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Over the last decades, cyber-physical systems have evolved from isolated to complex interconnected
systems that are remotely accessible. This made them easier to attack, especially since they often contain
legacy components with known vulnerabilities. This paper presents a methodology to assess the security
of a cyber-physical system. It automatically generates attack trees based on the system architecture. The
generated attack trees are processed to provide both technical and non-technical feedback. The assessor
can define different attacker models to asses the security of the system with respect to different types of
attackers. The methodology is validated by providing tool support and applying it to an example ICS.
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1. INTRODUCTION

Cyber-physical systems (CPS) are networks of
interacting elements with physical input and output,
usually containing various geographically distributed
field sites. Each field site consists of sensors
and actuators, controlled by a programmable logic
controller (PLC) or similar device. These remote
sites are typically connected to a centralized control
network where operators can remotely monitor and
control the processes. They fulfill critical functions in
the public infrastructure (e.g. electricity distribution,
traffic lights) and manufacturing processes. The high
potential impact of attacks on these types of systems
has made them a popular target for attackers.
Examples are the Maroochy Shire sewage spill in
Australia, and the Stuxnet worm in Iran. Recently,
the Ukrainian grid was compromised which caused
hundreds of thousands of people to be without
electricity for several hours. Securing these types of
systems is not a trivial task, due to their complexity
and legacy components with known vulnerabilities.

Threat/attack trees were first proposed in the mid-
nineties, and have since become a commonly used
tool to assess threats to computer systems. The
concept has been further extended by subsequent
research, for instance, focusing on incorporating

countermeasures or integrating the potential impact
of attacks in the tree, tuning them to be used
in risk management systems. One of the main
disadvantages is that they are, typically, manually
constructed making the quality of the analysis
significantly dependent on the experience and
security background of the assessor. Moreover,
attack trees for real-life systems can quickly grow
excessively large making them hard to interpret
and extract meaningful information, especially for
assessors with little security background.

This paper presents a methodology for CPS security
assessment. The contribution is threefold. First,
attack trees are automatically generated based on
the system model and an attacker goal selected by
the assessor. Generic templates representing attack
patterns are used to iteratively refine the attacker
goal. The system model is provided via SysML,
an intuitive modeling language for cyber-physical
systems. Second, the generated attack trees are
automatically assessed to give both technical and
non-technical feedback. The assessor can define
a custom attacker model to assess the security
with respect to different types of attackers. The
methodology not only provides an indication of
the security of the system against specific types
of attackers, it also provides the assessor with a
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tailored selection of countermeasures that could be
implemented to increase the security of the system.
Third, adoption of the methodology is facilitated via
tool support and it is validated using an example ICS.

Section 2 presents related work. Section 3 gives a
general overview of the methodology, after which
the attack tree generation and assessment are
discussed in more detail in respectively section 4
and 5. Subsequently, the approach is validated in
section 6. The paper ends with conclusions.

2. RELATED WORK

One of the most commonly used methods to assess
the security of IT systems is attack trees. They
were introduced by Schneier (1999), and Mauw and
Oostdijk (2005) further refined the foundations of
attack trees and presented a formal mathematical
definition. The concept of attack trees was extended
by Bistarelli et al. (2006) to include defence
strategies. They proposed defence trees (DT) in
which defences are introduced on the leaf nodes of
the attack tree. A slightly different approach, called
Attack Defence Trees (Kordy et al. 2011), integrates
the defence strategies between the attack nodes,
instead of on the leaves. Attack Countermeasure
Trees (ACTs) proposed by Roy et al. (2012) are
an extension of defence trees, adding branches
with detection and mitigation events. Edge et al.
(2007) propose to represent the defensive strategies
in a separate tree. Other types of attack trees
focus on including the consequences of attack
scenarios in the attack tree, examples are Attack
Response Trees (ARTs)(Zonouz et al. 2009) and
Attack Tree with BowTie analysis (ATBT) (Abdo et al.
2018). This facilitates the use of attack trees for
risk management. Recently, a new type of attack
tree, called Attacker-Manager Game Tree (AMGT),
was presented. Traditionally, the root node was the
attacker goal and the attack path was determined
bottom up. AMGTs represent the rational steps an
attacker and a defender would take as if they were
playing a game. This model takes into account the
cost of each attack step for the attacker and doesn’t
assume that a countermeasure perfectly inhibits an
attack step, as opposed to ACTs and DTs (Arghavani
et al. 2018). While attack trees were originally used
for IT systems, they can also be applied to cyber-
physical systems. This is illustrated by Byres et al.
(2004), who use attack trees for risk assessment
of SCADA systems. This was followed by other
similar work (Ten et al. 2007; Ji et al. 2016). Our
work focuses on the automatic generation of attack
trees for cyber-physical systems using templates
representing common attack patterns. We further
focus on automatically providing intuitive feedback to
both non-technical and technical users.

Several tools exist that focus on the security analysis
of CPS. Some tools such as ADVISE (LeMay
et al. 2011), CyberSage (Vu et al. 2014) and
CySeMoL (Sommestad et al. 2013) focus on a
probability analysis of an attacker reaching the
attacker goal. These systems do not provide
suggestions to improve the security of the system.
ADVISE requires profound security knowledge,
since the assessor needs to provide the attack
tree as input. The results of the evaluation are
largely dependent on the quality of the provided
attack tree. The output of CySeMoL is similar
to ADVISE, but does not rely on an attack tree
provided by the assessor. Instead, generic blocks
are defined that allow the assessor to model the
CPS system. This reduces the reliance on the
security background of the assessor. An important
drawback, however, is that CySeMoL uses a fixed
attacker model, decreasing the flexibility for the
assessor to analyse the security with respect to
different types of attackers. In CyberSage, the
assessor must provide the workflow (i.e. a series of
attack steps to reach the attacker goal). This also
requires significant security background, and does
not consider alternative attack paths. Other tools
focus on compliance with standards. For instance,
the Cyber Security Evaluation Tool (CSET) (ICS-
CERT 2014) consists of a survey and evaluates the
ICS network architecture to assess the compliance
of the system with one or more selected standards.
The system does not support the modelling of an
attacker nor does it provide feedback regarding the
security of the system.

Several papers discuss how security feedback
can be visualised in security dashboards to
users. Kolomeec et al. (2017) define visualization
models for information such as attacks, network
data and countermeasures. The authors stress
the importance of isolating a single security
characteristic in metrics. Our methodology defines
several security metrics that each give a unique
view on the security of the cyber-physical system.
McKenna et al. (2016) state that most security
analysis tools focus on the data analysis, and neglect
tuning the obtained information for the diverse
user profiles, such as technicians and managers.
The methodology (and tool support) presented in
this paper focuses on providing both technical
and non-technical feedback. The system does not
require a significant security background but can be
customized for advanced use cases by expert users.

3. APPROACH

Our approach extends FAST-CPS (Lemaire et al.
2014, 2015), which focuses on analyzing the security
impact of known vulnerabilities on the security of
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Figure 1: General overview of the methodology.

cyber-physical systems. It enables the user to model
the system architecture in SysML, a modelling
language derived from UML used for model-based
systems engineering (Friedenthal et al. 2014) and
translates it to a logic-based model. Figure 1 shows
a general overview of the methodology. The process
is divided in two parts: a tree generation algorithm
and a tree evaluation algorithm. The tree generation
algorithm takes as input a FAST-CPS SysML model
of the cyber-physical system and an attacker goal.
The algorithm generates an attack tree based on
the provided input. It uses generic Templates that
enable iterative refinement of the attacker goal until
the attack tree consists of nodes that can no longer
be refined. The templates represent common attack
patterns and enable generation of the attack tree
without human intervention. The generated attack
tree is used by the tree evaluation algorithm to
give security feedback to the assessor. The security
feedback is provided based on the attacker model
defined by the assessor. Different types of attackers
can be modelled, each with their own capabilities.
The algorithm provides both feedback for technical
users (e.g. system administrators) and for non-
technical users (e.g. plant managers). The tree
generation and tree evaluation is presented in more
detail in the following two sections.

4. ATTACK TREE GENERATION

This section discusses the automatic generation
of attack trees. The generated tree is used in
the following section to assess the security of the
cyber-physical system against specific attackers.
The generated attack tree follows the structure as
defined by Mauw and Oostdijk (2005). The nodes
of the attack tree represent attacker goals, the root
node of the tree represents the global goal of the
attacker. Each goal consists of a string representing
a general description of the attacker goal and the set
of elements of the CPS on which the attacker goal
applies (e.g. gain physical access to device PLC1).
Other nodes are refinements of this goal, and leaves
represent attack goals that can no longer be refined.
A parent node can specify either an OR or an AND
relation, denoting whether or not it is sufficient for an
attacker to complete one child goal, or all child goals
need to be completed in order to complete the goal
represented by the parent node.

This section first discusses the input required for
the attack tree generation. The following subsection
discusses how templates are constructed, after
which the tree generation algorithm is presented.
The final subsection presents a few examples of
templates that we defined as part of the methodology
and integrated in the tool support (see Section 6).

4.1. Input

The tree generation algorithm requires two types of
input: the system model and the attacker goal.

4.1.1. System Model
The attack trees are generated based on a model
of the ICS, which must be provided by the asses-
sor. This paper does not focus on the modelling
of the CPS itself but uses an existing modelling
framework, namely FAST-CPS (Lemaire et al. 2015).
This framework was selected because it allows
the assessor to model the system using a graph-
ical formalism based on SysML and automatically
links known vulnerabilities extracted from vulnera-
bility databases on the Internet (e.g. the ICS-CERT
vulnerability database) to the elements in the sys-
tem. The framework, further, translates the SysML
model of the system to an Imperative Declarative
Programming (Wittocx et al. 2008) (IDP) model of the
system. IDP1 is a Knowledge Base System for the
FO(·) language. FO(·) is an extension of first-order
logic with types, aggregates, inductive definitions,
etc. An IDP instance consists of a Vocabulary a
Theory, and Structure. In the vocabulary, the FAST-
CPS framework defines the non-logical symbols (i.e.
types, predicates, functions) that are used to model
the system. In the structure, the input model is
defined. This is generated based on the SysML
model of the ICS and the vulnerability databases.
It contains a set of variables E representing the
elements in the CPS and instances of the predicates
defined in the Theory to represent the properties and
relations between the different elements. Example
types of elements are HardwareComponent (i.e.
hardware elements in the CPS such as a switch
and a PLC), SoftwareModule (i.e. a software mod-
ule such as an operating system or HMI software
running on components), Parameter (i.e. a CPS
process is defined by several invariants expressed
in function of thresholds, environment variables and
the status of actuators, these are referred to as
parameters) and Network (i.e. a network that links
a set of components). Example predicates specify-
ing the relation between elements are NetworkLo-
cation(HardwareComponent,Network) (i.e. indicates
that a hardware element has access to a specific
network) and ControlTask(SoftwareModule, Parame-
ter) (i.e. indicates that the software module is used
1More information about the IDP system can be found on https:

//dtai.cs.kuleuven.be/software/idp/.
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to control a specific parameter). The theory contains
the logic rules expressed that are evaluated by the
IDP logic engine. These logic rules can be expressed
in a superset of the FO(·) language containing the
predicates defined in the vocabulary. The IDP model
of the system generated by FAST-CPS is used as
input for the tree generation algorithm.

4.1.2. Attacker Goal
The assessor selects an attacker goal that becomes
the root of the attack tree. The selected attacker goal
is then further refined using the templates, effectively
generating the attack tree. If an assessor wants to
reason about multiple attacker goals, a separate
tree is built for each goal. Two main attacker goals
were identified based on the NIST guide to ICS
security Stouffer et al. (2015): ModifyCPSBehavior
and ObtainData. The former denotes an attacker
attempting to modify the behavior of the CPS
process. The latter denotes an attacker attempting
to extract any data assets from the CPS. These are
fairly generic attacker goals relevant to any CPS
system. An assessor can also specify more fine-
grained attacker goals by selecting a template and
the system elements required as arguments for the
template (see Section 4.2). The generic attacker
goals match with templates that do not require the
assessor to select any parameters.

4.2. Template Model

Each template represents a refinement of a specific
attacker goal. A template specifies a unique string
representation of the attacker goal and a set of
parameters representing the elements in the system
model on which this attacker goal should be applied.
The values of these parameters are specified by the
tree generation algorithm. Each template contains
an attack tree representing a refinement of the
template’s attacker goal, with additional information
contained in the nodes. Two types of nodes are
defined: final tree nodes F and nodes R that need
to be refined further via additional templates.

Final tree nodes contain a string describing the
attacker goal represented by the node and a FO(·)
expression using the FAST-CPS vocabulary that
specifies the (set of) system element(s) on which
the attack step applies. The expression defines an
equivalence relation specifying the system elements
for which the Apply(E1,. . . ,En) predicate holds
based on the properties and relations between
the system elements. This predicate was added to
the FAST-CPS vocabulary to be used in templates
and the template evaluation (see the following
subsection). Nodes that need to be refined further
using additional templates contain a reference to the
template representing the refinement of the attacker
goal. Similar to final tree nodes, they also contain a

FO(·) expression that is used to define the system
elements that should be provided as parameters to
the referenced template.

Figure 2 illustrates how templates can be visually
represented by showing the template ModifyPara-
meter(p) as an example. Rectangles with dashed
lines denote nodes that need to be refined further
via templates. Rectangles with full lines denote final
nodes of the attack tree. The #Int notation binds
parameters in the template description or template
reference with the parameters in the Apply predicate,
the integer denotes that order in which they appear
in the predicate.

4.3. Tree Generation Algorithm

The tree generation algorithm (see Algorithm 1) uses
the attacker goal (AG) and the CPS model (SM),
both specified by the assessor, and a predefined
set of templates representing generic attack patterns
as input to generate the attack tree. The set goals
represents nodes that need to be refined further
using templates. Initially there is one node in the set,
which is the attacker goal chosen by the assessor.
The algorithm continuously selects nodes that need
to be refined further, until the set goals is empty.
Once a node is selected, the algorithm retrieves the
template referenced by the node. The algorithm then
evaluates each node in the template. This evaluation
starts with the execution of the FO(·) expression
associated with the node in the scope of the provided
system model and the parameters passed to the
template. This results in sets of parameters that
satisfy the Apply predicate. If no set of parameters
that satisfies the predicate is found, the evaluation
returns no nodes. Otherwise, the evaluation function
returns a node that can be added to the attack
tree for each set of parameters that satisfies the
predicate. These nodes represent resolved versions
of the template nodes in which values are assigned
to the parameter declarations in the node. It is
possible that one template node results in more than
one resolved node after evaluation, since multiple
parameter sets can be found that satisfy Apply.
The updateTree method replaces the template node
with the resolved versions of the node. If the node
represents an attacker goal that needs to be refined
further, the resolved nodes are added to the goals
set. Once the template is resolved, the goal node
is replaced with the tree generated based on the
template referenced by the node. Once goals is
empty, tree is the fully refined attack tree.

4.4. Example Attack Pattern Templates

This subsection shortly discusses a few of the
templates we defined as part of the methodology
and which are also integrated in the tool support
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Figure 2: Template ModifyParameter(parameter).

Algorithm 1 GenerateTree(AG,SM,Templates)

Tree tree = new Tree();
goals = {AG}
while goals �= ∅ do

goal = goals.pop();
Template t = getTemplate(goal);
for all TemplateNode tn ∈ t do

Node[] n = tn.eval(SM, goal.params);
t.updateTree(tn, n);
if tn ∈ R then

goals.push(n);
end if

end for
tree.replace(goal, t.getTree());

end while

discussed in Section 6. A full overview of the 12
templates we currently defined and integrated in
the tool can be found in Depamelaere (2018). The
system is sufficiently flexible to allow third-parties
to extend the system with additional templates,
increasing the scope of the analysis.

- ModifyCPSBehavior : this template infers the
different parameters monitored and controlled by
the CPS and, for each parameter, generates a
node referencing the ModifyParameter(parameter)
template.

- ObtainData: this template infers the different data
assets defined in the system model and further
refines the attacker goal by generating a node
referencing the Obtain(data) template for each
data asset.

- ModifyParameter(parameter): this template repre-
sents an attacker changing the behaviour of the
CPS process by modifying a process parameter.

The template is shown in Figure 2. This template
takes into account which software modules are
able to control the specified parameter, which net-
works they are located in, and which hardware
components are sensors that measure the speci-
fied parameter. How many children the root node
has depends on the system architecture. For every
software module that can modify the parameter,
a child node is added. These nodes are further
matched with another template which will extend
the tree. Similarly, for every sensor that measures
the parameter a leaf node is added, representing
an attacker modifying the parameter by obtain
physical access to the sensor/actuator related to
the specified parameter. The attacker could also
attempt to spoof communication from a component
to the sensor/actuator. For this route to succeed,
the attacker must gain access to a network used by
the component to interact with the sensor/actuator
(refined in the GainNetworkAccess(n) template)
and spoof the communication.

5. ATTACK TREE ASSESSMENT

Attack trees for real-life systems quickly grow in size
to a point at which they are very hard to interpret
by human assessors. Moreover, determining what
useful information can be extracted from attack
trees is not trivial for assessors with a limited
security background. Hence, this section focuses
on the automated analysis of attack trees to
provide intuitive security feedback to both system
administrators (technical feedback) and managers
(non-technical feedback). This section first discusses
the attacker model used during the attack tree
analysis. Subsequently, the strategy for assigning a
difficulty level to each attack step (i.e. attacker goal)
is described. The section ends with a discussion of
the security feedback presented to the assessor.
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5.1. Attacker Model

The tree assessment requires the input of the
attack tree (automatically generated as described
in the previous section) and an attacker model.
The attacker model A = (C, M, A) constitutes a
set of credentials C available to the attacker, a
set of capabilities M (each mapped to an integer
value ranging from 1 (no expertise) to 4 (expert)),
and a set of components in the system A which
the attacker has physical access to. The following
attacker capabilities are considered:

- Stealing Credentials: Stealing credentials from
other users in the system by performing a phishing
attack, social engineering, etc.

- Identity Spoofing: Pretending to be another entity
whilst sending commands over a channel.

- Exploiting Vulnerabilities: Exploiting known vulner-
abilities in software/hardware components.

- Discovering Vulnerabilities: Discovering new vul-
nerabilities in software/hardware components.

5.2. Node Difficulty Assessment

The node difficulty ranges from 1 (trivial) to
4 (unlikely) and indicates how hard it is for
the modelled attacker to reach the attack goal
represented by that node. The difficulty assignment
consists of two steps. First a difficulty is assigned to
each node based on the attacker capabilities. After
that, the impact of countermeasures is reflected in
the node difficulty.

5.2.1. Attacker-Based Difficulty
The first stage of the difficulty assignment is the
calculation of the difficulty for each leaf node. Two
types of leaf nodes can occur. The first type is related
to physical access to a component or the possession
of a credential. If the attacker has the required
credential or access, the leaf is automatically
labelled as trivial (i.e. difficulty 1), and unlikely (i.e.
difficulty 4) if otherwise. The other type represents
an attack goal that requires a particular skill (e.g.
exploit vulnerabilities). These steps become easier
the more proficient the attacker is. If an attacker is an
expert in the skill required for a particular attack step,
then its difficulty is set to 1. Decreases in skill result
in proportional increases in difficulty. For nodes with
children in an OR-relation, the difficulty of the node
with the lowest difficulty is assigned, since only one
of the child goals must be completed to complete
the parent goal. For nodes with children in an AND-
relation, all child goals need to be accomplished to
reach the parent node. Hence, the highest difficulty
of the child goals is selected.

5.2.2. Attack Countermeasure Tree
System administrators often take measures to
harden the security of their system. Not all of these
measures are related to system architecture and,
hence, contained in the SysML model. Examples
are password policies, software update policies
and intrusion detection systems. A set of 26 of
these types of countermeasures was selected based
on documents from ENISA (2016) and ICS-CERT
(2011). These countermeasures can be applied to
both leaf and intermediary nodes, following the
Attack Countermeasure Tree specification (Roy et al.
2012). Not all countermeasures apply to all types
of nodes. The activation of a countermeasure on
a node results in a difficulty increase of that node
with at most 3. Apart from a difficulty increase,
each countermeasure also has an attribute reflecting
the complexity of implementation (as suggested
by ENISA). This property has 3 levels, ranging
from low to high. This is used in the following
subsection where intelligent suggestions are given
on which countermeasures could be applied to
further increase the security of the system. A
detailed overview of the available countermeasures,
on which types of nodes they can be applied,
the implementation complexity and the associated
difficulty increase can be found in Depamelaere
(2018). After a countermeasure is applied to a node,
the difficulty update is propagated up the tree.

5.3. Security Feedback

This section discusses three types of security
feedback based on the attack tree and attacker
model, targeting both non-technical and technical
users.

5.3.1. Easiest Attack Path
Determining the most probable attack path for a
given attacker isn’t straightforward for assessors in
large attack trees. Hence, the system automatically
marks the attack path with the lowest difficulty. This
is calculated using the recursive algorithm listed in
Algorithm 2.

5.3.2. Security Metrics
This paragraph defines a set of security metrics
that give an indication of the security status of the
system to non-technical users. The security metrics
are especially relevant for assessors that want to
compare multiple alternative system architectures
or determine the impact of countermeasures (see
following subsection).

- Global difficulty matches the difficulty parameter
of the root node. It represents the difficulty for the
modelled attacker to reach the global attacker goal.
A higher global difficulty generally means a more
secure system.
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Algorithm 2 MarkEasiestPath(n)

n.easy ← true
if n.children �= ∅ then

if n.operation = AND then
for all c ∈ n.children do

MarkEasiestPath(c)
end for

else if n.operation = OR then
for c ∈ n.children|∀c′ ∈ n.children\{c} :
c′.difficulty > c.difficulty do

MarkEasiestPath(c)
end for

end if
end if

- The difficulty distribution represents the number
of nodes in the tree marked with each level of
difficulty. For setups with equal global difficulty, the
assessor could prefer a setup where the attacker
is more likely to quickly reach attacker goals with a
higher difficulty. The distribution not only considers
leaf nodes because countermeasures can affect
the difficulty of intermediary nodes.

- Security score is a double between zero and three
representing a weighted average of the difficulty
of the attack steps. The easiest nodes don’t
contribute to the score and have weight zero.

score =

4∑

d=1

(d− 1)· | {n|∀n ∈ nodes, n.diff = d} |
| nodes |

5.3.3. Smart Countermeasure Suggestion
Selecting the most effective countermeasure to im-
pede an attacker isn’t trivial. This section discusses
how the system proposes countermeasures tailored
to mitigate the attacks on the modelled system. The
algorithm used to gather the set of countermeasure
suggestions is shown in Algorithm 3.

First, the nodes along the easiest attack path are
selected. From this subset, the nodes that have the
same difficulty level as their parent are selected
as they represent the weakest nodes. For each of
these nodes, the best available countermeasure is
selected (if there are any). The parameter used to
determine the best countermeasure is selected by
the assessor from two options: diff-increase and
complexity. The former favours countermeasures
with the highest increase in difficulty for the
node on which it is applied, the latter favours
countermeasures that are easier to implement. The
resulting list is then sorted by impact on security
score, so the countermeasures with the most impact
on the difficulty distribution are suggested first. For

countermeasures that result in an equal security
score, the best criterion is used as a tiebreaker.

Algorithm 3 GatherBestCountermeasures(emph)

Require: emph ∈ {diff-increase, complexity}
Output: BestCMList
{Find best CM’s on attack path}
for all n ∈ attack-path do

if n.CM �= ∅ and n.diff ≤ n.parent.diff then
A ←sort {cm|cm.active = F, ∀ cm ∈ n.CM}
by emph
BestCMList← BestCMList ∪A.first

end if
end for
{Simulate and sort by score and emphasis}
D ← deepcopy(attack tree)
for all cm ∈ BestCMList do

enable cm in D
save attacker goal difficulty and score
disable cm in D

end for
sort BestCMList by score, then by emph
return BestCMList

6. VALIDATION

This section validates the methodology via a case
study and a discussion of the tool support (the
source code can be found in Depamelaere (2018))
provided to facilitate adoption of the methodology.

6.1. Illustrative Example

The example ICS is a pumping station with a small
network (see Figure 3) for the sake of simplicity. The
main activity of this infrastructure is to keep the water
level of a river between certain boundaries using
pumps. This particular system is heterogeneous,
as most cyber-physical systems. First of all, there
is a control network with a water level sensor,
pump actuator, HMI panel and a PLC controller.
There is also a supervisory network containing a
data historian and an engineering workstation. The
connection between both is made using switches
and routers. The input file used for the example can
be found in Depamelaere (2018).

The selected attacker goal for the use case is the
manipulation of the pump. For the evaluation, three
attacker profiles were chosen (see Table 1). The
first attacker is an experienced hacker external to
the system. This implies that he is proficient in the
defined capabilities, but has no physical access to
components. The second attacker is a member of
the cleaning staff and, hence, has access to several
components but scores low on the capabilities.
Neither attacker possess any ICS credentials.
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Figure 3: Pumping station network architecture.

The third attacker profile reflects the collaboration
between the hacker and the cleaning staff. The
hacker, for instance, can bribe an employee to obtain
physical access to system components.

The results of the case study are shown in
Table 2. The difficulty distribution is listed in the
second column. The generated attack tree consists
of 117 nodes. In the first part of the table,
the security status of the system is listed for
each attacker profile. The CPS scores the highest
possible global difficulty for each individual attacker
profile. However, if both profiles are combined,
the attacker goal difficulty drops to 2, and the
security score to 1.7. The second part of the table
shows the impact of applying the first suggested
countermeasures (CM) incrementally for each
attacker profile. For the hacker, the first suggested
countermeasure is to install an anti-virus on the
engineering workstation, protecting the password
needed to change the parameter by impersonating
an employee. This increases the score with 0.1. The
threat originating from the cleaning staff member is
mainly caused by the physical access he possesses.
Therefore, the suggested countermeasures are to
prevent unnecessary access to these components,
which greatly improves the security. These are
also the most important countermeasures for the
combined attacker profile. Once these are secured,
the countermeasure related to the passwords is
proposed. Additional countermeasures (e.g.input
validation) can further increase the security, but are
not mentioned in the table for reasons of brevity.
The default sorting of countermeasures is by security
score. In the last row of the table, the result is
shown if the assessor focusses on the goal difficulty.
The suggested countermeasure applies to the root
node, which directly protects the attacker goal but
leaves many sub nodes unprotected. The attackers
still have access to the vital components, and could
still cause serious damage.

6.2. Discussion

This subsection discusses the tool support provided
to the assessor to facilitate adoption of the presented

Table 1: The attacker models used in case study.

Table 2: The security feedback of the case study.

methodology. The assessor first models the CPS
in SysML and converts it to an IDP model using
the FAST-CPS framework. The tool reads the
output file generated by FAST-CPS, containing
the CPS model. The assessor then selects an
attacker goal based on the data in the CPS
model. The attacker can be modelled by selecting
the credentials and physical access he possesses
and defining his capabilities. Multiple attackers
can be modelled, labelled and stored, each with
different profiles (e.g. malicious employee, script
kiddie and dedicated hacker). The profiles can be
activated separately or simultaneously to simulate
collaborations. Modifications to the input model
trigger a regeneration of the attack tree, followed by
an update of the security feedback.

The tool provides a comprehensible dashboard
(see Figure 4) that provides an at-a-glance
overview of the security metrics and the suggested
countermeasures. A first security metric is the
difficulty distribution, presented as a tile with a
donut chart. The second tile has a gauge that
indicates the security score. The global difficulty is
the most obvious indicator and is also displayed by
a gauge tile. A fourth tile displays the capabilities
of the (compound) attacker. The lower part of the
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window is dedicated to the list of countermeasures
suggested to the assessor. Each countermeasure
tile displays the security score of the system if
applied. The contour of the panels indicate the
goal difficulty if applied. The users can select which
countermeasures should be applied to the system,
and immediately receives feedback on the impact
via an update of the security metrics. Additional
information is shown in separate tabs, such as an
overview of the attackers. The modelled attackers
can be enabled or disabled, resulting in an update
of the security metrics. A visual representation of the
attack tree in which the easiest path is highlighted is
shown in a separate tab.

The algorithm for drawing the attack tree uses a
post-order traversal. Every leaf node is drawn to
the right of the previous leaf node (regardless of
depth) and once all children of a node are drawn,
the parent is centred above them. To account for the
quick increase in size, the tool supports collapsing
of subtrees by the user. The generated trees and
modelled attackers can be saved in JSON format,
to be imported later. Each template is implemented
in a separate Java class, with an execute method
in which the template’s parameters are passed and
which returns the list of resolved nodes.

7. CONCLUSIONS

This paper presented a methodology for the
security evaluation of cyber-physical system. The
methodology automatically generates attack trees
using generic templates representing typical attack
patterns. This enables the assessor to easily
compare different versions of a system model or
simulate the impact of updates on the model.
The assessor effort is shifted from updating the
attack trees itself to modifying the system model
in SysML, which is more intuitive and less error-
prone. The system is also extensible, allowing
third-parties with a security background to define
additional templates or modify existing templates to
tune the system to their specific needs and refine
the security feedback. The flexibility to add new
templates is, however, restricted by the logical model
of CPS systems used by the FAST-CPS framework.
If new concepts are required to express desired
attack patterns, the FAST-CPS model needs to be
extended. The generated attack tree is automatically
assessed to provide intuitive security feedback to
the assessor. Tool support is provided to facilitate
adoption of the methodology and it was applied
to a case study. The tool contains a security
dashboard providing an at-a-glance overview of the
security of the system, suitable for managers and
other stakeholders with a less technical background.
Further, tailored countermeasures are suggested
that can increase the security of the system.
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