(19). Accordingly, we examined the effect of chronic
treatment of H2O2 on ERK1/2 phosphorylation in HL-1 with
and without insulin stimulation. As shown in Fig. 1B, acute
stimulation of insulin (30 min) or chronic treatment of
H2O2 (16 h) increased ERK phosphorylation; however, the
insulin-induced ERK activity was significantly enhanced by
H2O2. NAC did not affect the insulin-induced ERK activity
but suppressed ERK activity induced by H2O2 per se or
H2O2 with insulin (Fig. 1B). The reservation of H2O2-
induced insulin resistance (Fig. 1A) and suppression of
H2O2-mediated ERK activity (Fig. 1B) by NAC reflects a

possible role of ERK in oxidative stress–induced insulin
resistance in cardiomyocytes.
ERK negatively regulates insulin-induced glucose
uptake in adult cardiomyocytes. We next examined
the role of ERK and PI3K in regulating insulin-mediated
glucose uptake in HL-1 cells. In control cells, addition of
U0126, an ERK inhibitor, enhanced the basal (Fig. 2A) and
insulin-induced glucose uptake (Fig. 2B), respectively;
surprisingly, LY294002, a PI3K inhibitor, had no effect
(Fig. 2A and B). In the cells with chronic H2O2 treatment,
U0126 was able to partially reverse, but LY294002 wors-
ened, the H2O2-mediated inhibition of glucose uptake (Fig.
2A) and insulin resistance (Fig. 2B). These results support
the above hypothesis that ERK as a negative regulator of
insulin-mediated glucose uptake plays a mediator role in
oxidative stress–induced insulin resistance in adult car-
diomyocytes.
Positive regulation of insulin by Nrf2 to stimulate
glucose uptake in adult cardiomyocytes. Because we
have demonstrated that Nrf2 negatively regulates oxidative

FIG. 2. Effect of inhibitors of mitogen-activated protein kinase kinase
(MEK) and PI3K on basal or insulin-induced glucose uptake in HL-1
cells with or without oxidative stress. Cells were pretreated with or
without H2O2 (100 mmol/L) as in Fig. 1, with absence (A) and presence
(B) of 100 nmol/L insulin pretreatment for 10 min. Cells were treated
with or without U0126 (10 mmol/L) or LY294002 (10 mmol/L) as in-
dicated for 30 min and then subjected to 2-DG uptake assay. *P < 0.05
vs. control (2), #P < 0.05 vs. insulin (+) plus H2O2 (+); n = 4.

FIG. 3. A negative regulation of Nrf2 by ERK worsens insulin sensitivity
in HL-1 cells. A: Insulin activates Nrf2 via a negative cross-talk between
PI3K and ERK. Cells were transfected with ARE-luc and pRL-TK-luc in
Opti-MEM (Invitrogen) for 6 h and then changed with 0.1% FBS me-
dium in the absence of norepinephrine for 48 h. The cells were next
stimulated with 100 nmol/L of insulin, 10 mmol/L of U0126, and 10 mmol/
L of LY294002 as indicated for 12 h. Nrf2 transcriptional activity was
measured by a dual luciferase assay kit (Promega). *P < 0.05 vs. con-
trol (2), #P < 0.05 vs. insulin (+); n = 4. B: Effect of overexpression of
Nrf2 on insulin sensitivity in HL-1 cells. Cells infected with Ad-bGal (20
multiplicity of infection [MOI]) and Ad-Nrf2 (20 MOI) were pretreated
with H2O2 (100 mmol/L) as in Fig. 1 and subjected to 2-DG uptake assay.
*P < 0.05 vs. control (2), n = 4. C: Infected cells were pretreated as in
Fig. 1 and stimulated with or without insulin (100 nmol/L) for 10 min.
*P < 0.05 vs. control (H2O22 and insulin2); otherwise statistical dif-
ference was indicated.
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stress in the heart (15), we then determined whether Nrf2
plays a role in regulating the oxidative stress–induced in-
sulin resistance in HL-1 cells. Nrf2 transcription reporter
assay showed that insulin activated Nrf2, which was en-
hanced by U0126, whereas blocked by LY294002 (Fig. 3A),
suggesting that the PI3K-mediated Nrf2 activation is neg-
atively regulated by ERK in insulin-stimulated HL-1 cells.
To further test whether Nrf2 plays a critical role in regu-
lating insulin-mediated glucose uptake, especially under
an oxidative status, we examined effects of forced acti-
vation of Nrf2 on the oxidative stress–induced activation
of ERK as well as the subsequent insulin resistance in
adult cardiomyocytes. As shown in Fig. 3B, a forced activa-
tion of Nrf2 by adenoviral overexpression of Nrf2 signifi-
cantly suppressed H2O2-induced ERK activity in HL-1 cells
with the presence of insulin. Most importantly, the forced
activation of Nrf2 enhanced the insulin-mediated glucose
uptake in non–H2O2-treated cells, relative to the control of
Ad-bGal overexpression and completely recovered insulin
sensitivity to stimulate glucose uptake in H2O2-treated
cells (Fig. 3C).
Cardiac Nrf2 expression was downregulated in
diabetic animals and patients. To explore a pathologi-
cal relevance of Nrf2 in diabetic hearts, we examined
cardiac Nrf2 expression in STZ-induced diabetic mice at 2
and 5 months after diabetes onset. The glucose levels of
these diabetic mice were 25.76 6 2.14 mmol/L at 2 months
and 26.61 6 1.70 mmol/L at 5 months, respectively. As

shown in Fig. 4, cardiac Nrf2 expression was slightly in-
creased at 2 months (Fig. 4A) but significantly decreased
at 5 months (Fig. 4B) after diabetes onset. The decreased
cardiac Nrf2 expression at the late stage was accompanied
with oxidative and nitrosative damage, shown by signifi-
cantly increased cardiac 3-NT accumulation (Fig. 4C) and
overactivation of ERK function (Fig. 4D), as observed in
the in vitro study (Fig. 3). Importantly, all these pathogenic
changes were not observed in the hearts of the MT-TG
diabetic mice (Fig. 4B–D). These findings suggest that di-
abetic oxidative and nitrosative stress may induce ERK
activation that downregulates Nrf2 expression.

Consistent with the finding from diabetic mice, immu-
nochemical staining of human normal and diabetic hearts
also showed that Nrf2 protein expression was dramatically
suppressed in the diabetic failing hearts of both males
(Fig. 5A) and females (Fig. 5B), as compared with non-
diabetic hearts.
Pharmacological activation of Nrf2 attenuates oxidative
stress–inducedinsulinresistance inadultcardiomyocytes
in vitro and in the diabetic heart in vivo. We recently
demonstrated that a novel synthetic triterpenoid deriv-
ative, Dh404, is a potent Nrf2 activator and suppresses
oxidative stress in cardiomyocytes (20). We next deter-
mined whether Dh404 could mimic the inhibitory effect
of Nrf2 overexpression on H2O2-induced insulin resis-
tance in HL-1 cells. As expected, Dh404 strongly acti-
vated Nrf2 transcriptional activity and additively increased

FIG. 4. Cardiac Nrf2 expression in the mice with and without cardiac-specific MT overexpression. Diabetes was induced by multiple low doses of
STZ in mice with cardiac-specific MT overexpression (MT-TG) and littermate WT mice. A: Cardiac Nrf2 expression at 2 months after the onset of
diabetes was detected by Western blot (WT, n = 6 for control [Ctrl], n = 8 for diabetes mellitus [DM]; MT-TG, n = 7 for control, n = 8 for DM). At
5 months after the onset of diabetes, cardiac Nrf2 expression (B); nitrosative damage, measured by 3-NT (C); and ERK phosphorylation (D) were
detected by Western blot, respectively (WT, n = 7 for control, n = 8 for DM; MT-TG, n = 6 for control, n = 7 for DM). b-Actin or total ERK was used
as loading control. *P < 0.05 vs. control.
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the insulin-induced Nrf2 transcriptional activity (Fig. 6A).
Dh404 treatment did not change insulin-induced ERK
phosphorylation (Fig. 6B) and glucose uptake (Fig. 6C)
but inhibited H2O2-induced ERK phosphorylation and
partially reversed H2O2-inhibited basal glucose uptake or
insulin-stimulated glucose uptake (Fig. 6B and C). These
results further support the notion that Nrf2 is a critical
regulator of insulin-mediated glucose uptake in car-
diomyocytes in vitro.

To validate the in vitro finding, diabetic mice, induced by
multiple-low doses of STZ, were treated with Dh404 at 10
mg/kg every other day for 2 weeks. Cardiac tissues were
collected from these diabetic mice with and without Dh404
treatment and subject to Western blotting analysis for Nrf2
and 3-NT. Dh404 treatment did not change glucose levels
of these mice (control 8.40 6 1.20; diabetes: 25.40 6 2.89;
Dh404: 7.99 6 0.56; diabetes/Dh404: 27.12 6 1.22 mmol/L).
Cardiac Nrf2 expression was increased in the hearts of
either diabetic or Dh404-treated nondiabetic mice and
synergistically increased in the hearts of Dh404-treated
diabetic mice (Fig. 7A). Diabetes significantly induces
3-NT accumulation (Fig. 7B) and ERK1/2 phosphorylation
(Fig. 7C), which were prevented by Dh404 treatment,
suggesting that activation of Nrf2 expression by Dh404 in
the heart plays an important role in the prevention of di-
abetes-induced cardiac oxidative and/or nitrosative dam-
age and ERK1/2 activation. As expected, diabetes-induced
oxidative damage and ERK1/2 activation is accompa-
nied with downregulation of insulin signaling, shown by

decreased phosphorylation of Akt (Fig. 7D) and GSK-3b
(Fig. 7E). Activation of Nrf2 by Dh404 preserved the nor-
mal levels of Akt and GSK-3b phosphorylation in the heart
of diabetic mice (Fig. 7D and E).

DISCUSSION

Oxidative stress is causative of insulin resistance in vari-
ous cell types (2,6,7,18), which was confirmed by our
present study using HL-1 adult cardiomyocytes treated
with H2O2. Reportedly the stimulating effect of acute
treatment with H2O2 on glucose uptake has been recog-
nized for years in adipocytes (21). In fact, the cellular
generation of ROS such as H2O2 by insulin has been con-
sidered as an integral part of the insulin signaling (21).
These results emphasize the biological significance of ROS
as signaling molecules, e.g., for the insulin-mediated glu-
cose metabolism in cardiomyocytes; however, chronic
accumulation of ROS causes oxidative stress, thereby
contributing to the pathogenesis of various diseases such
as cardiac dysfunction (9). Cardiac oxidative stress is of-
ten observed coincident with insulin resistance, and there
is accumulating evidence that ROS and/or RNS mediates
deleterious effects in the insulin-resistant heart although
the mechanisms by which oxidative stress induces insulin
resistance remain not well understood.

Increasing evidence indicates that ERK activation seems
a causal factor for insulin resistance caused by oxidative
stress in cardiomyocytes. For instance, through activation

FIG. 5. Downregulation of Nrf2 expression in human diabetic hearts. A: Representatives of Nrf2 staining on left ventricular tissue sections of
normal (males, n = 5; females, n = 5) and diabetic (males, n = 4; females, n = 2) human hearts. Red is Nrf2, and green is a-myosin heavy chain. Blue
is nuclei. The semiquantification of Nrf2 protein levels by measuring mean integrated optical density (IOD) of eight randomly chosen fields of each
tissue section for males (B) and females (C) are presented, respectively. Two sections of each heart specimen have been analyzed. *P < 0.05 vs.
normal group. (A high-quality digital representation of this figure is available in the online issue.)
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of ERK1/2, high levels of glucose or angiotensin II induces
insulin resistance in several conditions (19,22,23). A recent
study that showed that deficiency in the ERK1 protects
leptin-deficient mice from insulin resistance without af-
fecting obesity further confirms the causative of ERK ac-
tivation in the insulin resistance (24). In the current study,
we demonstrated for the first time that chronic treatment
of HL-1 cells with H2O2 increased ERK phosphorylation
along with a significant inhibition of glucose uptake. More
importantly we also demonstrated in the diabetic hearts
that upregulation of ERK1/2 along with nitrosative damage
is associated with downregulation of phosphorylation of
both Akt and GSK-3b, two key components of insulin
signaling cascade. In the cells with chronic H2O2 treat-
ment, inhibition of ERK1/2 activation by U0126 was able to
partially reverse glucose uptake and insulin resistance
(Fig. 2B). Findings that NAC prevents H2O2-mediated
activation of ERK1/2 in vitro (Fig. 1B) and MT prevents
diabetes-induced activation of ERK1/2 in vivo (Fig. 4D)
also suggest that the activation of ERK1/2 is associated
with oxidative stress induced either by H2O2 in vitro or
diabetes in vivo.

Nrf2 has been shown to negatively regulate oxidative
stress in the heart (15). To support this notion, our recent
study showed that high levels of glucose induced ROS

production in both primary neonatal and adult car-
diomyocytes from the heart of Nrf2 WT (C57BL/6 back-
ground) murine heart, whereas, in Nrf2 knockout cells,
ROS was significantly higher under basal conditions and
further enhanced under high glucose exposure conditions
than that in WT cells (11). Concomitantly high glucose
induced significantly higher levels of apoptosis at lower
concentrations and in shorter time in Nrf2 knockout cells
than in Nrf2 WT cells (11). To explore a pathological rel-
evance of Nrf2 in diabetic hearts, we examined cardiac
Nrf2 expression in STZ-induced diabetic mice. As shown
in Figs. 4 and 7, cardiac Nrf2 expression was slightly in-
creased in the heart of diabetic mice at 2 weeks (Fig. 7A)
and 2 months (Fig. 4A) but significantly decreased in the
hearts of diabetic mice at 5 months (Fig. 4B) after diabetes
onset. The slight increase in cardiac Nrf2 expression at the
early stages of diabetes was consistent with our previous
study (11) in which Nrf2 was increased in the heart of
diabetic mice with C57BL/6 background at 2 weeks after
STZ-induced hyperglycemia. These results suggest that
Nrf2 is adaptively trying to remain functional to overcome
diabetic damage at the early stage of diabetes. At the late
stage of diabetes, however, cardiac antioxidant function
is further impaired, leading to a decrease in cardiac
Nrf2 expression. Importantly, the decreased cardiac Nrf2

FIG. 6. A therapeutic effect of Dh404 on cardiomyocyte insulin resistance. A: Effect of Dh404 on insulin-induced Nrf2 transcriptional activity in
HL-1 cells. Cells were transfected as in Fig. 3. The cells were stimulated with 100 nmol/L of insulin and 200 nmol/L of Dh404 as indicated for 12 h.
Nrf2 transcriptional activity was measured as in Fig. 3. Effect of Dh404 on oxidative stress–induced ERK phosphorylation (B) and glucose uptake
in HL-1 cells (C) is shown. Cells were pretreated with H2O2 (100 mmol/L) with or without Dh404 (200 nmol/L) in 0.1% FBS medium in the absence
of norephineprine for 16 h and then stimulated with or without insulin (100 nmol/L for 10 min) as indicated. 2-DG uptake assay and Western
blotting of phosphorylated and total ERK were performed as described in RESEARCH DESIGN AND METHODS. *P < 0.05 vs. normal group; #P < 0.05 vs.
insulin alone (A) or H2O2 alone (C); †P < 0.05 vs. H2O2 plus insulin (C).
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expression in the diabetic hearts was accompanied with
oxidative and nitrosative damage, shown by significantly
increased 3-NT accumulation (Fig. 4C) and overactivation
of ERK function (Fig. 4D) as observed in the in vitro
study (Fig. 3). Peroxynitrite interacts with lipids, DNA,
and proteins via direct nitration or via indirect, radical-
mediated mechanisms. These reactions trigger cellular
responses ranging from subtle modulations of cell signal-
ing to overwhelming oxidative and nitrosative injury. In
vivo, peroxynitrite generation represents a crucial patho-
genic mechanism in conditions such as diabetic cardio-
myopathy (12,25).

We have demonstrated that MT-TG mice are resistant to
diabetes-induced oxidative and/or nitrosative damage and
development of cardiomyopathy (13,26). Here we further
showed that MT-TG mice are also significantly resistant
to diabetes-induced decrease in cardiac Nrf2 expression
(Fig. 4B) and increases in 3-NT accumulation (Fig. 4C) and
ERK activation (Fig. 4D) at the late stage of diabetes
(5 months after diabetes onset). Our finding is consistent
with a recent study in which MT-TG mice are resistant to
lipopolysaccharide (LPS)-induced cardiac oxidative stress,
ERK1/2 activation, and cardiac dysfunction as compared
with WT mice (27). Therefore, like NAC that protects

cardiomyocytes from H2O2 downregulation of Nrf2 in the
in vitro study (Fig. 3), MT as a potent antioxidant prevents
diabetic oxidative and nitrosative stress, leading to a sup-
pression of ERK activation and a preservation of cardiac
Nrf2 function, as illustrated in Fig. 7F, to protect the heart
from diabetes- and LPS-induced damage. We recently also
showed that inactivation of GSK-3b by overexpression of
cardiac MT gene results in an improvement of cardiac
glucose metabolism in the diabetic hearts along with
a significant suppression of cardiac nitrosative damage,
inflammation, and remodeling (14).

In the current study, we demonstrated for the first time
that Nrf2 plays a critical role in insulin-mediated glucose
uptake, especially under an oxidative status. By Nrf2
transcription reporter assay we found that insulin acti-
vated Nrf2 (Fig. 3A), which could be enhanced by in-
hibition of ERK1/2 with U0126, whereas it is blocked by
PI3K inhibition with LY294002 (Fig. 3A), indicating that
insulin activates Nrf2 via PI3K-mediated signaling that is
negatively regulated by ERK in HL-1 cells, as illustrated in
Fig. 7F. Furthermore, forced activation of Nrf2 by adeno-
viral overexpression of Nrf2 significantly suppressed insulin-
induced ERK activity in HL-1 cells with and without H2O2.
This finding suggests that Nrf2 activation could prevent

FIG. 7. Dh404 cardiac prevention of diabetic oxidative stress and inhibition of glucose metabolism. Diabetes was induced by multiple low doses of
STZ as used in Fig. 4. Diabetic and age-matched nondiabetic mice were treated with Dh404 at 10 mg/kg body wt every other day from the onset of
diabetes for 2 weeks. Cardiac Nrf2 expression (A); nitrosative damage, measured by 3-NT (B); ERK phosphorylation (C); Akt phosphorylation
(D); and GSK-3b phosphorylation (E) were detected by Western blot, respectively (n = 5 for control [Ctrl], n = 7 for DM). b-Actin, total ERK, total
Akt, or total GSK-3b was used as loading control. *P < 0.05 vs. control; #P < 0.05 vs. DM; $P < 0.05 vs. Dh404. F: A working hypothesis of Nrf2-
mediated regulation of insulin sensitivity in the cardiomyocytes. (A high-quality color representation of this figure is available in the online issue.)
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oxidative stress–induced ERK activity in adult cardiomyocytes
(Fig. 7F). Most importantly, the forced activation of Nrf2
further enhances insulin-mediated glucose uptake in non–
H2O2-treated cells and also completely recovered insulin-
mediated glucose uptake in H2O2-treated cells (Fig. 3C).
The in vitro finding was further supported by in vivo
results showing that diabetes inhibits cardiac Akt and
GSK-3b phosphorylation, effects that were prevented by
enhanced expression of Nrf2 with Dh404 (Fig. 7D and E).
Therefore, these results not only establish a key role of
Nrf2 in the maintaining of insulin sensitivity but also raise
a possibility that Nrf2 is a crucial player in the regulation
cardiac insulin signaling in the cardiomyocytes and the
heart, as illustrated in Fig. 7F. These findings provide
further support for other recent findings implying the link
of Nrf2 deficiency to oxidative stress and insulin resistance
in other cells and tissues (28,29). Therefore, diabetes-in-
duced oxidative stress suppresses Nrf2 expression (Fig. 5)
(30), and lack of Nrf2 expression in the diabetic hearts and
kidney contributes to an insulin resistance and eventually
cardiac dysfunction (11) or renal dysfunction (31,32).

In summary, our data provide several novel findings of
redox signaling in the regulation of insulin sensitivity in the
cardiac cells in vitro and in vivo, as illustrated by Fig. 7F.
First, oxidative stress plays a causative role in the de-
velopment of insulin resistance. Second, ERK is a nega-
tive regulator of glucose uptake and mediates oxidative
stress–induced insulin resistance. Third, ERK-mediated
suppression of Nrf2 activity is linked to the oxidative
stress–induced insulin resistance. Fourth, Nrf2 expression
is upregulated at early stage of diabetic heart but signifi-
cantly downregulated at the late stage in diabetic hearts.
Fifth, Nrf2 activation suppresses the oxidative stress–
induced ERK activity and reverses the oxidative stress–
induced insulin resistance. Finally, antioxidants such as
NAC and MT can prevent oxidative stress–induced ERK
activation and Nrf2 downregulation. These results sug-
gest that Nrf2 plays a critical role in regulating insulin
sensitivity in the heart, and targeting Nrf2 might provide
a novel therapeutic approach for the treatment of cardiac
insulin resistance and diabetic cardiomyopathy. Importantly
a close structural analog of Dh404 that also potently in-
duces Nrf2, bardoxolone methyl (CDDO-Me; RTA 402), is
in a pivotal clinical study in patients with type 2 diabetes
mellitus with advanced kidney disease to assess changes
in renal function and glucose control (33,34).
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