
Contents lists available at ScienceDirect

Cellular Immunology

journal homepage: www.elsevier.com/locate/ycimm

Research paper

Macrophages and lipid metabolism

Anneleen Remmeriea,b, Charlotte L. Scotta,b,c,⁎

a Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium
bDepartment of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
c Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK

A R T I C L E I N F O

Keywords:
Macrophages
Lipid metabolism
NAFLD
PAP
Atherosclerosis
AMD

A B S T R A C T

Distinct macrophage populations throughout the body display highly heterogeneous transcriptional and epi-
genetic programs. Recent research has highlighted that these profiles enable the different macrophage popu-
lations to perform distinct functions as required in their tissue of residence, in addition to the prototypical
macrophage functions such as in innate immunity. These ‘extra’ tissue-specific functions have been termed
accessory functions. One such putative accessory function is lipid metabolism, with macrophages in the lung and
liver in particular being associated with this function. As it is now appreciated that cell metabolism not only
provides energy but also greatly influences the phenotype and function of the cell, here we review how lipid
metabolism affects macrophage phenotype and function and the specific roles played by macrophages in the
pathogenesis of lipid-related diseases. In addition, we highlight the current questions limiting our understanding
of the role of macrophages in lipid metabolism.

1. Introduction

Macrophages (Mϕs), first described over a century ago by Ellie
Metchnikoff, are found in most tissues of the body. Originally proposed
by Van Furth to be part of the mononuclear phagocyte system, origi-
nating from bone marrow (BM) derived monocytes [1], it is now clear
that tissue-resident Mϕs are derived during embryogenesis from yolk-
sac Mϕs and/or fetal liver monocytes [2–6]. However, in accessible
tissues, such as the liver and spleen, BM monocytes can engraft and
contribute to the tissue-resident Mϕ pool during both the neonatal
window and in certain tissues, such as the intestine, during adulthood
[7–12].

The term macrophage is derived from the Greek words makros and
phagein and literally means ‘big eater’. While Mϕs are specialised in
phagocytosis, this is not their only role. Rather Mϕs perform an array
of functions during the innate immune response and in the initiation
of inflammation, as well as contributing to tissue development,
homeostasis and repair. While the precise contribution of origin to
tissue-resident Mϕ function is an ongoing question, there is con-
siderable evidence that origin may not be the deciding factor in de-
termining function. All Mϕ progenitors were shown to be capable of
generating functional lung Alveolar Mϕs (AMs) when transferred into
neonatal Csf2rb2-/- mice [13] and similarly in the liver, the tran-
scriptional profile of monocyte-derived Kupffer cells (KCs) was highly
homologous to the profile from their embryonic counterparts [8].

Thus, it seems that the local environment into which the progenitor
enters decides the fate and functions of the differentiated Mϕ [7].
Crucially, Mϕs in each tissue display unique epigenetic landscapes
contributing to specialised transcriptional profiles [8,14,15] sug-
gesting that each tissue-resident Mϕ population will have some
functions that are specific for their tissue of residence. For example,
splenic red pulp macrophages are specialised in iron acquisition and
metabolism [16,17], Muscularis Mϕs in the intestine function to
regulate gastrointestinal motility [18], Peritoneal Mϕs have been
reported to contribute to the recruitment of B1 cells to the peritoneal
cavity through their expression of CXCL13 [19], Mϕs in the bone,
termed osteoclasts, are specialised in bone resorption [20] and mi-
croglia in the brain function in the synaptic ‘pruning’ crucial in the
development and maintenance of the central nervous system [21].
These additional functions which benefit the organ have been dubbed
‘accessory’ functions [22]. One such accessory function of some
tissue-resident macrophages is lipid metabolism. Although required
by most macrophages to deal with the lipids they acquire through the
phagocytosis of dying cells, it is clear from the transcriptional profiles
of different tissue-resident macrophages that some, namely the AMs
and KCs, are more highly specialised in this function than others
[8,15]. This is a crucial function of these Mϕs as defective or absent
lipid metabolism can result in several pathologies including pul-
monary alveolar proteinosis (PAP, see below) in the lung. Moreover,
development of pathologies can also lead to the recruitment of
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inflammatory monocyte-derived Mϕs (moMϕs) which take up and
subsequently need to be able to process lipids potentially having
dramatic effects on disease progression and patient outcome such as
in atherosclerotic plaques. Thus, in this review, we will discuss the
roles of both tissue-resident and recruited moMϕs in lipid metabolism
in different tissues, the factors governing lipid metabolism functions
in these Mϕs and the role of lipid metabolism by macrophages in the
context of disease pathogenesis. Finally, we will highlight, what we
believe to be the major burning questions that remain to be addressed
in this area.

2. Lipid metabolism

2.1. Lipid metabolism pathways

The primary function of lipid metabolism is to deliver lipids to
peripheral tissues for use or to return lipids to the liver for recycling or
clearance. There are 3 main pathways of lipid metabolism: exogenous,
endogenous and reverse cholesterol transport. The exogenous pathway
is used to process dietary lipids. The endogenous pathway refers to the
processing of lipids synthesised in the liver and the process of removing
cholesterol from tissues and returning it to the liver is termed reverse
cholesterol transport. These pathways are summarised in Fig. 1A. In the
exogenous pathway, digested dietary fats; triglycerides (TGs) and
cholesterol are packaged into chylomicrons in intestine epithelial cells.
These packages are then released into the lymphatic system, acquire
Apolipoprotein (Apo)B and subsequently get into the circulation. In the
circulation, they acquire ApoC-II, ApoC-III and ApoE at different con-
centrations [23]. ApoC-II is recognised by adipose tissue where lipo-
protein lipase (LPL) hydrolyses TGs releasing free fatty acids for cellular
uptake and releasing chylomicron remnants into the bloodstream.
These chylomicron remnants are removed from the plasma through
remnant receptors on the liver [24]. In the endogenous pathway, the
liver synthesises very low-density lipoprotein (VLDL) packages con-
taining TGs and cholesterol assembled with ApoB. VLDLs are hydro-
lysed in fat tissue by LPL into VLDL remnants (or IDLs) and free fatty
acids for cellular uptake. IDLs are then hydrolysed by hepatic lipases to
low density lipoproteins (LDLs). LDLs transport most cholesterol.
Binding of LDLs to their receptors (LDLRs) results in their uptake and
release of free cholesterol. Remaining LDLs can be bound by free ApoA
secreted by the liver forming Lipoprotein A. This can then bind to the
extracellular matrix thus being deposited in vessels leading to athero-
sclerosis under conditions of excess LDL [25].

Reverse cholesterol transport then returns cholesterol to the liver.
This is crucial for homeostasis as most cells in peripheral organs
cannot catabolize cholesterol [26]. The liver and intestines also se-
crete lipid poor ApoA-I. This is lipidated in the circulation via cho-
lesterol efflux by transporters located in peripheral tissues and mac-
rophages [27]. Acquiring cholesterol generates mature high-density
lipoproteins (HDLs). Cholesterol is then selectively removed from the

particle by the liver. Excess cholesterol is then excreted into the bile
and lipid poor HDL is hydrolysed or returned to circulation for re-
lipidation [23,27] (Fig. 1A).

2.2. Macrophages and reverse cholesterol transport

The same mechanisms that have evolved to enable macrophages to
protect the body from infection, such as phagocytosis of pathogens, also
renders macrophages key players in lipid metabolism. As macrophages
readily take up lipoproteins from dying cells, they have also evolved
mechanisms for eliminating cholesterol from the cell. If excess choles-
terol is not eliminated from macrophages, this leads to the generation of
foam cells. Such foam cells are a contributing factor in the development
and rupture of atherosclerotic plaques [28] (see below). Macrophages
possess 4 distinct pathways for exporting free cholesterol to HDLs; 2
passive and 2 active [26]. Macrophages take up LDL, VLDL and oxidised
lipoproteins, via macropinocytosis, phagocytosis and scavenger re-
ceptor-mediated pathways (Fig. 1B) [29]. Ingested lipids are digested in
the lysosome, generating free cholesterol and free fatty acids. Free
cholesterol can then be re-esterified in the endoplasmic reticulum (ER)
to cholesterol fatty acid esters enabling it to be stored in the cytosol in
lipid droplets generating the ‘foam’ of foam cells (Fig. 1B) [30]. Alter-
natively, free cholesterol can be effluxed from the cell at the plasma
membrane. Accumulation of cellular cholesterol leads to activation of
several transcription factors (TFs) (see below) including the liver X
receptor α and β (Lxra, Lxrb), the retinoid x receptor (Rxr) and mem-
bers of the peroxisome proliferator-activated receptor (Ppar) family
including Ppara and Pparg [31,32]. Lxr and Rxr form heterodimers and
these TFs upregulate the expression of the ATP-binding cassette sub-
family A member 1 (ABCA1) and ABCG1 [33–35]. These transporters
regulate the efflux of free cholesterol to lipid poor ApoA-I and other
poorly lipidated apolipoproteins to eventually form mature HDLs [36]
(Fig. 1B), although the precise contribution of ABCG1 in vivo remains
controversial [33,37,38]. Alternatively, passive efflux of free choles-
terol can also occur either via simple diffusion (aqueous diffusion
pathway) or facilitated diffusion (SR-BI-mediated pathway) (Fig. 1B)
[26].

2.3. Fatty acid oxidation

Lipid metabolism results in the generation of free fatty acids that are
subsequently taken up by different cells. Additionally, as described
above, macrophages can acquire lipids through scavenger receptors
such as CD36 on their surface. Such lipids are then degraded in the
lysosome via the action of lysosomal acid lipase into free cholesterol
and fatty acids, in a process termed lipolysis [39]. While cholesterol is
exported from the cell to HDLs, the fatty acid oxidation (FAO) pathway
enables the fatty acids to subsequently be converted in the mitochon-
dria into numerous products that the cell can use to generate energy
such as acetyl-coenzyme A, NADH and FADH2. Initially fatty acids in

Fig. 1. Overview of Lipid Metabolism and Macrophages. (A) The 3 pathways of Lipid Metabolism are the exogenous pathway (blue), the endogenous pathway (red) and reverse
cholesterol transport (black). In the exogenous pathway, chylomicrons from the intestine are released into lymph and enter the bloodstream and subsequently adipose tissue. Here,
through the action of lipoprotein lipase these are degraded into free fatty acids and chylomicron remnants which go back into circulation and then enter the liver through remnant
receptors to be subsequently degraded into free fatty acids and cholesterol. In the endogenous pathway, VLDLs are exported from the liver to the circulation and adipose tissue where they
are degraded again through the action of lipoprotein lipase into free fatty acids and IDL, which then binds the IDL receptor converting IDL to LDL. LDLs then bind to the LDL receptor
delivering cholesterol to peripheral tissues as well as returning it to the liver. In the reverse cholesterol pathway, excess cholesterol is returned via HDL to the liver to be excreted in the
bile. (B) Macrophages take up LDL, VLDL and oxidised lipoproteins via macropinocytosis, phagocytosis and scavenger receptor-mediated pathways including LOX-1, SR-A1, CD36 and SR-
B1. Free cholesterol and fatty acids are generated following degradation of ingested lipids in the lysosome. Such cholesterol can be utilised to form lipid rafts. Accumulation of cellular
cholesterol leads to activation of several transcription factors, including PPARγ, LXRs and RXRs which subsequently regulate expression of their target genes including transporters such
as ABCA1 and ABCG1 which regulate the efflux of free cholesterol and scavenger receptors. Alternatively, passive efflux of free cholesterol can also occur. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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the cytosol are ‘activated’ via an enzyme-mediated reaction with ATP to
generate fatty acid acyl-CoA [40]. These then enter the mitochondria
either via passive diffusion (short-chain fatty acids) or via the carnitine
shuttle whereby medium/long chain fatty acids are conjugated to car-
nitine via the enzyme activity of carnitine palmitoyl transferase 1A
(CPT1A) and transported into the mitochondria. Once there, CPT2 re-
moves the carnitine and β -oxidation of the fatty acid acyl-CoA occurs
[40,41]. This yields large amounts of acetyl-CoA, NADH and FADH2

that are subsequently used in the TCA cycle and electron transport
chain to generate ATP.

2.4. Fatty acid synthesis

For a cell to grow and proliferate lipids are required. If the lipid
levels in the cell are not sufficient then the fatty acid synthesis (FAS)
pathway can be initiated in the cytoplasm to allow cells to generate
lipids from precursors derived from other cell intrinsic metabolic
pathways including the TCA cycle, glycolysis and the pentose-phos-
phate pathway [40,41]. mTOR signalling promotes FAS through the
induction of sterol regulatory element binding protein (SREBP) a
transcription factor (see below) which in turn induces fatty acid syn-
thase (FASN) and acetyl CoA carboxylase (ACC) [42].

3. Macrophage function and fatty acid metabolism

As mentioned above, recent studies have highlighted that the local
environment in which the macrophages reside rather than their origin
likely governs their function [8,13]. In terms of function, macrophages
are often divided into discrete subsets termed M1 or classically acti-
vated and M2 or alternatively activated macrophages. M1 macro-
phages are characterised by high levels of pro-inflammatory cytokines
and, because of their substantial production of reactive oxygen and
nitrogen species, are highly microbicidal. Consistent with this they
also promote Th1 type responses. Conversely M2 macrophages are
described as predominantly anti-inflammatory and are associated with
wound healing, tumour growth, helminth infections and Th2 type re-
sponses. Importantly, this classification has been made based on in
vitro studies and recent work highlighting the heterogeneity amongst
in vivo tissue-resident macrophage populations has demonstrated that
this classification of macrophage subtypes is over-simplistic [43].
Nonetheless, while in vivo macrophages likely represent a spectrum
between the defined M1 and M2 phenotypes in vitro, this classification
has allowed significant advances to be made in understanding the
metabolic programming of the different macrophage functions. There
is accumulating evidence that different metabolic pathways are re-
quired for programming M1 and M2 Mϕs (for reviews see
[40,41,44,45]), Here, we will focus on the role played by FAO and FAS
in Mϕ polarization.

There appears to be a reciprocal relationship between the differ-
entiation of M1 and M2 Mϕs and their requirement for FAS and FAO
respectively. Inflammatory signals including LPS and IFNγ, that are
required to generate M1 Mϕs, have been shown to drive FAS [46,47],
while the inhibition of inflammatory signals required for the differ-
entiation of M2 Mϕs involves FAO [40,48,49]. Intriguingly, cellular
longevity is also thought to be supported by FAO [50,51], thus it is
tempting to speculate that this may also be true in tissue-resident
macrophages which are renowned as long-lived self-renewing cells
(Reviewed in [2,52]), however this remains to be examined. The IL4
induced M2 phenotype is dependent upon signal transducer and ac-
tivator of transcription 6 (STAT6) and the peroxisome proliferator-
activated receptor γ (PPARγ) and its coactivator 1b (PGC1b) [53,54].
Moreover, epigenetic reprogramming through the activity of

demethylating enzymes such as JMJD3 plays a role in M2 polarization
[45,55,56]. Inhibition of FAO, using pharmacological inhibitors such
as Etomoxir, prevents M2 activation and overexpression of PGC1b
prevents an M1 response following stimulation with LPS and IFNγ
[39,53]. The source of the fatty acids enabling FAO in M2 Mϕs has
been shown to derive from uptake via the CD36 receptor (which is
induced by IL4) and subsequent lysosomal lipolysis mediated by ly-
sosomal acid lipase (which can be further induced by IL4) [39].
Moreover, fatty acids fueling FAO can be generated through glycolytic
metabolism as M2 Mϕs consume more glucose and glutamine than
naïve Mϕs and glutamine deprivation has been shown to impair M2
polarization [57–60]. Consistent with this, it has recently been re-
ported that α -ketoglutarate generated from glutaminolysis can pro-
mote M2 activation by augmented FAO via Jmjd3-dependent meta-
bolic and epigenetic reprograming [60]. However, the precise role of
FAO in driving M2 polarization is currently under scrutiny as genetic
ablation of Cpt2 (the enzyme which removes carnithine allowing β-
oxidation of the fatty acid in the mitochondria to occur), in Mϕs using
LysMCRExCpt2fl/fl mice does not impair M2 polarization in bone
marrow-derived Mϕs or peritoneal Mϕs [61]. The discrepancy be-
tween the data using Etomoxir or genetic ablation of Cpt2 could be
ascribed to off target effects of Etomoxir which is thought to inhibit
CPT1a (which transports long-chain fatty acids in the mitochondria)
or a role for CPT1a outside of FAO but further work is required to
determine this. Alternatively, this finding may represent a short-
coming of the LysM CRE transgenic mouse model, which does not
efficiently target all Mϕs. Importantly, while the exact role of FAO in
inducing the M2 phenotype requires further study, increasing FAO in
lipid laden foam cells such as those observed in atherosclerosis (see
below) by enforcing CPT1a expression can reduce lipid accumulation
as well as the production of pro-inflammatory cytokines [62] sug-
gesting that inducing FAO in foam cells could be of therapeutic po-
tential.

4. Transcription factors modulating lipid metabolism activity in
Macrophages

While the M1/M2 classification holds in vitro, the situation is more
complex in vivo. In recent years, it has become clear that different
tissue-resident Mϕ populations have distinct transcriptional, epigenetic
and metabolic profiles [8,14,15,44,45]. These profiles arise as a result
of the complex and distinct myriad of signals these Mϕs receive in each
tissue. These tissue-specific signals also impart ‘so-called’ accessory
functions on these Mϕ populations [22,63], that the Mϕs must perform
in addition to more general Mϕ functions such as phagocytosis. Al-
though all Mϕs take up and process lipids to some extent, lipid meta-
bolism could be viewed as one such accessory function of Mϕs as the
transcription profiles of lung alveolar Mϕs (AMs) and liver Kupffer cells
(KCs) are both enriched for this function compared with other Mϕ
populations [8,15]. Several transcription factors (TFs) are associated
with the specific accessory functions of Mϕs. In terms of lipid meta-
bolism, such TFs expressed by the different Mϕ populations include the
Liver-X family of receptors (LXRs), Peroxisome proliferator-activated
family of receptors (PPARs), CCAAT enhancer binding proteins (C/
EBPs) and sterol regulatory element binding proteins (SREBPs) (See
Table 1). In addition, although not a TF, Micro-RNA 33 (miR-33) has
also been implicated in regulating lipid metabolism in macrophages
and hence will also be discussed here.

The liver X receptors (LXRα and LXRβ, encoded by Nr1h3 and
Nr1h2 respectively), form part of the nuclear receptor family of TFs.
LXRs bind to DNA as heterodimers with RXRs and as such the activity of
the heterodimer can be modulated by ligands of either partner. LXRβ is
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relatively ubiquitously expressed while LXR α is more restricted in its
expression being found predominantly in metabolic tissues such as the
liver and adipose tissue and in tissue-resident macrophages [64]. More
specifically, LXRα is highly expressed in splenic macrophages and liver
Kupffer cells [8,14,15]. This is reflected in the gene expression profiles
of these cells which include numerous LXRα target genes including Cd5l
[8,15]. Analysis of F4/80, CD68 and CD169 expression in LXRα/β
double KO mice revealed that LXRs are required for presence of splenic
marginal zone macrophages but not other macrophages including liver
Kupffer cells (at least based on the expression of these common Mϕ
surface markers) despite their high expression of these TFs [65]. The
main function of LXRs is as cholesterol sensors, regulating gene ex-
pression in response to specific oxysterol ligands [66]. In macrophages,
such oxysterols may be derived from internalized oxLDL or generated
intracellularly through modification of cholesterol [67,68]. Perhaps the
best-known function of LXRs is in the regulation of reverse cholesterol
transport (see above). In macrophages, LXRs reduce cellular cholesterol
levels by regulating the expression of the cholesterol efflux transporters
ABCA1 and ABCG1 [69–73]. In addition to inducing expression of
cholesterol efflux transporters, LXR signalling can induce the expression
of apolipoproteins such as ApoE and ApoC which serve as receptors for
cholesterol [74,75]. The importance of apolipoproteins in macrophage
cholesterol efflux is evident as mice lacking ApoE specifically in mac-
rophages are more susceptible to atherosclerosis [76]. Increased pro-
duction of lipoprotein remodeling proteins including LPL is a further
mechanism by which LXRs function in macrophages to reduce the
cholesterol burden [77]. Finally, it has also been reported that LXR
induced expression of Idol in macrophages can induce LDLR ubiquiti-
nation leading to its degradation via the proteasome and subsequently
reduced LDL cholesterol binding and uptake [78]. In addition to re-
ducing cholesterol levels, several studies have also implicated LXRs in
the modulation of glucose metabolism and in innate and adaptive im-
mune responses. In macrophages, the latter equates to LXR activation
limiting the production of inflammatory mediators such as iNOS and
Cox2 [79,80].

The peroxisome proliferator-activated receptors (PPARs) family of
transcription factors are a nuclear hormone receptor superfamily,
having established roles in lipid metabolism. PPARs, like LXRs are ac-
tive when heterodimerised with RXRs [81]. The family includes PPARα,
associated with hepatic and cardiac lipid metabolism, the ubiquitously
expressed PPARβ (also known as PPARδ) and PPARγ, which is highly
expressed in adipose tissue, where it is essential for adipocyte

differentiation [82], and macrophages and hence will be the focus of
this review. PPARγ is highly expressed in AMs in the lung [15,83,84].
Here it is induced by CSF-2 signalling and is required for AM devel-
opment and maintenance [84,85]. It is also expressed (albeit at lower
levels) by splenic red pulp Mϕs and Kupffer cells [8,84], although the
role of PPARγ in these cells under homeostatic conditions remains
unknown. In addition to being expressed by these tissue-resident Mϕ
populations, it has been reported that PPARγ expression is upregulated
in Ly6Chi monocyte derived Mϕs recruited to the peritoneum following
thioglycollate treatment [84]. Functionally, PPARγ has been suggested
to control the inflammatory potential of Mϕs being implicated in
driving M2 polarization of Mϕs as well as inhibiting pro-inflammatory
gene expression including IL1 β, IL6, TNF α, IL12 and iNOS [54,86,87].
This is fitting with results showing that if PPARγ is lost from Mϕs re-
cruited to the peritoneum following thioglycollate treatment, resolution
of inflammation is impaired [84]. However, more recently PPARγ has
also been shown to be required for uptake of apoptotic cells by Mϕs
[88], providing an alternative mechanism through which PPARγ in Mϕs
contributes to the resolution of inflammation. In addition, perhaps the
best-known role of the fatty acid receptor, PPARγ, is in cholesterol
metabolism. PPARγ has been shown to regulate lipid accumulation in
Mϕs in atherosclerotic plaques. It achieves this by regulating expression
of the scavenger receptors involved in lipid uptake, CD36 and SR-A
[86,89], as well as (through activating LXRα) regulating expression of
cholesterol efflux genes including the transporters ABCA1 and ABCG1
[90,91] (see above). As a result of this function, low or absent ex-
pression of PPARγ in Mϕs is associated with increased atherosclerosis
[90,92] and insulin resistance [54].

The C/EBP family of TFs are basic region-leucine zipper (bZIP)
proteins. This family of proteins have been associated with adipose
tissue development [93], regulation of glucose and lipid metabolism
[94] as well as M2 Mϕ polarization [95]. Although the roles of C/EBPs
in lipid metabolism in Mϕs are not as well characterised as PPARs and
LXRs, we are beginning to understand the role played by one family
member C/EBPβ. In terms of tissue-specificity amongst Mϕs, C/EBPβ is
expressed by most tissue-resident Mϕ populations [15]. However, to
date it has only been suggested to be required for the presence of lung
AMs and large peritoneal Mϕs (LPMs), as C/EBPβ -/- mice appear to lack
both of these populations on the basis of their expression of a number of
typical surface markers [96]. Notably, C/EBPβ is also required for the
differentiation of Ly6Clo monocytes from their Ly6Chi counterparts
[97], a process crucial in the pathogenesis of atherosclerosis (see

Table 1
Overview of TFs modulating lipid metabolism in macrophages.

TF Role(s) in lipid metabolism Role(s) in macrophages Reference(s)

LXRs Cholesterol sensors
Reverse cholesterol transport

Expressed by Splenic marginal zone Mϕs and Kupffer cells
Reduce cellular cholesterol levels
Modulation of glucose metabolism
Limiting the production of inflammatory mediators
Regulates presence of splenic marginal zone Mϕs

65–75, 79, 80

PPARγ Required for adipocyte differentiation
Regulates expression of scavenger receptors involved in lipid
uptake
Regulates expression of cholesterol efflux genes (with LXRα)

Expressed by Alveolar Mϕs, Kupffer cells and Splenic Red Pulp Mϕs,
Required for Alveolar Mϕ development & maintenance
Implicated in M2 polarization
Inhibits pro-inflammatory gene expression
Required for apoptotic cell engulfment

82–92

C/EBPβ Adipose tissue development
Regulation of glucose and lipid metabolism
Regulation of b-oxidation & lipogenic genes & fatty acid synthase

Expressed by most Mϕs
Induced in human Mϕs by OxLDLDrives M2 macrophage polarization
Loss of C/EBPβ results in an altered phenotype of alveolar Mϕs and large peritoneal
Mϕs

93–96,100

SREBPs Regulators of cholesterol and lipid synthesis
Induces LDLR expression

Induced by NF-kB activation
Regulates lipogenesis
Drives Inflammasome activation

101

A. Remmerie, C.L. Scott Cellular Immunology 330 (2018) 27–42

31



below). Mice lacking C/EBPβ are completely protected against diet
induced obesity with reduced expression of hepatic lipogenic genes,
fatty acid synthase and increased expression of β-oxidation genes in
brown adipose tissue [98]. Evidence that C/EBPβ may play a role in
lipid metabolism in Mϕs comes from studies showing that C/EBPβ ex-
pression is induced in human Mϕs primed with OxLDL to become foam
cells alongside LXRα and PPARγ expression [99]. Furthermore, ChIP-
Seq analysis for C/EBPβ in these Ox-LDL exposed human Mϕs found an
enrichment of genes associated with both the innate immune response
and lipid/cholesterol transport and efflux [99]. Likewise, in mice, C/
EBPβ was also found to regulate lipid metabolism genes such as PPARγ,
LXRα in peritoneal and RAW Mϕs, although the direction of this reg-
ulation was not always consistent between the different Mϕs [100]. It is
also worth noting that this study preceded the one showing that LPMs
were reduced or altered in the absence of C/EBPβ [96] and hence it
remains to be investigated if this difference in gene expression is truly
due to the loss of C/EBPβ or if it instead reflects differences in the
macrophage populations present in C/EBPβ -sufficient or-deficient an-
imals.

SREBPs encoded by Srebf1 and Srebf2 are master regulators of
cholesterol and lipid synthesis [101]. They belong to the family of
basic-helix-loop-helix leucine zipper TFs. Intracellular cholesterol,
desmosterol and oxysterols retain SREBPs in the endoplasmic re-
ticulum, however when levels drop, SREBPs can enter the nucleus, bind
to sterol regulatory elements (SREs) and induce gene transcription in-
ducing cholesterol and fatty acid synthesis [44]. Accumulation of newly
synthesized sterols then prevents further SREBPs from being cleaved
and exiting the ER, providing a negative feedback loop. Loss of this
feedback loop through deletion of the genes which maintain SREBP in
the ER (Insig1 and Insig2) is detrimental, resulting in lipid accumulation
which has been shown to cause lipotoxicity in alveolar macrophages
[102]. SREBP1a is the main isoform found in macrophages. In addition
to its role in lipid synthesis, SREBP1a also induces LDLR expression and
is also associated with inflammatory function. In Mϕs, SREBP1a ex-
pression can be induced by NF-κB activation, which drives enhanced
lipogenesis as well as inflammasome activation and subsequent IL1β
release [103,104]. However, SREBPs are not solely pro-inflammatory,
SREBP-1 KO macrophages following TLR4 activation have been shown
to be hyper-inflammatory as they are unable to synthesize anti-in-
flammatory unsaturated fatty acids leading to increased expression of
Il1a, Cxcl1 and Cxcl9 [105]. Thus, like the other TFs discussed above,
SREBPs are involved in the regulation of a myriad of processes further
highlighting the importance of lipid metabolism in macrophage func-
tion.

Unlike TFs which bind to cis-regulatory DNA elements often lo-
cated in or near their target genes, microRNAs (miRNAs) hybridize to
cis-regulatory RNA elements mostly located in the 3′ untranslated
region of their target mRNAs. In terms of regulating lipid metabolism,
miR-33 and its passenger strand miR-33∗ have been shown to play a
significant role [106,107], (for review of miRNAs in lipid metabolism
see [108]). miR-33 has also been implicated in determining the ac-
tivation state of macrophages [109] (see below). miR-33a and miR-
33b are co-expressed with their host genes Srebf1 and Srebf2 and their
function is to prevent the initiation of pathways opposing those in-
duced by SREBPs [106,107]. Thus, they repress the expression of
genes involved in cholesterol efflux and FAO. This pathway holds
promise as a therapeutic target. Inhibitors of miR-33 result in an in-
crease in expression of the cholesterol transporter ABCA1 in macro-
phages (and in the liver) and hence cholesterol efflux suggesting an
anti-atherosclerotic effect [106,107,110–115]. However, its potential
use is broader than atherosclerosis as it has also recently been shown
that Mycobacterium tuberculosis (Mtb) is capable of surviving in

macrophages by inducing expression of miR-33 and miR-33∗ in-
hibiting autophagy, lysosomal function and FAO, the latter providing
the bacteria with a source of nutrients in the form of cholesterol and
fatty acids [116]. Notably, mice lacking miR-33 in hematopoietic
cells had an improved ability to clear the bacteria, while treatment of
macrophages in vitro with miR-33 and miR-33∗ inhibitors also re-
stricted Mtb viability [116].

Taken together, it is clear that the presence or absence of lipids can
have dramatic effects on macrophage biology, affecting their gene ex-
pression profile and ultimately their functions. Thus, it is no surprise
that macrophages have been implicated in the pathogenesis of several
diseases in which lipid homeostasis is perturbed such as atherosclerosis,
non-alcoholic fatty liver disease (NAFLD) and alveolar proteinosis. In
the next section, we will review the roles played by different macro-
phages in some of these lipid-mediated diseases.

4.1. Atherosclerosis

Atherosclerosis, the leading cause of death in industrialized
countries, is a chronic inflammatory disease. It arises as a result of an
accumulation of cholesterol-laden macrophages in the artery wall
leading to an imbalance in lipid metabolism and a maladaptive im-
mune response [28]. Atherosclerosis develops when excess choles-
terol-rich apolipoprotein B, in the form of LDLs and remnants accu-
mulate along the endothelium. This accumulation forms plaques in
the subendothelium of the arteries. This occurs in regions where la-
minar flow is disturbed or insufficient such as at curves and branching
points in the vessels [28]. Such accumulation of lipid leads to the
recruitment of monocytes into the subendothelial space, which sub-
sequently differentiate into macrophages with a predominantly pro-
inflammatory phenotype (Fig. 2). The metabolic factors driving the
macrophage phenotype in atherosclerosis have recently been re-
viewed by Stienstra and colleagues [44] and Bories and Letinger
[117] and hence will not be discussed further here. Recruitment of
monocytes is proportional to disease burden and hypercholester-
olemia results in monocytosis through the regulation of stem cell
cycling by cholesterol in the membrane [118–120]. Evidence from
the clinic suggests that this is also true in humans with low HDL
correlating with increased monocyte numbers [121,122]. Monocytes
can be recruited from the BM or from a splenic reservoir [123]. There
are 2 subsets of monocytes in the blood, namely Ly6Chi and Ly6Clo in
mice and CD14+ and CD16+ in humans [124]. The Ly6Chi/CD14+

subset constitutes the majority of cells recruited to progressing pla-
ques and hence these are thought to be the main source of the mac-
rophages that develop in the plaque [118,119]. While Ly6Clo mono-
cytes are hypothesised to play a protective role (reviewed in [125]),
the mechanisms through which monocytes are recruited to plaques
have been extensively reviewed elsewhere and so will not be dis-
cussed here (for examples see [126–128]). In addition to monocyte-
derived macrophages, macrophage-like cells derived from smooth
muscle cells also accumulate in the plaque [129–132]. Furthermore,
low numbers of mononuclear phagocytes (MPs) are present in the
intima which may also contribute to macrophage burden in plaques,
especially as lipid-laden foam cells are detected in within the first
week following feeding of a cholesterol-rich diet to Ldlr-/- mice [133],
a time before a significant increase in monocyte recruitment is de-
tected [134]. These cells have been identified in the intima as early as
the 4th week of life [135], but earlier time-points remain to be ex-
amined. Thus it is interesting to speculate that these MPs may re-
present embryonically-derived tissue-resident macrophages, espe-
cially given that while Ly6Chi monocytes are recruited at low levels
[134,136], there is little evidence to suggest they give rise to the MPs
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in the intima prior to the onset of atherosclerosis. However, the true
identity of these cells remains controversial as they appear to share
features of the both the macrophage and dendritic cell lineages, thus
further study is required to accurately determine the nature of these

cells (reviewed in [125,137]). The exact roles of the distinct lineages
of macrophages in atherosclerosis remain to be investigated (Box 1).
As a result of these unknowns, in the rest of this section, we will
discuss the role of macrophages in general in atherosclerosis.

Fig. 2. Macrophage Niches in Atherosclerosis. (A) The onset
of atherosclerosis is associated with plaque development.
This generates new macrophage niches which need to be
filled. This is done predominantly through the recruitment
of monocytes to the developing plaque and their subsequent
differentiation into macrophages. These macrophages then
take up the excess fat and differentiate into lipid laden foam
cells. (B) As the plaque grows, likely so too does the number
of macrophage niches. These are then populated through 2
main mechanisms. The predominating mechanism is pro-
liferation. Foam cells already present in the plaque sense the
empty niches and start to proliferate thus filling up the
available niches. Alternatively, new monocytes can also be
recruited to the growing plaque where they will engraft and
then differentiate into macrophages. (C) During plaque re-
gression, the local environment is changed dramatically.
This can have two consequences, the foam cells which are
adapted to the fat-rich environment cannot adjust to the
new environment and subsequently die or possibly emigrate
out, resulting in niche availability which is filled through
monocyte recruitment and subsequent differentiation into
macrophages that are distinct from those generated in the
fat-rich environment being more M2-like. Alternatively, if
plastic enough to do so, the foam cell may alter its tran-
scriptional profile rendering it more suited to this new fat-
poor environment. Additionally, as the plaque regresses it is
likely that the number of Mϕ niches decreases.

A. Remmerie, C.L. Scott Cellular Immunology 330 (2018) 27–42

33



Box 1

Macrophage Niches in the Atherosclerotic Plaque

The macrophage niche hypothesis was recently proposed en-
abling, in our opinion, the current, seemingly conflicting data
on macrophage ontogeny to be reconciled [7]. This model
predicts the ontogeny of different macrophage populations
based on three main factors, niche availability, niche acces-
sibility and precursor plasticity [7]. Although at this time
purely speculative, it is tempting to apply the same concept to
the atherosclerotic plaque (Fig. 2). The plaque could house
novel niches for macrophages upon its development. Alter-
natively, the niches could exist prior to the onset of athero-
sclerosis and expand in number (and possibly be altered due
to the inflammation) during atherosclerosis. Indeed a minor
population of MPs are present in the intima, although whether
these are bona fide macrophages is still debated [137]). At the
onset of atherosclerotic plaque formation, Mϕ numbers are
dramatically increased. One of the signals potentially driving
this is cholesterol as hypercholesteraemia correlates with
monocytosis [118–120]. The increased numbers of macro-
phages could derive from 3 potential sources. As the niche is
accessible [7], being in the artery wall, one method of in-
creasing Mϕ number is through the recruitment of monocytes
to the plaque which enter the subendothelial space and dif-
ferentiate into Mϕs. Ly6Chi monocytes have been shown to be
the main contributors to the Mϕ pool [210], however, the
development of atherosclerosis is only halted when recruit-
ment of both monocyte subsets (Ly6Chi and Ly6Clo) is abol-
ished through the inhibition of CCR5, CX3CR1 and CCL2 in
the Apoe-/- model [119,211]. This could suggest that both
monocyte subtypes are recruited and give rise to the eventual
foam cells. In addition to monocyte-derived Mϕs, smooth
muscle cells (SMCs) have been shown to transdifferentiate
into Mϕ -like cells thus also potentially contributing to Mϕ
numbers [130,132,212]. Finally, proliferation of the resident
MP population likely also contributes to the increased Mϕ
number in the developing plaque as foam cells are present
prior to the recruitment of monocytes upon switching to a
cholesterol rich diet [133,134], however, whether these cells
are maintained and proliferate in the progressing plaque re-
mains unclear. Typically, inflammation induces death of re-
sident macrophage populations, the so-called ‘macrophage
disappearance reaction’. As resident macrophages, that have
been conditioned for prolonged periods of time in one niche,
appear to have limited plasticity when transplanted into a
second different niche [13,14], it is plausible that the resident
intima MPs, see the increased lipid levels, try to deal with the
lipid but fail resulting in their death and subsequently most
Mϕs in the developing plaque derive from monocytes or SMCs.
Importantly, the different contributions of the distinct Mϕ
populations to the pathophysiology of atherosclerosis remain
unknown. Based on recent data from other tissues [8,13], one
could hypothesise that if the local signals driving the differ-
entiation of monocyte-derived and SMC-derived Mϕ popula-
tions in the developing plaque are the same then their func-
tions could also be similar. Of course, all this will depend upon
the plasticity of both the monocytes and SMCs as well as the
putative long-lived resident Mϕ population, which remains to
be investigated. After developing, the atherosclerotic plaque
itself is a dynamic structure. As the plaque grows, this could
be envisaged as an increase in the number of niches resulting
in niche availability. This availability is subsequently filled via
two mechanisms. Macrophages already present in a niche

proliferate to fill new niches while (albeit at a lower level)
new monocytes are also recruited to fill the new niches
[138,213]. This is consistent with open niches such as the
liver, whereby Kupffer cells, following partial depletion, are
repopulated through both local proliferation and monocyte
recruitment and differentiation [8]. In addition to plaque
growth creating niche availability, lipid-laden foam cells also
routinely die in the plaques thus again creating niche avail-
ability which can also be filled through both mechanisms of
repopulation. During plaque regression the niche hypothesis
could also potentially be applied. If one considers that con-
ditioned foam cells are plastic, then these may adapt to the
new environment becoming more M2-like. However, if the
foam cells are not particularly plastic and hence cannot
readily adapt to the new environment, (dramatic lipid low-
ering seen in regression), the Mϕs would not be able to adapt
and would subsequently die, or potentially emigrate out
(discussed in [28,125]) once again creating niche availability.
This availability would then be filled by recruited monocytes
which would then differentiate into macrophages adapted to
the new niches. For example, in the model of atherosclerotic
plaque transplantation into WT mice, the rapid reversal of
dyslipidaemia drives the replacement of the more M1-like
macrophages in the niches with newly recruited Ly6Chi

monocytes which differentiate into more M2-like macro-
phages [169]. Importantly, at least in this model, regression
requires the de novo recruitment of Ly6Chi monocytes and
their subsequent differentiation as blocking monocyte re-
cruitment prevents regression from occurring [169].

Macrophages build up in the developing plaques and are maintained
predominantly through proliferation with limited input from mono-
cytes [138] (Box 1, Fig. 2). In the plaque, macrophages acquire lipo-
proteins from the surrounding environment. This can occur through the
scavenger receptors (pattern recognition receptors; PRRs) which are
present on the cell surface of the macrophages. Multiple types of these
scavenger receptors are present including scavenger receptor A1 (SR-
A1), MARCO, CD36, SR-B1 and LOX1 which take up oxidised forms of
LDL (ox-LDL) generated as a result of the increased oxidative stress in
the artery wall (reviewed in [139,140]). Notably, as PRRs, these sca-
venger receptors do not only function in lipid uptake. For example, SR-
A1 has also been implicated in modulating macrophage proliferation
within the lesion, thus also regulating macrophage numbers [138].
CD36 has been implicated in inflammasome activation [141] and
macrophage polarization [142] and both of these receptors are also
linked to promoting apoptosis and inflammatory gene expression [143].
Alternatively, LDL, when present at hyperlipidemic concentrations, can
be engulfed by macrophages via pinocytosis [144] and lipolytic en-
zymes present in the intima can also generate modified forms of LDL
that are taken up by macrophages using scavenger receptor in-
dependent pathways [145]. Under normal conditions, lipids taken up
by macrophages are typically processed and effluxed from the cells
preventing the generation of foam cells (described above). However, as
there appears to be little negative feedback, during dyslipidaemia ex-
cessive lipid uptake by macrophages results in defective cholesterol
trafficking and lipid efflux and the generation of foam cells engorged
with lipid [28], affecting macrophage phenotype and compromising
immune functions.

Free cholesterol is toxic to cells, as a result free cholesterol is typi-
cally transported to the ER where it is re-esterified to form cholesterol
esters that can be stored as relatively inert material in lipid droplets or
effluxed from the cell via transporters such as ABCA1. Excess free
cholesterol in the ER, for example due to impaired efflux, can result in
defective re-esterification promoting further accumulation of free cho-
lesterol in the cell, such as at lipid rafts in the membrane [146]. This
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causes enhanced inflammatory signalling at the membrane lipid rafts
including TLR signalling and NFκB activation [146–148]. Inflammatory
signalling is further exacerbated if cholesterol trafficking from lyso-
somes becomes defective. Combined, these phenomena contribute to
increased ER stress in the macrophages which results in cell death by
apoptosis [149–154]. Apoptotic macrophages must be cleared by other
macrophages in the vicinity by efferocytosis. However, this requires
intact lipid metabolism. In atherosclerosis, the dysregulated lipid me-
tabolism in macrophages prevents effective efferocytosis and this cou-
pled with the increase in macrophage apoptosis results in secondary
necrosis [155,156]. One mechanism for this is the cleavage of the ef-
ferocytosis receptor MerTK from macrophages by ADAM17 [157–161].
The subsequent release of intracellular components into the local en-
vironment contributes to the establishment of a necrotic core in the
plaque. This is a feature of advanced atherosclerotic plaques and can
contribute to plaque rupture. Moreover, through the secretion of matrix
metalloproteinases, macrophages are thought to further contribute to
plaque rupture [162], however as mouse models do not exhibit similar
rupture as observed in humans this has been difficult to validate ex-
perimentally.

While associated with plaque development, progression and rup-
ture, macrophages are also implicated in plaque regression suggesting
that macrophages may also play atheroprotective roles. Regression can
be induced experimentally through drastic lipid reduction or surgical
models including transplantation of an aortic plaque into a WT mouse
with normal lipid levels [110,163–167]. Macrophage content is typi-
cally reduced during regression (Fig. 2), however, the phenotype of the
macrophages in the plaque is also altered, adopting a more M2-like
phenotype. Macrophages in the regressing plaque express elevated le-
vels of Arg1 and Cd163 and reduced levels of pro-inflammatory genes
including Tnfa [168]. This altered gene expression profile is not how-
ever black and white M2 vs M1 as seen in vitro, as some inflammatory
genes are upregulated during regression including Il1b [168], further
highlighting the shortcomings of this classification in vivo [43]. Ad-
ditionally, it remains controversial if this change in gene expression
profile represents a shift in macrophage phenotype or recruitment of
new cells [125], however, the latter concept is supported by recent data
showing monocytes are indeed recruited to regressing plaques where
they differentiate into M2-like macrophages [169,170] fitting with the
recently proposed macrophage niche hypothesis [7] (Box 1, Fig. 2).
Taken together, it is evident that macrophages through their roles in
both lipid metabolism and the immune response are central to the pa-
thophysiology of atherosclerosis. Given that dysregulated lipid meta-
bolism is the driving factor in foam cell development, macrophage
activation and subsequent plaque rupture resulting from development
of the necrotic core, further understanding the factors that affect the
lipid content of macrophages and their responses to such lipid will be
key in developing therapeutic interventions.

4.2. Non-Alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of
liver diseases including non-alcoholic fatty liver (NAFL, isolated
steatosis,) non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and
hepatocellular carcinoma (HCC). Global prevalence of NAFLD ranges
from 22 to 28% [171] and is currently increasing linked to the in-
crease in obesity and type 2 diabetes [172]. The pathogenesis of
NAFLD remains incompletely understood but the multiple hit theory is
commonly accepted, whereby parallel hits from the gut and adipose
tissue drive hepatic fat accumulation and inflammation [173]. Hepa-
tocellular accumulation of lipids is a key event in the early stages of
NAFLD while progression to NASH is fuelled by hepatic inflammation.
Hepatic Mϕs are thought to play a key role in this progression [174].
As discussed in more detail below, this role is thought to be primarily
due to their modulation of hepatic inflammation through their re-
sponse to DAMPs and other signals released as a consequence of

increased hepatic fat burden [175]. However, it is worth noting that as
KCs possess all the genetic machinery to take up and metabolize excess
lipids [8], their involvement in NASH pathogenesis may also be re-
lated to lipid accumulation and processing. Indeed Leroux and col-
leagues have shown that specific lipids accumulate in KCs of mice fed
a high fat diet (HFD) and that this results in altered expression of lipid
metabolism associated genes [176]. Thus, this avenue of study re-
quires further investigation.

NAFLD is commonly associated with a pro-inflammatory hepatic
Mϕ phenotype. This is primarily associated with the presence of DAMPs
and PAMPs such as LPS, FFA and cholesterol and the release of addi-
tional DAMPs by dying fat-laden hepatocytes which trigger Mϕ acti-
vation. In addition to these DAMPs and PAMPs, a recent study has
shown that hepatocyte-derived histidine rich glycoproteins (HRG) can
promote M1 responses in Mϕs in vitro and that HRG-/- mice display
attenuated liver injury and fibrosis on the methionine-choline deficient
diet (MCDD), a murine model of NASH [177]. Interestingly, this at-
tenuation also correlated with decreased hepatic Mϕ numbers and a
more M2-like phenotype in those remaining compared with WT con-
trols [177]. Hepatocyte HRG was also found to be significantly upre-
gulated in NAFLD patients and this correlated with a M1-like phenotype
of adjacent Mϕs [177] suggesting HRG is another factor driving the pro-
inflammatory phenotype in hepatic Mϕs during NAFLD. Toxic lipid
accumulation in Mϕs was also associated with a pro-inflammatory
phenotype suggesting that altered lipid metabolism may also contribute
to the role of KCs in modulating hepatic inflammation in NAFLD [176].
Additionally, another recent study has shown that hepatocytes trig-
gered in vitro by fatty acids release extracellular vesicles (EVs) con-
taining tumour necrosis factor related apoptosis inducing factor
(TRAIL) in a Rho-associated, coiled-coil-containing protein kinase 1
(ROCK1) dependent manner and that these EVs induce the production
of Il1b and Il6 mRNA in murine bone-marrow derived Mϕs [178]. Im-
portantly, ROCK1 inhibition in vivo in a model of NASH reduced liver
injury, inflammation and fibrosis [178]. While most research suggests
pro-inflammatory Mϕs dominate in NAFLD and drive disease patho-
genesis, hepatic Mϕs may also have anti-inflammatory properties.
Moreover, promoting such M2-like Mϕs has been reported to be bene-
ficial for protecting against NAFLD [177,179–183]. Taken together,
these results suggest that manipulation of the M1/M2 ratio in NAFLD
may be an attractive therapeutic strategy [184].

While there are numerous studies suggesting that modulating the
M1/M2 balance may be beneficial in NAFLD, it remains unclear if M1
and M2 macrophages represent discrete Mϕ populations or in fact if one
Mϕ population expresses both M1 and M2 genes that can be further
skewed in one direction or another. As mentioned above, the M1/M2
classification does not really hold in vivo given the myriad of signals
present at any one time [43], thus the true nature of these cells remains
largely unknown. Related to this, until recently it has been difficult to
distinguish between bona fide Kupffer cells and other hepatic Mϕs that
may be recruited during NAFLD. This has made it difficult to assess the
role of each Mϕ subset in NAFLD. Indeed most strategies to look at KC
function target both KCs and recruited hepatic Mϕs including LysM
Transgenic mice and Clodronate Liposomes, the latter of which targets
all phagocytic cells, making results difficult to interpret [185–187]. In
addition, multiple studies have shown recently that monocytes can also
give rise to bona fide KCs [8,12,14] suggesting that the hepatic Mϕ pool
during NAFLD could consist of at least 3 distinct populations. While all
of these express high levels of F4/80, CD64 and lack Ly6C expression,
they can be distinguished on the basis of Clec4F and Tim4 expression
[8]. Those Mϕs expressing Clec4F+Tim4+, the long-lived KCs, the
Clec4F+Tim4- monocyte-derived KCs and Clec4F- hepatic Mϕs [8].
CX3CR1 and CCR2 are two other markers which can be used to identify
hepatic Mϕs which have recently derived from monocytes [188], al-
though they do not distinguish between monocyte-derived KCs or other
Mϕs. While these populations were first identified in livers under pre-
dominantly homeostatic conditions, we have recently also shown that
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all three populations can be identified during NASH in mice fed a
MCDD [189] and during feeding of a high fat, high cholesterol and high
sugar diet (our own unpublished observations). Thus, now it will be
necessary to determine the functional contributions of each of these
populations in disease pathogenesis. A number of other questions also
remain (Fig. 3). As described for atherosclerosis, one crucial question
lies in the plasticity of hepatic Mϕs [7]. Do long-term resident KCs
dramatically alter their gene expression profiles upon exposure to ex-
cess fat or other signals, such as increased LPS? Lipid metabolism has
been implicated in macrophage polarization but is it enough to alter a
cell that has been programmed for prolonged periods in conditions
without excess fat? There is no clear consensus as to whether resident
Mϕs would be plastic or not, AMs in the lung do seem to alter their
transcriptional programmes during fibrosis [190], however following
paracetamol overdose, KCs have been reported to have very few
changes in their gene expression profile [188], thus further investiga-
tion is warranted. Other questions include; do KCs die during NAFLD?
What role do the infiltrating Mϕs play? These differentiate amidst the
myriad of danger signals, thus, are they for that reason predominantly
pro-inflammatory? Indeed, these infiltrating monocyte-derived Mϕs
have been suggested to play a role in disease pathogenesis as blocking/
reducing their infiltration can attenuate NASH [187,191,192]. Do bona
fide KCs differentiate from monocytes during NAFLD? If so, how dif-
ferent is their transcriptional/epigenetic profile compared with those
who differentiated during homeostatic conditions? Are they also long-
lived? While the majority of these questions remain unanswered, there
is some recent work suggesting answers to these questions. We have
found that moKCs generated during NASH appear to be relatively short

lived being lost upon recovery [189] while other data suggests that
infiltrating monocytes may indeed have a distinct phenotype and pos-
sibly function compared with the resident KCs [187], however, the
gating strategy used in this study to identify the different subsets may
have led to some overlap and so further investigation using new mar-
kers is required. Crucially, we now have the tools to address these
questions, meaning exciting times lie ahead for our understanding of
hepatic Mϕ involvement in NAFLD.

4.3. Macular degeneration

The inability to efficiently efflux cholesterol does not only play a
role in obesity-related diseases. Age related macular degeneration
(AMD), the leading cause of blindness in the industrialised world in
the ageing population [193], is another disease where impaired cho-
lesterol efflux has been implicated in the pathophysiology [194–196].
AMD occurs in two forms early (or dry) and exudative (wet). Blindness
largely occurs from the wet form of AMD which is characterised by
development of new blood vessels underneath the retina, termed
choroidal neovascularization (CNV) [197]. Wet AMD is preceded by
dry AMD. Dry AMD is characterised by the presence of esterified-
cholesterol rich ApoB lipoprotein laden deposits called ‘Drusen’ in a
layer of the retina termed Bruchs membrane. Increased size and
number of Drusen is a major factor involved in AMD progression
[198]. Moreover, Drusen, like atherosclerotic plaques, result in
monocyte recruitment, macrophage differentiation and associated
inflammation [199]. Macrophages have been implicated in all stages
of AMD. While macrophages recruited during early stages of disease
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Fig. 3. Role of Mϕs in NAFLD. There are several questions
remaining regarding the role of Mϕs in NAFLD. One of the
main questions relates to whether there are multiple subsets
of KCs and other hepatic Mϕs present or not. Monocytes are
recruited to the liver and develop into infiltrating Mϕs (Inf
Mϕs) during NAFLD, but do they also contribute to the bona
fide KC pool? If so are these moKCs more M1 or M2-like?
Another question is where do the foam cells originate from?
KCs that have become overloaded with lipid, or can these
cells given their lipid metabolism enriched transcriptional
profile efficiently process lipids meaning the foam cells are
generated from the infiltrating Mϕs or is it a combination of
both? Another key question is whether KCs are plastic and
can change from a more M2 profile to that of an M1-like
Mϕs and vice versa. If this is the case, how does this work
and can it be manipulated to enhance M2-like cell numbers
given that this appears beneficial for the patient?
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have a predominantly pro-inflammatory (M1-like) phenotype, AMD
progression and CNV development, in both mice and men, is asso-
ciated with a pro-angiogenic (M2-like) macrophage phenotype
[197,200–203]. Macrophages sample Drusen and subsequently pro-
cess and export the cholesterol. It has recently been shown that im-
paired cholesterol efflux in macrophages due to loss of Abca1 ex-
pression can also lead to a pro-angiogenic phenotype and thus
contribute to CNV development [194]. Interestingly, Abca1 expression
is downregulated in senescent macrophages, which possess a pre-
dominantly pro-angiogenic phenotype [194]. Thus, highlighting the
need for efficient cholesterol efflux by macrophages not only in obe-
sity-driven diseases but also in limiting AMD progression.

4.4. Pulmonary alveolar proteinosis

Although not involved in metabolism of cholesterol, alveolar mac-
rophages of the lung also play a role in lipid metabolism. Pulmonary
alveolar proteinosis (PAP) is a rare disease characterised by build-up of
surfactant within the alveoli [204]. Pulmonary surfactant is produced
by type II alveolar epithelial cells (AEC) and is essential for normal lung
function. It forms mono and multi-layers that act as the interface be-
tween liquid and air, reducing surface tension and allowing efficacious
gas exchange. It also contributes to host defence acting as an opsonin as
well as directly killing microbes [205]. Normal levels of surfactant,
which is composed of phospholipids and proteins, are crucial and
regulated through its balanced production, secretion, uptake, recycling
and catabolism [205]. 70% of spent surfactant is taken up by type II
AECs and recycled while the remaining 30% is taken up and catabolized
by AMs. This function of AMs is crucial as evidenced by the develop-
ment of hereditary PAP in patients and mice lacking AMs due to defi-
ciencies in either CSF2 (GMCSF) or Csf2r [206,207] and idiopathic PAP
in patients with non-functional AMs due to neutralizing auto-antibodies

against CSF2 [208]. CSF2 signalling is crucial for the development of
AMs and hence the acquisition of this surfactant catabolism function
[6] (Fig. 4). Transcriptional profiling of AMs has shown that they
possess a strong lipid metabolism signature within their core genes
[15,84]. One way through which CSF2 signalling drives AM develop-
ment is through the induction of the transcription factor Pparg which is
crucial for AMs with Pparg conditional knock out mice lacking func-
tional AMs [84,85] (Fig. 4). In the absence of CSF2 signalling or Pparg
expression F4/80+CD64+ Mϕs are found in the lung alveolar space but
these do not express SiglecF or CD11c, two characteristic markers of
AMs [6,84,85]. These Mϕs are hence not bona fide AMs and as such lack
specific AM-associated functions including the ability to catabolise
surfactant. This results in the build-up of surfactant within the Mϕs
leading to the generation of foam cells with dramatically altered gene
expression profiles [84,204], and, a build-up within the alveoli leading
to respiratory difficulties (Fig. 4). Transplantation of AMs as well as
Csf2rb2-sufficient Mϕ progenitors (fetal liver monocytes, yolk-sac Mϕs
and BM monocytes) has been shown to be sufficient to prevent PAP
development in Csf2rb2-/- mice [13,209], further highlighting the es-
sential role played by AMs in PAP progression and providing a potential
new therapy option for this disease.

5. Conclusions and future perspectives

In conclusion, it is evident that macrophages play key roles in lipid
metabolism and in the pathogenesis of lipid-related diseases. However,
it is also clear that we do not yet fully understand this. There are a
number of outstanding questions in the field (see above and sum-
marised in Box 2). Thus, we still have much to learn regarding the
fascinating roles of macrophages particularly in lipid metabolism. Im-
portantly, as our understanding of macrophages increases, both in
terms of their common and tissue-specific features, we are more and
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more in a position to design new tools to address such specific questions
and as such exciting times lie ahead in terms for macrophage biology.
Box 2

Burning Questions.

While it is obvious from the literature reviewed here that Mϕs
play predominant roles in lipid metabolism both in the steady
state (AMs) and during disease pathogenesis (Atherosclerosis,
NAFLD, AMD & PAP), it is also very clear that we do not yet
fully understand this and as a result many pertinent questions
remain to be answered by the field. For example, with the
addition of recent data the role of lipid metabolism in driving
Mϕ phenotype is being debated. Thus, the question remains
what role does lipid metabolism play in regulating the phe-
notype of Mϕs in vivo? Moreover, it will be important to un-
derstand how lipid metabolism is regulated in Mϕs? It has
been reported that senescent Mϕs downregulate their ex-
pression of cholesterol efflux genes. What regulates this?
Furthermore, how does this translate in terms of lipid load in
macrophages or the tissues in which they reside?. In addition
to this, another question that remains unanswered is why is
the transcriptional profile of certain Mϕs enriched for lipid
metabolism genes compared with others? While for some this
is clear (AMs and surfactant clearance), the role(s) of the other
Mϕs enriched for this function, such as the KCs, is/are largely
unknown. Are these cells contributing to lipid clearance and
recycling similar to their neighbours, the hepatocytes?
Moreover, how are these cells then involved in conditions of
excess lipid such as NAFLD? Are they solely driving NAFLD
pathogenesis by acting as sensors of DAMPs and PAMPs? Or
does their role go beyond this into lipid uptake and clearance?
More importantly, is this function conserved in human KCs?
And can manipulating the KCs in terms of their lipid meta-
bolism function alter and ultimately improve patient out-
come? This is something we are actively investigating in the
lab. Another key and perhaps the most crucial question for the
field, is the question of Mϕ subsets and plasticity. Many stu-
dies have reported the presence of M1 Mϕs at one stage of
disease and M2 Mϕs at another. However, two things remain
unclear with this characterisation. Firstly, the relevance of the
use of the M1/M2 nomenclature in vivo. We know that the
M1/M2 classification does not hold up in vivo and as often
these Mϕs are defined on the basis of one or two surface
markers it is really unclear what these cells actually are.
Secondly, does this reflect truly different subsets of macro-
phages at different disease stages or macrophage plasticity?
Are these distinct subsets of Mϕs recruited at different stages
of the disease? Perhaps resident versus recruited Mϕs? Or is it
one subset of cells that changes it function along a spectrum
based on the signals around it? How plastic are Mϕs? Do they
adapt to changes in local lipid level or do they die and get
replaced? With the so-called Mϕ disappearance reaction oc-
curring during most insults, one might consider that resident
Mϕs are not actually that plastic and hence once their en-
vironment or niche is altered they cannot adjust and hence die
being replaced by monocyte-derived cells, but this remains to
be investigated. This also then leads to the question, how
plastic are the recruited monocytes? Are they altering their
function during disease progression? Or are they again re-
placed by a more adapted Mϕwhen the environment changes?
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