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Direct interaction of Plk4 with STIL ensures
formation of a single procentriole per
parental centriole
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Formation of one procentriole next to each pre-existing centriole is essential for centrosome

duplication, robust bipolar spindle assembly and maintenance of genome integrity. However,

the mechanisms maintaining strict control over centriole copy number are incompletely

understood. Here we show that Plk4 and STIL, the key regulators of centriole formation, form

a protein complex that provides a scaffold for recruiting HsSAS-6, a major component of the

centriolar cartwheel, at the onset of procentriole formation. Furthermore, we demonstrate

that phosphorylation of STIL by Plk4 facilitates the STIL/HsSAS-6 interaction and centriolar

loading of HsSAS-6. We also provide evidence that negative feedback by centriolar

STIL regulates bimodal centriolar distribution of Plk4 and seemingly restricts occurrence of

procentriole formation to one site on each parental centriole. Overall, these findings suggest a

mechanism whereby coordinated action of three critical factors ensures formation of a single

procentriole per parental centriole.
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C
entrosomes are the major microtubule organizing centre
in most of animal cells and composed of a pair of
centrioles surrounded by pericentriolar material. Centriole

formation is indispensable for centrosome duplication and must
be tightly coordinated with cell cycle progression to ensure robust
formation of bipolar mitotic spindles and proper chromosome
segregation. Centriole formation begins with the assembly of the
cartwheel structure that mainly dictates the universal radial
ninefold symmetry of centrioles, followed by attachment of
peripheral centriolar microtubules and further centriole elonga-
tion1–3. Despite the recent notable progress in our understanding
of the molecular and structural principles of centriole assembly,
the mechanisms ensuring formation of only one procentriole at
the base of each parental centriole per cell division cycle remain
incompletely understood.

An evolutionarily conserved core pathway for centriole
assembly includes the following five major components: Cep192/
DSpd-2/SPD-2, Plk4/Sak/ZYG-1, HsSAS-6/DSas-6/SAS-6, STIL/
Ana2/SAS-5 and CPAP/DSas-4/SAS-4 (refs 1–3). Among these
components, Plk4 (refs 4,5), HsSAS-6 (refs 6,7) and STIL8–11

particularly may play an important role in controlling centriole
number, since their overexpression induces concurrent formation
of multiple procentrioles around a parental centriole8–10,12,13.

The conserved proteins of SAS-6 family are known to be a
crucial element of a centriolar cartwheel structure14–17. Whereas
it seems that nine of SAS-6 rod-shaped homodimers self-
assemble into the central part of the cartwheel14–16, there could
be additional factors strictly regulating this process or other
cartwheel components facilitating SAS-6 self-assembly at the
onset of procentriole formation. Given that Plk4 acts upstream of
HsSAS-6 and STIL8–10,12,13, and also that HsSAS-6 and
STIL appear to be interdependent for their loading to the
centrioles8–10, Plk4 and STIL are plausible candidates for
regulating HsSAS-6 oligomerization for cartwheel assembly.
Although their relationship in other species appears to be
mostly conserved6,7,18–24, how their collaborative action
regulates the onset of centriole formation remains elusive.
Moreover, the critical substrates of Plk4, a key kinase for
centriole duplication, and how the kinase reaction triggers the
onset of procentriole formation remain to be discovered.

In this study, we identify STIL as a critical substrate of Plk4,
and show that the phosphorylation event leads to formation of
the STIL/HsSAS-6 complex and initiation of procentriole
assembly. Furthermore, we demonstrate negative feedback in
which centriolar recruitment of the STIL/HsSAS-6 complex in
turn limits distribution of centriolar Plk4 through the ubiquitin–
proteasome pathway. This coordinated action of the three key
factors triggers the onset of procentriole formation and,
concurrently, restricts the occurrence of procentriole formation
to one site per parental centriole.

Results
Plk4 recruits STIL to the centrioles by direct binding. First, to
investigate the physical interactions between the three key factors
for centriole assembly, we conducted co-immunoprecipitation
analysis with human 293T cells expressing FLAG-tagged full-
length Plk4 or Plk4DPEST lacking the first PEST destruction
motif25, and tested whether the Plk4 proteins interact with
endogenous STIL or HsSAS-6 proteins. This analysis revealed
that Plk4-FLAG full-length interacts with endogenous STIL, but
not with HsSAS-6 (Fig. 1a). Furthermore, we found that a higher
amount of endogenous STIL could be co-immunoprecipitated
with Plk4DPEST-FLAG owing to the increase in the expression
levels of Plk4DPEST-FLAG compared with those of Plk4-FLAG
full length (Fig. 1a). However, we could not detect such a robust

interaction in the case of a kinase-dead mutant of Plk4DPEST-
FLAG, suggesting that STIL preferentially interacts with Plk4
wild-type (WT) rather than the kinase dead. We also found
that the interaction requires the two tandem polo boxes, PB1
and PB2, but not the C-terminal PB3 of Plk4 (Supplementary
Fig. 1a–d)5,26. Using human influenza hemagglutinin (HA)
tagged deletion constructs of STIL, we narrowed down the STIL
domain that is required for Plk4 binding to the short conserved
coiled-coil domain23 (Fig. 1b–d and Supplementary Fig. 1e,f).
Moreover, yeast two-hybrid and in vitro binding assays
established that Plk4 directly bound to the STIL fragments
containing the CC domain presumably in a kinase-activity-
dependent manner (Fig. 1e and Supplementary Fig. 1g,h).

We therefore reasoned that the physical interaction between
the two proteins might be needed for centriolar recruitment of
STIL. We depleted endogenous STIL using short interfering
RNAs (siRNAs) against the 30-untranslated region (30UTR) and
expressed STIL full-length or deletion constructs tagged with HA
at comparable levels in human U2OS cells (Supplementary
Fig. 1a). We found that whereas centriole numbers were reduced
in the majority of interphase cells upon depletion of endogenous
STIL, expression of exogenous full-length STIL could functionally
rescue this phenotype (B26% and B57% of cells with Z4
centrioles, respectively; Fig. 1f) and frequently induced formation
of multiple procentrioles next to each pre-existing centriole. In
contrast, expression of the N-terminal fragment of STIL rescued
centriole formation in only B13% of cells (Fig. 1f) even though
this fragment efficiently localized to the centrioles, indicating that
the C-terminal region of STIL is crucial for centriole formation.
Importantly, we determined that STIL proteins lacking the CC
domain did not localize to the centrioles (B21% of cells with
centriolar STILDCC, compared with B76% of cells with
centriolar STIL FL; Fig. 1f) and failed to rescue centriole
formation. Overall, these findings indicate that STIL is recruited
to the centrioles by direct binding to Plk4 through its conserved
CC domain, and that this interaction is necessary for centriole
formation.

STIL STAN motif is crucial for HsSAS-6 centriolar targeting.
We then investigated how the C-terminal region of STIL con-
tributes to centriole formation. Since centriolar loading of HsSAS-
6 is dependent on STIL8–10, we monitored whether HsSAS-6
proteins are present at centrioles when the C-terminal region or
the conserved STAN motif23 of STIL was depleted. We first
confirmed that whereas centriolar loading of HsSAS-6 was
significantly reduced upon depletion of endogenous STIL,
expression of STIL full length restored the localization of
HsSAS-6 around the mother centriole (B40% and B85% of
cells with centriolar HsSAS-6, respectively; Fig. 2a). Intriguingly,
we found that the STIL proteins lacking the STAN motif failed to
recruit HsSAS-6 to the centrioles even though they robustly
localized to the centrioles (B5% of cells with centriolar HsSAS-6;
Fig. 2a and Supplementary Fig. 2a,b). These data indicate that the
STAN motif is crucial for centriolar targeting of HsSAS-6.

Plk4 kinase activity promotes STIL/HsSAS-6 interaction. It has
been shown that the functional homologues of STIL: SAS-5 in
Caenorhabditis elegans7 and Ana2 in Drosophila melanogaster23,
can directly bind to SAS-6 proteins. However, in recent studies, a
direct interaction between STIL and HsSAS-6 could not be
detected9,10. We therefore hypothesized that Plk4 might regulate
the mode of their interaction in human cells. To test this idea, we
conducted co-immunoprecipitation experiments using 293T cells
expressing Plk4DPEST-FLAG and Myc-HsSAS-6 proteins.
Interestingly, we found that endogenous STIL was detected in
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the immunoprecipitated fraction of HsSAS-6 in cells expressing
Plk4DPEST-FLAG and Myc-HsSAS-6, whereas this was not the
case in cells expressing kinase-dead Plk4DPEST-FLAG and Myc-
HsSAS-6 (Fig. 2b). This result prompted us to address whether
phosphorylation of STIL by Plk4 facilitates a direct interaction
between STIL and HsSAS-6.

To examine this, we used a combined biochemical approach
using in vitro kinase assays with recombinant STIL N3C and

Plk4DPEST-FLAG, followed by in vitro pull-down assays with
recombinant maltose-binding protein (MBP) tagged HsSAS-6
(Fig. 2c). We found that Plk4DPEST efficiently phosphorylates
STIL N3C in vitro (Supplementary Fig. 3c). Remarkably, we
demonstrated that the phosphorylated STIL N3C directly bound to
MBP-HsSAS-6 in vitro (Fig. 2d and Supplementary Fig. 2c,d). By
contrast, this interaction was abolished when the STAN motif was
removed from STIL N3C (Fig. 2e). This is in line with the
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Figure 1 | Direct interaction of Plk4 with STIL is required for centriolar targeting of STIL and centriole formation. (a) Co-immunoprecipitation (co-IP)

assays testing interactions between the indicated Plk4-FLAG proteins and endogenous STIL. HEK293T cells expressing the empty FLAG vector (–), FLAG-

tagged Plk4 full-length (FL) wild-type (FL-WT), FL kinase dead (FL-KD), DPEST (D272–311 a.a.) WT (DP-WT) or DPEST KD (DP-KD) were immuno-

precipitated (IP) with FLAG antibodies. Total cell lysates and IPs were analysed by western blotting using STIL, HsSAS-6, FLAG or tubulin antibodies.

(b) Schematic of HA-tagged STIL FL and deletion constructs used for co-IP assays with Plk4DPEST-FLAG in HEK293T cells. The right columns show a

summary of the co-IP results and centriolar localization of the STIL constructs examined in U2OS cells. The STIL constructs that interact with Plk4DPEST-

FLAG are represented in red and the minimal binding region in light green. The evolutionarily conserved coiled-coil (CC: a.a. 721–746) and STAN (a.a.

1,061–1,147) domains are indicated. ND, not determined. (c) Alignment of the CC domain within human, mouse, Xenopus and zebrafish STIL and Drosophila

Ana2. Identical residues are coloured in yellow; similar residues in grey. Asterisks indicate the residues identical in all aligned sequences; colons: conserved

substitutions; periods: semi-conserved substitutions. (d) HEK293T cells co-expressing Plk4DPEST-FLAG and HA-STIL FL or STILDCC were IP with FLAG

antibodies. Total cell lysates and IPs were analysed by western blotting using the indicated antibodies. (e) Yeast two-hybrid assay testing interactions

between FL or the indicated fragment (a.a. 661–1,017) of STIL and WT or KD Plk4. The empty vectors (–) were used for negative controls. Two independent

clones were grown on the plates without histidine and containing 50 mM 3-AT (Supplementary Fig. 1g). (f) U2OS cells were treated with control siRNA

(siCnt) or siRNA targeting 30UTR of endogenous STIL (siSTIL), followed by transfection with an empty vector (vec; –), HA-STIL FL, N-terminal fragment

(N), DCC or C-terminal fragment (C). The cells were immunostained with antibodies against HA and centrin. DNA is shown in blue. Insets show

approximately fivefold magnified views around the centrosome. Scale bar, 5 mm. Histograms represent frequency of interphase cells with centriolar HA

(top) or with Z4 centrin foci (bottom) in each condition. Values are mean percentages±s.d. from three independent experiments (N450 for each

condition). *Po0.05, **Po0.01, NS, not significant (one-tailed t-test).
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Figure 2 | Plk4 kinase activity promotes the formation of a complex between STIL and HsSAS-6. (a) U2OS cells were treated with control

siRNA or siRNA targeting 30UTR of endogenous STIL, followed by transfection with an empty vector (–), HA-STIL full-length (FL), N (a.a. 1–1,017) or DSTAN

(D1,061–1,147 a.a.). The cells were fixed and immunostained with antibodies against HA and HsSAS-6. DNA is shown in blue. Histograms represent

frequency of interphase cells with centriolar HA (top) or with centriolar HsSAS-6 (bottom) in each condition. Insets show approximately sevenfold

magnified views around the centrosome. Scale bar, 5 mm. Values are mean percentages±s.d. from three independent experiments (N450 for each

condition). *Po0.05, **Po0.01, NS, not significant (one-tailed t-test). (b) HEK293T cells co-expressing Plk4DP-FLAG wild type (WT) or kinase-dead (KD)

and Myc-HsSAS-6 were immunoprecipitated (IP) with HsSAS-6. The amount of expressed Plk4DP-FLAG WT and KD was collected by IP using FLAG

beads. Total cell lysates and IPs were analysed by western blotting using STIL, HsSAS-6 or FLAG antibodies. (c–g) In vitro reconstitution of a Plk4-

dependent complex formation of STIL and HsSAS-6. (c) Schematic of the method used for monitoring the interaction between Plk4-phosphorylated

STIL and HsSAS-6 in vitro. Plk4DP-FLAG WT or KD proteins were expressed and purified from HEK293T cell using anti-FLAG beads, followed by incubation

with bacterially purified STIL N3C WT or DSTAN mutant (in d,e), deletion mutants of STIL C (in f,g) recombinant proteins for in vitro kinase assay. After

the kinase reaction, the supernatant was collected and incubated with MBP-HsSAS-6 purified from baculovirus/insect cell expression system, and

thereafter pulled down using amylose resin. Input and the protein complexes pulled down with amylose resin were analysed by western blotting using STIL,

FLAG, HsSAS-6 and HA antibodies. Asterisks represent cleaved products of GST-HA-STIL C or CS.
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observation that the STAN motif is crucial for centriolar loading
of HsSAS-6 (Fig. 2a). To further narrow down the region of STIL
for directly binding to HsSAS-6, we generated several deletion
mutants within the C-terminal fragment of STIL (Fig. 2f,g and
Supplementary Fig. 2e). As expected, amino acid (a.a.) 1,061–1,083
and a.a. 1,106–1,147 regions in the STAN appeared to be required
for the interaction between the phosphorylated STIL and HsSAS-6
(Fig. 2f and Supplementary Figs 2e and 3a). Furthermore, we
demonstrated that the STIL STAN motif phosphorylated by Plk4 is
sufficient for binding to HsSAS-6 (Fig. 2g). Overall, these findings
support the notion that phosphorylation of STIL by Plk4 facilitates
the direct interaction between the conserved STAN motif of STIL
and HsSAS-6, leading to centriolar loading of HsSAS-6.

STIL is phosphorylated by Plk4 in vitro and in vivo. We next
sought to analyse the phosphorylation of STIL by Plk4 to further
investigate its biological relevance for centriole formation. We
first conducted in vitro kinase assays with Plk4DPEST-FLAG and
the indicated four STIL fragments, and found that the fragments
STIL N3 and C were efficiently phosphorylated by Plk4DPEST-
FLAG in vitro (Fig. 3a). Intriguingly, we found a significant shift

in the mobility of the phosphorylated STIL C fragment due to
hyper-phosphorylation by Plk4DPEST (Fig. 3a,b). Using mass
spectrometry (MS) analysis and phospho-specific antibodies, we
identified seven and five phosphorylated serine/threonine resi-
dues within the N3 and C fragments, respectively (Fig. 3a,c and
Supplementary Fig. 3a–c). We next investigated whether STIL is
also phosphorylated by Plk4 in vivo. We observed a shift in the
mobility of endogenous STIL when expressing Plk4DPEST-FLAG
in U2OS cells (Fig. 3d). The shift was abolished upon treatment of
the cell lysate with l-phosphatase, indicating that endogenous
STIL proteins were phosphorylated by Plk4 in vivo (Fig. 3d).
Similarly, we found a significant band shift of STIL N3C fragment
in U2OS cells expressing Plk4DPEST-FLAG, which is suggestive
of the occurrence of multiple phosphorylations on the STIL
fragment (Fig. 3e). Importantly, in addition, the shift of STIL
N3C was drastically attenuated by mutating all the identified
phosphorylated residues to alanine, indicating that these sites can
be phosphorylated in vivo (Fig. 3e).

We then set out to examine the biological relevance of these
phosphorylation sites for STIL function. We first found that the
mutation of all seven S/T residues in the STIL N3 region or all
five S/T residues in the STIL C region to alanine did not affect the
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interaction between Plk4 and STIL (Supplementary Fig. 4a–d,f).
Moreover, since the N3 region of STIL is sufficient for binding to
Plk4 (Fig. 1e), we further analysed deletion mutants within the N3
and confirmed that the conserved coiled-coil domain is essential
for the Plk4/STIL interaction (Fig. 1b–d and Supplementary
Fig. 4a–c,f). However, when mutating the sole S/T residue, T727,
within the CC to alanine, we still detected the Plk4/STIL
interaction (Supplementary Fig. 4a,g). These data suggest that
while Plk4 kinase activity itself seems to be critical for the
interaction, the phosphorylation of STIL by Plk4 is possibly
dispensable for the interaction. We speculate that Plk4 autopho-
sphorylation27,28 can modulate the state of Plk4 self-assembly,
leading to the direct binding to the CC domain of STIL.

Critical sites in the STAN for HsSAS-6 centriolar targeting.
Given that the phosphorylated STAN motif of STIL itself is
sufficient for interacting with HsSAS-6 in vitro (Fig. 2f,g), we
reasoned that S1061 and S1116 that are within the STAN motif

and phosphorylated by Plk4 in vitro could be critical residues to
mediate the STIL/HsSAS-6 interaction (Fig. 4a). To address this
idea, we first conducted an alanine mutational scan for the S/T
sites within the STAN motif, which led to the identification of
three critical sites (S1061, S1116 and T1119) for the STIL/HsSAS-
6 interaction in vitro (Fig. 4b and Supplementary Fig. 5a). As we
could not find any evidence of phosphorylation at T1119 by MS,
we assume that T1119 could be important for the structural
arrangement of the STAN motif rather than being a phosphor-
ylation site. Interestingly, S1061 and S1116 are the specific resi-
dues that are highly conserved from human STIL to Drosophila
Ana2 (Fig. 4a), implying their biological significance throughout
evolution. Second, we investigated whether alanine substitution
mutants of the two phosphorylation sites of STIL have the ability
to rescue the defect in the centriolar loading of HsSAS-6 and
centriole formation when endogenous STIL proteins are depleted.
Strikingly, we found that although mutating both residues to
alanine did not affect centriolar targeting of STIL (Fig. 4c,d),
expression of the S1061A, S1116A or 2A double mutant of STIL
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failed to rescue centriolar loading of HsSAS-6 and centriole for-
mation in the cells depleted of endogenous STIL (centriolar
HsSAS-6; B4% for STIL 2A and B78% for STIL WT: Z4
centrin foci; B2% for STIL 2A and B50% for STIL WT; Fig. 4c,d
and Supplementary Fig. 5b–f). On the other hand, expression of
the STIL alanine mutants at three other MS-identified phos-
phorylation sites (S1181, T1238 or T1250) or the STIL deletion
mutant lacking all the seven MS-identified phosphorylation sites
in the N3 region mostly rescued the phenotype provoked by
depletion of endogenous STIL (Supplementary Figs 4e and 5d–f).
To further characterize the two critical phosphorylation sites in
STIL, S1061 and S1116, we generated phosphomimetic mutants
at these residues and investigated their function for centriole
formation. Importantly, we found that expression of a phos-
phomimetic STIL mutant at S1061 under an attenuated human
cytomegalovirus (CMV) promoter induced centriole over-
duplication more efficiently than that of STIL WT in the same
condition (Supplementary Fig. 6a,b). Consistently, a phospho-
mimetic mutant at S1061 of the STIL STAN could interact with
MBP-HsSAS-6 in vitro even without being phosphorylated by
Plk4 (Supplementary Fig. 6c). On the other hand, introducing of a
phosphomimetic mutation at S1116 impaired Plk4-mediated
STIL/HsSAS-6 interaction in vitro, and centriolar targeting of
HsSAS-6 in human cells (Supplementary Fig. 6d and data not
shown). Given that the MS analysis revealed that this residue was
phosphorylated by Plk4 in vitro and also that it is found to be
phosphorylated in mammalian cells (PhosphoSitePlus database),
we favour the possibility that substitution of S1116 to D/E could
not mimic the phosphorylation state, but rather reduced the
function of STIL. However, alternatively, it is also possible that
S1116 is just critical for structural integrity of the STAN motif
and/or its function independently of being phosphorylated.
Taken together, we propose that S1061 and S1116 of STIL can be
the most important phosphorylation sites for the STIL/HsSAS-6
interaction and resulting centriolar targeting of HsSAS-6 in
procentriole formation.

Bimodal centriolar distribution of Plk4 during cell cycle. We
next hypothesized that the interaction between Plk4 and STIL
might have an influence on the centriolar recruitment and/or
maintenance of Plk4. To explore this possibility, we examined the
distribution of endogenous Plk4 (ref. 29) in U2OS cells released
from a nocodazole arrest and fixed at successive time points.
Intriguingly, we found a bimodal distribution of Plk4 at centrioles
depending on the cell cycle progression (Fig. 5a–c, Supplementary
Figs 1b and 7a,b). As previously reported30,31, we observed that
most of the cells exhibited one intense focus of Plk4 on each
parental centriole during prophase/metaphase (B90%, B0.3 mm
in diameter; Fig. 5a–c and Supplementary Fig. 7a,b), and also
that the signal intensity of the foci substantially declined around
telophase. However, in the next cell cycle, we detected
endogenous Plk4 localized in a ring-like manner around the
parental centrioles (B0.62 mm in diameter; Fig. 5a–c and
Supplementary Fig. 7a) and partially overlapped with a Cep152
ring, as a marker for parental centrioles (Fig. 5a)32,33.
Quantitative analyses indicated that the majority of cells in G1
phase harboured a ring-like pattern of endogenous Plk4 (B65%
at 8–10 h after the release; Fig. 5a,c). Remarkably, we further
found that the ring-like pattern of centriolar Plk4 changed back
into a dot on the parental centriole wall in G1/S phase (B52% as
a dot at 13 h after the release; Fig. 5a,c). Co-staining of
endogenous Plk4 and STIL revealed that when STIL localized
to centrioles in G1/S phase, centriolar distribution of Plk4 was
always restricted to a spot and largely overlapped with centriolar
STIL foci (Fig. 5a–c). We could hardly detect the existence of a

ring-like pattern of Plk4 with STIL foci at centrioles, suggesting
that they are mutually exclusive. In addition, we noted that STIL
and HsSAS-6 appeared to be loaded to the centrioles almost
concomitantly and precisely co-localized with each other (data
not shown)31. We therefore assumed that the existence of STIL
and HsSAS-6 might allow the conversion of the centriolar Plk4
ring into a dot.

To test this, we examined the centriolar distribution of Plk4
when STIL or HsSAS-6 was depleted from U2OS cells.
Interestingly, we found that most of the interphase cells depleted
of STIL or HsSAS-6 harboured the ring-like arrangement of
centriolar Plk4 while the cell cycle progression was not affected
(Plk4 ring; B18% for siCnt, B91% for siHsSAS-6 and B71% for
siSTIL; Fig. 5d,e, and Supplementary Figs 1a and 7c,d). In
addition, the expression of STIL DCC in STIL siRNA-treated cells
did not suppress the increase in the number of cells with a
ring-like pattern of centriolar Plk4 (B59% for siSTILþ empty
vector and B60% for siSTILþDCC; Fig. 5e and Supplementary
Fig. 7e), indicating that the existence of STIL and HsSAS-6 at
centrioles is required for the conversion of the centriolar Plk4
ring into a dot.

The interaction of Plk4 with STIL protects centriolar Plk4.
Given that the expression levels of Plk4 are known to be regulated
by trans-autophosphorylation that induces proteolytic degradation
by the E3 ubiquitin ligase Skp-Cullin-F-box containing
complex, SCFSlimb/b-TrCP and the ubiquitin–proteasome-depen-
dent pathway in D. melanogaster and mammalian cells27,28,34,35,
we hypothesized that the conversion of centriolar Plk4 followed by
centriolar STIL/HsSAS-6 loading might involve protein
degradation through the ubiquitin–proteasome pathway
mediated by the SCF complex or other E3 ligases. To address
this, we synchronized U2OS cells in G1/S phase with aphidicolin
and transiently treated with MG132, a proteasome inhibitor. In the
cells treated without MG132, endogenous Plk4 localized mostly as
a dot and resided with STIL foci at centrioles (Plk4 ring; B8%;
Fig. 6a,b and Supplementary Fig. 7f). In stark contrast, when
treated with MG132, majority of the cells harboured a complete
ring of Plk4 with STIL foci at the centrioles, which we could hardly
detect in normal cycling cells (Plk4 ring; B93%; Fig. 6a,b and
Supplementary Fig. 7c,f). In this situation, Plk4 proteins were
primarily enriched at the position overlapping with STIL foci as
compared with the rest of the ring. This implies that centriolar
STIL could interact with and protect Plk4 proteins from protein
degradation, whereas the residual centriolar Plk4 proteins are
normally degraded.

To address this model, we next investigated whether over-
expression of STIL full-length or mutant proteins stabilizes
centriolar Plk4. We found that whereas low expression of HA-
STIL full length in the cells depleted of endogenous STIL restored
the population of cells containing Plk4 dots at the centrioles,
overexpression of HA-STIL full-length, DSTAN or 5A mutant
proteins stabilized centriolar Plk4 as a ring overlapping with the
STIL proteins (Fig. 6c). Considering that the centriolar loading of
HsSAS-6 and procentriole formation were inhibited in the cells
expressing HA-STIL DSTAN or 5A mutant, this result suggests
that centriolar presence of STIL might be sufficient for stabilizing
centriolar Plk4 in this situation. Intriguingly, when expressing the
PACT-STIL DCC mutant that fails to interact with Plk4, but still
localizes to centrioles, we found that expression of the STIL
mutant proteins maintained centriolar Plk4 as a ring overlapping
with the STIL mutant proteins and recruited HsSAS-6 to
centrioles (Fig. 6c and Supplementary Fig. 7g). This result
suggests that PACT-STIL DCC can bypass the requirement of
STIL function for centriolar loading of HsSAS-6, and also that
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close-range presence of STIL and Plk4 at centrioles, or their
transient interaction could be critical for protecting centriolar
Plk4 from protein degradation and for centriolar recruitment of

HsSAS-6. However, we cannot exclude the possibility that
residual binding activity of overexpressed STIL DCC to Plk4
somehow managed to facilitate those events.
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Using biochemical analysis in human 293T cells, we next
sought to investigate whether STIL protects Plk4 from protein
degradation. Importantly, we demonstrated that expression of
STIL efficiently inhibited ubiquitination of Plk4DPEST-FLAG
WT (Fig. 6d). Given that the first PEST domain of Plk4 contains
the site recognized by the SCF complex25,34, the degradation
of Plk4DPEST proteins might be regulated by another E3
ubiquitin ligase. Furthermore, we found that expression of
STIL full-length stabilized Plk4DPEST-FLAG WT, whereas that
was not the case when co-expressing STILDN3, which lacks
the binding region to Plk4 (Fig. 6e). We also noted that STIL
seemed to stabilize activated Plk4DPEST-FLAG WT proteins
(p-Plk4DP) (Fig. 6e and Supplementary Fig. 7h). This is in
agreement with the observation that STIL preferentially interacts
with Plk4 WT rather than the kinase dead (Fig. 1). Taken
together, these data suggest that the interaction between STIL and

Plk4 protects Plk4 from protein degradation mediated by the
ubiquitin–proteasome pathway.

Discussion
In conclusion, our findings uncover a molecular basis for the onset
of centriole formation by demonstrating that direct association of
STIL with Plk4 and STIL phosphorylation by Plk4 lead to
centriolar loading of HsSAS-6 for cartwheel assembly (Fig. 7).
Furthermore, our study suggests a negative feedback model in
which centriolar STIL/HsSAS-6 recruitment limits centriolar
distribution of Plk4 to one site per parental centriole (Fig. 7 and
Supplementary Fig. 7i). This coordinated action promotes
formation of a single procentriole and, concurrently, could inhibit
formation of another procentriole, thus presumably contributing
to maintenance of one procentriole next to each parental centriole.
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How could phosphorylated STIL facilitate cartwheel assembly
by direct binding to HsSAS-6? It could be structurally critical for
the spatial arrangement and connection between HsSAS-6
homodimers. Indeed, it has been shown in D. melanogaster that
co-overexpression of DSas-6 and Ana2 induces formation of
highly ordered tubules with the structures reminiscent of the
centriolar cartwheel hub20. However, to drive centriole
overduplication through efficient centriolar recruitment of extra
DSas-6 and Ana2, additional co-expression with Plk4/Sak is
needed20. These observations are compatible with our findings,
implying that the interplay between the three key factors that we
demonstrated may underlie the centriole assembly pathway
across species. On the other hand, in C. elegans, given that the
interaction between SAS-5 and SAS-6 seems to be detectable
presumably even in the absence of ZYG-1 (refs 7,36), and also
that ZYG-1 can directly bind to37 and phosphorylate SAS-6
(ref. 38) for centriole assembly, the regulatory mechanism for
cartwheel assembly may be somehow different in this organism
along with its structural divergence of the centriole structure.

It has been recently shown that the expression levels of Plk4 are
regulated by trans-autophosphorylation that mediates proteolytic
degradation by the E3 ubiquitin ligase SCFSlimb/b-TrCP and the
ubiquitin–proteasome-dependent pathway in D. melanoga-
ster39,40 and mammalian cells27,28. The reduction of centriolar
Plk4 followed by centriolar recruitment of the STIL/HsSAS-6
complex seems to involve protein degradation through the
ubiquitin–proteasome pathway (Fig. 5d). It will be therefore
important in the future study to further investigate the detailed
mechanisms how the recruitment of STIL/HsSAS-6 allows
SCFSlimb/b-TrCP and/or other E3 ubiquitin ligases to target for
degradation of centriolar Plk4 proteins that do not form a
complex with STIL. Considering that physical association and co-
localization of Plk4 and STIL at one site on the parental centriole
wall is dependent on the kinase activity of Plk4, it is possible that
a complex formation between active Plk4 and STIL prevents Plk4
from undergoing protein degradation. Alternatively, any other
protein that STIL brings to centrioles may protect Plk4 from the
protein degradation. Furthermore, given that the presence of the
SAS-5/SAS-6 complex at centrioles is needed for the diminution
of centriolar ZYG-1 during interphase18, it is tempting to
speculate that the feedback mechanism that we demonstrated in
this study is a conserved system for tight control of centriole copy
number throughout evolution.

Based on the findings in this study, further study will be needed
to establish the structural model how the sequential physical
interactions between Plk4/STIL/HsSAS-6 proteins lead to the
assembly of a core structure for initiating cartwheel assembly.

Methods
Cell culture and cell lines. Human U2OS and HEK293T cells were obtained from
the European Collection of Cell Culture (ECACC). U2OS cells stably expressing
GFP-centrin1 were gifted from Bornens41. These cells were cultured in DMEM
supplemented with 10% fetal bovine serum at 37 �C in 5% CO2 incubator.

Cell cycle synchronization and flow cytometry analysis. For cell synchroniza-
tion at prometaphase, cells were treated with 100 ng ml� 1 nocodazole for 14 h,
washed three times with PBS and released in fresh medium. For cell cycle arrest in
G1/S phase, cells were treated with 2 mg ml� 1 aphidicolin for 24 h.

For flow cytometry analyses, cells cultured on dishes were trypsinized, washed
twice with PBS and fixed in 70% cold ethanol at � 20 �C at each time point. The
fixed cells were washed with PBS twice and incubated with Muse Cell Cycle
reagents at room temperature (RT) for 30 min. The DNA contents of the cells were
then measured using Muse Cell Analyzer (Merck Millipore). Flow cytometry
analysis was repeated at least two times.

Molecular biology and RNA interference. The following siRNAs were used:
Stealth siRNA (Life Technologies) against 30UTR of HsSAS-6 (50-GAGCU-
GUUAAAGACUGGAUACUUUA-30) and negative control Low GC Duplex no. 2
(12935110); custom siRNA (Sigma Genosys) against 30UTR of Plk4 (50-CTCCTTT
CAGACATATAAG-30); custom siRNA (JBios) against 30UTR of STIL (50-GTTT
AAGGGAAAAGTTATT-30).

pcDNA3 constructs encoding Plk4 full-length FLAG, a kinase-dead Plk4
[K41M]-FLAG, Plk4Plk4DPEST-FLAG and Plk4[K41M]DPEST-FLAG were
gifts from Dr Hiroyuki Mano. The mammalian expression constructs for
HA-STIL full-length, deletion mutants, alanine substitution mutants and
phosphomimetic mutants were created by insertion of subcloned fragments into
SpeI-digested modified pCMV5-HA vector or using PrimeSTAR mutagenesis
basal kit (TaKaRa). pcDNA3-Plk4DPEST–[DPB1]/[DPB2]/[DPB3]–FLAG
expression constructs were created using PrimeSTAR mutagenesis basal kit
(TaKaRa). Since expression levels of Plk4DPDPB3-FLAG were high compared
with those of the other Plk4 mutants used in Supplementary Fig. 1d, the
Plk4DPDPB3-FLAG plasmid was transfected into cells with half the amount
of the other Plk4 plasmids.

Transfection of siRNA or DNA constructs into U2OS and HEK293T cells was
performed using Lipofectamine RNAiMAX (Life Technologies) or Lipofectamine
2000 (Life Technologies) according to the manufacturer’s instructions. Unless
otherwise noted, transfected cells were analysed 48–72 h after transfection with
siRNA and 24 h after transfection with DNA constructs.

Antibodies. The following primary antibodies were used in this study: rabbit
polyclonal antibodies against STIL (Abcam, ab89314, indirect immnuno-
fluorescence (IF) 1:500, western blotting (WB) 1:1,000), Cep152 (Bethyl Labora-
tories, A302-480A, IF 1:1,000), HA-tag (Abcam, ab9110, IF 1:1,000, WB 1:1,000);
mouse monoclonal antibodies against centrin-2 (Millipore, 20H5, IF 1:1,000),
HsSAS-6 (Santa Cruz Bio-technology, Inc., sc-81431, WB 1:1,000), Plk4 (Merck
Millipore, clone 6H5, MABC544, IF 1:500), FLAG-tag (Sigma, F1804, IF 1:1,000,
WB 1:1,000), HA-tag (Covance, MMS-101P, WB 1:500) and a-tubulin (Sigma,
DM1A, WB 1:2,000). P-S1061 rabbit antibodies were raised against Cþ
NGVDL[pS]MEAN, where [pS] is a phosphorylated serine residue (Eurofins
Operon). The following secondary antibodies were used: Alexa Fluor 488 goat anti-
mouse IgG (Hþ L) (Molecular Probes, 1:500), Alexa Fluor 568 goat anti-rabbit IgG
(Hþ L) (Molecular Probes, 1:500) for IF; goat polyclonal antibodies horseradish
peroxidase against mouse IgG (Promega, W402B, 1:5,000), rabbit IgG (Promega,
W401B, 1:5,000) for WB.

STIL

STIL
phosphorylation

P

Plk4
degradation

Plk4
stabilization

Cartwheel (HsSAS-6)
assembly

A single procentriole
formation

Plk4

ONOFF

Ring Dot

Figure 7 | Model suggesting how the formation of a single procentriole per each parental centriole is controlled. Direct association of STIL with

Plk4 and STIL phosphorylation by Plk4 occur at the onset of centriole formation. Phosphorylated STIL directly binds to HsSAS-6, which leads to centriolar

loading of HsSAS-6 for cartwheel assembly. Centriolar loading of the STIL/HsSAS-6 complex limits centriolar distribution of Plk4 to one site

per each parental centriole. This coordinated action could ensure formation of a single procentriole per each parental centriole and, concurrently, inhibit

formation of another procentriole.
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Indirect immunofluorescence and immunoblotting. For indirect immuno-
fluorescence microscopy, the cells cultured on coverslips were fixed using � 20 �C
methanol for 10 min. The cells were then permeabilized with PBS/0.05% Triton
X-100 (PBSX) for 5 min, washed with PBS three times and incubated for blocking
in 1% BSA in PBSX for 30 min at RT. The cells were then incubated with primary
antibodies for 3 h at RT, washed with PBSX three times and incubated with sec-
ondary antibodies for 1 h at RT. The cells were thereafter washed with PBSX twice,
stained with 0.2 mg ml� 1 Hoechst 33258 (Dojindo) in PBS for 5 min at RT, washed
again with PBSX and mounted onto glass slides. Counting the number of immu-
nofluorescence signals was performed by using an Axioplan2 fluorescence micro-
scope (Carl Zeiss) with a � 100/1.4 numerical aperture plan-APOCHROMAT
objective. Data acquisition for the images and quantification of the signal intensity
were performed using DeltaVision Personal DV-SoftWoRx system (Applied Pre-
cision) equipped with a CoolSNAP CH350 CCD camera. The images were acquired
as serial sections along the z axis and stacked using the ‘quick projection’ algorithm
in SoftWoRx. The signal intensities of centriolar Plk4, STIL and HsSAS-6 were
quantified using the Data Inspector tool in SoftWorx. The captured images were
processed with Adobe Photoshop CS5.1 (version 12.1). We assessed cells from
several fields for each experiment, and we were normally blinded to the sample ID
during experiments and outcome assessment. Once a field was determined, we
counted all cells that matched with the criteria within the field. In the experiments
using the cells expressing HA-tagged full-length or mutants of STIL, we counted
cells adequately expressing the STIL proteins at comparable levels and excluded
cells expressing the STIL proteins at low levels or cells excessively expressing the
STIL proteins.

For preparation of human cell lysates for immunoblotting, cells were collected,
washed in PBS and lysed by vortexing at 4 �C in lysis buffer (20 mM Tris/HCl pH
7.5, 50 mM NaCl, 1% Triton X-100, 5 mM EGTA, 1 mM dithiothreitol (DTT),
2 mM MgCl2 and 1/1,000 protease inhibitor cocktail (Nakalai Tesque)). Lysates
were cleared by centrifugation for 10 min at 13,000 r.p.m. at 4 �C and the
supernatant was collected. SDS–polyacrylamide gel electrophoresis (SDS–PAGE)
was performed using 7–12% polyacrylamide gels, followed by transfer on
Immobilon-P membrane (Millipore Corporation). The membrane was probed with
the primary antibodies, followed by incubation with their respective horseradish
peroxidase-conjugated secondary antibodies (Promega). Washes were performed
in PBS containing 0.02% Tween. The signal was detected as Chemi Doc XRSþ
(Bio-Rad). Signal intensity of immunoreactive bands was measured using Adobe
Photoshop. Full scan images of the western blots and gels used in the main figures
are shown in Supplementary Fig. 8. Unless otherwise specified, the experiments of
western blotting were repeated at least three times. In Figs 3c,e and 4b, and
Supplementary Figs 2c–e, 4b,c, 5a and 6a were repeated at least two times.

Immunoprecipitation. For preparing whole-cell lysates of HEK293T cells, cells
were washed by PBS and lysed in ice-cold lysis buffer. The lysates were vortexed for
40 min at 4 �C, and insoluble material was removed after centrifugation for 10 min.
For immunoprecipitation of FLAG-tagged Plk4 proteins, whole-cell lysates were
incubated with FLAG antibody-conjugated M2 agarose (Sigma) for 2 h at 4 �C.
Since the expression levels of FLAG-Plk4 proteins in the cells were very low, we
monitored them by using the Flag immunoprecipitation instead of using the input
materials. For HsSAS-6 immunoprecipitation, whole-cell lysates were incubated
with protein G sepharose for 1 h at 4 �C for preclear, and then incubated for 2 h at
4 �C with protein G agarose that had been incubated with anti-HsSAS-6 antibodies.
In both cases, the beads were washed at least four times with lysis buffer and
resuspended in SDS sample buffer before loading onto a SDS–PAGE gel.

In vitro kinase assay and MBP pull-down assay. For in vitro kinase assay,
HEK293T cells were transfected with Plk4DPEST-FLAG WT or kinase-dead using
Lipofectamine 2000 (Invitrogen). After 24 h, cells were harvested, treated with lysis
buffer (20 mM Tris/HCl, pH 7.5, 150 mM NaCl, 0.5% Triton X-100, 1 mM DTT,
2 mM MgCl2 and 1/1,000 protease inhibitor cocktail (Nacalai Tesque)) and the
lysates were immunoprecipitated with beads conjugated to FLAG antibodies. The
beads were washed four times with lysis buffer supplemented with additional
500 mM NaCl and twice with kinase buffer (20 mM Tris HCl (pH 7.5), 150 mM
NaCl and 1 mM DTT). The beads were then incubated with bacterially expressed
recombinant proteins of STIL fragments thereof in 30 ml kinase buffer containing
10 mM MgCl2 and 30mM ATP without or with 5 mCi [g-32P] ATP. Kinase reac-
tions were performed at 30 �C for 15–90 min and terminated by adding SDS
sample buffer. Proteins were separated by SDS–PAGE, stained with SimplyBlue
Safe (Invitrogen) and phosphorylation was visualized by autoradiography
(Typhoon FLA 9000, GE Healthcare). After the kinase reaction, the resulting
materials were subsequently processed for in vitro binding assay with MBP-HsSAS-
6 proteins. In vitro kinase assays for Fig. 3a and Supplementary Fig. 3b were
repeated three times.

For in vitro MBP pull-down assays in Fig. 2d,e and Supplementary Fig. 2c, after
the kinase reaction, the supernatant and eluted fraction with FLAG peptides
(Sigma) both of which contained phosphorylated STIL N3C proteins were
collected. For other in vitro MBP pull-down assays, only the supernatant was
collected. The resulting fractions were then incubated with MBP-HsSAS-6 full
length purified from baculovirus/insect cell expression system and thereafter pulled
down using amylose resin (New England Biolabs). Input and the protein complexes

pulled down with the resins were analysed by western blotting using STIL, HA,
FLAG or HsSAS-6 antibodies.

DNAs encoding fragments of human STIL were cloned in pGEX system vectors
(GE Healthcare) encoding for glutathione S-transferase (GST) tags. The
recombinant protein expression of the fragments was performed in E. coli strain
BL21 gold (DE3) in LB medium. Protein expression was induced at 22 �C by
addition of 0.3 mM isopropyl-b-D-thiogalactoside and allowed to proceed for 18 h.
Cell pellets were lysed by lysozyme treatment and sonication, resuspended in lysis
buffer containing 50 mM Tris HCl (pH 7.5), 150 mM NaCl, 2 mM MgCl2, 5 mM
EDTA, 1 mM DTT, 1:500 protease inhibitor cocktail (Nacalai Tesque) and 0.5%
Triton X-100. The lysates were incubated with Glutathion sepharose beads (GE
Healthcare). The beads were then washed 10 times with lysis buffer supplemented
with additional 500 mM NaCl. For preparing STIL fragments, proteins were eluted
from the beads by removal of the GST tags by PreScission Protease (GE
Healthcare) in a cleave buffer containing 20 mM Tris HCl (pH 7.5), 150 mM NaCl
and1 mM DTT. For in vitro MBP pull-down assays in Figs 2g and 4b, and
Supplementary Figs 2e and 6c,d, GST-fused STIL fragments were eluted by 10 mM
glutathione in the cleave buffer.

Since it was not feasible to obtain soluble fraction of GST-fused HsSAS-6 full-
length proteins from bacteria, we generated MBP-fused HsSAS-6 full-length
proteins using Baculovirus Expression System with Gateway Technology
(Invitrogen). In brief, DNA encoding HsSAS-6 full length was cloned into a
modified pENTR-1A-5Myc-MBP vector. The expression clone was obtained from
the entry clone and a pDEST vector through gateway cloning strategy. The
recombinant bacmid was then obtained from DH10Bac E. coli cells transformed
with the expression vector, and subsequently transfected to Sf9 insect cells with
Cellfectin II reagent (Invitrogen). The titre of recombinant baculovirus was
amplified by repeated infection to Sf9 cells. MBP-5Myc-HsSAS-6 full-length
proteins were purified from 1 l (B2� 106 ml–1) culture of the Sf9 cells infected
with sufficiently amplified baculovirus for 3 days. The procedure for protein
purification was similarly done with amylose resin as described above for GST-
fusion proteins.

Mass spectrometry. For MS analysis, to identify Plk4-phosphorylated residues of
STIL, the STIL proteins phosphorylated by Plk4DPEST-FLAG in vitro were
digested into shorter peptides in solution by trypsin. The peptides were subse-
quently desalted and analysed by a nanoLC-linear ion trap-orbitrap mass spec-
trometer. MS analysis was repeated two times.

Yeast two-hybrid analysis. Yeast strain L40 (a gift from Masato Kanemaki) was
grown in complete medium (yeast extract peptone dextrose; (YPD)) and trans-
formed with a modified version of the vectors pSM671 (bait) and pSM378 (prey;
gifts from Satoru Mimura) that contained full length or fragments of Plk4 or STIL.
Positive colonies were cultured on yeast plate without leucine and tryptophan (SD–
L/–W) in the presence of histidine overnight. On the next day, cells were streaked
on SD–L/–W without histidine plates supplemented with 50 mM 3-amino-triazol.
Two independent colonies were streaked per sample. Plates were placed at 30 �C
for 3 days. Yeast two-hybrid analysis was repeated at least three times.
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