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Abstract

In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between
recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are
likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation,
slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which
quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which
applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of
gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane
potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density,
and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases
with membrane potential and after every action potential. Our equation was validated with simulations of a previously
published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends
crucially on the shape of the Na activation function near spike initiation (about 255 mV), while its parameters are adjusted
near half-activation voltage (about 230 mV), which might explain why many models exhibit little threshold variability,
contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold.
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Introduction

Spike initiation in neurons follows the all-or-none principle: a

stereotypical action potential is produced and propagated when

the neuron is sufficiently excited, while no spike is initiated below

that threshold. The value of that threshold sets the firing rate and

determines the way neurons compute, for example their

coincidence detection properties [1,2]. It is generally described

as a voltage threshold: spikes are initiated when the neuron is

depolarized above a critical value, when voltage-dependent

sodium channels start to open. That biophysical mechanism is

well understood since the studies of Hodgkin and Huxley in the

squid giant axon [3] and subsequent modeling studies [4–7].

Recent findings have renewed the interest in the spike threshold.

First, there is an intense ongoing debate about the origin of threshold

variability observed in vivo [8–14]. In particular, it is unclear whether

threshold variability is mainly due to experimental artifacts or

molecular mechanisms, which might question the relevance of the

Hodgkin-Huxley model for central neurons. Moreover, numerous

experiments have shown that spike initiation does not only depend on

the membrane potential but also on complex features of the inputs.

For example, it depends on the preceding rate of depolarization

[15–21] and on the preceding interspike intervals [12,22]. Those

properties are functionally important because they enhance the

selectivity of neurons in several sensory modalities, in particular in

audition [23], vision [24], and touch [21].

Developmental and learning studies have also shown that the

threshold adapts to slow changes in input characteristics. This

phenomenon is known as long-term plasticity of intrinsic

excitability and may be involved in the regulation of cell firing,

short term memory and learning [25–31]. The excitability

threshold also varies with the distance to the soma in a given

neuron and with cell type [2,15,32–35], which may explain

functional differences.

The modulation of cell excitability might be explained by the

activation of voltage-gated potassium channel Kv1 [36–41],

inactivation of voltage-gated sodium channels [15,16,19,21], fluctu-

ations in sodium channel gating [42], inhibitory synaptic conductance

[43–45] and the site of spike initiation [14]. To understand the origin

of spike threshold variability, we examined the role of several

candidate mechanisms in biophysical neuron models: activation and

inactivation of the sodium channel, slow voltage-gated channels (e.g.

Kv1), synaptic conductances and the site of spike initiation. Our

analysis is based on a simplification of the membrane equation near

spike initiation and results in a simple formula for the spike threshold

that quantifies the contribution of all those mechanisms. The

threshold formula provides an instantaneous time-varying value

which was found to agree well with numerical simulations of

Hodgkin-Huxley type models driven by fluctuating inputs mimicking

synaptic activity in vivo, and with simulations of a realistic multi-

compartmental model of spike initiation [54].

Results

What is the spike threshold?
Spike threshold in vitro. In a typical in vitro experiment, one

measures the response of the cell to a controlled stimulus, whose

strength is defined by a parameter (e.g. current intensity). The
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excitability threshold is then defined as the minimal value of this

parameter above which a spike is elicited. Thus, the threshold is

initially defined in stimulus space, for example as a charge

threshold for short current pulses (Fig. 1A, simulated recording) or

as a current threshold for current steps or ramps (Fig. 1B). The

stimulus threshold corresponds to a voltage value, which we call

the voltage threshold, but that value depends on the type of

stimulation [46]. Nevertheless, we are interested in the voltage

threshold rather than in the stimulus threshold because only the

voltage is usually available in intracellular recordings in vivo.

Spike threshold in vivo. Since the input to the neuron is not

directly controlled in vivo, the concept of spike threshold does not

have exactly the same meaning as in vitro. Rather, it is defined as

the voltage at the ‘‘onset’’ of action potentials (Fig. 1 C), as

observed on an intracellular recording of the membrane potential.

Therefore the spike threshold is an empirical quantity that

hopefully captures the same concept as in vitro, i.e., the point

above which an action potential is initiated. Several measures of

spike onset have been used in experimental studies [47]. The first

derivative method consists in measuring the membrane potential

V when its derivative dV/dt crosses an empirical criterion [8,34]

(Fig. 1D). The second and third derivative methods consist in

measuring V when respectively d2V/dt2 and d3V/dt3 reach their

maximum [12,21]. Sekerli et al. (2004) compared those methods

by asking electrophysiologists to identify spike onsets by eye on

several membrane potential traces [47]. They found that visual

inspection was best matched by the first derivative method,

although that method critically relies on the choice of the

derivative criterion (Fig. 2 C,D). However, all methods produced

the same relative variations of the measured threshold.

Spike threshold in models. It might seem confusing that

the definition of the voltage threshold is ambiguous and that most

modulation effects that have been reported in the literature seem

to apply to spike onset rather than spike threshold. However, as

remarked in [47], those measures differ in absolute value but they

vary in the same way. We can relate those definitions with a simple

one-dimensional neuron model, where the membrane potential is

governed by a differential equation:

C
dV

dt
~F (V )zI

where C is the membrane capacitance, F(V) is the sum of all

intrinsic voltage-dependent currents and I the input current. The

dynamics of the membrane potential is determined by the

excitability curve in phase space (dV/dt as a function of V,

Fig. 2A). With no DC injected current (I = 0, solid curve), the

differential equation has two fixed points, which are solutions of

F(V) = 0: the lower one is stable and corresponds to the resting

potential and the higher one is unstable and corresponds to the

threshold for fast depolarizations (short current pulses, i.e.,

I(t)~qd(t)), which we denote hq. Indeed, after depolarization,

the membrane potential V either goes back to the resting potential

if Vvhq or keeps on increasing if Vwhq, leading to a spike. If the

neuron is progressively depolarized with a slowly increasing

current, then the excitability curve slowly shifts upwards,

depolarizing the stable potential, until the curve is entirely above

zero and the neuron spikes (Fig. 2A, dashed curve). At that critical

point, the curve is tangential to the horizontal axis and the voltage

VT corresponds to the minimum of that curve: F
0
(VT )~0. Thus,

the voltage threshold for slow inputs (i.e., DC currents, or slow

current ramps) is the solution of F9(V) = 0 and the voltage

threshold for fast inputs (i.e., instantaneous charge inputs, or short

current pulses) is the solution of F(V) = 0 with F9(V).0.

The current-voltage function F(V) can be approximated by an

exponential function near spike initiation (see Materials and

Figure 1. Spike threshold definitions. All plots were generated using
the single-compartment model described in the Materials and Methods.
A, In vitro, the neuron is stimulated with short current pulses with
increasing intensity (bottom) and the threshold is the minimal value of
that intensity above which the neuron spikes (top). The voltage threshold
is the value of the membrane potential at that critical point. B, The
threshold can be defined similarly with current steps (bottom) or other
types of parameterized stimulations, yielding different values for the
voltage threshold. C, In vivo, spike ‘‘threshold’’ is defined as a measure of
the voltage at the onset of the action potential (black dots). The plot
shows a simulated trace of a conductance-based model with fluctuating
conductances (see Materials and Methods) and threshold is measured
with the first derivative method. D, Representation of the trace in (C) in
phase space, showing dV/dt vs. V. The first derivative method consists in
measuring the membrane potential V when the derivative crosses a
predefined value (dashed line) shortly before an action potential. The
trace is superimposed on the excitability curve dV/dt = (F(V)+I0)/C, which
defines the dynamics of the model. I0 is the mean input current, so that
trajectories in phase space fluctuate around this excitability curve.
doi:10.1371/journal.pcbi.1000850.g001

Author Summary

Neurons communicate primarily with stereotypical electri-
cal impulses, action potentials, which are fired when a
threshold level of excitation is reached. This threshold
varies between cells and over time as a function of
previous stimulations, which has major functional implica-
tions on the integrative properties of neurons. Ionic
channels are thought to play a central role in this
modulation but the precise relationship between their
properties and the threshold is unclear. We examined this
relationship in biophysical models and derived a formula
which quantifies the contribution of various mechanisms.
The originality of our approach is that it provides an
instantaneous time-varying value for the threshold, which
applies to the highly fluctuating regimes characterizing
neurons in vivo. In particular, two known ionic mechanisms
were found to make the threshold adapt to the membrane
potential, thus providing the cell with a form of gain
control.

Threshold Equation
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Methods), leading to the exponential integrate-and-fire model

[48]. In that model, we can calculate the relationship between the

voltage threshold for slow inputs VT and the voltage threshold for

fast inputs hq (see Text S1):

hq&VTzDT log
VT{EL

DT

where DT is the slope factor, characterizing the sharpness of spikes

(see Materials and Methods). In single-compartment models, this is

related to the slope of the Na activation curve. This formula

provides a simple monotonous relationship between the two types

of threshold, which is almost linear (the derivative of hq with

respect to VT is (1z
DT

VT{EL

), which is close to 1; see Fig. 2B). In

our analysis, we chose the definition for slow depolarizations

because it simplifies our formulas, but one can map the results to

the definition for fast depolarizations using the formula above.

Empirical threshold measures used in vivo can be analyzed in the

same way. For example, the voltage threshold measured by the

first derivative method is the value he such that dV/dt = kth, i.e.,

the solution of F (he)~Ckth{I . The empirical threshold can be

approximately related to VT with the following formula (see

Text S1):

he&VTzDT log
VT{(ELzRI{tkth)

DT

where t~RC is the membrane time constant (R = 1/gL is the

membrane resistance). Although the relationship is more complex

and shows a slight dependence on the input current I (thus

increasing apparent threshold variability), it is still related with VT

through a monotonous (in fact quasi-linear) relationship and the

choice of criterion kth results mainly in a shift of the threshold, as

shown in Fig. 2D.

In the remaining of this paper, we chose the voltage threshold

for slow depolarizations VT as the definition of the spike threshold

(i.e., the voltage at current threshold).

The threshold equation
Sodium channel activation. Cells excitability is generally

due to the presence of voltage-gated sodium channels [49]. More

precisely, Na channel activation gates mediate a positive feedback

mechanism, which produces the instability phenomenon necessary

to initiate an action potential. Activation is very fast compared to

all other relevant time constants (a fraction of ms), in particular the

membrane time constant [50]. We make the approximation that it

is instantaneous, so that the proportion of open sodium channels at

any time is P?
a (V ). The membrane equation is then:

C
dV

dt
~gNaP?

a (V )(ENa{V )zgL(EL{V )

where gNa (resp. gL) is the maximum Na conductance (resp. leak

conductance) and ENa (resp. EL) is the Na reversal potential (resp.

leak reversal potential). We neglect inactivation and other ionic

channels for the moment (see below). The activation function

P?
a (V ) is well approximated by a Boltzmann function [51] with

half-activation voltage Va and activation slope factor ka. In the

relevant part of that function, near spike initiation, it reduces to an

exponential function and the membrane equation reads (see

Materials and Methods):

C
dV

dt
&gLkae

V{VT
ka zgL(EL{V )

where

VT~Va{ka log
gNa

gL

ENa{Va

ka

is the threshold (defined for slow inputs). The activation slope

factor ka corresponds to the steepness of the Na activation curve,

and characterizes the sharpness of spikes in single-compartment

models (in the limit ka?0 mV, the model tends to an integrate-

and-fire model; it can be different in multicompartment models,

see Discussion). The slope factor shows little variation across

sodium channel types (ka = 4–8 mV for neuronal channels,

Figure 2. Relationships between spike threshold definitions. A,
Excitability curve of the neuron model (dV/dt = (F(V)+I)/C; see Materials
and Methods) for DC input current I = 0 (solid curve) and I~IRheobase

(dashed curve). With I = 0, the lower equilibrium (filled circle)
corresponds to the resting potential Vr, while the higher equilibrium
(open circle) corresponds to the spike threshold with short pulses hq (as
in Fig. 1A): if the membrane potential is quickly shifted above hq , the
membrane potential blows up and the neuron spikes (thus, this
corresponds to the case when I(t)~qd(t), i.e., an impulse current).
Slowly increasing the input current amounts to vertically shifting the
excitability curve, and the membrane potential follows the resting
equilibrium until it disappears, when I~IRheobase. The voltage VT at that
point corresponds to the minimum of the excitability curve. The
empirical threshold he (with the first derivative method) is the voltage at
the intersection of the excitability curve with the horizontal line dV/
dt = kth (dashed line). The slope threshold ka corresponds to the radius
of curvature at VT. B, Threshold for short pulses hq (solid line) and
empirical threshold he (blue dashed line) as a function of the threshold
for slow inputs VT (black dashed line is the identity line): the definitions
are quantitatively different but highly correlated. C, Dependence of
empirical threshold on derivative criterion kth: spike onsets are
measured on a voltage trace (as in Fig. 1C) with derivative criterion
kth = 7.5 mV/ms (blue dots), 10 mV/ms (black), 12.5 mV/ms (green) and
15 mV/ms (red). D, Empirical threshold measured with kth = 7.5 mV/ms
(blue dots), 12.5 mV/ms (green) and 15 mV/ms (red) vs. threshold
measured with 10 mV/ms, and linear regression lines. The dashed line
represents the identity. The value of the derivative criterion (kth)
impacts the threshold measure but not its relative variations.
doi:10.1371/journal.pcbi.1000850.g002

Threshold Equation
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Angelino and Brenner, 2007 [51]). Thus, the threshold is primarily

determined by the half-activation voltage and the density of

sodium channels in log scale, relative to the leak conductance (see

Fig. 3A–C).

This formula provides some quantitative insight about the role

of Na channel on cell excitability. For example, Pratt and

Aizenman (2007) observed that during development, tectal

neurons adapt their intrinsic excitability to changes in visual input

so as to stabilize output firing [28]. They hypothesized that this

adaptation was mediated by regulation of Na channel density,

which could be quantitatively evaluated using the formula above.

Our formula also explains differences in excitability between cells.

There are 9 Na channel types, which are expressed in different

regions of the nervous system [52], and each one has specific

properties, in particular specific values of Va and ka. In Fig. 3D, we

show how the threshold varies with channel density for each

channel type, based on the dataset collected by Angelino and

Brenner (2007) [51]. For the same channel density, the threshold

can differ by up to 50 mV between channel types. Lowest

threshold values were found for Nav1.5, expressed in cardiac cells,

and highest ones were found for Nav1.8, expressed in dorsal root

ganglion. Interestingly, among all channel types expressed in

central neurons, the one with lowest threshold is Nav1.6, which is

expressed in the spike initiation zone in the axon hillock [53–55].

Sodium channel inactivation and other conductances.

The threshold can also be modulated by sodium channel

inactivation and by the many other ion channels that can be

found in neurons [56–58]. These factors might explain the effects

of preceding spikes and membrane potential history on cell

excitability [56–58]. To examine how they may modulate the

threshold, we make two important assumptions: 1) inactivation is

independent from activation, 2) these processes are slow

compared to the timescale of spike initiation (about a

millisecond). We then consider the membrane equation near

spike initiation:

C
dV

dt
~gLkahe

V{VT
ka zgL(EL{V )z

X
i

gi(Ei{V )

where h is the inactivation variable and gi is the conductance of

channel i, which may be voltage-gated (K+ channel) or synaptic.

The contribution of additional ionic channels can be summed to

yield an effective channel with conductance gtot~
P

i gi and

reversal potential E* (see Materials and Methods), while the

inactivation variable h can be entered into the exponential

function:

C
dV

dt
~gtotkae

V{h
ka zgtot(E

�{V )

where

Figure 3. Influence of Na activation characteristics on spike threshold. A, Excitability curve of the model for different values of the ratio gNa/
gL (maximum Na conductance over leak conductance), discarding inactivation (h = 1) and other ionic conductances. The resulting threshold is shown
with a red dot. B, Excitability curve for different values of half-activation voltage Va. C, Excitability curve for different values of Boltzmann factor ka. D,
Threshold as a function of the ratio gNa/gL for the 9 types of voltage-gated sodium channels [52] with characteristics reported in (Angelino and
Brenner, 2007 [51]). For each channel type, the mean threshold obtained across the dataset is plotted. Nav1.[1,2,3,6] are expressed in the central
nervous system, Nav1.[4,5] are expressed in cardiac and muscle cells and Nav1.[7,8,9] are expressed in the peripheral nervous system. Nav1.6 is
expressed at the action potential initiation site [53–55].
doi:10.1371/journal.pcbi.1000850.g003

Threshold Equation
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h~VT{ka log h
gL

gtot

~VT{ka log hzka log 1z

P
gi

gL

� �

is the threshold (mathematically, it satisfies F9(h) = 0, where F is

the current-voltage function of the model). We call the formula

above the threshold equation. It provides the instantaneous value of

the spike threshold as a function of the sodium inactivation

variable h (1-h is the proportion of inactivated Na channels) and

of the other ionic channel conductances, including synaptic

conductances. To obtain this equation, we made a quasi-static

approximation, i.e., we assume that all modulating variables (h

and gi) vary slowly at the timescale of spike initiation. We note

that the threshold is determined by the value of conductances

relative to the leak conductance rather than by their absolute

value.

Fig. 4 illustrates the dependence of threshold on Na inactivation

and conductances. As expected, the threshold increases when h

decreases, that is, when more Na channels inactivate. It also

increases with the total non-sodium conductance, which is also

intuitive: more Na conductance is required to produce a spike

when the other conductances are larger. Threshold modulation is

proportional to the slope factor ka, which shows little variation

across Na channel types (4–8 mV in neuronal channels).

The threshold equation predicts several effects. Spike threshold

should be higher in vivo than in vitro because the total conductance

is several times larger [59]. For the same reason, it should also be

higher in up states than in down states. It is correlated with sodium

inactivation, so that it should increase with the membrane

potential, as observed in vitro and in vivo [15,16,54]. Besides,

threshold modulation by inactivation is strongest when many Na

channels are inactivated (h close to 0), that is, when the neuron is

depolarized. Spike threshold is correlated with voltage-gated

conductances such as those of K+ channels. For high-threshold

K+ channels with large conductance, the spike threshold increases

by ka when the membrane potential increases by ka
K+ (slope of K+

channel activation function). Indeed, far from half-activation

value Va
K+, the K+ activation curve is approximately

P?
a (V )& exp

V{VKz
a

kKz
a

� �
, which implies that threshold modu-

lation is ka log
gtot

gL

&constantz
ka

kKz
a

V (provided K+ conduc-

tance is large enough). It also increases after each action potential

(see below). Inactivation and adaptive voltage-gated conductances

(e.g. Kv1) have similar effects but inactivation is ‘‘invisible’’, in the

sense that it affects excitability without changing the membrane

potential or the total conductance.

Threshold dynamics
To derive the threshold equation, we made a quasi-static

approximation, assuming that all mechanisms that modulate the

threshold are slow processes (compared to the timescale of spike

initiation). That threshold equation provides an instantaneous

value of the spike threshold, as a function of modulating variables.

Here we show how the dynamics of sodium inactivation, voltage-

gated conductances and synaptic conductances translate into spike

threshold dynamics.

Sodium inactivation. Several authors have hypothesized

that Na inactivation is responsible for experimentally observed

threshold variability in vivo [12,15,16,21]. We have shown that the

instantaneous value of the spike threshold depends on the value of

the inactivation variable h (1-h is the proportion of inactivated

channels). We assume, as in the Hodgkin-Huxley model, that h

evolves according to a first-order kinetic equation:

th(V )
dh

dt
~h?(V ){h

where th(V ) is the time constant and h?(V ) is the equilibrium

value. This differential equation translates into a differential

equation for the threshold h (see Materials and Methods), which

can be approximated by a similar first-order kinetic equation :

th(V )
dh

dt
~h?(V ){h

where h?(V )~VT{ka log h?(V ) is the equilibrium value of the

threshold. A linearized version of this equation was recently

proposed as a simplified model of post-inhibitory facilitation in

brainstem auditory neurons [60]. This is also consistent with

previous results in vitro showing that the instantaneous value of the

threshold increases with the membrane potential [61].

Figure 4. Influence of Na inactivation and ionic conductances
on spike threshold in the conductance-based model
(ka = 3.4 mV, see Materials and Methods). A, Spike threshold h
as a function of Na+ inactivation variable h, with all other ionic
conductances suppressed. B, Threshold as a function of K+ activation
variable n, without inactivation (h = 1). C, Threshold as a function of
total synaptic conductance (excitatory ge and inhibitory gi), relative to
the resting conductance gL (conductances are considered static).
doi:10.1371/journal.pcbi.1000850.g004

Threshold Equation
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This equation allows us to predict the time-varying value of the

threshold from the membrane potential trace (provided that Na

inactivation properties are known). The threshold time constant is

given by the inactivation time constant (which is voltage-

dependent). Fig. 5 shows how the spike threshold varies in a

biophysical model with fluctuating synaptic conductances.

The effect of previous spikes on spike threshold, which is

presumably due to slow Na inactivation [12], can be understood

by looking at how an action potential acts on the inactivation

variable h. Typical equilibrium curves for Na inactivation h?(V )
are Boltzmann functions with half-activation values Vi&{60mV

and Boltzmann coefficients ki&6 mV [51], so that h?(V ) is close

to 0 after spike initiation. Thus during the action potential, the

inactivation variable relaxes to 0 according to the following

equation:

th(V )
dh

dt
~{h

If we note th
� the average value of the time constant th(V ) during

the action potential and dt the spike duration (typically, a few ms),

then the effect of an action potential on h is a partial reset:

h?he
{dt=t�

h , which translates for the threshold into a shift:

h?hz(dt=t�h)ka. In other words, the spike threshold increases by

a fixed amount after each spike, which contributes to the neuron

refractory period (see Fig. 5C). This effect was recently

demonstrated in vitro [22] and explains in vivo observations where

the threshold was found to be inversely correlated with the

previous interspike interval [12]. If the inactivation time constant

is long compared to the typical interspike interval, we predict that

the threshold should be linearly correlated with the firing rate.

Voltage-dependent conductances. In the same way, the

dynamics of voltage-dependent conductances translates into

threshold dynamics. Potassium currents, in particular Kv1

delayed rectifier currents, are also thought to play a role in

threshold modulation [36–41]. Let us consider a current with

Hodgkin-Huxley-type kinetics: Ik~g?n4(EK{V ), with

tn(V )
dn

dt
~n?(V ){n (n is the activation variable). The

corresponding equation for the threshold dynamics then reads

(see Materials and Methods):

tn(V )
dh

dt
~h?(V ){h

where h?(V )~VTzka log (1z
gK

gL

n4
?(V )) is the equilibrium

threshold value (we neglected Na inactivation). Thus, the

threshold adapts to the membrane potential. The effect of action

potentials can be described similarly as for Na inactivation, except

n relaxes to 1 during the action potential, yielding the following

reset: n?1{a(1{n). It also results in threshold increase,

although it is not additive. This effect also contributes to the

neuron refractory period, not only by decreasing the membrane

resistance, but also by increasing the spike threshold (see Fig. 5C).

Synaptic conductances. Finally, synaptic conductances

fluctuate in vivo, which also impacts the instantaneous value of

the threshold, through the following equation:

h(t)~VTzka log 1z
ge(t)zgi(t)

gL

� �

where we neglected Na inactivation and voltage-gated

conductances to simplify the formula, and ge(t) (resp. gi(t)) is the

excitatory (resp. inhibitory) synaptic conductance. This formula

emphasizes the fact that the threshold equation defines an

instantaneous value, which applies to realistic in vivo situations

where synaptic activity fluctuates. However, we need to make the

approximation that fluctuations are slow compared to spike

initiation.

Spikes can be triggered either by an increase in the excitatory

conductance or by a decrease in inhibitory conductance. In the

former case, the total conductance increases and the threshold

increases while in the latter case the threshold decreases. In high-

conductance regimes (typical of cortical neurons in vivo), it has been

argued that spikes are mainly triggered by inhibitory decrease

because synaptic inhibition is dominant [59,62]. It might imply

that faster depolarization corresponds to lower inhibitory conduc-

tance and lower threshold, so that depolarization speed is inversely

correlated with spike threshold, as observed experimentally [15].

However, this effect is fundamentally limited by the fact the

inhibitory conductance cannot be negative.

Spike initiation site
Effect of neuronal morphology. Spikes are initiated in the

axon initial segment (AIS) in spinal motoneurons [63] and in

cortical neurons [64], about 35–50 mm from the soma [54,55].

Our analysis relies on a single-compartment model of spike

Figure 5. Dynamical spike threshold. A, Voltage trace of the
fluctuating conductance-based model (black line) and predicted
threshold according to our threshold equation (h, red line), calculated
continuously as function of h, gK, ge and gi. Black dots represent spike
onsets (empirical threshold with the first derivative method). B,
Predicted threshold vs. membrane potential for the trace in A.
Trajectories lie above theoretical threshold on the right of the dashed
line (Vwh). C, Zoom on the second spike in A. Colored lines represent
increasingly complex threshold predictions: using Na activation
characteristics only (blue, h~VT ), with Na channel inactivation
(green, h~VT {ka log h), with potassium channel activation (purple,

h~VT {ka log (h)zka log 1z
gK

gL

� �
) and with synaptic conductances

(red, h~VT {ka log (h)zka log 1z
gKzgezgi

gL

� �
). Here the threshold

varies mainly after spike onset.
doi:10.1371/journal.pcbi.1000850.g005
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generation, but the axon hillock is connected with the soma

through a large section and with the rest of the axon through a

smaller section. To evaluate how electrotonically far the spike

initiation site is from the soma, we can compare the length of the

AIS to its electrotonic length, given by the following formula [65]:

l~

ffiffiffiffiffiffiffiffiffi
dRm

4Ri

s

where d&1:5mm is the diameter, Ri&150 V.cm is the

intracellular resistivity, and Rm&35,000 V.cm2 is the membrane

specific resistance [66–68]. We obtain a value of l&935 mm,

many times larger than the distance between the soma and the

initiation site. Therefore, below threshold, it is reasonable to

consider the soma and AIS as a single electrotonic compartment.

Indeed, simultaneous measurements at both sites show that the

voltage time course is nearly identical at the two sites before spike

initiation [14,34]. We provide a more detailed analysis in Text S1.

We note that the situation changes when an action potential is

initiated, because the opening of Na channels reduces the

electrotonic length and invalidates the single compartment

approximation, which has implications on the shape of action

potentials (see Discussion).

For the threshold equation, these considerations imply that

conductance values in the equation refer to total conductances over

the surface of the soma, proximal dendrites and AIS. Since channel

densities are different on these sites, the total conductance for a given

ionic channel is g~GsomaSsomazGdendritesSdendriteszGAISSAIS ,

where Gsoma (resp. Gdendrites, GAIS) is the channel density on the

soma (resp. dendrites, AIS) and Ssoma (resp. Sdendrites, SAIS) is the area

of the soma (resp. dendrites, AIS). We give a specific example below.

Na channel density in the AIS. Spikes could be initiated in

the AIS rather than in the soma because of higher Na channel

density [66,69–71], or lower Na half-activation voltage Va [72] in

the first segment. Recent experiments and computational

modeling suggest that the former hypothesis is more plausible

[34,69,70]. As an application of our analysis, we can estimate the

Na channel density at the AIS using the parameter values reported

in [70]. Since Na channels are mainly located in the AIS, we use

gNa~GNaSAIS . The measured spike threshold (at the AIS) was

h~{54 mV. To calculate the total leak conductance, we injected

a DC current into the soma (using the published model) and

obtained gL = 59 nS. We chose this direct method because it is

difficult (although possible using linear cable theory) to calculate

the total leak conductance using the neuronal morphology,

because some of the dendrites may be electrotonically far. The

threshold equation relates the threshold value h to the values of

gNa, gtot and the Na channel properties. We can easily invert this

relationship, which gives the following formula:

gNa&GNaSAIS&gL
ka

ENa{Va

e
Va{h

ka

Using the values from Kole et al. (2008) [70] for the channel

properties and neuron geometry (Va = 231.1 mV, ka = 6.5 mV,

SAIS = 871.3 mm2, ENa = 55 mV), we find GNa&2463 pS/mm2,

which is very close to the empirically reported value (2500 pS/mm2).

Accuracy of the threshold equation
Threshold dynamics in a single-compartment

model. To evaluate the quality of the threshold equation, we

first simulated a biophysical single-compartment model with

fluctuating synaptic conductances, mimicking the effect of

synaptic activity in vivo. The instantaneous value of the threshold

was measured by injecting brief current pulses of varying

amplitude in repeated trials with the same synaptic inputs

(Fig. 6A, B; see Materials and Methods), and we compared this

time-varying value with the prediction from the threshold

equation, including the effects of Na inactivation, voltage-gated

channels and synaptic conductances. We used this particular

stimulation protocol to measure the value of the threshold at any

time, rather than only at spike time. We shifted the Na inactivation

curve by 212.5 mV so as to obtain more threshold variability (the

original model shows little variability). The threshold equation

predicted the variations of the measured threshold very well (83%

of the variance), with a constant shift which can also be predicted

(Fig. 6C, D). This shift has two causes. Firstly, the threshold was

measured with brief pulses whereas the predicted threshold

corresponds to the definition with slow inputs. Using our

formula relating the two definitions (Text S1) indeed reduced

this shift from 13.5 mV to 7.4 mV (Fig. 6D). Secondly, because we

had to shift the inactivation curve to observe substantial threshold

variability, spike threshold was depolarized closer to Na half-

activation voltage (230 mV) and the activation curve is less

exponential in that region. Indeed, if VT is calculated as the

minimum of the excitability curve rather than with the exponential

formula, we find VT = 260.6 mV, which exactly compensates the

7.4 mV shift. When these two predictable biases were taken into

account, both the mean and time course of the prediction matched

the measured threshold (Fig. 6C, dashed red line). When we did

not shift Na inactivation as much, these biases were reduced but

the model displayed little variability, which made the prediction

less interesting. We address this point in more detail in the

Discussion.

In this single-compartment model, threshold variability is much

lower than observed in vivo. However, the half-inactivation voltage

Vi in the model is 242 mV, while experimental measurements

suggest values around 260 mV in central neurons (e.g. Kole et al.

(2008) [70]). According to our analysis, this reduces threshold

variability because Na channels do not inactivate below threshold

(log h<0). In Fig. 7, we hyperpolarized Vi by 20 mV, giving

Vi = 262 mV, close to experimental values, and measured the

spike threshold with fluctuating inputs (Fig. 7A). We found that the

threshold varied over more than 10 mV and the standard

deviation 2.2 mV (Fig. 7B), similar to values reported in vivo

[15]. According to the threshold equation, most threshold

variability was due to Na inactivation. A linear regression at spike

times gave h&{54{3:1 log h (mV) (Fig. 7C). This 3.1 mV factor

is close to the value of ka in this model, as measured by fitting a

Boltzmann function to the Na activation curve around 250 mV

(see Discussion). We also observe that, in this single-compartment

simulation, many spikes were small (Fig. 7A). This is not

unexpected, because spikes should be smaller when Na channels

are partially inactivated. However, this property should not be

taken as a prediction, because it is known that the correct spike

shape of cortical neurons cannot be recovered in single-

compartment models [10,13].

Threshold prediction in a realistic multicompartmental

model of spike initiation. We then checked the accuracy of

the threshold equation with a realistic multicompartmental model

of spike initiation, where action potentials are initiated in the axon

[54]. We injected a fluctuating current in the soma and compared

measured spike thresholds with our theoretical predictions (Fig. 8).

Spikes were initiated in the axon 400660 ms earlier than observed

at the soma (Fig. 8B). When action potentials were removed from

the voltage traces, the membrane potential was 1.860.6 mV

higher at the soma than at the spike initiation site in the axon
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initial segment (AIS; Fig. 8C). The threshold measured at the soma

was 247.762.8 mV and varied between 252.1 mV and

242.2 mV (Fig. 8D). Its distribution significantly overlapped the

subthreshold distribution of the membrane potential, as observed

in vivo. We estimated the activation properties of the Nav1.6

channel, which is responsible for spike initiation in this model, by

fitting a Boltzmann function to the activation curve

(P?
a (V )~m?(V )3) in the spike initiation zone (260 mV to

240 mV). We found Va = 233 mV and ka = 3.6 mV (Fig. 8E, F).

This is different from experimentally reported values (in particular,

ka is smaller) because these were obtained by fitting the activation

curve on the entire voltage range. We address this specific point in

the Discussion. We then calculated the total maximal conductance

of the Nav1.6 channels (over the AIS), the slow K+ channels (Km)

and the fast K+ channels (Kv), using the published morphology

and channel density (see Materials and Methods).

Using these estimated values and the time-varying values of the

channel variables (h, nKm, nKv
4) at the AIS, we calculated the

theoretical threshold at all times, and compared the prediction with

the measured threshold at spike times (Fig. 8G). Values of the

channel variables were taken at the time of spike initiation in the

AIS and the threshold was measured at the AIS (black) and at the

soma (red). The prediction with the threshold equation was very

good: the average error was 0.7 mV. The threshold prediction was

on average only 0.49 mV higher than the measured threshold.

However, this excellent match is probably fortunate because the

value of the measured threshold is correlated with the measurement

criterion (on dV/dt) and in general, we would expect a constant shift

between prediction and measurement. When this shift was

removed, the average prediction error was 0.53 mV. Among the

different contributions to the threshold, we found that only Na

inactivation had a significant impact. The fast K+ current (IKv) had

a very high maximum conductance but was only activated after

spike initiation, while the slow K+ current (IKm) had a small

maximum conductance. According to the threshold equation, total

conductance contributed only 0.07 mV to threshold variability. A

linear regression gave h&VTzka log h with VT = 256mV and

ka = 3.6 mV, very close to our predicted values, and the average

estimation error with this formula was 0.08 mV.

These results show that the value of the membrane potential at

spike onset is well predicted by the threshold equation. However,

to prove that our equation really defines a spike threshold, we also

Figure 6. Predicted versus measured dynamical threshold. A, Five superimposed voltage traces of the fluctuating conductance-based model
(black traces) stimulated at different times with random depolarization (blue dots show the value of the membrane potential just after the
stimulation). Synaptic conductances are identical on all trials. In these examples the stimulations elicited spikes, in other cases (smaller depolarization)
they did not. The theoretical threshold is shown in red. B, At a given time (here t = 50 ms), trials with varying depolarization are compared and the
measured threshold is defined as the minimal depolarization that elicits a spike (blue dot). C, Predicted threshold (red line) and measured threshold
(blue) as a function of time. The shift is mainly due to the fact that the measured threshold is defined with fast inputs (charge threshold) whereas the
theoretical threshold is defined with slow inputs: this bias can be calculated and corrected for, as shown by the dashed red line (see also text). D,
Measured threshold vs. theoretical threshold for the entire trace (blue dots; blue line: linear regression). The dashed line represents the ideal

relationship, taking into account the theoretical difference between threshold for fast inputs and for slow inputs (VT ~hq{ka log
hq{EL

ka

� �
).

doi:10.1371/journal.pcbi.1000850.g006
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need to show that the membrane potential is always below the

predicted threshold before spikes. In Fig. 8H, we plotted the

membrane potential vs. the predicted threshold for the entire

voltage trace (5 seconds). It clearly appears that the neuron spikes

when its membrane potential exceeds the predicted threshold, and

that the potential is always below threshold between spikes.

Discussion

The spike threshold differs between cells and for different types

of stimulations [2,15,32,33,35]. We have identified several

modulation factors, whose quantitative influence is summarized

by the threshold equation:

h~Va{ka log
gNa

gL

ENa{Va

ka

� �
{ka log hzka log

gtot

gL

That formula relates the value of the threshold to the activation

and inactivation properties of the Na channel, the properties of

other voltage-gated channels such as Kv1 and synaptic conduc-

tances (gtot is total conductance, excluding Na conductance). It

consists of a static part (first two terms), determined by the

properties of Na channel activation, and of a dynamic part, which

depends on the proportion of inactivated Na channels (1-h) and on

the total conductance of other channels.

It describes the voltage threshold at the site of spike initiation

(rather than at the soma), and is correlated but not identical to

empirical ‘‘threshold’’ measures, which measure spike onset rather

than threshold (those normally overestimate the threshold). From

that formula, we were able to derive a dynamical equation for the

instantaneous threshold, which explains the variability of the spike

threshold in the same cell and predicts its relationship with

previous membrane potential history. We found that the threshold

equation was a good predictor of the time-varying threshold in

biophysical models with fluctuating inputs (Fig. 6–8).

Mechanisms for threshold modulation and variability
Since Na channels are responsible for the generation of action

potentials, the threshold is firstly determined by their activation

characteristics. Activation curves for Na channels are well

approximated by Boltzmann functions with similar slope factors

(ka = 4–8 mV in neuronal channels). The threshold is linearly

related to the half-activation value Va and logarithmically related

to the maximum Na conductance ga. The threshold also depends

logarithmically on the Na inactivation variable h, so that it

increases with the membrane potential and with every emitted

spike. The modulating effect of inactivation is most pronounced

when the half-activation value Vi is lowest (i.e., Na channels are

partially inactivated at rest). Finally, the threshold depends

logarithmically on the total conductance, which includes the leak

conductance, voltage-gated conductances and synaptic conduc-

tances. In particular, Kv1 channels, which are expressed with high

density at the spike initiation site [37,39,41], increase the threshold

in an adaptive manner (the threshold increases with the membrane

potential). This change in threshold occurs simultaneously with the

effective membrane time constant, whereas threshold changes due

to Na inactivation have no effect on the time constant, which

might suggest a way to experimentally distinguish between the two

effects. Indeed, the effective membrane time constant (as measured

in vivo for example in Léger et al., 2003 [73]) is teff ~C=gtot (C is

Figure 7. Threshold variability and Na channel inactivation in a single-compartment model. A, We simulated the same model as in Fig. 6,
but the half-inactivation voltage Vi was shifted to 262 mV (instead of 242 mV in the original model) to increase threshold variability. As a result,
spike height was also more variable. B, The threshold distribution (red) spanned a range of more than 10 mV (standard deviation 2.2 mV) and
overlapped with the membrane potential distribution (black). C, According to the threshold equation, most threshold variability was due to Na
inactivation. Black dots show the measured threshold vs. the inactivation variable h (in log scale) at spike times. The linear regression (red line) gives a
slope of 3.1 mV, close to the value of ka in this model (Fig. 9D).
doi:10.1371/journal.pcbi.1000850.g007
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the membrane capacitance) while the effect of total conductance

on spike threshold varies as ka log gtot, therefore as 2ka log teff . It

is currently unclear whether threshold modulation is mainly due to

Na inactivation or delayed-rectifier K currents. Our simulations

with the multicompartmental model of spike initiation in

pyramidal cells [54] suggest that the spike threshold is essentially

determined by Na inactivation, but this may not be universally

true. Recent experimental findings in hippocampal mossy fibers

[74] suggest that delayed K+ currents are closed at spike initiation,

which minimizes charge movements across the membrane and is

thus more metabolically efficient. It emphasizes the fact that Na

inactivation is a more metabolically efficient way to modulate spike

threshold than K+ activation, since the former reduces charge

transfer while the latter increases it.

We have not considered the effect of channel noise, i.e.,

fluctuations in Na channel gating [42,75–78], which result in random

threshold variations. Although dynamical equations of fluctuations in

Na channel gating are well set [79,80], they cannot be included in our

theoretical framework because we neglected the time constant of Na

activation (which leads to the exponential model).

There are two additional sources of variability which are

artefactual: the fact that the threshold is not measured at the site of

spike initiation, and threshold measurement methods. The latter

source is difficult to avoid in vivo because only spike onsets can be

measured. The former one also seems technically very difficult to

avoid in vivo, since spikes are initiated in the axon hillock, which is

only a few microns large. Although the soma and AIS are virtually

isopotential below threshold, experimentally measured values of

threshold differ between the two sites [34] because, as we

previously remarked, in vivo measurements correspond to spike

onset rather than threshold and therefore take place after spike

initiation, when the two sites are not isopotential anymore. This

experimental difficulty may introduce artefactual variability in

threshold measurements [14].

Approximations in the threshold equation
To derive the threshold equation, we made several simplifying

assumptions. First, we assumed that Na activation is instanta-

neous. It is indeed significantly faster than all other time

constants but not instantaneous. The approximation is legitimate

as long as the effective membrane time constant in the

membrane equation is small (C=
P

gi, including all conductanc-

es), which is generally true before threshold. When Na channels

open, the Na conductance dominates the total conductance and

drastically reduces the effective time constant. Thus, we expect

this approximation to be reasonable to predict spike initiation

properties but not spike shape characteristics. Our second major

assumption is a quasistatic approximation, i.e., we assume that

near spike initiation, all modulating variables and the input

current can be considered as constant. In other words, we

assume that the time constants (except that of Na activation) are

larger than a few ms. This is clearly only a mathematically

convenient approximation, but our predictions empirically

agreed with numerical simulations. To investigate the role of

Na inactivation, we also assumed that activation and inactivation

are independent, which is a standard simplifying hypothesis

(Hille, 2001). Although it is debatable [49,56], it should remain

valid in the case where activation and inactivation time constants

are well separated.

We also assumed that Na activation and inactivation curves

were Boltzmann functions. Experimental data is indeed well fitted

by Boltzmann functions, but the reported parameter values (Va, ka)

correspond to fits on the entire voltage range, whereas we are

interested in hyperpolarized voltage regions where the activation

values are small. When only the relevant part of the experimental

data is considered, different parameter values might be obtained.

For example, when analyzing previously published biophysical

models, we found that better results were obtained when Na

activation curves, which were not exactly Boltzmann functions,

were fitted in the spike initiation region (260 to 240 mV) rather

than on the entire voltage range (Fig. 9). We examined this issue in

Figure 8. Accuracy of the threshold equation in a multicompartmental model of spike initiation [54]. A, Voltage trace at the soma (black)
and at the spike initiation site in the axon initial segment (AIS, blue) in response to a fluctuating current. The spike threshold was measured at the soma
when dV/dt exceeded 10 V.s21 (red dots). B. Zoom on an action potential: spikes were initiated at the AIS 400660 ms before observed at soma. C.
Between spikes, the membrane potential was slightly higher at the soma than at the AIS (1.860.6 mV). D. The spike threshold (measured at the soma)
was very variable (standard deviation 2.8 mV): its distribution spanned 10 mV (252 to 242 mV) and significantly overlapped the subthreshold
distribution of the membrane potential (i.e., with spikes removed). E, F. We fitted the activation curve of the Nav1.6 channel (black) to a Boltzmann
function (red) in the spike initiation zone (rectangle and panel F), yielding Va = 233 mV and ka = 3.6 mV. G. Measured threshold (red: at the soma, black:
at the AIS) vs. theoretical prediction for all spikes. The dashed line represents equality (measurement = prediction). H. Somatic membrane potential vs.
theoretical threshold at all times. Spikes are shown in black (defined as voltage trace 7 ms from spike onset), subthreshold trajectories in blue and spike
times as red dots: spikes are indeed initiated when the membrane potential exceeds the theoretical threshold (inset: zoom on spike onsets).
doi:10.1371/journal.pcbi.1000850.g008

Figure 9. Fitting the Na activation curve to a Boltzmann
function. A, The Na channel activation curve of the conductance-
based model (black line) was fit to a Boltzmann function on the entire
voltage range (dashed blue line) and on the spike initiation range only
(260 mV to 240 mV, red line). The green line shows the exponential fit
on the spike initiation range. B, In the hyperpolarized region (zoom of
the dashed rectangle in A), the global Boltzmann fit (dashed blue line) is
not accurate, while the local Boltzmann fit and the local exponential fit
better match the original curve. C, For hyperpolarized voltages
(,250 mV), the resulting excitability curve is closer to the original
curve (black) with a local Boltzmann fit (red) than with a global fit
(dashed blue), yielding more accurate threshold estimations (dots). D,
The estimated Boltzmann slope ka is very sensitive to the position of the
fitting window and varies between 2 mV and 6 mV.
doi:10.1371/journal.pcbi.1000850.g009
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the biophysical model used in this paper (see Materials and

Methods). The Na activation curve of this model seemed to be well

fit to a Boltzmann function (Fig. 9A), however the fit was poor in

the spike initiation zone (260 to 240 mV, Fig. 9C) where

activation is close to zero, which makes fit errors relatively larger.

Although the slope factor ka is about 6 mV when the activation

curve is fit over the entire voltage range, similar to experimental

measurements [51], it is only half this value when fit in the spike

initiation region (Fig. 9D), which explains why this model, as many

other biophysical models, exhibits little threshold variability (since

threshold modulation is proportional to ka). We calculated the

slope factor as a function of the voltage region and we found that it

varies between 1 and 6 mV (Fig. 9D). This finding motivates a

reexamination of Na channel voltage-clamp data, focusing on the

spike initiation region rather than on more depolarized regions,

which are more relevant for spike shape than spike initiation.

Fig. 10 addresses two potential difficulties. In experiments,

activation curves are obtained by measuring the peak conductance

after the clamp voltage is changed from an initial value V0 to a

target value V, and normalizing over the entire range of target

voltages. Thus, it assumes that inactivation is still at resting level

h(V0) when the peak current is measured. This would not be the

case if the inactivation time constant th were close to the activation

time constant tm. Fig. 10A shows the effect of this overlap on the

measurement of ka with simulated voltage-clamp data, where

m?(V )3 is a Boltzmann function with ka = 6 mV. It appears that

ka is overestimated if th is very close to tm, up to 50% when the

two time constants are equal (to 0.3 ms in these simulations).

However the error quickly decreases as th increases (e.g. 10%

error for th = 1 ms). Another potential difficulty is the lack of data

points in the relevant voltage range and the measurement noise,

because currents are small. In Fig. 10B, we digitized an

experimentally measured activation curve (black dots), where

clamp voltages were spaced by 5 mV. A Boltzmann fit over the

entire voltage range gave ka = 7.2 mV while a fit over the

hyperpolarized region V,240 mV gave ka = 4 mV. However,

the latter is not a reliable estimate because it corresponds to only 4

non-zero data points, which also seem to be corrupted by noise.

Therefore it might be necessary to perform new measurements,

specifically focusing on the spike initiation zone, perhaps with

multiple measurements to reduce the measurement noise.

Alternatively, ka could be measured with a phenomenological

approach, using white noise injection in current clamp [22].

Another possible approach would be to directly fit the excitability

model to the current-clamp response of a cell in which only Na

channels would be expressed (perhaps with fluctuating inputs).

Finally, our analysis relies on a single compartment model. In

the compartmental model, we found that between spikes, the

membrane potential was 1.860.6 mV more depolarized at the

soma than at the AIS. This is small compared to the slopes of all

activation and inactivation curves in this model (5–9 mV). This

agrees with our analysis of the electrotonic length in the

subthreshold range, which is much larger than the distance

between the soma and the AIS, although very fast synaptic inputs

or proximal axonal inhibition could produce larger voltage

gradients. Thus, our analysis should remain valid if the

compartment represents both the soma and initiation site (and

also proximal dendrites). However, that approximation is not valid

anymore after spike initiation (see below).

Sharpness of spikes and threshold variability
Spikes look sharper in the soma than in the AIS, presumably

because they are initiated in the AIS and back-propagated to the

soma [10,13,14]. That property is also seen in numerical

simulations of multicompartmental models [34,70]. Yet, linear

cable theory predicts the opposite property: the voltage at the

soma is a low-pass filtered version of the voltage at the AIS,

therefore spikes should look less sharp in the soma. Thus,

increased sharpness must be due to active backpropagation of

the action potential, which cannot be seen in a two compartment

model (such as described in Text S1). From a theoretical point of

view, the sharpening effect of backpropagation can be intuitively

understood from the cable equation:

tm

LV

Lt
~EL{Vzionic currentszl2 L2V

Lx2

It appears that the membrane equation is augmented by a

diffusion term, which is positive and large in the rising phase of the

action potential between the initiation site and the soma. Thus, for

the same membrane potential V, the time derivative gets larger as

this diffusion term increases, which sharpens action potentials.

Sharpness can be measured in numerical simulations by plotting

dV/dt vs. V in response to a suprathreshold DC current, and

fitting it to an exponential model (gLDT e(V{VT )=DT zgL(EL{V )).
In the model of Hu et al. [54], we found that the slope factor,

characterizing spike sharpness, was DT = 1.6 mV in the AIS and

only 0.8 mV in the soma. This is in approximate agreement with

empirical fits of exponential integrate-and-fire models to cortical

neurons stimulated with fluctuating inputs, which reveal a

surprisingly small slope factor DT , slightly above 1 mV [22].

Thus, in the multicompartmental model, active backpropagation

did increase spike sharpness in the soma, but also in the AIS, since

the slope factor was about twice smaller than predicted from fitting

the Na activation curve to a Boltzmann function (3.6 mV). This

increased sharpness did not affect the magnitude of threshold

modulation. In single-compartment models, sharpness of spikes

and threshold modulation are determined by the same quantity,

related to the sharpness of the Na activation curve (ka). It appears

that this link does not hold anymore when active backpropagation

Figure 10. Experimental difficulties in the measurement of Na
activation curves. A, Estimation of the activation slope ka from
simulated voltage-clamp data as a function of the inactivation time
constant th. The model was of a membrane with only Na channels, and
activation and inactivation curves were Boltzmann functions (see
Materials and Methods). The activation slope was measured by a
Boltzmann fit in the hyperpolarized region (,240 mV). The activation
slope ka was 6 mV in the model (dashed line), but the measurement
overestimated it when the inactivation time constant was very close to
the activation time constant. B, Na activation curve measured in vitro
(dots, digitized from [86]) and Boltzmann fits over the entire voltage
range (dashed curve) and over the hyperpolarized range (V,240 mV,
solid curve).
doi:10.1371/journal.pcbi.1000850.g010
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is considered (in multicompartmental models). Thus, in the

threshold equation, the modulating factor is indeed ka (from the

Na activation curve) rather than DT (from spike sharpness,

measured in the phase plot (dV/dt, V)). This explains that Na

inactivation can produce large threshold variability (10 mV in our

simulations) even though spikes are very sharp.

Materials and Methods

Membrane equation
We consider a single-compartment neuron model with voltage-

gated sodium channels and other ion channels (voltage-gated or

synaptic), driven by a current I. The membrane potential V is

governed by the membrane equation:

C
dV

dt
~gNaPNa(ENa{V )z

X
i

gi(Ei{V )zgL(EL{V )zI

where C is the membrane capacitance, gL (resp. EL) is the leak

conductance (resp. reversal potential), gi (resp. Ei) is the

conductance (resp. reversal potential) of channel i, gNa (resp.

ENa) the maximum conductance (resp. reversal potential) of

sodium channels, PNa is the proportion of open Na channels and I

is the input current. In this article, we used the following

convention for conductances: lower case (g) for the total

conductance over the surface of a compartment (typically in units

of nS) and upper case (G) for conductances per unit area (in units

of S/cm2).

We assume that sodium channel activation and inactivation are

independent, as in the Hodgkin-Huxley model [3], i.e.,

PNa~Pa(1{Pi), where Pa is the probability that activation gates

are open and Pi is the probability that a channel is inactivated.

Following the Hodgkin-Huxley formalism, we define h~1{Pi.

The steady-state activation curve P?
a (V ) can be empirically

described as a Boltzmann function [51]:

P?
a (V )~

1

1z exp {
V{Va

ka

� �

where Va is the half-activation voltage (P?
a (Va)~1=2) and ka the

activation slope factor (P?
a

’(Va)~1=(4ka)). We make the

approximation that Na activation is instantaneous and we replace

Pa by its equilibrium value, so that PNa~hP?
a (V ).

Exponential approximation
With instantaneous activation, the sodium current is:

INa~gNah
ENa{V

1z exp {
V{Va

ka

� �

Action potentials are initiated well below Va (about 230 mV,

Angelino and Brenner, 2007 [51]), so that e{(V{Va)=ka&1 except

during the spike. Similarly, ENa is very high (about 55 mV), so that

ENa{V is not very variable below threshold. We make the

approximation ENa{V&ENa{Va and we obtain:

INa~gNah(ENa{Va)e(V{Va)=ka~gLhkae(V{VT )=ka

where VT~Va{ka log
gNa

gL

ENa{Va

ka

. This approximation is

meaningful for spike initiation but not for spike shape. With a

reset (ignoring inactivation and other ionic channels), we obtain

the exponential integrate-and-fire model [48], which predicts the

response of cortical neurons to somatic injection with good

accuracy, in terms of spike timings [22,81,82]. In this model, VT is

the voltage threshold for constant input currents I and ka

(originally denoted DT) is the slope factor, which measures the

sharpness of spikes: in the limit ka?0 mV, the model becomes a

standard integrate-and-fire model with threshold VT (although this

is different in multicompartmental models, see Discussion). The

resulting approximated model is thus:

C
dV

dt
~gLhkae(V{VT )=kaz

X
i

gi(Ei{V )zgL(EL{V )zI

It is convenient to sum all conductances (except for the Na

channel), which gives a simpler expression:

C
dV

dt
~gLhkae(V{VT )=kazgtot(E

�{V )zI

where gtot~gLz
P

i gi is the total conductance and E* is the

effective reversal potential:

E�~
gLELz

P
i giEi

gtot

Finally, the inactivation variable h can be inserted in the

exponential function:

C
dV

dt
~gtotkae(V{h)=kazgtot(E

�{V )zI

where

h~VT{ka log h
gL

gtot

~VT{ka log hzka log 1z

P
gi

gL

� �

is the voltage threshold if all other variables are constant, i.e., it is

such that F9(h) = 0, where F is the current-voltage function.

Dynamic threshold
The effect of Na inactivation on the threshold can be seen in the

exponential model above, neglecting other conductances (thus

h~VT{ka log h). Assuming that inactivation is slow compared to

spike initiation (quasi-static approximation), the voltage threshold

is now h, and it changes with the inactivation variable h. We

assume, as in the Hodgkin-Huxley model, that inactivation has

first-order kinetics:

th(V )
dh

dt
~h?(V ){h

The steady-state value of the threshold is thus

h?~VT{ka log h?(V ). We differentiate the threshold equation

with respect to time:

dh

dt
~{ka

1

h

dh

dt
~{ka

1

h

h?(V ){h

th(V )

We now express h as a function of h using the invert relationships:

h~e(h{VT )=ka and h?~e(h?{VT )=ka :

Threshold Equation
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th(V )
dh

dt
~ka(1{e

h{h?(V )
ka )

If the threshold remains close to its steady-state value

(Dh{h?(V )D%ka), the equation simplifies to:

th(V )
dh

dt
~h?(V ){h

with th~th. The same method applies for voltage-gated

conductances (e.g. Kv1).

Numerical simulations
We compared our theoretical predictions with numerical

simulations of a previously published point-conductance model

with fluctuating synaptic inputs [83]. The membrane equation is:

C
dV

dt
~gNam3h(ENa{V )zgK n4(EK{V )zgMp(EK{V )

zgL(EL{V )zI

where gK and n are respectively the maximal conductance and the

activation variable of thedelayed-rectifier potassium current, and

gM and p are respectively the maximal conductance and the

activation variable of the non-inactivating K current. All channel

variables have standard Hodgkin-Huxley type dynamics.

In Fig. 3A–C, only Na channel activation was considered, with

instantaneous dynamics, i.e., m~m?(V ), h = 1, n = 0, p = 0, I = 0:

C
dV

dt
~F (V )~gNam?(V )3(ENa{V )zgL(EL{V )

In Fig. 3D, the threshold equation was used to calculate VT for the

Na channel properties reported in Angelino and Brenner (2007)

[51], since only the values of Va and ka were available.

To evaluate our threshold equation with time-varying inputs

(Figs. 2C, 5 and 6), we simulated the full conductance-based model

with fluctuating synaptic conductances (same parameters as in

Destexhe et al., 2001 [83]). In Fig. 6, we shifted the voltage

dependence of Na inactivation toward hyperpolarized potentials

by 212.5 mV so as to obtain more threshold variability. To

measure the time-varying threshold, we used a similar method as

one previously used in vitro by Reyes and Fetz [84,61]. We

simulated the model for 200 ms and measured the instantaneous

threshold h(t) at regular time intervals T as follows. The model

was simulated repeatedly with the same synaptic inputs (frozen

noise). In each trial, the neuron was depolarized at time nT (only

once per 100 ms run) to a voltage value between 251 mV and

238 mV. With T = 0.6 ms and 65 voltage values, we ran 22,000

trials. The threshold at a given time is defined as the minimal

voltage value above which a spike is elicited. The measured

threshold was compared to the prediction obtained with the

threshold equation (see Results), where VT and ka were obtained

from a Boltzmann fit to the activation function m?(V )3 over the

range 251 mV to 238 mV, giving VT = 268 mV and

ka = 3.7 mV (Va = 230.4 mV). The values of VT and ka depended

on the fitting window (see Discussion and Fig. 9). In Fig. 7, the

voltage dependence of Na inactivation was shifted by 220 mV to

induce more threshold variability (giving Vi = 262 mV instead of

242 mV with the original parameter values) and the maximum

Na conductance was multiplied by 3 (to keep threshold values in

the same range). The standard deviations of synaptic conductances

were also increased.

In Fig. 8, we simulated a multicompartmental model of spike

initiation recently published by Hu et al. (2009) [54], with

fluctuating injected current modeled as an Ornstein-Uhlenbeck

process (mean 0.7 nA, standard deviation 0.2 nA, time constant

10 ms). The model was otherwise unchanged. The spike threshold,

both at the soma and AIS, is defined at the voltage value when dV/

dt first exceeds 10 V.s21 preceding a spike. In some panels (Fig. 8C,

D, H), we extracted spikes from voltage traces by removing parts

between spike onsets and 7 ms later. We estimated the activation

properties of the Nav1.6 channel, which is responsible for spike

initiation in this model, by fitting a Boltzmann function to the

activation curve (P?
a (V )~m?(V )3) in the spike initiation zone

(260 mV to 240 mV), which gave Va = 233 mV and

ka = 3.6 mV. We then calculated the total maximal conductance

of the Nav1.6 channel over the AIS, by integrating the channel

density over the surface of the AIS (using the morphology and

channel density implemented in the published model code). We

found gNa = 236 nS. Calculating the total leak conductance in this

way was more difficult because leak channels were uniformly

distributed on the whole morphology, including the dendrites, so

that spatial attenuation should be taken into account. While this is

theoretically possible using linear cable theory, we chose a simpler

approach by directly measuring the membrane resistance at the

soma with a DC current injection, and we found gL = 38 nS. With

these values, the threshold equation predicted that the base

threshold is VT = 255.9 mV. The model had a slow K+ current

(Im) with the same channel density as the leak channels. Therefore

the maximum total conductance was estimated as

gKm = gL = 38 nS. It also had a fast K+ current which was

distributed inhomogeneously on the whole neuron morphology,

including dendrites. We estimated its total maximum conductance

as gKv~GsomaSsomazGdendritesSdendriteszGAISSAIS, where the ef-

fective dendritic area was estimated from the ratio of total leak

conductance over leak channel density, i.e., Sdendrites~
gL

GL

{Ssoma.

We found gKv = 906 nS. We then calculated the theoretical

threshold using these parameters and the instantaneous values of

the relevant channel variables (h, nKm, nKv
4).

In Fig. 10A, we simulated a voltage clamp experiment in a

simplified model with only Na channels, assuming the leak current

was subtracted, where both activation and inactivation curves

(m?(V )3 and h?(V )) were Boltzmann functions, with parameters

Va = 230 mV, ka = 6 mV, Vi = 265 mV and ki = 6 mV. The

activation and inactivation time constant were fixed (tm = 0.3 ms

and th between 0.3 and 3 ms). The conductance was measured at

the current peak after the clamp voltage was switched from a fixed

initial voltage V0 = 270 mV to a test voltage V, which was varied

between 2100 and 50 mV (the current was divided by V-ENa to

obtain the conductance, and we assumed that ENa was known - in

an experiment it would be obtained from a linear fit to the highest

voltage region). The conductance was normalized by the maximal

conductance over the tested voltage range and the resulting curve

was fit to a Boltzmann function in the hyperpolarized region

V,240 mV.

All simulations were written with the Brian simulator [85] on a

standard desktop PC, except the simulation of the multicompart-

mental model of Hu et al. [54], for which we used Neuron.

Supporting Information

Text S1 Supplementary Methods. A) Relationship between

threshold definitions. B) Two compartments model.

Found at: doi:10.1371/journal.pcbi.1000850.s001 (0.09 MB

PDF)
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