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Quantum correlations which imply 
causation
Joseph F. Fitzsimons1,2, Jonathan A. Jones3 & Vlatko Vedral2,3,4

In ordinary, non-relativistic, quantum physics, time enters only as a parameter and not as an 
observable: a state of a physical system is specified at a given time and then evolved according to the 
prescribed dynamics. While the state can, and usually does, extend across all space, it is only defined at 
one instant of time. Here we ask what would happen if we defined the notion of the quantum density 
matrix for multiple spatial and temporal measurements. We introduce the concept of a pseudo-density 
matrix (PDM) which treats space and time indiscriminately. This matrix in general fails to be positive for 
measurement events which do not occur simultaneously, motivating us to define a measure of causality 
that discriminates between spatial and temporal correlations. Important properties of this measure, 
such as monotonicity under local operations, are proved. Two qubit NMR experiments are presented 
that illustrate how a temporal pseudo-density matrix approaches a genuinely allowed density matrix as 
the amount of decoherence is increased between two consecutive measurements.

Ever since the pioneering work of Bell1,2, the study of quantum correlations has proved fertile ground for gaining 
insight into fundamental physics. Much of that progress has been focused on spatial correlations, in the form of 
entanglement and quantum discord3–5, but a number of authors have extended this approach into the time domain. 
In particular Leggett and Garg showed that quantum systems exhibit a form of temporal correlation which cannot 
be accounted for by any macro-realistic theory6. Similarly it has been shown that assumptions of realism and locality 
in time lead to a form of temporal Bell inequality, which again can be violated by quantum systems7. Here we take 
a different approach: assuming quantum mechanics a priori, and examining the correlations which can arise. This 
is in line with the approach taken by a number of authors in recent years who have sought to examine the role of 
causality in quantum systems8–13. Quantum states which violate the Leggett–Garg inequality necessarily exhibit 
the causal correlations we identify, and hence recent experimental demonstrations of violations of such inequalities 
may constitute a limited observation of such causal correlations14–18.

In non-relativistic quantum mechanics, each system in a multi-system quantum state is assigned a separate 
Hilbert space and these spaces are connected through the tensor product structure. The tensor product indicates 
that these systems are to be treated separately, though the joint state is also well defined at each instant of time. 
Here we explore extending this notion to different instances in time and assigning a Hilbert space to each different 
instant in time in much the same way as it is done in space. The resulting spatio-temporal state is then investigated.

First we introduce the standard density matrix in quantum physics for qubits, although our ideas apply to 
subsystems of any dimensionality. We then show how to extend the concept of the spatial density matrix to 
different instances in time. The difference between spatial and temporal correlations is investigated through the 
introduction of the causality monotone, which is meant to capture the degree of “temporalness” in any quantum 
correlations. Finally, we present experiments using an NMR implementation that illustrate the basic properties 
of the pseudo-density matrices. Our proposal to treat spatial and temporal correlations within the same quantum 
formalism clearly still discriminates between the two, albeit imperfectly: when the pseudo-density matrix fails to 
be positive, this means that it necessarily contains a temporal element; the converse of this is not true, however, as 
the pseudo-density can be positive without implying spacelike separation.

Pseudo-density matrices
The density matrix can be viewed as a probability distribution over pure states, with ρ ψ ψ= ∑ pi i i i , where pi 
is the probability of a given pure state ψi  occurring. Given a density matrix ρ, the expectation value of a particular 
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Pauli operator P is ρ= ( )P PTr . As the n qubit Pauli operators along with the identity form a basis for the space 
of Hermitian operators, and any density matrix ρ is necessarily Hermitian, it follows that any ρ can be written as 

ρ = + ∑a a Po i i i, where Pi is the ith Pauli operator on n qubits, and =
−a{ }i i 0

4 1n
 are real numbers. Further, since Pauli 

operators are traceless, and all density matrices have unit trace, we have a0 =  1/2n and the expectation value for Pj 
is then given by
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Thus we have an alternate formulation of the density matrix in terms of the expectation value of Pauli operators,
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As we are interested in discussing correlations, we can express each n qubit Pauli operator as the product of 
single qubit operators, yielding
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where σ =0 , σ1 =  X, σ2 =  Y and σ3 =  Z.
This above equation can be taken as defining a generalization of the density matrix. We consider a set of events 
…E E{ }N1 , where at each event Ej a von Neumann measurement of a single qubit Pauli operator σ σ σ∈ , …,{ }i 0 3j

 
can be made. For a particular choice of Pauli operators σ ={ }i j

n
1j
, we take σ〈 〉={ }i j

n
1j

 to be the expectation value of the 
product of the result of these measurements. Then we can define a pseudo-density matrix

∑ ∑ σ σ= 〈 〉 ⊗ .
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In order to compute R using the above equation only the expectation values for possible measurements are 
required. In what follows we will assume that the dynamics between measurement events are in accordance with 
non-relativistic quantum mechanics, and that the action of each measurement is to project onto the eigenspace 
of the measurement operator corresponding to the measurement result. We will assume that the underlying 
dynamics are non-relativistic, and so the resulting PDM will not in general be Lorentz covariant. However, we note 
that the general definition of the pseudo-density matrix in terms of expectation values of measurements, given 
above, does not assume a particular model of underlying dynamics, and thus a PDM can be reconstructed from 
experimental results or produced from predictions of other theories without implicitly assuming non-relativistic 
quantum mechanics.

In the case where the measurement events E1 … En correspond to simultaneous measurements of distinct sub-
systems of a quantum system, or when the measurements occur on systems which are non-interacting between 
measurement events, then R reduces to the standard n-qubit density matrix. In non-relativistic quantum mechanics, 
only simultaneous measurements are gauranteed to result in a valid density matrix, as the theory allows for low 
amplitude disturbances to propagate at an unbounded rate. This allows for sufficiently weak causal relationships 
to be established over long ranges arbitrarily quickly. However, for systems in which superluminal signalling is 
heavily supressed (for example for systems restricted to sufficiently weak local interactions), R can still be expected 
to approximate a conventional density matrix. This is due to the fact that if measurements are spacelike separated, 
then any evolution of the system between measurements must act (approximately) locally on each system, rather 
than allowing for interaction between systems. However, as there is no notion of separate systems inherent in the 
definition of R, it allows us to describe correlations between measurement events which are not spacelike separated, 
for example encapsulating the possibility of multiple measurements made at different points in time on a single 
system. This is a generalization of the notion of a quantum state extended across spacetime, rather than the usual 
restriction to some fixed time present in non-relativistic quantum mechanics. We note that other authors11,19 also 
considered introducing a product structure into temporal correlations, but in somewhat different contexts.

Properties
This pseudo-density matrix inherits many of the properties of a standard density matrix. We now examine some 
of these properties and prove that they hold for all pseudo-density matrices.

Hermiticity.  All pseudo-density matrices are necessarily Hermitian.
Proof: By definition, a pseudo-density matrix is a weighted sum over Pauli matrices. As Pauli matrices are 

Hermitian, and all weights are real (being an expectation value divided by the dimensionality of the system), the 
resulting PDM is necessarily Hermitian.

Unit trace.  All pseudo-density matrices have unit trace.
Proof: This property again follows from the fact that PDMs are defined as a sum over Pauli matrices. Other than 

the identity, all such matrices are traceless. Thus, when taking the trace of a PDM, only the weight for the identity 
term contributes. Thus we have
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where the second equality follows from the face that the expectation value , …, =I I{ } 1 for all systems.

Partial trace.  Given a pseudo-density matrix RAB defined over two sets of events A and B, the pseudo-density 
matrix obtained from the set of events A can be obtained from RAB by tracing over the subsystem corresponding 
to B (i.e. RA =  TrB(RAB)).

Proof: From the definition of the pseudo-density matrix, we have
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where DA and DB are the dimensions of the systems corresponding to A and B respectively. Thus we have
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The above properties do not depend on the physics governing the underlying system. We now show that if the 
underlying system is governed by non-relativistic quantum mechanics, then the pseudo-density matrix captures 
all correlations in the system. We will index the measurement events in such a way that event j occurs no later than 
event j +  1. Without loss of generality, we can assume that all measurement events occur on a system initially in 
state ρ, which evolves unitarily according to Uj between measurement events j and j +  1. We will take the number 
of distinct times at which measurements occur to be T and take the total number of measurement events at each 
time t to be mt. In this case the pseudo-density matrix satisfies the following additional properties.

Measurements.  The pseudo-density matrix contains information not only about Pauli measurements, but 
also about the expectation value of the product of any set of local measurements with eigenvalues restricted to 
± 1. For a set of measurement operators {Mj}, with eigenvalues chosen from {− 1,  1}, the expectation value for the 
product of their outcomes is given by
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where Mj is defined over the set of mj qubits on which measurement events occur at time j.
Proof: In order to prove this property, it is sufficient to show that expectation values for measurements of this 

are simply a linear combination of expectation values for Pauli measurements. This is, taking α σ= ∑M j k jk k
m j  

where the superscript on σk
m j denotes that it is an mj-qubit Pauli operator, the expectation value is given by
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The above equation can be obtained directly from Eq. 5 by substituting in the definitions of R and each Mj, and 
so it suffices to show that this linearity relation holds.

In general, 〈 〉 = ∑=M p{ }j j
T

i i i1  where pi is the probability of obtaining a product of measurement results equal 
to ϵi. For non-relativistic quantum systems,
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where Pj
s j is the projector onto eigenspace of Mi corresponding to eigenvalue sj. If no constraint is placed on the 

spectrum of Mj, then Pj
s j may be a high degree polynomial in Mj. However, in the case where the eigenvalues of Mj 

are restricted to the set {− 1, 1}, the projectors can be written as = ( ± )±P Mj j
1 1

2
, and thus pi has degree at most 

two in each of the measurement operators. Furthermore, since 〈 〉 = −= −M p p{ }j j
T

1 1 1 the quadratic and constant 
terms cancel, leaving the purely linear expression in Eq. 6. Thus, expectation values for measurements can be 
computed for the pseudo-density matrix in an identical way to that used for conventional density matrices, provided 
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that the measurement operators have only eigenvalues chosen from {− 1, 1}. This shows that the pseudo-density 
matrix captures more that simply correlations between Pauli measurements, but rather contains the necessary 
information to predict measurement outcomes for a wide range of measurements, without any further knowledge 
of the underlying dynamics giving rise to a particular PDM other than that they are governed by non-relativistic 
quantum mechanics. This shows that the information captured by the PDM is invariant under local change of 
basis.

Causality
While the previous section examined points of commonality between pseudo-density matrices and conventional 
density matrices, we now turn to a difference between the two. All density matrices are positive semi-definite 
matrices with unit trace, and any matrix satisfying these requirements can be interpreted as a density matrix. The 
main difference between a pseudo-density matrix R and a conventional density matrix, then, is that R is not nec-
essarily positive semi-definite. To see this, we consider the case of a single physical qubit with two separate meas-
urement events. We take the qubit to be initially in the state 0  and assume that evolution between measurement 
events corresponds to the identity operator. In this case the expectation values are all zero, except for  ,{ } , 
,X X{ } , ,Y Y{ } , ,Z Z{ } , ,Z{ } , and , Z{ } , which are all equal to one. From these expectation values, we 

obtain a pseudo density matrix
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. The existence of negative eigenvalues implies that R is not positive-semi 
definite.

Any R which is positive semi-definite can be interpreted as a conventional density matrix, for which it is possible 
to duplicate the correlations present with spacelike separated quantum systems. However, when R has negative 
eigenvalues, it cannot be interpreted in this way, implying that there must exist a causal relation between events, 
although the causal order is not specified.

Measuring causal relationships
The causal relationship embodied in certain pseudo-density matrices has some similarities to another form of 
uniquely quantum correlation, entanglement, and we can define an analogous measure of causal correlations. In 
order for a function f(R) to be considered a causality monotone we require the following criteria to hold:

1.	 f(R) ≥  0, with f(R) =  0 if R is completely positive, and f(R2) =  1 for any R2 obtained from two consecutive 
measurements on a single qubit closed system,

2.	 f(R) is invariant under local unitary operations,
3.	 f(R) is non-increasing under local operations, and
4.	 ∑ ( ) ≥ (∑ )p f R f p Ri i i i i i .

These criteria correspond almost exactly to the criteria for an entanglement monotone20,21, except that criterion 
three is somewhat weakened. An entanglement monotone is required not to increase on average under local oper-
ations and classical communication, however any processing based on classical communication would constitute 
a causal relationship and hence is excluded.

As we have shown, any pseudo-density matrix which embodies some form of causal relationship must have at 
least one negative eigenvalue. Since such matrices are Hermitian (and hence have real eigenvalues) and have unit 
trace, it follows that the trace norm is strictly greater than unity. On the other hand, if all eigenvalues are positive, 
the trace norm is exactly equal to unity.

This leads us to define a measure based on the trace norm, ( ) = −f R R 1tr tr . As we have seen, ≥R 1tr  
for all valid pseudo-density matrices, and hence ftr(R) ≥  0. Further, ftr(R) =  0 trivially for all positive semi-definite 
R, and from the previous example it is clear that ftr(R2) =  1 for at least one choice of R2. Since the trace norm is 
unitarily invariant, the first and second criteria for ftr to be a causality monotone are satisfied. Similarly, by applying 
Stinespring dilation to represent local quantum operations as unitary operations on a larger Hilbert space, the 
third criterion follows directly since the trace norm is non-increasing under partial trace. The final criterion follows 
from the triangle inequality since ∑ − ≤ ∑ ( − )p R p R1 1i i i tr i i i tr

 and hence (∑ ) ≤ ∑ ( )f p R p f Rtr i i i i i tr i . 
Thus ftr is a causality monotone.

Experimental determination of 2-site pseudo-density matrix
Naively it would appear that non-destructive single qubit measurements are necessary in order to perform the 
multi-event measurements required for tomography of a pseudo-density matrix. This would rule out the possibility 
of reconstructing a pseudo-density matrix in either NMR or quantum optics, two of the most established testbeds 
for quantum physics. Fortunately, however, it is possible to circumvent the limitations imposed by ensemble meas-
urements by making use of an ancilla qubit to record the parity of the local Pauli measurement results. Thus it is 
possible to recover their product by measuring a single spin, similar to the approach advocated in22.



www.nature.com/scientificreports/

5Scientific Reports | 5:18281 | DOI: 10.1038/srep18281

The simplest system for which R can have negative eigenvalues contains two measurement events. These can 
be made either on the same qubit or seperate qubits. However in order to observe both causal and acausal corre-
lations in the current generation of experiments we focus on measurements separated by a variable time on a single 
qubit, as in the circuit shown in Fig. 1 which accomplishes the measurement {σ1, σ2}. In the figure, σ ( )U

1 2
 is the 

unitary operation mapping the ± 1 eigenstate of the Pauli operator σ1(2) onto the ± 1 eigenstate of Z. Between 
measurements we allow a period of free evolution, during which the primary qubit undergoes decoherence, and 
we calculate a pseudo-density matrix RTwait for a range of waiting times.

Figure 2 shows the results of our NMR experiments, plotting the eigenvalues of the pseudo-density matrices 
as a function of time, along with the corresponding ftr, in each of two settings. Figure 2(a) shows the results of 
purely dephasing noise acting on an initial state pseudo-pure state 0 . Here the pseudo-density matrix starts with 
a single negative eigenvalue, which tends towards zero from below as the waiting time is increased. The 
pseudo-density matrix never becomes positive semi-definite (and hence acausal) because the decoherence brings 
it towards a matrix which is rank deficient, and so the minimum eigenvalue approaches, but never quite reaches, 
zero.

In order to observe a sharp transition between causal and acausal pseudo-density matrices it is necessary both 
to start with a mixed initial state, and to allow depolarizing decoherence, which is the case considered in Fig. 2(b). 
Now we observe a transition between causal and acausal pseudo-density matrices as the minimum eigenvalue 
crosses the zero threshold, a phenomenon reminiscent of entanglement sudden death23.

Methods
NMR experiments were performed on a Varian Unity Inova spectrometer with a nominal 1H frequency of 600 MHz 
using a HF{CP} probe with pulsed field gradients. The NMR sample comprised 13C-labelled sodium formate 
dissolved in D2O at 20 °C, providing a heteronuclear two-spin system. The 1H spin was used as the primary qubit 
and the 13C spin as the ancilla. Both spins were placed on resonance, so that the Hamiltonian took the form of a 
spin–spin ZZ coupling of 194.7 Hz, and the B1 field strengths were adjusted to give nutation rates of 12.5 kHz. The 
measured relaxation times were T1 =  7.8 s and T2 =  3.2 s for 1H and T1 =  16.3 s and T2 =  6.7 s for 13C. An inter-scan 
delay of 60 s ensured that the spin system began each experiment close to its thermal state.

Quantum logic gates were implemented using standard approaches24,25. Single qubit rotations in the XY-plane 
were implemented using BB1 composite rotations26,27, while Z-rotations were implemented as frame rotations28 
which were propagated through the pulse sequence29 to points where they could be dropped. Pseudo-pure 
two-qubit states were prepared using the method of Kawamura et al.30; for pseudo-pure single qubit states the 
thermal state was used directly. NMR spectra were processed using home written software and the intensity of the 
13C doublet determined by combining separate integrals for the two components; all integrals were normalised 
using a reference spectrum.

Figure 1.  A quantum circuit for measuring correlations in time. 
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Figure 2.  Eigenvalues of R and value of ftr as a function of Twait. In (a) the system starts in a pseudo-pure 
state and undergoes dephasing noise, while in (b) the system starts in a mixed state and undergoes depolarising 
noise. The circles indicate data points obtained from experiment, while the solid lines indicate the best fit for 
the relevant theoretical models. These models each take 3 parameters to describe the initial state of the system 
and either 1 and 3 parameters, respectively, to parametrize the noise. The red region indicates the time period in 
which all resulting pseudo-density matrices are acausal. Error bars (not shown) are comparable to the symbol 
sizes.
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Instead of using natural decoherence during Twait, controllable dephasing of the primary qubit was implemented 
using the diffusive suppression of pulse field gradient spin echoes31 as described by Cory et al.32. This can be con-
verted to controlled depolarization by using single qubit rotations to apply the dephasing around the X, Y and 
Z-axes in turn. This process also dephases the ancilla qubit, but leaves its Z-component unaffected as the ancilla 
does not experience the single qubit gates.

Theoretical predictions for the behaviour of the causality monotone were computed using a four variable model 
for the dephasing experiments and a six variable model for the depolarization experiments. Three variables of each 
model correspond to the expectation values for X, Y and Z for the initial state of the qubit. An exponential fall-off 
in correlations which anti-commute with individual error terms was assumed, consistent with a constant rate of 
Pauli errors. For the dephasing experiments, the rate of Pauli errors was assume to be non-zero for only Z errors, 
leading to a fourth parameter. For the dephasing experiments three parameters corresponding to constant rates 
of X, Y and Z errors were introduced. Least squares fitting was then used to fit the theoretical models obtained in 
this way to the value of the eigenvalues of the reconstructed PDMs obtained from experiment.

References
1.	 P. Busch. The time–energy uncertainty relation. Time in Quantum Mechanics, pages 69–98 (2002).
2.	 J. S. Bell et al. On the Einstein–Podolsky–Rosen paradox. Physics 1(3), 195–200 (1964).
3.	 L. Henderson & V. Vedral. Classical, quantum and total correlations. Journal of Physics A: Mathematical and General 34(35), 6899 

(2001).
4.	 H. Ollivier & W. H. Zurek. Quantum discord: a measure of the quantumness of correlations. Physical Review Letters 88(1), 17901 

(2001).
5.	 B. Dakić, V. Vedral & Č. Brukner. Necessary and sufficient condition for nonzero quantum discord. Physical Review Letters 105(19), 

190502 (2010).
6.	 A. J. Leggett & A. Garg. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Physical Review 

Letters 54(9), 857–860 (1985).
7.	 C. Brukner, S. Taylor, S. Cheung & V. Vedral. Quantum entanglement in time. arXiv preprint quant-ph/0402127 (2004).
8.	 L. Hardy. Probability theories with dynamic causal structure: A new framework for quantum gravity. arXiv preprint gr-qc/0509120 

(2005).
9.	 G. Chiribella, G. M. D’Ariano, P. Perinotti & B. Valiron. Beyond causally ordered quantum computers. arXiv preprint arXiv:0912.0195 

(2009).
10.	 M. S. Leifer & R. W. Spekkens. Formulating quantum theory as a causally neutral theory of bayesian inference. arXiv preprint 

arXiv:1107.5849 (2011).
11.	 O. Oreshkov, F. Costa & Č. Brukner. Quantum correlations with no causal order. Nature Communications 3, 1092 (2012).
12.	 Y. Aharonov, S. Popescu, J. Tollaksen & L. Vaidman. Multiple-time states and multiple-time measurements in quantum mechanics. 

Phys. Rev. A 79, 052110 May (2009).
13.	 G. Chiribella, G. M. D’Ariano, P. Perinotti & B. Valiron. Quantum computations without definite causal structure. Phys. Rev. A 88, 

022318 Aug (2013).
14.	 G. C. Knee, S. Simmons, E. M. Gauger, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H. J. Pohl, K. M. Itoh, M. L. W. Thewalt 

et al. Violation of a Leggett–Garg inequality with ideal non-invasive measurements. Nature Communications 3, 606 (2012).
15.	 J. Dressel, C. J. Broadbent, J. C. Howell & A. N. Jordan. Experimental violation of two-party Leggett–Garg inequalities with semiweak 

measurements. Physical Review Letters 106(4), 40402 (2011).
16.	 A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve & A. N. Korotkov. Experimental violation of a Bell’s inequality 

in time with weak measurement. Nature Physics 6(6), 442–447 (2010).
17.	 M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O’Brien, A. G. White & G. J. Pryde. Violation of the Leggett–Garg 

inequality with weak measurements of photons. Proceedings of the National Academy of Sciences 108(4), 1256–1261 (2011).
18.	 G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko & J. Wrachtrup. Violation of a temporal Bell inequality for single spins in a diamond 

defect center. Physical Review Letters 107(9), 90401 (2011).
19.	 C. J. Isham. Quantum logic and decohering histories. arXiv preprint quant-ph/9506028 (1995).
20.	 T. C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro & F. Verstraete. Maximal entanglement versus entropy for mixed 

quantum states. Physical Review A 67(2), 022110 (2003).
21.	 G. Vidal. Entanglement monotones. Journal of Modern Optics, 47(2-3), 355–376 (2000).
22.	 A. M. Souza, I. S. Oliveira & R. S. Sarthour. A scattering quantum circuit for measuring Bell’s time inequality: a nuclear magnetic 

resonance demonstration using maximally mixed states. New Journal of Physics 13(5), 053023 (2011).
23.	 T. Yu & J. H. Eberly. Sudden death of entanglement. Science 323(5914), 598–601 (2009).
24.	 J. A. Jones. NMR quantum computation. Prog. NMR Spectrosc. 38(4), 325–360 (2001).
25.	 J. A. Jones. Quantum computing with NMR. Prog. NMR Spectrosc. 59, 91–120 (2011).
26.	 S. Wimperis. Broadband, narrowband and passband composite pulses for use in advanced NMR experiments. J. Magn. Reson. Ser. 

A 109(2), 221–231 (1994).
27.	 H. K. Cummins, G. Llewellyn & J. A. Jones. Tackling systematic errors in quantum logic gates with composite rotations. Phys. Rev. 

A 67(4), 042308 (2003).
28.	 E. Knill, R. Laflamme, R. Martinez & C. H. Tseng. An algorithmic benchmark for quantum information processing. Nature 404(6776), 

368–370, MAR 23 (2000).
29.	 M. D. Bowdrey, J. A. Jones, E. Knill & R. Laflamme. Compiling gate networks on an ising quantum computer. Phys. Rev. A 72(3), 

032315 (2005).
30.	 M. Kawamura, B. Rowland & J. A. Jones. Preparing pseudopure states with controlled-transfer gates. Phys. Rev. A 82(3), 032315 

(2010).
31.	 E. O. Stejskal & J. E. Tanner. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. 

Phys. 42(1), 288 (1965).
32.	 D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel & S. S. Somaroo. Experimental quantum error 

correction. Phys. Rev. Lett. 81(10), 2152–2155 (1998).

Acknowledgements
We thank John Baez, Andreas Doering and Pieter Kok for helpful discussions. J.F. and V.V. acknowledge support 
from the National Research Foundation and the Ministry of Education, Singapore. V.V. also thanks the James 
Martin School (UK), Leverhulme Trust (UK) and the Templeton Foundation (USA). This material is based on 
research funded, in part, by the Singapore National Research Foundation under NRF Award NRF-NRFF2013-01.



www.nature.com/scientificreports/

7Scientific Reports | 5:18281 | DOI: 10.1038/srep18281

Author Contributions
J.F. and V.V. developed the pseudo-density matrix formalism, and performed theoretical calculations. J.F., J.J. and 
V.V. designed the experiments and wrote the manuscript. J.J. performed the experiments.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Fitzsimons, J. F. et al. Quantum correlations which imply causation. Sci. Rep. 5, 18281; 
doi: 10.1038/srep18281 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Quantum correlations which imply causation

	Pseudo-density matrices

	Properties

	Hermiticity. 
	Unit trace. 
	Partial trace. 
	Measurements. 

	Causality

	Measuring causal relationships

	Experimental determination of 2-site pseudo-density matrix

	Methods

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ A quantum circuit for measuring correlations in time.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Eigenvalues of R and value of ftr as a function of Twait.



 
    
       
          application/pdf
          
             
                Quantum correlations which imply causation
            
         
          
             
                srep ,  (2015). doi:10.1038/srep18281
            
         
          
             
                Joseph F. Fitzsimons
                Jonathan A. Jones
                Vlatko Vedral
            
         
          doi:10.1038/srep18281
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep18281
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep18281
            
         
      
       
          
          
          
             
                doi:10.1038/srep18281
            
         
          
             
                srep ,  (2015). doi:10.1038/srep18281
            
         
          
          
      
       
       
          True
      
   




