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[1] A model combining low-frequency complex conductivity and high-frequency
permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency
conductivity depends on pore water and surface conductivities. Surface conductivity is
controlled by the electrical diffuse layer, the outer component of the electrical double layer
coating the surface of the minerals. The frequency dependence of the effective quadrature
conductivity shows three domains. Below a critical frequency fp, which depends on the
dynamic pore throat size �, the quadrature conductivity is frequency dependent. Between fp
and a second critical frequency fd, the quadrature conductivity is generally well described
by a plateau when clay minerals are present in the material. Clay-free porous materials with
a narrow grain size distribution are described by a Cole-Cole model. The characteristic
frequency fd controls the transition between double layer polarization and the effect of the
high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to
be relatively negligible. For a broad range of frequencies below 1 MHz, the effective
permittivity exhibits a strong dependence with the cation exchange capacity and the specific
surface area. At high frequency, above the critical frequency fd, the effective permittivity
reaches a high-frequency asymptotic limit that is controlled by the two Archie’s exponents
m and n like the low-frequency electrical conductivity. The unified model is compared with
various data sets from the literature and is able to explain fairly well a broad number of
observations with a very small number of textural and electrochemical parameters. It could
be therefore used to interpret induced polarization, induction-based electromagnetic
methods, and ground penetrating radar data to characterize the vadose zone.

Citation: Revil, A. (2013), Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–
1GHz, Water Resour. Res., 49, doi:10.1029/2012WR012700.

1. Introduction

[2] There are a number of electrical and electromagnetic
(EM) geophysical methods providing nonintrusively infor-
mation relative to the texture, water content, and interfacial
electrochemistry in the shallow subsurface in an extremely
broad range of frequencies (1 mHz–1 GHz). The relevant
arsenal of nonintrusive techniques include self-potential,
direct current (DC) resistivity, frequency and time-domain
induced polarization, frequency and time-domain induction
EM methods, ground penetrating radar (GPR), and the seis-
moelectric/electroseismic methods. These nonintrusive
methods have many applications in hydrogeophysics to
assess ground water resources and to monitor ground water
quality or for vadose zone hydrogeology and agriculture

just to cite few examples [e.g., Linde et al., 2006]. That
said, there is not a single model able to explain the complex
conductivity of unsaturated materials as well as their effec-
tive permittivity and their frequency dependences in the
broad range of frequencies of interest in geophysics
(1 mHz–1 GHz).

[3] In the low-frequency domain (<10 kHz), new mod-
els have been developed recently to describe the complex
conductivity of saturated and unsaturated sands and clayey
materials [Revil and Florsch, 2010; Revil, 2012; Revil
et al., 2012a, 2012b]. There is a vast literature regarding
this topic in interfacial electrochemistry and colloidal
chemistry [e.g., Schwarz 1962; Dukhin and Shilov, 2002;
Grosse, 2002] as well as in geophysics [Tarasov and Titov,
2007]. At very high frequencies, there are also predictive
models describing the high-frequency permittivity of po-
rous rocks. These models are empirically based like the
Topp model for soils [Topp and Reynolds, 1998], based on
upscaling methods like the volume-averaging method
[Pride, 1994], or based on the effective differential medium
approach or mixing laws (see discussion in Jones and Or
[2002], Cosenza et al. [2003], Robinson and Friedman
[2003], and Miyamoto et al. [2005]). Note that with the vol-
ume-averaging approach, the different phases are consid-
ered symmetrically while with the differential effective
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medium approach, one phase has to be chosen as the host
(for instance, grains immersed in a background fluid or
fluid inclusion in a matrix).

[4] The situation is much more confused in the interme-
diate range of frequencies (10 kHz–10 MHz). Typically, a
number of authors in geophysics have extended the high-
frequency behavior to lower frequencies by adding a con-
tribution related to the Maxwell-Wagner polarization
mechanism [Chen and Or, 2006]. Other approaches have
relied on using the so-called standard model of colloidal
chemistry (developed initially by Dukhin and Shilov and
based on the polarization of the diffuse layer, see Grosse
[2002]) and applying this model to low-frequency data sets
[Garrouch and Sharma, 1994]. To fit the data, a stretch of
the textural parameters is usually required and the obtained
set of interfacial properties are not compatible with the tri-
ple layer complexation models commonly used in surface
electrochemistry of minerals.

[5] In this paper, following my previous works [Revil
and Florsch, 2010; Revil, 2012; Revil et al., 2012a,
2012b], I claim that the diffuse layer is not the main con-
tributor to low-frequency polarization of clayey materials. I
also claim that the Maxwell-Wagner polarization is not ei-
ther the dominating mechanism of polarization at interme-
diate frequencies. An extremely simple model is developed
based on the low-frequency polarization of the Stern layer
(the inner layer of the electrical double layer). This model
is proposed for saturated and unsaturated clayey materials
(water being the wetting phase). It explains for the first
time an important amount of literature data in the fre-
quency range 1 mHz to 1 GHz in a very simple way.

2. Theory

[6] I consider an unsaturated porous material as shown
in Figure 1a with an electrical double layer coating the sur-
face of the grains (Figure 1b). In the classical literature in
geophysics, it is customary to see a polarization sketch like
the one shown in Figure 2a [e.g., Hasted, 1961]. In the fre-
quency range 1 mHz–1 GHz, the apparent dielectric con-
stant of a porous material is explained by two dissipation
mechanisms only: the Maxwell Wagner polarization
(called the � polarization in electrochemistry, see Grosse
[2002]) and the polarization of the water molecules past the
gigahertz frequency (called the � polarization). That said,
we know that in induced polarization, the polarization of
the electrical double layer plays an important role below
10 kHz. This nondielectric dispersion mechanism is associ-
ated with the electromigration and accumulation/depletion
of charge carriers at discontinuities in the migration path-
ways of the charge carriers. This mechanism is called the �
polarization in electrochemistry, and its role is such that it
may be the dominating mechanism of polarization for a
very broad frequency range as discussed in this paper (see
Figure 2b).

2.1. Effective Conductivity and Permittivity:
Definitions

[7] I first define the concepts of effective conductivity,
effective permittivity, and effective quadrature conductiv-
ity. Ampère law is given by [e.g., Vinegar and Waxman,
1984],

r�H ¼ Jþ @D

@t
; (1)

where J ¼ �� E denotes the conduction current density (in
A m�2), �� ¼ �0 þ i�00 represents the complex conductiv-
ity, Jd ¼ @D=@t corresponds to the displacement current
density (A m�2), D ¼ "E represents the dielectric displace-
ment (in C m�2), H denotes the auxiliary magnetic field
(A m�1), and " denotes the permittivity or dielectric con-
stant (in F m�1) of the material. I consider an harmonic
external electrical field E ¼ E0exp �i!tð Þ (i ¼

ffiffiffiffiffiffiffi
�1
p

is the
pure imaginary number, f is the frequency in Hz, ! ¼ 2�f
the angular frequency (in rad s�1), and E0 denotes a con-
stant amplitude of the alternating electrical field). The total
current density Jt is the sum of J and Jd . This yields Jt ¼
�� � i!"ð ÞE [Vinegar and Waxman, 1984]. This total cur-

rent density can be written as,

Jt ¼ ��eff E; (2)

where ��eff ¼ �eff � i!"eff is the effective complex conduc-
tivity and �eff and "eff are real positive frequency-depend-
ent scalars defined by

�eff ¼ �0; (3)

"eff ¼ "0 � �00=!: (4)

It is also possible to define an effective quadrature conduc-
tivity (in S m�1) that is directly related to the effective per-
mittivity as,

�00eff ¼ !"eff ¼ ��00 þ !"0: (5)

Figure 1. The REV. (a) Sketch of the REV comprised
between two reservoirs. (b) Sketch of the electrical double
layer at the solid water interface. The double layer includes
the Stern layer and the diffuse layer. The charges of these
two layers compensate the charge on the mineral surface
(o plane). The d plane corresponds to the separation plane
between the Stern and the diffuse layers. (c) Sketch of the
solid-water and water-air interfaces.
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Note that in the conventions used above, �00eff is positively
defined while �00 is negatively defined. Two phase angles
can be defined. The former is determined from the complex
conductivity tan� ¼ �00=�0 and the second from the effec-
tive parameters tan� ¼ �00eff=�eff ¼ !"eff =�eff (note that
� � 0 while � � 0).

2.2. Conductivity and Permittivity:
A Volume-Averaging Approach

[8] Pride [1994] developed a volume-averaging
approach used to upscale the Nernst-Planck equation to the
scale of a representative elementary volume (REV) of a
porous rock. He was however concerned only by the satu-
rated case and motivated by the modeling of the seismoelec-
tric effect. We use this approach to upscale the Nernst-
Planck equation to a porous material saturated by two immis-
cible fluid phases (water and air). The local current density
jw (in A m�2) occurring in the water phase is determined
from the Nernst-Planck equation, which is written, in ab-
sence of macroscopic concentration gradients, as

jw ¼
XN

i¼1

q2
i biCi

� �
ew: (6)

where ew denotes the local electrical field (in V m�1), N
denote the number of ionic species, qi the charge of species
i, and Ci their concentration. The mobilities bi (in N s m�1)
entering equation (6) are related to the classical ionic mobi-
lities �i (in m2 s�1 V�1) by bi ¼ �i=jqij and to the ionic
self-diffusion coefficients Di by Di ¼ kbTbi, where kb

denotes the Boltzmann constant (1.3807 � 10�23 J K�1),
and T the absolute temperature (in K). There is also a cur-
rent density associated with the grains, js due to the electri-
cal double layer coating the surface of the insulating grains.
The boundary conditions at the interface Ssw separating the
solid phase and the pore space are

ns � es � ew

� �
¼ 0; (7)

ns � js � jwð Þ ¼ 0; (8)

where ns denotes the normal unit vector to Ssw directed
from the pore to the solid phase (Figure 1c). The pore space
is filled with two immiscible fluids, the water and air
phases (water is assumed to be the wetting phase). The
boundary conditions at the interface Saw separating the non-
wetting phase (air) and water are

na � ea � ew

� �
¼ 0; (9)

na � ja � jw

� �
¼ 0; (10)

where na denotes the normal unit vector to Saw directed
from the water to the nonwetting phase (Figure 1c). In the
following, I will consider that the surface charge density at
the interface between water and the nonwetting phase can
be neglected. The reason to neglect this contribution is
because there is still a gap of knowledge in describing the
conductivity and polarization of this interface, which is,
however, described by an electrical double layer [Leroy
et al., 2012] and therefore likely characterized by surface
conduction and polarization.

[9] The microscopic equations given above are now
averaged at the scale of an REV. The REV corresponds to
the rock volume located in between two large-parallel
circular disks of area A separated by the distance L. This
is typically the case of a jacketed cylindrical sample in
the laboratory. We assume that there is a macroscopic
electrical potential difference � . When this potential
difference is divided by L, one obtains the equivalent
macroscopic field perpendicular to the end faces of the
REV. We note z the unit vector normal to the end faces
(Figure 1a). For example, for the electrical field at the
pore or grain scale, we have r � e	 ¼ 0, so the electrical
fields e	 can be derived from scalar electrical potentials
e	 ¼ �r 	 where the index 	 defined the phase (w for
water, s for solid, a for air). The macroscopic electrical
field is written as

z � E ¼ �� 

L
; (11)

where � ¼  	 Lð Þ �  	 0ð Þ denotes the difference of elec-
trical potential between the two reservoirs (Figure 1a). In
the pore water phase, the fundamental Laplace problem is
defined by

Figure 2. Dielectric dispersion for polarization in
charged porous media. (a) Classical representation from
Poley et al. [1978] and found in a number of papers in geo-
physics. (b) Representation of the three types of polariza-
tion discussed in the text. The � polarization corresponds
to the polarization of the electrical double layer, the �
polarization corresponds to the Maxwell-Wagner polariza-
tion, and the � polarization concerns the polarization of the
water molecules.
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r2Gw ¼ 0; in Vw; (12)

ns � rGw ¼ 0; on Ssw; (13)

na � rGw ¼ 0; on Saw; (14)

Gw ¼
L; on z ¼ L
0; on z ¼ 0;

�
(15)

where Ssw and Saw denote the solid-water and air-water
interfaces, respectively (Figure 1c), and Vw denotes the
water phase volume. The electrical potential in the water
phase can be written as  w ¼ Gw� =L and the local elec-
trical field by ew ¼ �rGw� =L. A similar boundary-value
problem of the normalized effective potential Ga can be
defined in the nonwetting phase (Va denotes the air phase),

r2Ga ¼ 0; in Va; (16)

na � rGa ¼ 0; in Saw; (17)

Ga ¼
L; on z ¼ L
0; on z ¼ 0:

�
(18)

[10] The volume average of a quantity a	 (a	 is a scalar,
a vector, or possibly a tensor) is

ha	i ¼
1

V

Z
V	

a	dV ; (19)

where V	 is the volume of the 	 phase within the REV. Slat-
tery’s classical theorem states [Slattery, 1967],

hra	i ¼ rha	i þ
1

V

Z
S	�

n	�a	dS; (20)

(no summation on the indices) where n	� represents the
unit outwardly directed normal vector for the 	 phase and
S	� represents the interfacial area contained within the
averaging volume. Applying this to the water, solid, and air
phases and using the unit vectors defined in Figure 1c, I
obtain,

hrawi ¼ rhawi þ
1

V

Z
Ss

nsawdS þ 1

V

Z
Sw

naawdS; (21)

hrasi ¼ rhasi �
1

V

Z
Ss

nsasdS; (22)

hraai ¼ rhaai �
1

V

Z
Sa

naaadS; (23)

where dS is an infinitesimal surface volume element. The
volumetric phase average a	 and the total volumetric aver-
age A are rerelated to each other by,

a	 ¼ ha	i=f	; (24)

A ¼
X
	

ha	i ¼
X
	

f	a	; (25)

where f	 denotes the volumetric fraction of phase 	 (ff ¼ �,
� denotes the connected porosity, and fs ¼ 1� � is the so-
lidity, fw ¼ sw� ¼ 
 is the volume fraction of water, also
called the water content in hydrogeology, and fa ¼
1� swð Þ� denotes the volume fraction of the nonwetting

phase). Therefore, we have,

A ¼ 1� �ð Þas þ sw�aw þ 1� swð Þ�aa: (26)

[11] We first define the electrical conductivity of the
pore water, which is given by,

�w ¼
XN

i¼1

q2
i biCi ¼

XN

i¼1

jqij�iCi: (27)

[12] From equation (26), the average conduction current
density is given by

J ¼ 1

V
�s

Z
Vs

esdV þ 1

V
�w

Z
Vw

ewdV ; (28)

J ¼ 1� �ð Þ�ses þ sw��wew: (29)

[13] The tortuosity of the water phase �w is defined by

ew ¼
1

�w
E; (30)

1

�w
� 1þ 1

Vw

Z
Ssw

z � nsGwdS þ 1

Vw

Z
Saw

z � naGwdS; (31)

where E ¼ �z� =H denotes the macroscopic electrical
field. From equations (25) and (26), the macroscopic elec-
trical field is also given by

E ¼ hesi þ hewi þ heai; (32)

E ¼ 1� �ð Þes þ �swew þ � 1� swð Þea: (33)

The phase average of the electrical field ea can be also
related to the macroscopic electrical field via the tortuosity
of the nonwetting phase �a,

ea ¼
1

�a
E; (34)

1

�a
� 1� 1

Va

Z
Ssa

z � naGadS: (35)

I need now to find a relationship between the tortuosity of
the pore space � (related to the definition of the electrical
formation factor F at saturation by F ¼ �=�) and the tor-
tuosities of the wetting and nonwetting phases. If we note
ef the local electrical field of the fluid phase (comprising
the wetting plus nonwetting fluid phases), the phase aver-
age of ef is related to the phase average of the electrical
field in the wetting phase ew and to the phase average of
the electrical field in the nonwetting phase ea by

ef ¼ swew þ 1� swð Þea: (36)
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The electric field ef is related to the macroscopic field E by,

ef ¼
1

�
E: (37)

Combining equations (30), (34), (A36), and (37), I obtain
after few algebraic manipulations the following relation-
ship between the tortuosity of the pore space, the tortuosiy
of the water phase, and the tortuosity of the air phase,

1

�
¼ sw

�w
þ 1� sw

�a
: (38)

Therefore, the tortuosity of the pore space is equal to the
harmonic average of the tortuosities of each phase weighted
by their relative saturation. If we multiply equation (38) by
the porosity, we obtain a relationship between the tortuosity
of the air phase, the formation factor, and the tortuosity of
the water phase,

� 1� swð Þ
�a

¼ 1

F
� �sw

�w
: (39)

The electrical formation factor can in turn be related to the
porosity by a power-law function [Archie, 1942],

F ¼ ��m; (40)

called the first Archie’s law, where m is called the cementa-
tion exponent (m � 1 is a strict bound and (1 � m � 3 for
sandstones and sands according to experimental data, see
Revil et al. [1998, Figure 5]). The conduction current den-
sity can be written as

J ¼ �s E � �swew � � 1� swð Þea

� �
þ sw��wew; (41)

J ¼ �sE þ �sw �w � �sð Þew � 1� swð Þ��sea; (42)

J ¼ �s þ
�sw

�w
�w � �sð Þ � 1� swð Þ�

�a
�s

� 	
E: (43)

The effective electrical conductivity of the material h�i (in
S m�1) is defined by the macroscopic Ohm’s law,

Jc ¼ h�iE: (44)

Combining equations (43) and (44) yields

h�i ¼ �s þ
�sw

�w
�w � �sð Þ � 1� swð Þ�

�a
�s: (45)

Note that in the case where there is no surface conductiv-
ity, we can connect equation (45) to the second Archie’s
law by

lim
� s!0
h�i ¼ �sw

�w
�w ¼

1

F
sn

w�w; (46)

where n is called the second Archie’s exponent in the litera-
ture. In the following, this second Archie’s exponent in the

expression of the electrical conductivity is introduced by
using the following change of variables,

�sw

�w
() 1

F
sn

w: (47)

From equation (39), I can also use the following change of
variables,

� 1� swð Þ
�a

() 1

F
1� sn

w

� �
: (48)

Using equations (47) and (48) into equation (45), I obtained
the following expression for the electrical conductivity of
the porous medium,

h�i ¼ �s þ
1

F
sn

w �w � �sð Þ � 1

F
1� sn

w

� �
�s; (49)

h�i ¼ 1

F
sn

w�w þ �s �
1

F
�s; (50)

h�i ¼ 1

F
sn

w�w þ F � 1ð Þ�s

� �
: (51)

In the following, I remove the bar on the pore water and
surface conductivity terms and drop the average symbol for
the electrical conductivity to keep the notations as simple
as possible. The same chain of algebraic manipulations
could be applied also to complex conductivity and there-
fore I can write the following expression of the complex
conductivity of the clayey material, ��, as a function of the
conductivity of the pore water �w and the complex conduc-
tivity of the solid phase ��S ¼ �0S þ i�00S (complex because
of the polarization the electrical double-layer coating the
grains),

�� ¼ 1

F
sn

w�w þ F � 1ð Þ��S
� �

: (52)

[14] Note that the pore fluid conduction and surface con-
duction add in parallel in this model, and therefore the elec-
trical conductivity of the porous material is a linear
function of the conductivity of the pore fluid. This is
expected as the volume-averaging approach treats the solid
and fluid phases symmetrically, and they are both assumed
to be continuous through the REV. As discussed in Appen-
dix A, the situation is different when a differential effective
medium approach is used. When we are dealing with gran-
ular media, the solid phase is discontinuous and grains are
immersed in the background pore water. In this case, the
differential effective medium theory yields a nonlinear
relationship between the electrical conductivity of the po-
rous material and the conductivity of the pore fluid (see for
instance, Revil et al. [1998] and Revil [1999]). Sands and
sandstones are somewhere in between these two types of
models as the diffuse layer is continuous (overlapping from
grain-to-grain) while the Stern layer is discontinuous. In
addition, it follows that the diffuse layer does not polarize
while the Stern layer polarizes and that the Stern layer can-
not contribute to the DC electrical conductivity.

[15] Using the displacement current density rather than
the electromigration current density, an equation similar to
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equation (52) can be obtained for the high-frequency dielec-
tric constant using the same chain of algebraic manipulations,

"0 ¼ 1

F
sn

w"w þ 1� sn
w

� �
"a þ F � 1ð Þ"S

� �
: (53)

[16] Now coming back to equation (52), I need to
express the low-frequency conductivity of the solid phase
corresponding to an insulating solid phase coated by a con-
ductive and polarizable electrical double layer as a function
of the surface charge density, the mobility of the counter-
ions, and the tortuosity of the electromigration pathways
along the surface of the grains. I assume that at low fre-
quency, only the conduction of the electrical diffuse layer
participates to the surface conductivity. Indeed, the grains
are in contact to each other (a very important distinction
with colloidal suspensions) and the diffuse layer is always
above a percolation threshold. This assumption has been
checked experimentally by Vaudelet et al. [2011a, 2011b].

[17] The electrical conductivity of the grains is given by
the mobility of the counterions (corrected by the tortuosity
around the grains) times the concentration of the charge
carriers times their charge. This yields,

�0
S ¼

� þð Þ
�w

Qd
S

VS
; (54)

where S denotes the surface area of the grains (in m2), Qd is
the surface charge density of the diffuse layer (in C m�2),
and VS is the volume of the grains (in m3). Note that the mo-
bility of the charge carriers is corrected for the tortuosity of
the electromigration of the counterions along the surface of
the grains in the water phase (the counterions are not allowed
to pass through the grains that are insulating). The fraction of
the volumetric charge density associated with the diffuse
layer is written as

1� fMð ÞQV ¼ �S

1� �
sw�


 �
1� fMð ÞCEC ; (55)

where fM (dimensionless) denotes the fraction of counter-
ions in the Stern layer (the counterions compensating the
negative charge of the mineral surface are distributed
between the diffuse layer and the Stern later, see Revil
[2012] and references therein). Consequently, 1� fMð Þ
denotes the fraction of counterions in the diffuse layer. The
volumetric charge density QV (in C m�3) denotes the total
charge density of the double-layer per unit volume of the
pore water (including the Stern and diffuse layers taken to-
gether). The relationship between QV and its value at satu-
ration (QS

V at sw ¼ 1) is QV ¼ QS
V=sw. We also have

1� fMð ÞQV ¼ Qd
S

Vp
: (56)

Therefore, the surface charge density can be expressed in
terms of the CEC by

QdS ¼ 1� fMð ÞQV Vw; (57)

Qd
S

VS
¼ �S 1� fMð ÞCEC ; (58)

where equation (55) has been used. Therefore, the real (in
phase) low-frequency component of the solid phase con-
ductivity is given by,

�0
S ¼ 1=F�ð Þsn�1

w � þð Þ�S 1� fMð ÞCEC ; (59)

where I used the following change of variables
1=�wð Þ () 1=F�ð Þsn�1

w resulting from equation (47). I
replace below the exponent (n � 1) in the expression of the
complex surface conductivity by the exponent p because
the true tortuosity that should be used is the one associated
with pathways along the grains, not strictly speaking, the
tortosity of the water phase adjacent to the grains (I will
show however in section 7 that the approximation p 	 n �
1 is a good one). This approach is consistent with the one
derived by Vinegar and Waxman [1984] and Slater and
Glaser [2003]. The low-frequency (in phase) conductivity
is given by

�0 ¼
1

F
sn

w�w þ sp
w

F � 1

F�


 �
� þð Þ�S 1� fMð ÞCEC

� 	
: (60)

[18] A similar approach can be followed for the high-fre-
quency electrical conductivity, for which now both the
Stern and diffuse layers contribute to the overall surface
conductivity [Revil, 2012; Revil et al., 2012a]. Following
the same approach as used to derive equation (60), this
yields

�1 ¼
1

F
sn

w�w þ sp
w

F � 1

F�


 �
�S � þð Þ 1� fMð Þ þ �S

þð ÞfM

h i
CEC

� �
:

(61)

where �S
þð Þ denotes the mobility of the counterions in the

Stern layer (as expected �S
þð Þ 
 � þð Þ, see Revil [2012] for

clays and Revil et al. [2012a] argued for �S
þð Þ ¼ � þð Þ in silica).

[19] An important parameter in the description of fre-
quency-domain induced polarization, but more importantly
in the description of time domain induced polarization, is
the normalized chargeability. In a time-domain induced
polarization experiment, the chargeability M characterizes
how the decay of the secondary voltages when the primary
current is shut down. This chargeability can be normalized
to obtain the normalized chargeability Mn ¼ M�1 ¼ �1
��0, and therefore from equations (60) and (61), the nor-
malized chargeability is given by

Mn ¼ sp
w

F � 1

F


 �
1

F�


 �
�S�

S
þð ÞfM CEC : (62)

We can express also the conductivity terms in term of the
volumetric charge density QV , which yields,

�0 ¼
1

F
sn

w�w þ �0
s ; (63)

�1 ¼
1

F
sn

w�w þ �1s : (64)

in which we have entered the term F � 1ð Þ=F 	 1 in
the expressions of the surface conductivities. In these

REVIL: ELECTRICAL PROPERTIES OF POROUS MATERIALS

311



relationships, the low-frequency and high-frequency sur-
face conductivity terms are expressed as

�0
s ¼ sp

w

A �;mð Þ
F

� þð Þ 1� fMð ÞQS
V ; (65)

�1s ¼ sp
w

A �;mð Þ
F

� þð Þ 1� fð Þ þ �S
þð ÞfM

h i
QS

V ; (66)

and the parameter A �;mð Þ is given by

A �;mð Þ ¼ 1

F�
F � 1ð Þ �

1� �


 �
: (67)

Note that the ratio of the surface conductivity to the pore
water conductivity is often called the Dukhin number (Du)

in the literature. The expression for A �;mð Þ contrasts with
the high salinity conductivity model developed recently by
Revil [2012], which yields,

A �;mð Þ ¼ m F � 1ð Þ 2
3

�

1� �


 �
: (68)

For spherical grains, F� 	 3=2 (more precisely �/2 for the
ions to move around a perfect spherical grain) and therefore
the presently derived expression of A �;mð Þ is

A �;mð Þ 	 2

3
F � 1ð Þ �

1� �


 �
: (69)

The difference between equations (67) and (68) is therefore
really in the factor m in the expression derived from the
effective medium theory. Note for spherical grain
(F� 	 3=2) and at high porosity, the formation factor is
given by

F ¼ ��3=2 	 1þ 3

2

1� �
�


 �
: (70)

Equations (69) and (70) yields

A �;mð Þ 	 1: (71)
With this approximation and using p ¼ n � 1, the high-
frequency and low-frequency conductivities are given exactly
by the Waxman and Smits [1968] equation (see also Waxman
and Thomas [1974] for the quadrature conductivity):

�0 ¼
1

F
sn

w �w þ � þð Þ 1� fMð ÞQ
S
V

sw

� 	
; (72)

�1 ¼
1

F
sn

w �w þ � þð Þ 1� fMð Þ þ �S
þð ÞfM

h iQS
V

sw

� �
: (73)

The present analysis therefore provides a theoretical foun-
dation to the Waxman and Smits [1968] model in which

Figure 3. Effective quadrature conductivity versus fre-
quency. (a) Type A. Berea sandstone (data from Lesmes
and Frye [2001], pH 8, 10�1 M NaCl solution). The data
are characterized by three components: a minimum critical
frequency from which the magnitude of the quadrature con-
ductivity is going down when the frequency decreases, a
plateau (over at least four decades in frequency), and a
high-frequency domain in which there is an increase of the
magnitude of the apparent quadrature conductivity. Filled
circles: measurements with four electrodes, filled squares,
measurements with two electrodes. (b) Type B. shaly con-
glomerate (this study, pH 7, 10�1 M NaCl solution).

Table 1. Properties of the Berea Sandstone (Clay Type: Kaolinite
and Illite)

Property Value

Archie exponent m (–) 1.78,a 1.69,b 1.85 6 0.05e

Saturation exponent n (–) 1.83,a 1.98 6 0.23,e 2.11 – 2.17i

Specific surface area Ssp (m2 g�1) 0.74c – 0.93d

Porosity � (–) 0.20 6 0.03c

Formation factor F (–) 18 to 26b

Grain density �S (kg m�3) 2660i

CEC (C kg�3) 256 C kg�1h

Excess charge density Qv (C m�3) 2.7 � 106j – 5.8 � 106i

aJun-Zhi and Lile [1990].
bFrom the raw data of Lesmes and Frye [2001], corrected for surface

conductivity.
cLesmes and Frye [2001] (one sample).
dZhan et al. [2010].
eAttia [2005] (eight samples).
fAggour et al. [1994].
gZhu and Toksöz [2012]
hUsing CEC ¼ Qs Ssp with Qs ¼ 0.32 C m�2 and Ssp ¼ 0.8 m2 g�1.
iVinegar and Waxman [1984, Tables 7 and 10] (porosity 0.19, four

samples).
jUsing QV ¼ �S [(1 � �)/�] CEC.
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their mobility B is related to the mobility � þð Þ by B ¼
� þð Þ 1� fMð Þ.

[20] In the high-porosity limit discussed previously, the
normalized chargeability is given as

Mn ¼ s
n�1

w

2

3


 �
�S�

S
þð ÞfM CEC ; (74)

which is exactly equation (43) of Revil [2012] for the quad-
rature conductivity obtained through the differential effec-
tive medium approach. Up to this point, I have not
discussed the frequency dependence of the electrical con-
ductivity. This will be done in the next section. Also, rather
than writing the surface conductivity and the normalized
chargeability as a function of the CEC, we can use the rela-
tionship developed by Revil [2012] to express the parame-
ters as a function of the specific surface area. The
relationship between the CEC (in C kg�1) and the specific
surface area SSp (in m2 kg�1) is CEC ¼ QSSSp, where QS

denotes the mean charge density for clay minerals (typi-
cally, two elementary charges per nm2, i.e., QS ¼ 0.32 C
m�2, see Revil [2012]). Note that QS and Qd are related to
each other by 1� fMð ÞQS ¼ Qd .

2.3. Frequency Dependence of the Effective
Conductivity and Permittivity

[21] Figure 3 shows the effective quadrature conductivity
spectrum for a Berea sandstone (data from Lesmes and
Frye [2001]), which is a clayey sandstone with a very small
amount of clay minerals. The properties of the Berea sand-
stone are summarized in Tables 1 and 2. I call Type A,
clayey materials showing the type of quadrature conductivity
spectra shown in Figure 3a. This type of quadrature conduc-
tivity distribution exhibits three distinct regions: (i) Domain
I is defined by frequencies such as f < fp (	 0.03 Hz for the
Berea sandstone data shown in Figure 3a). In this region, the
effective quadrature conductivity decreases with the fre-
quency (with �00 ! ¼ 0ð Þ ¼ 0). Domain II is defined by fp �
f � fd (	 0.3 MHz in Figure 3a). In this domain, the quadra-
ture conductivity reaches a plateau. Domain III is defined by
f > fd . In this domain, the effective quadrature conductivity
increases with the frequency and is controlled by the permit-
tivity of the material. I first provide some expressions for the
two critical frequencies and then I will provide expressions
for each domain.

[22] In Appendix B, I show that a characteristic relaxa-
tion time of a clayey material can be determined by the fol-
lowing equations

�p ¼
�2

2DS
þð Þ

s2
w; (75)

�p ¼
4kF

DS
þð Þ

 !
s2

w; (76)

where DS
þð Þ denotes the diffusion coefficient of the counterions

(in m2 s�1), k denotes the permeability (in m2), and � is a
characteristic pore throat size that can be derived from the per-
meability and the formation factor (see for instance, Table 2
for the Berea sandstone and a definition of this parameter in
Appendix B). The diffusion coefficient is related to the mobil-
ity of the counterions in the Stern layer, �S

þð Þ, by the Nernst-

Einstein relationship DS
ðþÞ ¼ kbT�S

ðþÞ=jqðþÞj, where kb is the

Table 2. Properties of the Berea Sandstone

Porosity ¼ � (–)
Permeability

k0 (mD)
Pore Throat

Sizea � (in mm) (1)

0.206b 498b 7.9
0.205b 496b 7.9
0.207b 477b 7.7
0.180c 228c 6.0
0.230d 450d 6.8

aFrom � ¼
ffiffiffiffiffiffiffiffiffiffi
8Fk0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��mk0

p
with m ¼ 1.74.

bFrom Aggour et al. [1994].
cFrom Lesmes and Frye [2001].
dFrom Zhu and Toksöz [2012].

Figure 4. Relationship between the normalized charge-
ability and the quadrature conductivity. (a) Eight bentonite
sand mixtures (R ¼ 0.97). Data from Slater and Lesmes
[2002]. (b) One saprolite core sample (S16, see Revil et al.
[2012b]). The normalized chargeability is determined from
the high and low asymptotic values of the (in-phase) electri-
cal conductivity. The discrepancy at low quadrature conduc-
tivity may be due to the higher uncertainty in extrapolating
the high-frequency and low-frequency limits for the electri-
cal conductivity.
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Boltzmann constant (1.3807 � 10�23 J K�1), T is the absolute
temperature (in K), and jqðþÞj is the absolute value of the
charge of the counterions in the Stern layer. Using the data-
base of Vinegar and Waxman [1984], Revil [2012] found
�S
þð Þ(Naþ, 25�C) ¼ 1.5 � 10�10 m2s�1V�1. This yields the

diffusion coefficient of the counterions DS
þð Þ(Naþ, 25�C) ¼

3.8� 10�12 m2 s�1 for clays. For fully water-saturated materi-
als, the lower critical frequency at which the effective quadra-
ture conductivity becomes constant is given by

�p ¼
�2

2DS
þð Þ
: (77)

Taking � ¼ 6 mm and DS
þð Þ(Naþ, 25�C) ¼ 3.8 � 10�12 m2

s�1, the critical frequency associated with the previous
relaxation time is

fp ¼
1

2��p
¼

DS
þð Þ

��2
; (78)

fp ¼
DS
þð Þ

8�Fk0
; (79)

and I obtain fp ¼ 0.034 Hertz in excellent agreement with
the data shown in Figure 3a. Note the measurement of this
relaxation frequency can be used to estimate therefore the
permeability of the material using equation (79) (this idea
will be explored below in section 6).

[23] I follow here closely Vinegar and Waxman [1984]
in estimating the highest frequency at which the Stern layer
polarization can play a role. The shortest possible spatial
variation between charged and uncharged zones is the aver-
age distance between the surface sites on the clay minerals.
I have mentioned that the surface charge density on the

surface of clay minerals is in average QS ¼ 0.32 C m�2

(see Revil [2012]). So the average distance between the
charged sites is 1.8 nm. Using this distance, equation (78)
yields a critical frequency of 0.3 MHz.

[24] The second characteristic frequency comes from the
transition between the low-frequency polarization of the
electrical double layer and the high-frequency dielectric
effect in the overall polarization of the material. It is there-
fore defined by

�d ¼ �"0=�00; (80)

where �00 and "0 denotes the quadrature conductivity of the
plateau and the high-frequency dielectric constant. From
equation (53), the high-frequency dielectric constant is
given (for saturated conditions) by

"0 ¼ 1

F
"w þ F � 1ð Þ"s½ �: (81)

Taking "w ¼ 80 "0, "s ¼ 5.9 "0, and F ¼ 18 for the Berea
sandstone, we get "0 ¼ 10.0 "0. The second critical fre-
quency is therefore given by

fd ¼
1

2��d
¼ � �00

2�"0
: (82)

Using the value of the quadrature conductivity for the
Berea sandstone, �00 ¼ �1.5�10�4 S m�1 (see Figure 3),
and "0 ¼ 10.0 "0 yields fd ¼ 0.3 MHz (see Figure 3a).
Above this frequency, the polarization response of the ma-
terial is dominated by the dielectric polarization of the ma-
terial (see Figure 3a). Note also if the quadrature
conductivity is on the order of �1 � 10�5 S m�1, the criti-
cal frequency fd can be as low as 10 kHz.

Table 3. Properties of the Sandstones From the Vinegar and Waxman [1984] Database Analyzed With the Linear Conductivity Model
(Shaly Sands, NaCl)

Sample Mineralogya F (–)b �S
c (10�4 S m�1) �(�)d CECd (C kg�1) log QV

e(C m�3) f f (–)

3477 K, C 15.1 30.6 0.201 237.74 6.40 0.85
3336A K 23.0 23.6 0.205 393.65 6.61 0.93
3478 K, C 18.9 21.9 0.181 417.70 6.70 0.94
101 K, I 16.4 43.0 0.210 531.40 6.72 0.91
102 K, I 16.2 13.1 0.205 599.84 6.79 0.97
CZ10 C 17.8 72.6 0.233 772.91 6.83 0.89
3833A C 13.9 60.7 0.224 1154.1 7.03 0.94
3126B I, S 11.8 96.2 0.249 1446.1 7.06 0.92
3847A I, C 47.7 29.6 0.126 754.56 7.14 0.96
3283A K, C, I 19.4 44.0 0.186 1245.8 7.16 0.96
3885B I, C 28.9 50.4 0.204 1676.7 7.24 0.97
3972E S, M, I 21.7 44.8 0.187 1546.7 7.25 0.97
3258A I 49.9 86.0 0.128 2022.1 7.56 0.95
3891A C, I 39.3 222.4 0.192 3325.2 7.57 0.93
3308A S, C 12.9 381. 0.270 5498.4 7.59 0.91
3323F S, C 14.4 1065 0.288 10145 7.82 0.89
3324A S, C 29.9 932 0.220 6622.6 7.79 0.84
3323E S, C 15.1 1124 0.281 9801.6 7.82 0.87
3324B S, C 29.6 907 0.204 7843.3 7.91 0.87
3306F S, C 47.8 853 0.171 7122.6 7.96 0.87

aFrom Vinegar and Waxman [1984, Table 1], K: kaolinite, C: chlorite, I : illite, and S: smectite.
bFrom the fit of the in-phase conductivity data using the linear conductivity model.
cFrom the fit of the in-phase conductivity data using the linear conductivity model.
dFrom Vinegar and Waxman [1984].
eFrom QV and porosity assuming a mass density for the grains of 2650 kg m�3.
fUsing f ¼ 1 � Q̂V1/QV.
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[25] I now describe the quadrature conductivity response
below the critical frequency fp for Type A materials, which
are exhibiting a clear plateau in their polarization spectra.
This plateau is likely resulting from a broad distribution of
polarization length scales and therefore from the self-simi-
larity of the pore space for a broad range of scales (this
idea was expressed by Vinegar and Waxman [1984] and is
consistent with the modeling performed by Cosenza et al.
[2008] and observations by Hyslip and Vallejo [1997]).

[26] For clay minerals, the kinetics of sorption/desorp-
tion of cations in the Stern layer is pretty fast (few seconds
according to Pohlmeier and Ilic [1998]). Therefore at low
frequencies (typically < 1 Hertz), the kinetics of sorption/
desorption may influence the polarization of the electrical
double layer. Wong [1979] provided a general model
describing the polarization of metallic particles (grains)
exchanging charge carriers with the surrounding pore
water. In his case, the charge carriers are redox active spe-
cies (electron donors and electron acceptors) and the parti-
cle conductive to electrons. His model is however general
to work also with insulating grains coated by an electrical
double layer. Wong [1979] showed that his rather complex
model can be represented with a Warburg impedance
model. The Warburg model implies that at low frequencies

(f < fp), the quadrature conductivity decreases as the
inverse of the root mean square of the frequency. For type
A materials exhibiting a plateau for the quadrature conduc-
tivity (see Figure 3a), the normalized chargeability is also
equal to the quadrature conductivity (Mn ¼ ��00). Note that
Lesmes and Frye [2001] and Slater and Lesmes [2002]
attempted a semitheoretical explanation for the equivalence
between normalized chargeability and imaginary conduc-
tivity. This equivalence is very well illustrated by the data
of Slater and Lesmes [2002] and Revil et al. [2012b] (see
Figure 4).

[27] We therefore propose the following model in which
the frequency dependence is explicit :

�0 ¼ �0 þMn
f

fp


 �1=2

; f < fp; (83)

�0 ¼ �1; f � fp; (84)

�00 ¼ �Mn
f

fp


 �1=2

; f < fp (85)

�00 ¼ �Mn; f � fp; (86)

Figure 5. High-frequency volumetric charge density ver-
sus the total charge density. The high-frequency volumetric
charge density is determined from electrical conductivity
measurements at various salinities (from the surface con-
ductivity and the formation factor), while the total charge
density is determined from the porosity and the cation
exchange capacity.

Figure 6. Pore water conductivity dependence of the con-
ductivity of shaly sands (data from Vinegar and Waxman
[1984]). I use here a collection of five samples with more or
less the same formation factor but different CEC and therefore
surface conductivities. According to the model developed in
the main text, the conductivity data should follow the same
trend, which is the case. The parameter Du denotes the Dukhin
number, i.e., the ratio of surface to pore water conductivity.
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and where �0 and �1 are given by equations (63) and (64),
respectively, and the normalized chargeability Mn by equa-
tion (74). This (empirical) model shows that the quadrature
conductivity is going to zero at zero frequency [Fuller and
Ward, 1970; Vinegar and Waxman, 1984]. Therefore, from
equations (10) to (15), the effective conductivity and the
effective dielectric constant are expressed as

�eff ¼ �0 þMn
f

fp


 �1=2

; f < fp; (87)

�eff ¼ �1; f � fp; (88)

"eff ¼ "0 þ
Mn

2�f

f

fp


 �1=2

; f < fp; (89)

"eff ¼ "0 þ
Mn

2�f
; f � fp; (90)

where the high-frequency dielectric constant "0 is given by
equation (53).

[28] Type B spectra are those showing a clear peak in the
low-frequency part of the spectrum (see Figure 3b for which,
however, the data are plotted in a linear scale in quadrature
conductivity). In this case, we expect a Warburg-type model
to represent the low-frequency complex conductivity [see
Wong, 1979]. Because the Warburg model is a special case
of the Cole-Cole model (Cole-Cole exponent c ¼ 1/2), I pro-
pose the following Cole-Cole model to represent the Type B
spectra,

�� !ð Þ ¼ �1 1� M

1þ i!�p

� �c

" #
; (91)

Figure 7. Effective relative permittivity versus frequency for the Berea sandstone (data from Lesmes
and Frye [2001], pH 8, 10�1 M NaCl solution, Garrouch and Sharma [1994], 2000 ppm NaCl, and Poley
et al. [1978], sandstone porosity 0.145, salinity NaCl 3.3% wt.). These data are the same than shown in
Figure 3a but plotted in terms of the effective permittivity rather than in term of effective quadrature
conductivity. In the geophysical literature, it is very frequent that the � polarization in Domain II is
(wrongly) assumed to be a Maxwell-Wagner polarization.
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�� !ð Þ ¼ �1 �
Mn

1þ i!�p

� �c ; (92)

where �p ¼ 1/(2�fp) denotes the main relaxation time (in s)
fp denotes the associated critical frequency, and c denotes
the Cole-Cole exponent (the Warburg model corresponds
to the case where c ¼ 0.5, and I expect more generally
that 0 � c � 0.5), and M denotes the chargeability
(M ¼ �1 � �0ð Þ=�1). The real and imaginary parts of the
complex conductivity of the Cole-Cole model are given by
[Cole and Cole, 1941],

�0 ¼ �1 �
1

2
Mn 1�

sinh c ln !�p

� �� �
cosh c ln !�p

� �� �
þ cos �

2 1� cð Þ
� �

( )
; (93)

�00 ¼ � 1

2

Mncos �
2 1� cð Þ
� �

cosh c ln !�p

� �� �
þ sin �

2 1� cð Þ
� �

( )
: (94)

Therefore, from equations (10) to (15), the effective con-
ductivity is given by �eff ¼ �0 and the effective dielectric
constant are expressed as

"eff ¼ "0 þ
Mn

2!

cos �
2 1� cð Þ
� �

cosh c ln !�p

� �� �
þ sin �

2 1� cð Þ
� �

( )
: (95)

[29] As mentioned earlier, I expect to have the Cole-
Cole exponent c in the range 0 (flat response) to 0.5 (pure
Warburg response). In the following, I will focus more on
Type A spectra [see Vinegar and Waxman, 1984; Slater
and Lesmes, 2002] rather than on Type B [Scott and
Barker, 2003; Binley et al., 2005].

3. Effective Conductivity: Theory Versus Data

3.1. Determination of the Fraction of Counterions in
the Stern Layer

[30] The first test concerns the inference of the fraction of
counterions in the Stern layer, fM. I use equations (63) and
(65) with equation (69) for the parameter A �;mð Þ to reinter-
pret the electrical (in phase) conductivity data from Vinegar
and Waxman [1984] on shaly sands. The results are reported
in Table 3 and the values of fM determined from the poros-
ity, the formation factor, and the surface conductivity are
shown as a function of the excess of charge per unit pore
volume in Figure 5. The high-frequency excess charge den-
sity Q̂

1
V is estimated from the surface conductivity and the

formation factor by

Q̂
1
V ¼

�SF

� þð ÞA �;mð Þ : (96)

We see that a good average value for fM is close to 0.9 [see
also Revil, 2012]. This means that approximately 90% of
the counterions are, in average, located in the Stern layer in
agreement with triple layer models (see discussion in Revil
[2012]).

3.2. Salinity Dependence of the In-Phase Electrical
Conductivity

[31] In Figure 6, I investigate if the linear conductivity
model described in the present modeling approach

describes well the conductivity data of shaly sands. I use
five samples from the Vinegar and Waxman [1984] data-
base with roughly the same formation factor (in the range
12.9 to 15.1). According to the model, the conductivity
data normalized by the conductivity of the pore water
should follow a unique trend when plotted as a function of
the Dukhin number defined as the ratio of surface to pore
water conductivity. This is the case in Figure 6, indicating
that the linear conductivity model described in the present
paper works well in predicting the pore water conductivity
dependence of the electrical conductivity of clayey mate-
rials. This is probably because of the continuity of the dif-
fuse layer from grain-to-grain as mentioned in section 2.

4. Low-Frequency Effective Permittivity

[32] In this section, I test five predictions of the model
either for the effective quadrature conductivity or the

Figure 8. Influence of the specific surface area SSp upon
the quadrature conductivity. Trend determined for clayey
sands from the model developed by Revil [2012] at 0.1
S m�1 NaCl. Data from Slater and Glaser [2003], Weller
et al. [2011], Börner [1992], Koch et al. [2011], Revil et al.
[2012b], and Lesmes and Frye [2001]. Measurements
reported at 10 Hertz for the clayey materials, at 1.4 Hz for
the data from Binley et al. [2005].
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low-frequency effective dielectric constant (these two pa-
rameters are related to each other by equation (5) in section
2.1). Figure 7 shows a typical effective relative permittivity
spectrum. In this section, we are interested to test the model
for frequency much below the critical frequency fd .

4.1. Quadrature Conductivity: Influence of the
Specific Surface Area

[33] From equations (74) and (86) and for Type A spec-
tra, the quadrature conductivity of the plateau at saturation
of the water phase is given as a function of the CEC or the
specific surface area by

�00 ¼ � 2

3
�S�

S
þð ÞfM


 �
CEC ; (97)

�00 ¼ � 2

3
�S�

S
þð ÞfM QS


 �
SSp; (98)

where we have used the relationship between the CEC and
the specific surface area CEC ¼ QSSSp [see Revil, 2012].
For clayey sands, taking �S

þð Þ(Naþ) ¼ 1.5 � 10�10 m2 s�1

V�1 at 25�C, f ¼ 0.90, QS ¼ 0.32 C m�2, and �g ¼ 2650
kg m�3, I obtain �00 	 �aSSp with a ¼ 7.6 � 10�8 S kg m�3

Figure 9. Influence of the CEC and specific surface area SSp upon the effective relative permittivity. (a)
At low frequencies, the relative effective permittivity is linearly correlated with the CEC in agreement
with the model developed in the main text. (b) At low frequencies, the relative effective permittivity is also
linearly correlated with the specific surface area SSp (in m2 g�1) (data from Knight and Nur [1987], various
sandstones including three Berea sandstones). (c). Measurements at 100 kHz. The line corresponds to the
trend predicted by the model. Data from Comparon [2005] (100 kHz, clayrocks) and Knight and Nur
[1987] (105 kHz, sandstones, corrected for the saturation by dividing with the saturation).
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[Revil, 2012]. For clean sands and sandstones, if we use
� þð Þ(Naþ) ¼ 5.2 � 10�8 m2 s�1 V�1, f ¼ 0.50, QS ¼ 0.64
C m�2, �g ¼ 2650 kg m�3, I obtain a ¼ 2.9�10�5 S kg m�3

[Revil et al., 2012a]. These two linear trends are shown in
Figure 8 together with data from the literature. For the data
of Binley et al. [2005], I converted the Spor data into specific
surface area data using SSp ¼ ðSpor�=�gÞ= 1� �ð Þ with a
grain mass density of �g ¼ 2650 kg m�3 and a mean porosity
of 0.28. The model agrees with the data especially for clayey
materials. For nonclayey materials, additional data points are
needed. This demonstrates also the strong difference of the
mobility of the counterions in the Stern layer for silica sands
and for clays. This point may be, in turn, related to the density
of counterions in the Stern layer of silica and aluminosilicates.
In the case of silicate, only a small fraction of the active sur-
face sites are locally associated with the sorption of the coun-
terions in the Ster layer. For clay minerals, I have mentioned
above that in average 90% of the charged surface sites are
associated with counterions present in the Stern layer.

4.2. Effective Permittivity: Influence of the CEC and
Surface Area

[34] At low frequency, we can neglect the influence of
the true dielectric constant in the effective permittivity. We
first look for an expression of the effective relative permit-
tivity as a function of the CEC and specific surface area at
full saturation. We obtain

eff sw ¼ 1ð Þ 	 0 þ 1

f

1

2�"0

A �;mð Þ
F

�S
þð ÞfM QV

� 	
; (99)

eff sw ¼ 1ð Þ 	 0 þ 1

f

m

3�"0
�S�

S
þð ÞfM

� 	
CEC : (100)

According to my model, the low-frequency effective rela-
tive permittivity is therefore proportional to the CEC. This
is in agreement with the experimental results reported in
Figures 9a and 9c. The slope of the trend shown in Figure
9a is 1.1960.13 kg C�1. Taking m ¼ 2, f ¼ 10 kHz, �S ¼
2650 kg m�3, �S

þð Þ ¼ 1.5 � 10�10 m2 V�1 s�1, fM ¼ 0.9,
the predicted slope is 0.9 kg s�1 C�1, therefore, in excellent
agreement with the observations. Equation (100) can be
also expressed in terms of the specific surface area,

eff sw ¼ 1ð Þ 	 0 þ 1

f

m

3�"0
�S�

S
þð ÞfM QS

� 	
SSp; (101)

which can be written simply as,

eff 	 0 þ
b

f
SSp: (102)

where b is a constant independent on the specific surface
area. In Figure 9c, we report measurements of the relatively
effective permittivity as a function of the specific surface
area. A fit of these data with equation (102) yields 0 ¼
25 6 3 and b ¼ 18 6 2ð Þ � 103 kg s�1 m�2.

4.3. Effective Permittivity: Influence of the Saturation

[35] The third point to check is the dependence of the low-
frequency effective relative permittivity with the saturation.

Figure 10. Saturation dependence of the quadrature conductivity and effective permittivity for the
Berea sandstone. (a) Quadrature conductivity (data from Vinegar and Waxman [1984], 30 Hz, soltrol,
25�C). Soltrol is an isoparaffin solvent. (b) Relative effective permittivity of the Berea sandstone at two
distinct frequencies (10 kHz and 100 kHz) showing that the permittivity follows a power-law function of
the saturation (data from Garrouch [2001], the Berea sandstone is water-wet and saturated by n-decane
and 10,000 ppm NaCl brine 2 S m�1, porosity 0.20). Note the consistency of the value of the p expo-
nent. The plain lines correspond to the prediction of the model.
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We consider frequencies low enough so the true dielectric
constant can be neglected. The saturation dependence of the
effective relative permittivity is therefore given by

eff swð Þ 	
�00 sw ¼ 1ð Þ

2�"0

1

f


 �
sp

w; (103)

where f is the frequency (in Hertz) and �00 sw ¼ 1ð Þ repre-
sents the value of the quadrature conductivity at saturation.
We therefore see that the permittivity follows a power-law
function with the saturation. This behavior is in very good
agreement with the data of Garrouch [2001] (see Figure
10b). The saturation exponent p is equal to 1.4, fairly con-
sistent with p ¼ 1.3 resulting from the low-frequency quad-
rature conductivity measurements of Vinegar and Waxman
[1984, Table 8] (see Figure 10a). Vinegar and Waxman
[1984] reported that the saturation exponent n is in the
range 2.1–2.2 for the Berea sandstone (see Table 1). This
would yield p ¼ n �1 	 1.1�1.2 only slightly below the
previous estimates (1.3–1.4).

5. High-Frequency Effective Permittivity

[36] For frequencies much above the critical frequency
fd given by equation (82) and much below the relaxation
frequency of water and bound water, the effective relative
permittivity is given by

0 ¼ 1

F
sn

ww þ F � 1ð Þs þ 1� sn
w

� �
a

� �
; (104)

Figure 11. Saturation dependence of the effective permit-
tivity. Relative effective permittivity at very high frequen-
cies (300 and 500 MHz) for the Sherwood sandstone
(porosity 0.36, data from West et al. [2003]. The plain line
corresponds to the prediction of the model.

Figure 12. High-frequency relative permittivity of the Fontainebleau sandstone. (a) Permittivity meas-
urements between 50 MHz and 1 GHz (data from Coutanceau-Monteil [1989]). The lines represent the
prediction of the model. (b) Formation factor/porosity relationship (Zamora et al., unpublished results).
The plain lines correspond to the prediction of the model.
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where w ¼ 80 and a ¼ 1 denote the relative permittivity
of water and air, respectively. I now test the predictions of
equation (104) with respect to saturation, porosity, and CEC.

5.1. Influence of Saturation

[37] I use the data from West et al. [2003] at 300 and 500
MHz, therefore, below the dielectric relaxation frequency
of water. A fit of the data (shown in Figure 11) yields m ¼
1.7 6 0.1 and n ¼ 1.860.1 (for the same sandstone, Binley
et al. [2002] obtained from low-frequency electrical con-
ductivity measurements m ¼ 1.7 and n ¼ 2.0, respectively),
and a relative permittivity for the solid phase of S ¼ 5.9
(in agreement with the range provided by Robinson and
Friedman [2003] for similar sandstones).

5.2. Influence of Porosity

[38] In Figure 12, I test the effect of porosity upon the
high-frequency relative permittivity. I use the data from
Coutanceau-Monteil [1989] with the Fontainebleau sand-
stone (99.98% silica). The measurements were performed
at high frequencies between 50 MHz and 1 GHz. The lines
in Figure 12 represent the prediction of the model. The

application of the model to the data yields a cementation
exponent of 1.5 and a relative permittivity for the solid
phase of 4.5. This relative permittivity is very close to the
relative permittivity for SiO2 (3.9 according to Gray et al.
[2009] and 4.5 according to Olhoeft [1981]). The cementa-
tion exponent is also consistent with electrical conductiv-
ity measurements (Figure 12b). In Figure 13, the
prediction of equation (104) for the relative permittivity/
porosity relationship is tested for carbonate rocks. The
model is consistent with the data and the value of the ce-
mentation exponent determined from electrical conductiv-
ity measurements.

5.3. Influence of CEC

[39] According to equation (104), the high-frequency rel-
ative permittivity should be independent on the cation
exchange capacity. Figure 14 displays various experimental
data and seems to show that this is the case.

6. Relaxation Time, Pore Size, and Permeability

[40] In Figures 15 and 16, I test the relationship between
the relaxation frequency and the pore throat size given by
equation (78) for clayey sands and clean sandstones,
respectively. For the Triassic sandstones reported by Scott
and Barker [2003], I divided the mercury pore diameter by
2 to get a mercury pore access and then I divided the result
by 5.3 to get a value of �. Indeed, the capillary entry pres-
sure is related to the mercury pore radius rc by pe ¼ 2�=rc,

Figure 13. Comparison between the model and the ex-
perimental data from Coutanceau-Monteil [1989] for lime-
stones. (a) The samples are saturated by fresh water and
air. (b) Calibration of Archie’s law from the measurement
of the formation factor and porosity for samples of the
same formation than used for the relative permittivity (50
MHz). The plain lines correspond to the prediction of the
model.

Figure 14. At high frequencies (2 MHz), the effective
permittivity appears independent (or weakly dependent) on
the CEC, a result that is also in agreement with the model
developed in the present paper [Garrouch and Sharma,
1994].
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where � represents the surface tension and rc represents the
smallest pore of the set of largest pore percolating through
the porous material. Katz and Thompson [1987] developed
a relationship between the permeability and the percolation
length scale rc using percolation principles: kS ¼ rc

2=
226Fð Þ. A comparison between this equation and equation

(A11) of Appendix B yields rc 	 5.3 �.
[41] It seems that the proposed relationship works well.

There is however a need for further investigations to con-
firm this finding, especially for clayey materials. In Figure
17, I use equation (79) to predict the permeability from the
low-frequency relation time �p and the formation factor F.
The results show that the permeability can be pretty well
predicted inside an order of magnitude from the complex
conductivity. The data covers 11 orders of magnitude. Note
that the diffusivity of the counterions for clean sands is
equal to the diffusivity of the counterions in the bulk pore

water (see discussion in Revil et al. [2012a]) while it is 2
orders of magnitude smaller for clays [see Revil, 2012].

7. Relationship Between m, n, and p

[42] To reduce the number of input parameters to bridge
reactive transport modeling and geophysical predictions, I
look now for some empirical relationships between the
three exponents used in the model. The cementation expo-
nent m can be determined from the cation exchange
capacity according to

m ¼ m0 þ m1CEC ; (105)

with m0 ¼ 1.80 and m1 ¼ 4.3 � 10�5 kg C�1 and the CEC
is expressed in C kg�1 [Revil et al., 1998]. We test the two

Figure 15. Relationship between the low-frequency time constant and the mean size of the pore throat
for clayey materials. The size of the thin section images is 1 mm in x. COx stands for Callovo-Oxfordian.
The plain line corresponds to the prediction of the model.
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relationships to predict the saturation exponent from the ce-
mentation exponent. The first one is purely empirical and
has no theoretical foundations but is broadly used in the lit-
erature in absence of independent estimates of n :

n ¼ m: (106)

This relationship is evaluated in Figure 18. Note that a
number of published papers, in which the two Archie expo-
nents m and n are reported, cannot be used to assess equa-
tion (106). Indeed, in these papers, surface conductivity is
not taken into account and the reported values of m and n
may be, therefore, grossly wrong. Figure 18 seems to indi-
cate that the approximation n ¼ m is good enough to be
used in reactive transport modeling (at least in a stochastic
sense with an associated probability density).

[43] The approximation n ¼ m also provides a simple
equation to predict the water content from the permittivity.
Taking indeed m ¼ n and neglecting the contribution from
the air, the permittivity of the air yields

0 	 
mw þ S ; (107)

� 	 
m�w þ 
m�1 � þð Þ 1� fMð ÞQV

�

� 	
; (108)

which is checked in Figure 19 for a bentonite-kaolinite
mixture.

[44] We can also look for a way to predict the quadrature
exponent from the saturation exponent. Following Vinegar
and Waxman [1984], Revil [2012], and section 2 above, I
can test the following relationship,

p ¼ n� 1: (109)

In Figure 20, I plot various data from the literature for
which p and n were independently determined. It seems
that the quadrature conductivity exponent p is comprised
between (n � 1) and (n � 0.5).

[45] If we account for equations (104) to (106), the reduc-
tion in the number of the parameters is such that the porosity,
a pore throat size, and the CEC of the material are the only
three fundamental textural parameters required to predict the
complete electrical response of the clayey materials in the fre-
quency range 1 mHz–1 GHz. Of course, the environmental pa-
rameters (including the salinity and the pH of the pore water
and the temperature) also control some of the parameters used
in my model. However, these dependencies are well
established.

Figure 17. Predicted versus measured permeability for
various clean sands and clayey sands and sandstones using
the low-frequency relaxation time �p or the Cole-Cole
relaxation time.

Figure 16. Main relaxation time �0 versus the pore size
�. The pore size data from this study are median values
obtained from mercury injection data or permeability data.
For the data from Koch et al. [2011], the pore size is deter-
mined from the median grain size and the formation factor
using the relationship developed by Revil and Florsch
[2010]. The mean pore size is either determined from mer-
cury intrusion porosimetry [Binley et al., 2005] or from
permeability for the data of Tong et al. [2006]. The plain
lines correspond to the prediction of the model.
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Figure 20. Saturation exponent p of the quadrature con-
ductivity/effective relative permittivity versus the second
Archie exponent n for the in-phase conductivity. The sand
data are from Schmutz et al. [2012], Vinegar and Waxman
[1984], Ulrich and Slater [2004], and Abdel Aal et al.
[2006]. Other data are from Garrouch [2001] and Com-
paron [2005].

Figure 19. Comparison between the simplified permittivity and conductivity models (expressed as a
function of the water content, see equations (107) and (108)) and experimental data from Comparon
[2005] at 1.3 GHz for mixtures of MX80(bentonite)/kaolinite. Porosity 0.40.

Figure 18. Saturation versus cementation exponent (n
versus m). Data from Clavier et al. [1984], West et al.
[2003], Atthia [2005], and Martinez et al. [2012]. All these
data are corrected for the effect of surface conductivity
when such a correction is required.
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8. Concluding Statements

[46] A simple model has been developed to predict the
apparent conductivity and permittivity (or alternatively the
apparent quadrature conductivity) as a function of the fre-
quency, clay content, and clay mineralogy. This model has
been tested on a broad number of experimental data and
seems to explain consistently the available data pretty well.
It also offers the possibility to predict permeability from the
critical frequency observed at low frequencies in the quadra-
ture conductivity. My goal with this model is to start to have
a unified petrophysical framework that can be used to
develop time-lapse joint inversion algorithms for DC resis-
tivity, induced polarization, induction-based EM, seismoe-
lectricity, and GPR for shallow subsurface applications,
especially regarding the vadose zone and agriculture.

Appendix A: Saturation Dependence with the
DEM Approach

[47] The differential effective medium (DEM) approach
treats the fluid and solid phases in an asymmetric way: one
of the two phases has to be the host for the other (for
instance, grains immersed in a background electrolyte).
This approach therefore offers a view that complements the
volume-averaging approach discussed in the main text. The
solution of the differential effective medium scheme yields
the following expression for the electrical conductivity
[Sen et al., 1981]:

� ¼ �w

F
sn

w

1� �s=�w

1� �s=�


 �m

; (A1)

(where we have replaced F of the saturated case by Fs�n
w ).

Equation (A1) has, at low and high frequencies, the follow-
ing closed-form solutions [Revil et al., 1998]

�00 ¼
�w

F
sn

w

Fs�n
w Du0 þ

1

2
1�Du0ð Þ 1� Du0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Du0ð Þ2 þ 4Fs�n

w Du0

q
 �� 	
;

(A2)

�01 ¼
�w

F
sn

w

Fs�n
w Du1 þ

1

2
1� Du1ð Þ 1� Du1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Du1ð Þ2 þ 4Fs�n

w Du1

q
 �� 	
:

(A3)

[48] The Dukhin number is defined by [Revil et al.,
1998; Revil, 2012]

Du � �0S
�w
: (A4)

[49] Therefore, using equations (65) and (66) of the main
text (with A �;mð Þ ¼ 1), we have

Du0 ¼ sp
w

� þð Þ 1� fMð Þ
F�w

� 	
QS

V ; (A5)

Du1 ¼ sp
w

� þð Þ 1� fð Þ þ �S
þð ÞfM

F�w

 !
QS

V : (A6)

[50] An equation similar to equation (A1) can be found
for the permittivity,

0 ¼ f �
m 1� S=f

1� S=0


 �m

; (A7)

where f denotes the permittivity of the pore fluid. An
approximation of this equation is

0 ¼ f

F
F�þ 1

2
1��ð Þ 1��þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��ð Þ2 þ 4F�

q
 �� 	
;

(A8)

where � � S=f . Now, for unsaturated materials we can
used the following relationship,

f ¼ sn
ww þ 1� sn

w

� �
a: (A9)

[51] Therefore, the saturation dependence of � is

� swð Þ ¼
S

sn
ww þ 1� sn

w

� �
a
: (A10)

Appendix B: Relaxation Time Versus Saturation

[52] We define in this section the two textural parameters
F and �. The following canonical boundary value problem
for the normalized potential G for a cylindrical REV of po-
rous material of length L can be written as (see Pride
[1994])

r2G ¼ 0 in Vp (B1)

n � rG ¼ 0 in S (B2)

G ¼ L at z ¼ L
0 at z ¼ 0

on S;

�
(B3)

where z denotes the distance along the axis of the cylindri-
cal core. In these equations, n denotes the unit vector
normal to the pore water/mineral interface S and Vp corre-
sponds to the pore volume. The boundary conditions defin-
ing the normalized potential G are representative for the
injection of an electrical current into a rock sample in the
absence of surface conduction along the pore/water inter-
face [see Johnson et al., 1986; Avellaneda and Torquato,
1991; Pride, 1994]. The dynamic pore radius � and the
formation factor F are defined as [Johnson et al., 1986]

2

�
¼

Z
S
jrGj2dSZ

Vp

jrGj2dVp

; (B4)

1

F
¼ 1

V

Z
Vp

jrGj2dVp; (B5)

where V is the total volume of the considered REV. The
length scale � therefore corresponds to a weighted version of
the hydraulic pore radius Vp/S weighted by the norm of the
electrical field (normalized by the electrical field imposed
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from the boundary of the material) and therefore � can be
seen as the (dynamic) characteristic pore size of the material.

[53] Using a volume-averaging approach, Johnson et al.
[1986] and Pride [1994] developed the following general
equation for the electrical conductivity of a water-saturated
rock:

�0 ¼
1

F
�w þ

2

�
�d


 �
; (B6)

where � is a characteristic pore length scale defined above
and �d denotes the specific surface conductivity associated
with the diffuse part of the electrical double layer (in S).
Similarly the high-frequency conductivity and the normal-
ized chargeability should be obtained by

�1 ¼
1

F
�w þ

2

�
�d þ �Sð Þ


 �
; (B7)

Mn ¼
1

F

2

�
�S ; (B8)

where �S denotes the specific surface conductivity associ-
ated with the Stern layer (in S). To be compatible with
equations (72) to (74), the following scaling laws for the
dependence of the formation factor and length scale � with
the relative water saturation should hold,

F () Fs�n
w ; (B9)

�() �sw: (B10)

[54] The quasi-static permeability k (for ! ¼ 0) is related
to the formation factor F and the dynamic pore radius � as
[Johnson et al., 1986],

k ¼ �2

8F
: (B11)

[55] Therefore, the permeability should scale with the
water saturation according to the following power law,

k swð Þ ¼
�2

8F
s2þn

w ; (B12)

[56] According to this scaling, the permeability can be
computed as the product of a permeability at saturation kS

and a relative permeability that depends only on the rela-
tive water saturation k swð Þ ¼ kSkr swð Þ with kr swð Þ ¼ s2þn

w .
This type of power-law behavior is also the one predicted
by the Brooks and Corey [1964] model.

[57] The relaxation time for the low-frequency polariza-
tion is given by [Revil et al., 2012a]

�p ¼
�2

2DS
þð Þ
: (B13)

[58] Consequently, using equation (B10), this yields the
following dependence of the relaxation time with saturation,

�p ¼
�2s

2

w

2DS
þð Þ
: (B14)

[59] This equation provides a way to compute the low-
frequency relaxation time from the pore size of the throat
and from the saturation.
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