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Semi-parametric estimates of population 
accuracy and bias of predictions of breeding 
values and future phenotypes using the LR 
method
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Abstract 

Background: Cross-validation tools are used increasingly to validate and compare genetic evaluation methods but 
analytical properties of cross-validation methods are rarely described. There is also a lack of cross-validation tools for 
complex problems such as prediction of indirect effects (e.g. maternal effects) or for breeding schemes with small 
progeny group sizes.

Results: We derive the expected value of several quadratic forms by comparing genetic evaluations including 
“partial” and “whole” data. We propose statistics that compare genetic evaluations including “partial” and “whole” data 
based on differences in means, covariance, and correlation, and term the use of these statistics “method LR” (from 
linear regression). Contrary to common belief, the regression of true on estimated breeding values is (on expecta-
tion) lower than 1 for small or related validation sets, due to family structures. For validation sets that are sufficiently 
large, we show that these statistics yield estimators of bias, slope or dispersion, and population accuracy for estimated 
breeding values. Similar results hold for prediction of future phenotypes although we show that estimates of bias, 
slope or dispersion using prediction of future phenotypes are sensitive to incorrect heritabilities or precorrection for 
fixed effects. We present an example for a set of 2111 Brahman beef cattle for which, in repeated partitioning of the 
data into training and validation sets, there is very good agreement of statistics of method LR with prediction of future 
phenotypes.

Conclusions: Analytical properties of cross-validation measures are presented. We present a new method named LR 
for cross-validation that is automatic, easy to use, and which yields the quantities of interest. The method compares 
predictions based on partial and whole data, which results in estimates of accuracy and biases. Prediction of observed 
records may yield biased results due to precorrection or use of incorrect heritabilities.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Models for genetic evaluation are an oversimplification 
of reality that usually holds only in the short run and in 
closely-related populations. Their properties are rarely 
well known, which can lead to unexpected results. For 
instance, initial applications of genomic predictions of 
breeding values (GEBV) in dairy cattle led to biases, with 
young “genomic” selected bulls with high GEBV being 

overpredicted, as verified by posterior progeny test-
ing [1–3]. As a result, further use of GEBV in the dairy 
industry required extensive cross-validation and a more 
formal analytical framework [4–6].

The introduction of new methods for genetic or 
genomic evaluation raises the question of model choice 
(comparing across models) and model quality (features 
of a particular model). Thus, we need tools to rank, 
understand and quantify the behavior of prediction 
models in an “animal breeding” context. The need for 
these tools has dramatically increased with the imple-
mentation of genomic selection, given its built-in 
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encouragement to take riskier decisions such as selec-
tion of unproven young candidates, in particular in 
dairy cattle. The method that is most commonly used 
to check genomic predictions is some form of cross-
validation, a test that was rarely used in pedigree-based 
genetic evaluation studies, which relied primarily on 
progeny testing (but see [7, 8]). In genomic prediction, 
cross-validation studies are indeed the norm [4, 9, 10].

Cross-validation tests rely on either one of two 
approaches: (1) comparing (G)EBV or predicted phe-
notypes to (pre-corrected) observed phenotypes, 
deregressed proofs, or yield deviations [9]; or (2) com-
paring (G)EBV to highly accurate EBV from progeny 
testing. Another approach, which is in between the two 
above approaches, is based on daughter yield devia-
tions (DYD; [6]), which are close to highly accurate 
EBV if heritability is high and the number of daughters 
is large. Cross-validation is very useful but there are 
some concerns about the quality or adequacy of these 
approaches for several reasons, including: (a) the need 
to pre-correct phenotypes; (b) the growing difficulty 
to obtain unbiased estimates of DYD with the increas-
ing use of non-progeny tested bulls selected based on 
GEBV; and (c) their inadequacy for indirect predictions 
such as those of maternal effects, for which there is 
no direct observation related to the animal. Apparent 
contradictions exist, such as lower accuracy of GEBV 
than that of pedigree EBV [5, 11], or accuracies higher 
than 1 for lowly heritable traits. For a detailed review of 
cross-validation in animal breeding and its metrics, we 
refer the reader to our review [12].

Cross-validation is a good tool but has some limitations 
as discussed above. Thus, there is an increasing need for 
a simple general tool that can be used in several complex 
scenarios, including for traits with a low heritability (e.g. 
reproductive and fitness traits), for indirectly observed 
traits (random regression coefficients, maternal effects, 
GxE interactions), and with limited size of progeny test 
groups (e.g., pigs). Here, we propose to complement 
cross-validation approaches with semiparametric proce-
dures based on the classical theory of genetic evaluation.

Semiparametric procedures based on the mixed 
model equations are appealing because they combine 
theory, which we know is approximately and/or asymp-
totically correct, with model-free evidence from data. In 
the 1990’s, there was some effort to develop such proce-
dures [13]. Reverter et al. [14] showed that the amount of 
change in EBV from one genetic evaluation to the next 
(i.e., with the arrival of “new” data) was predictable. In 
parallel, bias in across-country predictions [15, 16] led to 
the introduction of the Interbull tests [17], which draw 

on a similar idea. This family of methods has been used 
to check unbiasedness of predictions and, in the case 
of the Interbull tests, relies heavily on the availability of 
progeny tests based on large numbers of daughters.

In this work, we draw on analytical results from [14] 
and present theoretical features of semi-parametric pro-
cedures, namely method LR (from “linear regression”). 
These procedures are a series of statistics, which describe 
the change of predictions from “old” to “recent” evalua-
tions that can be used to compute and compare popula-
tion accuracies and biases of (genomic) predictions. We 
also explore analytical properties of the ability to predict 
future phenotypes, sometimes called “predictivity”. Then, 
we illustrate the method with deterministic results for 
simple designs and for experimental beef cattle data.

This work proposes estimates of the “population” accu-
racy, which is the correlation between true (TBV) and 
estimated breeding values (EBV) across individuals in a 
population. Population accuracy is relevant to compare 
the predictive ability of models and to maximize genetic 
progress. This work does not propose methods to esti-
mate individual accuracies, which are a measure of the 
risk when choosing a particular animal for breeding [18].

Methods: analytical developments
We propose to test the quality of evaluation methods 
using cross-validation tests based on successive EBV of 
a set of “focal” individuals (a validation cohort). These 
“focal” individuals can be the whole population [14, 
19] or a set of “focal” individuals of interest, such as 
“genomic” candidates for selection [6].

We will use the convention that var(x) refers to a 
scalar, the variance of a random element from a sin-
gle realization of random vector x (in other words, 
var(x) = 1

n

∑
i x

2
i −

(
1
n

∑
i xi

)2
 where n is the size of x ), 

whereas Var(x) refers to the variance–covariance matrix 
of elements in x during conceptual repetitions. We use 
a similar convention for cov

(
x, y

)
 and r

(
x, y

)
 , which are 

scalars that represent the covariance and correlation 
across elements in x and y , whereas Cov

(
x, y

)
 is a matrix.

Definition of population accuracy, bias, and dispersion
Let u be the true breeding value (TBV) and û an esti-
mated breeding value (EBV) of a single individual. The 
classical definition of accuracy is the correlation r

(
u, û

)
 

for one individual across conceptual repeated sampling 
[20], which is a measure of the expected magnitude of 
the change in EBV with increasing information. Accu-
racies are also used to forecast genetic progress in a 
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selection scheme [18, 21, 22]. This use applies to large 
unrelated populations, and made sense at the time of 
selection-index based selection (e.g. selecting boars 
based on family information). However, for the joint 
evaluation of all animals, the relevant measure accord-
ing to Bijma [18] is “the correlation between true i.e. 
TBV and EBV in the candidates for selection, which is 
a property of a population, not of an individual”. This 
“population accuracy” (we will use this term hereafter) 
is the correlation r

(
u, û

)
= cov

(
u, û

)
/

√
var

(
û
)
var(u) 

across a series of individuals.
Accordingly, bias is defined as the difference of 

means ū − ¯̂u and dispersion as the slope of the regres-
sion of u on û : cov

(
u, û

)
/var

(
û
)
 . Indeed, in practice, 

proxies to these empirical measures are used in cross-
validation studies. In other words, accuracy measures 
the ability to rank individuals within the focal set of 
individuals, taking the possible relatedness within the 
sample into account [23, 24], as well as the buildup of 
the Bulmer effect that reduces genetic variance and 
makes evaluation more difficult [18, 25].

Note that the three quantities accuracy, bias, and 
dispersion are defined as scalars, i.e.

and have distributions, i.e. over conceptual repetitions 
r
(
u, û

)
 have themselves a mean and a variance.

We also use indicators of (self-)relationships and of 
genetic variances within the sample. If the relation-
ship matrix across focal individuals is K , then we use 
diag(K)− K̄ = 1+ F̄ − 2f̄  where F  is the inbreeding 
coefficient and 2f  is the relationship between individu-
als ( f  can be understood as coancestry), and the bar 
operators imply averages, i.e. X̄ is the average across 
elements of X . The statistic diag(K)− K̄ was used by 
[26] to describe the decrease in genetic variance due 
to relationships in a related but unselected population. 
For selected populations, even of infinite size, there is 
a further decrease in genetic variance due to the Bul-
mer effect [18, 27], and we will use σ 2

u,∞ = (1− k)σ 2
u 

where k is the reduction due to selection and σ 2
u,∞ is 

the genetic variance at equilibrium in a population 
under selection. The equivalence between Henderson’s 
[28] results for the decrease in genetic variance in a 
selected population and σ 2

u,∞ = (1− k)σ 2
u  was shown 

(in simplified settings) by [27, 29].

var
�
û
�
= 1

n

�

i

û2i −
�
1

n

�

i

ûi

�2

�= Var
�
û
�
=




Var

�
û1
�
Cov

�
û1, û2

�

Var
�
û2
�

. . .



,

Statistics to test the quality of evaluation methods in brief
Consider successive evaluations with “partial” and 
“whole” data ( ̂up and ûw , respectively), which is based on 
the use of “old” ( p ) and “recent + old” ( w from “whole”) 
phenotype data, respectively. Note that in the following, 
ûp and ûw have the same dimension and may be a sub-
set of “focal” individuals (e.g. the young candidates for 
selection) or the number of animals in the entire dataset 
(i.e., in the relationship matrix). In general, the breeder is 
concerned with the population accuracy of candidates for 
selection, because higher population accuracy of selec-
tion candidates implies greater genetic progress. Typi-
cally, focal individuals have no phenotype (or offspring 
phenotyped) in p but have phenotype (or offspring phe-
notyped) in w , but this is not a requirement for the pro-
posed method. Reverter et al. [14] described the amount 
of change that is expected in consecutive genetic evalu-
ations of individuals as a function of their respective 
accuracies, and they proposed statistics to check biases 
in genetic evaluations. The proposed criteria were very 
beneficial because (1) they do not require knowledge of 
the TBV, only the EBV from successive evaluations, and 
(2) they do not require knowledge of adjustment factors 
to pre-correct phenotypes.

In general, assumptions are: Cov
(
ûw , ûp

)
= Var

(
ûp

)
 ,  

E
(
ûp

)
= E

(
ûw

)
= E(u) and Cov

(
u − ûp, ûp

)
=

Cov
(
u − ûw , ûw

)
= 0 . Henderson [28] proved that 

Cov
(
u, û

)
= Var

(
û
)
 even in the presence of selec-

tion, which when coupled with the results in [14] yields 
Cov

(
ûw , ûp

)
= Var

(
ûp

)
 . Intuitively, this holds if “old” 

errors in prediction ( u− ûp ) are uncorrelated with “new” 
information, which in turn holds if the model takes selec-
tion correctly into account. Another assumption, which 
will be shown later in this paper, is that the set of focal 
individuals is sufficiently large and “diverse” (for instance, 
there are several full-sib families and not just one). The 
derivations of Reverter et al. [14] referred to the individ-
ual case (e.g. r

(
u, û

)
 ) and not to sets of individuals (e.g. 

r
(
u, û

)
 ) that are used for cross-validation. We extend 

their results as shown below, which leads to the following 
main results.

1. The statistic µwp = ûp − ûw  , has an expected value 
of 0 if the evaluation is unbiased.

2. The regression of EBV obtained with “whole” ( w ) 
data on EBV estimated with “partial” ( p ) data 
bw,p = cov(ûw ,ûp)

var(ûp)
 has an expectation, E

(
bw,p

)
= 1 if 

there is no over/under dispersion.
3. The correlation of EBV based on partial and whole 

data, ρp,w = cov(ûp ,ûw)√
var(ûw)var(ûp)

 , is a function of their 

respective accuracies ( acc ), with an expected value 
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E
(
ρw,p

)
≈ accp

accw
 , where acc is the population accuracy 

(correlation between TBV and EBV across animals).
4. The covariance of EBV based on partial and whole 

data is a function of the squared accuracy (reliability) 
of the partial EBV, ρ2

Covw,p
= cov(ûw ,ûp)(

1+F̄−2f̄
)
σ 2
u,∞

 , 
E
(
ρ2
Covw,p

)
≈ acc2p.

5. The slope of the regression of EBV based on partial 
on EBV based on whole data, bp,w = cov(ûw ,ûp)

var(ûw)
 is, on 

expectation, a function of the respective accuracies 
E
(
bp,w

)
= acc2p

acc2w
 that is, the expectation of the slope is 

proportional to the relative increase in average relia-
bilities from EBV based on partial to EBV based on 
whole data.

Proofs of the adequacy of the statistics
In the following, we prove that the statistics described 
above are related to bias, slope and accuracies. We 
make repeated use of the following results for biquad-
ratic forms [30]: consider random vectors x1 , x2 such 

that E
(
x1
x2

)
=

(
µ1

µ2

)
;Var

(
x1
x2

)
=

(
V11 V21

V12 V22

)
 . The  

expectation of the quadratic form x′1A12x2 is 

E
(
x
′
1A12x2

)
= tr(A12V12)+ µ

′
1A12µ2 . Empirical (co)

variances (scalars) are quadratic forms, for instance 
cov

(
ûw , ûp

)
= 1

n

(
ûp − ¯̂up

)′(
ûw − ¯̂uw

)
= 1

n û
′
pSûw where 

S = I− 1
n J is the centering matrix [31].

Considering our problem, we make the hypothesis that 
the two genetic evaluations (e.g. males before (“partial”) 
and after (“whole”) progeny testing) have different means:

Note that the meaning of the “expected mean of EBV 
û ” is unclear under selection. For instance, the last gen-
eration is expected to have means higher than 0, but these 
means will differ for males (heavily selected) and females 
(less selected). We will assume that the focal individuals 
include sets of animals that are comparable, i.e. under 
repeated sampling they have the same average genetic 
level. For instance, if 1% of the elite females and 10% of 
the elite bulls are selected, offspring from these animals 
should have on average the same genetic level across con-
ceptual repetitions of the breeding scheme; the actual ani-
mals that are selected will differ but the genetic gain will 
on average be the same. We also assume (as commonly 
done) that, because of selection, Var(u) = G = Kσ 2

u,∞ 
( K is a relationship matrix) instead of the non-selection 

E

(
ûp
ûw

)
=

(
1µp

1µw

)
.

case, Var(u) = G = Kσ 2
u . This implies that Henderson’s 

[28] description of decrease in variance due to the Bulmer 
effect is correct and that it can be summarized by a single 
parameter σ 2

u,∞ [18, 25, 27].
Following classical notation: Var(u) = G = Kσ 2

u 
and Var

(
û − u

)
= Cuu , and the matrix of prediction 

error variances and covariances (PEV and PEC) can be 
described as [14, 28].

where Cuu
p  and Cuu

w  are matrices of PEV and PEC for the 
partial and whole analysis, respectively. These expressions 
assume that genetic evaluation deals correctly with the 
decrease in genetic variance due to selection [28, 32] in 
which case Var

(
ûp

)
= Cov

(
ûp, ûw

)
 . From here, we derive 

expectations of several possible quadratic forms that are 
combined to produce estimators of bias, dispersion and 
accuracy. In principle, genetic evaluation does not need 
to be based on mixed models (statistics can be computed 
regardless of the procedure), but our results only hold if 
the variances and covariances of estimators and true values 
are as described above. Average inbreeding and relation-
ships in K are also needed. Ideally, the evaluation is based 
on conditional means such that the properties described 
before hold. Precision of the estimators of accuracy and 
bias depends on the distributional properties of the EBV 
and TBV, which can be derived when assuming multivari-
ate normality but we have not attempted to do so herein.

Averages of estimated breeding values to estimate bias
It is straightforward to show that E

(
1′ûp
n

)
= µp , 

E
(
1′ûw
n

)
= µw . Thus, µwp = ûp − ûw is a direct measure 

of bias.

Quadratic forms of estimated breeding values
For the method R of covariance estimation, it is rec-
ommended that the dispersion (relationship) matrix K 
( Var(u) = G = Kσ 2

u ) is included in the quadratic forms, 
especially in the presence of selection [33]:

However, these weighted quadratic forms lead to esti-
mators that are difficult to understand. Hence, in the fol-
lowing, we will use “unweighted” quadratic forms.

Var




ûp
ûw
u



 =




G− Cuu

p G− Cuu
p G− Cuu

p

G− Cuu
p G− Cuu

w G− Cuu
w

G− Cuu
p G− Cuu

w G



,

E
(
û′pK

−1ûw

)
= tr

(
K−1

(
Kσ 2

u − Cuu
p

))
+ µp1

′G−11µw

= tr(I)σ 2
u − tr

(
K−1Cuu

p

)
+ µp1

′K−11µw .
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The quadratic form using not-centered ûp , ûw has 
expectation:

where n is the number of individuals, 1+ F̄  is the average 
self-relationship, PEVp = diag

(
Cuu
p

)
 is the average pre-

diction error variance and σ 2
u,∞ is the genetic variance. It 

is worth noting that the classical definition of individual 
accuracy is based on acc2i = (1+Fi)σ

2
u+PEVpi

(1+Fi)σ 2
u

 [20]. Thus, the 

expression above for E
(
û′pûw

)
 is a function of individual 

expected average reliabilities acc2i  , but also of means µw , 
µp.

To remove dependence of the quadratic form above on 
means, it makes sense to use centered ûw and ûp:

where S = I− 1
n J is the centering matrix [31]. By its 

properties, S1 = 0 and S′S = S′ = S , and therefore

is a function of the average self-relationships 1+ F  minus 
the average relationship between individuals, 2f  , and 
PEV minus PEC. Inclusion of relationships between indi-
viduals results in the corresponding reduction in genetic 
variance due to inbreeding to be accounted for, i.e., if as 
usual F ≈ f  , then 

(
1+ F̄ − 2f̄

)
σ 2
u =

(
1− F̄

)
σ 2
u , which 

shows the decrease in genetic variance [26, 34, 35]. Simi-
larly, PEVp − PECp considers the fact that estimates of û 
are correlated across individuals (the so-called “co-reli-
abilities” [25]), showing that there is little value in hav-
ing high individual accuracy if predictors are correlated 
across individuals.

The remaining quadratic forms needed for our develop-
ments are:

E
(
û′pûw

)
= tr

(
G− Cuu

p

)
+ µp1

′1µw

= n
(
1+ F̄

)
σ 2
u,∞ − nPEVp + nµwµp,

E

((
ûp − ¯̂up

)′(
ûw − ¯̂uw

))

= tr
(
S
′
S

(
G− C

uu
p

))
+ µp1

′
S
′
S1µw ,

E

(
1

n

(
ûp − ¯̂up

)′(
ûw − ¯̂uw

))

= 1

n
tr
(
SG− SC

uu
p

)

= diag(G)− Ḡ−
(
diag

(
Cuu
p

)
−

(
Cuu
p

))

=
(
1+ F̄ − 2f̄

)
σ 2
u,∞ −

(
PEVp − PECp

)
,

and

In the remainder of this paper, we assume that the 
expectation of a ratio of quadratic forms is equal to the 
ratio of the expectations. The “Appendix” shows that 
this holds when the number of individuals included in 
the statistics is large (several hundred or more) or when 
they are not structured into very large sibships. Other-
wise, as shown in the “Appendix”, both the true regres-
sion coefficient b = cov

(
ûp,u

)
/var

(
ûp

)
 and its estimator 

b̂ = cov
(
ûp, ûw

)
/var

(
ûp

)
 have an expectation less than 1, 

even when the model is perfect and the EBV have the right 
dispersion.

Quadratic forms of estimated and true breeding values
Here, we give an alternative definition of the population 
accuracy, i.e. the expected correlation of EBV and TBV in a 
sample, as a ratio of quadratic forms:

Using

and E
[
(u − ū)′

(
ûp − ¯̂up

)]
= E

[(
ûp − ¯̂up

)′(
ûp − ¯̂up

)]
 , 

this has expectation:

E

(
1

n

(
ûp − ¯̂up

)′(
ûp − ¯̂up

))

=
(
1+ F̄ − 2f̄

)
σ 2
u,∞ −

(
PEVp − PECp

)
,

E

(
1

n

(
ûw − ¯̂uw

)′(
ûw − ¯̂uw

))

=
(
1+ F̄ − 2f̄

)
σ 2
u,∞ −

(
PEVw − PECw

)
.

accp = E
�
ρT ,p

�

= E




�
ûp − ¯̂up

�′

(u − ū)
�
(u − ū)′(u − ū)

�
ûp − ¯̂up

�′�
ûp − ¯̂up

�


.

E

((
ûp − ¯̂up

)′
(u − ū)

)
= tr

(
S
(
G− Cuu

p

))

=
(
1+ F̄ − 2f̄

)
σ 2
u,∞ −

(
PEVp − PECp

)
,

E
(
(u − ū)′(u − ū)

)
= tr(SG) =

(
1+ F̄ − 2f̄

)
σ 2
u,∞,
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The denominator 
(
1+ F̄ − 2f̄

)
σ 2
u,∞ corresponds to 

the expected genetic variance in the focal population 
and takes the reduction in variance due to relationships (
1+ F̄ − 2f̄

)
 and selection ( σ 2

u,∞ ) into account. With all 
these elements, we can compute the expectation of the 
derived statistics, as done in the following.

Derivation of statistics to test the quality of evaluation 
methods
Comparison of means of EBV from whole and EBV 
from partial data

Regression of EBV from whole data on EBV from partial data

The regression bw,p = cov(ûp ,ûw)
var(ûp)

=
1
n

(
ûp− ¯̂up

)′(
ûw− ¯̂uw

)

1
n

(
ûp− ¯̂up

)′(
ûp− ¯̂up

) =

(
ûp− ¯̂up

)′(
ûw− ¯̂uw

)

(
ûp− ¯̂up

)′(
ûp− ¯̂up

)  is composed of two quadratic forms. 

When assuming that the expectation of the ratio is equal 
to the ratio of the expectations,

accp = E
(
ρT ,p

)

≈
1

n tr
(
SG− SC

uu
p

)

√
1
n tr(SG)

√
1
n tr

(
SG− SC

uu
p

)

=

√
1
n tr

(
SG− SC

uu
p

)

√
1

n tr(SG)

=

√(
1+ F̄ − 2f̄

)
σ 2
u,∞ −

(
PEVp − PECp

)
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µp,w =
(
1′ûp − 1′ûw

)
/n,

E
(
µp,w

)
= E

(
1
′
ûp

n

)
− E

(
1
′
ûw

n

)

= 1

n

(
1
′
1µp − 1

′
1µw

)
= µp − µw .

E
(
bw,p

)
≈

(
1+ F̄ − 2f̄

)
σ 2
u,∞ −

(
PEVp − PECp

)
(
1+ F̄ − 2f̄

)
σ 2
u,∞ −

(
PEVp − PECp

) = 1.

Note that this expectation involves PEV and 
off-diagonal PEC. Importantly, it must hold that 
Var

(
ûp

)
= Cov

(
ûp, û

′
w

)
 (as usually assumed).

Correlation of EBV from whole and EBV from partial data

This statistic is composed of three quadratic forms and 
assuming that the square root of the expectation is equal 
to the expectation of the root, it gives:

Therefore, ρw,p is a direct estimator of the increase in 
population accuracy of EBV from partial to whole data, 
accp
accw

.

Estimation of accuracy from the covariance of EBV based 
on whole and EBV based on partial data
We can get a direct estimator of accuracy (and not of 
ratios of accuracies) from cov

(
ûp, ûw

)
= 1
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)′
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ûw − ¯̂uw

)
 , from which we can derive the statistic:

ρw,p =
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ûp, ûw

)
√
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ûw

)
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ûp

)
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)
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with expectation acc2p as follows

Thus, ρ2
covw,p

 is a direct estimate of squared popula-
tion accuracy of EBV based on partial data, which we call 
ρ2
covw,p

 since it is an estimator of the squared accuracy (a 
squared correlation) based on the covariance between ûp 
and ûw . This statistic requires an estimator of σ 2

u,∞ that can 
be obtained by modelling the selection scheme [18] or be 
explicitly estimated [34].

Regression of EBV from partial data on EBV from whole data

with expectation:

which is a function of squared population accuracies, i.e.  
E
(
bp,w

)
= acc2p

acc2w
 . In addition, E

(
ρw,p

)
=

√
E
(
bp,w

)
 , 

although ρw,p and 
√
bp,w  need not be equal for single 

realizations, i.e. for the analysis of one particular dataset.

Effect of over/underdispersion of breeding values on statistics
Statistics used to compute slopes and accuracies deal well 
with regular bias ( ̄̂up �= ¯̂uw ) because the ûp and ûw are 
centered. However, overdispersion (inflation) of EBV is 
a frequent phenomenon [6]. To consider a simple case, 
assume that EBV based on partial and whole data are uni-
formly scaled by regression coefficients θ2p and θ2w , with 
θ2p > θ2w ≥ 1 (i.e., there is more overdispersion with less 
data or with old data), resulting in:

acc2p = E
(
ρ2
covw,p

)

=
E

(
1

n

(
ûp − ¯̂up

)′(
ûw − ¯̂uw

))

(
1+ F̄ − 2f̄

)
σ 2
u,∞

≈ 1− PEVp + PECp(
1+ F̄ − 2f̄

)
σ 2
u,∞

.

bp,w =
1
n

(
ûp − ¯̂up

)′(
ûw − ¯̂uw

)

1
n

(
ûw − ¯̂uw

)′(
ûw − ¯̂uw

) =
cov

(
ûp, ûw

)

var
(
ûw

) ,

E
(
bp,w

)
≈
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)

1
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)
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PEVp − PECp

)
(
1+ F̄ − 2f̄

)
σ 2
u,∞ −

(
PEVw − PECw

) ,

yielding, e.g.,

The regression of EBV from whole on partial data, 

bw,p =
(
ûp−¯̂up

)′(
ûw−¯̂uw

)

(
ûp−¯̂up

)′(
ûp−¯̂up

)  , yields on expectation 

E
(
bw,p

)
≈ θw

θp

(
1+F̄−2f̄

)
σ 2
u,∞−(PEVp−COPEVp)(

1+F̄−2f̄
)
σ 2
u,∞−(PEVp−COPEVp)

= θw
θp

 , which is 

not equal to 1 but equal to the ratio of dispersions. Thus, 
a value of bw,p < 1 (as often observed for genomic predic-
tions) may indicate overdispersion of EBV based on par-
tial data but also underdispersion of EBV based on whole 
data.

The reverse regression of EBV from partial on whole 

data, bp,w =
1
n

(
ûp−¯̂up

)′(
ûw−¯̂uw

)

1
n

(
ûw−¯̂uw

)′(
ûw−¯̂uw

) , yields on expectation 
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(
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≈ θp

θw

(
1+F̄−2f̄
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u−(PEVp−PECp)(

1+F̄−2f̄
)
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u−(PEVw−PECw)

= θp
θw

acc2p
acc2w

 , which 

is a ratio of dispersions and reliabilities.
Finally, the correlation ρw,p =(

ûp−¯̂up
)′(

ûw−¯̂uw
)

√(
ûw−¯̂uw

)′(
ûw−¯̂uw

)(
ûp−¯̂up

)′(
ûp−¯̂up

) has the following 

expected value:

var
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retrieving a ratio of accuracies. Thus, the statistic ρw,p 
(correlation of “whole data” and “partial data” EBV) is 
an estimator of change in accuracy and is not affected by 
this very simplistic form of overdispersion.

Note that equivalent biases result when θ2w > θ2p ≥ 1 , i.e. 
when there is more overdispersion with more data or with 
recent data. Thus, regression of EBV from whole on par-
tial data informs about over/underdispersion, regression 
of EBV from partial on whole data can be interpreted as 
a function of accuracies, and the correlation of EBV from 
partial and whole data is useful as a ratio of accuracies.

Predictivity: correlation of EBV with precorrected data
A very common strategy in cross-validation tests is to com-
pare predictions of EBV with precorrected phenotypes 
for the predicted individuals [9, 10], i.e. using r

(
y
∗
new , ûp

)
 , 

where y∗new is the precorrected “new” data available in the 
whole data. It is, however, not clear whether this is a valid 
estimator of accuracy and what the effect of precorrection 
is. Here we derive some results that show that the use of 
precorrected data can be problematic in some cases: many 
levels of the main environmental effect or wrong variance 
components.

Precorrected data are obtained with the whole dataset 
using y∗ = y − Xβ̂ =

(
I− X

(
X′V−1X

)−
X′V−1

)
y , 

where β̂ is typically a BLUE estimator of fixed effects. In 
fact, Var

(
y∗
)
= VPV for P = V

−1
(
I− X

(
X
′
V
−1

X
)−

X
′
V
−1

)
 [36], which leads to:

where Cββ
w  is the PEV of fixed effects in β obtained from 

analysis of the whole dataset.
Now, we will consider only new data that are not in the 

partial dataset and assume for simplicity one record per 
individual. We further assume that the new data are only 
affected by a single fixed effect (say contemporary group), 
such that:

The covariance of EBV with y∗new can be obtained as 
follows:

Var
(
y
∗) = VPV

= VV
−1

(
I− X

(
X
′
V
−1

X

)−
X
′
V
−1

)
V

= V − X

(
X
′
V
−1

X

)−
X
′

= V − XC
ββ
w X

′ = R + ZGZ
′ − XC

ββ
w X

′
,

Var
(
y∗new

)
= R +G− XCββ

w X′.

Because by orthogonality, Cov
(
ûp,Xβ̂

)
= 0 ([37] 

equation  5.28), and where Cov
(
ûp,u

)
= G− Cuu

p  , and 
Cov

(
ûp, enew

)
= 0 , the latter because EBV based on par-

tial data do not influence enew (again, assuming there is no 
effect of selection).

Therefore, 

var

(
ûp
y∗new

)
=

(
G− Cuu

p G− Cuu
p

G− Cuu
p R +G− XC

ββ
w X′

)
,

which yields the following expectations for n individuals:

which is equal to 1 as expected, and the correlation is 
equal to:

with expectation:

Thus, the cross-validation correlation of EBV with 
precorrected phenotypes depends on population accu-
racy, heritability, and errors in estimates of fixed effects. 
If fixed effects are estimated with high precision Cββ

w ≈ 0 
and off-diagonals (both in relationships and in PEV) are 
negligible, then:
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)
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)
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)
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(
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If we divide the square of this by the population herita-
bility h2∞ = σ 2

u,∞
σ 2
u,∞+σ 2

e
 (i.e. in the selected population, not in 

the base population):

and therefore, E
(
ρy∗new ,ûp

)
= acc

h∞
.

Thus, if there has been no selection, we can estimate 
accuracy from cross-validation as: âcc ≈

ρy∗new ,ûp

h
 where h2 

is heritability in the base population [9]. However, if there 
has been selection, using âcc ≈

ρy∗new ,ûp

h
 underestimates 

E
(
ρy∗new ,ûp

)
=

√
σ 2
u,∞ − PEV

√
σ 2
e + σ 2

u,∞
=

√
σ 2
u,∞ − PEV

σ 2
u,∞ + σ 2

e

.

σ 2
u,∞−PEV

σ 2
u,∞+σ 2

e

σ 2
u,∞

σ 2
u,∞+σ 2

e

=
σ 2
u,∞ − PEV

σ 2
u,∞

= acc2p,

population accuracy because σ 2
u,∞ < σ 2

u and h2∞ < h2 . 
Using the “dairy” example in [18], σ 2

u = h2 = 0.3 and 
σ 2
u,∞ = 0.18 , such that h2∞ = 0.20 . If the observed 

ρy∗new ,ûp = 0.3 , this yields (biased) âcc ≈
ρy∗new ,ûp

h
= 0.55 

and (correct) âcc ≈
ρy∗new ,ûp

h∞
= 0.67 . The latter can, in 

turn, be translated to an “unselected accuracy” of 0.82 
[18, 27].

There is a second and not negligible source of bias 
due to Cββ

w �= 0 . For a single fixed effect, matrix XCββ
w X′ 

contains var
(
β̂i

)
 (the variance of the estimate of the 

effect that affects the i-th record) on the diagonal and 

cov
(
β̂i, β̂j

)
 on off-diagonals (the covariance of the esti-

mates of the effects that affect the i-th and j-th records). 
We will assume that covariances of estimates across 
levels of the fixed effect are negligible (this is not true if 
relatives are spread across fixed effects). For a balanced 
design with n records in y∗new , ni = n/m records for 
each of the m levels of the fixed effect, and with records 
ordered within level, the structure of XCββ

w X′ is:
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where var
(
β̂1

)
= var

(
β̂2

)
= . . . = var

(
β̂m

)
= var

(
β̂

)
 . 

Also, we will assume that var
(
β̂i

)
= σ 2

u,∞+σ 2
e

ni
 , in other 

words, relationships add little information to estimates of 
the fixed effect. This results in 
diag

(
XC

ββ
w X′

)
= var

(
β̂

)
= σ 2

u,∞+σ 2
e

ni
 and 

(
XC

ββ
w X′

)
=

σ 2
u,∞+σ 2

e

n
 , which results in 1

n
tr
(
SXC

ββ
w X

′
)
=

σ 2
u,∞+σ 2

e

ni

(
1− 1

m

)
 . Plugging this expression in E

(
ρy∗new ,ûp

)
 

above and ignoring off-diagonals results in:

This results in overestimation of the accuracy of 
m−1

n−(m−1)
 , which does not disappear with high values of 

n. Thus, if there are several levels of the fixed effect, 
the estimate of the cross-validation accuracy will have 
an upward bias, which is greater for a smaller number 
of records per contemporary group. This bias is due to 
the assumption that the precorrection is perfect. For 
instance, for n = 500 and 25 contemporary groups, the 
bias is an extra 5% apparent accuracy. For n “large” and 
m “not small”, bias is approximately 1

ni
 , i.e., inversely 

proportional to the size of the contemporary group, 
which does not disappear with increasing n.

Comparison with current Interbull validation procedures
The Interbull method [6] uses a simple regression that 
can be written as 2DYD = 1b0 + b1ûp + ǫ , where DYD 
are daughter yield deviations (computed with the 
whole dataset) and act as pseudo-data for bulls. Ele-
ments of ǫ are assumed to be independent across bulls 
with variance inversely proportional to the equivalent 
number of daughters (this can be viewed as DYD hav-
ing different heritabilities across bulls). Thus, this set-
ting is similar to the previous section on predictivity. 
The above proofs apply and the expected value of b1 is 
1, although, using â = DYD− b̂1 ¯̂up does not yield a 
correct estimate of µp − µw , i.e. bias, unless b1 = 1 . 
Also, the expected value of r2

(
ûp, DYD

)
 is acc

2

rel
 , where 

rel is the average reliability of the EBV of bulls based 
on progeny. Here, as in the analysis on predictivity, 
off-diagonals are ignored, which should not affect 
results if progeny numbers are large enough.

E
(
ρy∗new ,ûp

)

h
≈ accp

(
1+ m− 1

n− (m− 1)

)
.

Markers considered as “new” data: pedigree BLUP and (SS)
GBLUP
The addition of marker genotypes to a pedigree-based 
BLUP genetic evaluation can also be viewed as having 
“more data”, e.g. on a correlated trait [38, 39]. Thus, a way 
to check the increase in accuracy from adding marker 
information (e.g. from BLUP to GBLUP) is to view the 
data with marker genotypes as “whole” and the data 
without markers as “partial”. Using G to refer to EBV with 
markers and A to EBV without markers, this yields:

i.e., the lower the correlation between genomic EBV 
and pedigree EBV, the higher the extra accuracy from 
genomic data. This assumes that Cov

(
ûG , ûA

)
= Var

(
ûA

)
 , 

as assumed by [39], which sounds reasonable but has 
been formally proved only for a single marker that is fit-
ted as a correlated trait [38].

The procedure above uses the same phenotypes for 
the evaluations with either G or A . An alternative pro-
cedure may be to compare the increase in accuracy from 
“partial” to “whole” in both approaches. In this case, to 
compare EBV from a genomic-based method (GBLUP 
or SSGBLUP) with EBV from a pedigree-based method 
(PBLUP), we suggest the following procedure:

1. Compute EBV with all data (“whole”) using the 
method that is deemed to be optimal; we will assume 
that this is GBLUP.

2. Choose a cutoff date and create a partial dataset by 
setting phenotypes after cutoff date to missing;

3. Compute GEBV based on the partial data using 
GBLUP;

4. For “focal” individuals (i.e., the validation cohort): 
compute statistics µGBLUP

p,w  , bGBLUPw,p  , and ρGBLUP
p,w  that 

describe respectively bias, dispersion and accuracy of 
EBV from GBLUP;

5. Compute PEBV based on “partial data” and using 
PBLUP;

6. Compute statistics µPBLUP
p,w  , bPBLUPw,p  , and ρPBLUP

p,w  that 
describe respectively bias, dispersion and accuracy of 
PEBV from PBLUP;

7. The statistic ρPBLUPp ,GBLUPp quantifies the inverse 
of the relative increase in accuracy from PBLUP to 
GBLUP in the partial data;

8. The statistic ρPBLUPw ,GBLUPw quantifies the inverse 
of the relative increase in accuracy from PBLUP to 
GBLUP in the whole data.

ρA,G =

(
ûA − ¯̂uA

)′(
ûG − ¯̂uG

)

√(
ûG − ¯̂uG

)′(
ûG − ¯̂uG

)(
ûA − ¯̂uA

)′(
ûA − ¯̂uA

)

= accA

accG
,
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Data: example using beef cattle data
Animal population, genotypes and phenotypes
The statistics described above were tested in a real-
life dataset. We used genetic and phenotypic resources 
(for details see Table  1) from Brahman cows (N = 995) 
and bulls (N = 1116) that have been widely described 
in the recent literature [40–42]. Yearling body weight 
(YWT) computed from the average of all body weights 
recorded between 300 and 420  days of age was used as 
the phenotype. The 2111 Brahman cattle were geno-
typed using either the Illumina BovineSNP50 BeadChip 
(Illumina Inc., San Diego, CA; [43]) or the BovineHD 
panel (Illumina Inc., San Diego, CA) that includes more 
than 770,000 single nucleotide polymorphisms (SNPs). 
Animals that were genotyped using the lower density 
array had their genotypes imputed to higher-density, as 
described previously [44]. The imputation was performed 
on 30 iterations of BEAGLE [45], using 519 individuals 
genotyped using the BovineHD chip as reference. After 
imputation, we retained genotypes on 729,068 SNPs, of 
which 651,253 were mapped to autosomal chromosomes 
and had a minor allele frequency (MAF) higher than 1% 
and were used to build the genomic relationship matrix 
(GRM) according to Method 1 in [46].

Procedure to generate partial datasets and cross‑validation 
statistics
The data described above comprised the whole dataset. 
One thousand partial datasets were generated by setting 
a random 50% of records missing. It is worth noting that 
these animals are contemporaries (the resource popu-
lation spans a few years and animals are not descend-
ants from each other) and, therefore, there are no issues 
related to selection.

A simple breeding value mixed-model was used for the 
analysis of YWT with the fixed effects of contemporary 
group (combination of sex, year and location), age of 
dam at birth in year classes, and age at measurement as a 
covariate, and the random additive polygenic effects and 
residuals as random effects. Variance components esti-
mates and BLUPs of breeding values were obtained using 
the Qxpak5 software [47]. All datasets were analyzed 
using both the pedigree-based numerator relationship 

matrix (NRM) and the SNP-based genomic relationship 
matrix (GRM).

Table  2 lists the 16 statistics that were used to com-
pare EBV from the whole and partial datasets. Note that 
in order to highlight the impact of the data partition-
ing, some of these statistics were computed separately 
for the individuals in the whole and the partial datasets, 
in the same context as ‘reference’ and ‘validation’ indi-
viduals, respectively. For instance, ρv

w,p is the correlation 
between the EBV obtained using the whole dataset and 
the EBV obtained using the partial dataset, but computed 
only by using the validation individuals that have miss-
ing phenotypes in the partial dataset, i.e. the random 
50% individuals with omitted phenotypes in the ‘partial’ 
dataset. The EBV of those animals are predicted in the 
partial dataset using parent average (i.e. using pedigree) 
or using genomic information from relatives (i.e. using 
the GRM). In the whole dataset, they are predicted using 
own records.

Results
Table  3 provides summary metrics (mean, standard 
deviation, minimum and maximum) for the 16 statistics 
across the 1000 partial datasets obtained using the NRM 
and the GRM. The means are also presented in the bar 
diagram of Fig. 1. Notable changes from using NRM ver-
sus GRM were the 66.5% increase in the estimated her-
itability (from 0.260 to 0.433), the 21.4% increase in ρv

w,p 
(from 0.550 to 0.668) and the 4.1-fold increase in r

(
yv , ûv

)
 

(from 0.076 to 0.312).
Figure 2 presents a heatmap of the correlation matrix 

among the 16 statistics obtained using the NRM and the 
GRM. The individual values are provided in Additional 
file  1: Tables S1 and S2. We observed a strong negative 
correlation ( r < −0.90 in all cases) between the herit-
ability estimates and the regressions of EBV from whole 
on EBV from partial data (i.e. bw,p , brw,p and bvw,p ). This is 
consistent with the expectation of over- and under-dis-
persion for regression values < 1.0 and > 1.0, respectively.

One metric of interest is the correlation of EBV with 
precorrected phenotype (i.e., r

(
y
∗
new , ûp

)
 denoted here as 

r
(
yv , ûv

)
 ) since this is one of the most frequent measures 

of accuracy in cross-validation studies. Quite encourag-
ing is the high correlation observed between r

(
yv , ûv

)
 and 

Table 1 Summary statistics for age and body weight (YWT) in yearling records used in the beef cattle data example

Sex N Variable Mean SD Min. Max.

Cows 995 Age (days) 361.77 12.68 323 400

BWT (kg) 209.73 30.54 115 299

Bulls 1116 Age (days) 359.10 20.54 302 416

BWT (kg) 243.71 29.17 138 353
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the regressions of EBV from whole on EBV from partial 
data (i.e. bw,p , brw,p and bvw,p ), which ranged from 0.604 to 
0.746, as well as the high positive correlation of r

(
yv , ûv

)
 

with the correlations between “whole’ on “partial’ (i.e. 
ρw,p , ρr

w,p and ρv
w,p ), with a maximum correlation of 0.806 

between r
(
yv , ûv

)
 and ρv

w,p . These results illustrate that 

the proposed metrics, particularly ρv
w,p , are also estima-

tors of the accuracy of EBV based on the partial (earlier) 
data (termed accp in our algebraical derivations).

Striking is the novel finding of the strong negative cor-
relation of r

(
yr , ûr

)
 (where ûr are “reference” animals in 

the training dataset) with r
(
yv , ûv

)
 . The former is bound 

Table 2 Set of 16 statistics used to compare predictions based on the whole and partial beef cattle datasets

Statistic Description

h2 REML estimate of heritability for each ‘Partial’ dataset (each random 50% missing)

bw ,p Regression of whole on partial EBV (expectation of 1.0)

brw ,p bw ,p computed within reference samples (i.e. Those with phenotypes maintained in the creation of the partial sample)

bvw ,p bw ,p computed within validation samples (i.e. Those with phenotypes treated as missing in the creation of the partial sample)

bp,w Regression of partial on whole EBV (expectation depends on accuracies)

brp,w bp,w computed within reference samples

bvp,w bp,w computed within validation samples

ρw ,p Correlation between whole and partial EBV (expectation depends on accuracies)

ρr
w ,p ρw ,p computed within reference samples

ρv
w ,p ρw ,p computed within validation samples

r
(
yr , ûr

)
Correlation between the partial EBV and the adjusted phenotypes for the reference samples

r
(
yv , ûv

)
Correlation between the partial EBV and the adjusted phenotypes for the validation samples (NB. This is the conventional 

measure of accuracy in cross-validation genomic selection studies)

drw ,p Difference between whole and partial EBV (in absolute value) computed within reference samples

dvw ,p Difference between whole and partial EBV (in absolute value) computed within validation samples

Vdrw ,p Variance of the difference between whole and partial EBV computed within reference samples

Vdvw ,p Variance of the difference between whole and partial EBV computed within validation samples

Table 3 Summary metrics (mean, standard deviation, minimum and  maximum) for  the  16 statistics across  the  1000 
partial datasets (each one setting a random 50% as missing phenotypes) and obtained using either the pedigree-based 
NRM or the SNP-based GRM

Statistic Pedigree‑based NRM SNP‑based GRM

Mean SD Min. Max. Mean SD Min. Max.

h2 0.260 0.021 0.211 0.371 0.433 0.044 0.316 0.598

bw ,p 0.957 0.064 0.741 1.206 0.961 0.083 0.718 1.275

brw ,p 0.970 0.059 0.763 1.180 0.954 0.077 0.729 1.231

bvw ,p 0.925 0.082 0.688 1.272 0.975 0.099 0.685 1.372

bp,w 0.751 0.077 0.522 1.189 0.710 0.066 0.519 0.967

brp,w 1.079 0.090 0.840 1.541 0.955 0.079 0.730 1.238

bvp,w 0.423 0.056 0.253 0.743 0.462 0.046 0.329 0.667

ρw ,p 0.751 0.024 0.665 0.809 0.823 0.013 0.772 0.864

ρr
w ,p 0.909 0.013 0.859 0.943 0.952 0.006 0.934 0.967

ρv
w ,p 0.550 0.035 0.425 0.637 0.668 0.021 0.584 0.736

r
(
yr , ûr

)
0.849 0.012 0.804 0.892 0.898 0.015 0.852 0.944

r
(
yv , ûv

)
0.076 0.022 0.011 0.156 0.312 0.021 0.227 0.373

drw ,p 2.253 0.266 1.684 3.902 2.905 0.288 2.344 4.476

dvw ,p 3.865 0.167 3.441 4.422 6.726 0.216 5.932 7.575

Vdrw ,p 8.303 1.988 4.585 24.081 13.798 2.977 8.839 32.127

Vdvw ,p 23.893 2.003 19.174 30.920 73.330 4.676 57.355 91.677
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Fig. 1 Mean value for the 16 statistics across the 1000 partial (random 50%) beef cattle datasets obtained using either the pedigree-based NRM 
or the SNP-based GRM. Double-ended arrows indicate ± 1 standard deviation (SD). Refer to Tables 2 and 3 for a description of the statistics and the 
actual values, respectively

Fig. 2 Heatmap of the correlation matrix among the 16 statistics obtained using the pedigree-based NRM (left panel) and the SNP-based GRM 
(right panel). Refer to Table 2 for a description of the statistics and to Supplementary Tables 1 and 2 for the actual correlation values
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to be high since it reflects the prediction’s goodness of 
fit when computed on the data that is used to build the 
prediction, and averaged to 0.849 and 0.898 when using 
the NRM and the GRM, respectively (Table 3). However, 
the negative correlation of r

(
yr , ûr

)
 with r

(
yv , ûv

)
 indi-

cates that when the breeding value model is particularly 
good at fitting the reference (‘old’) data (reflected in part 
by a high heritability estimate), this strong fitting ability 
disappears when applied to the validation (‘new’) data, 
which seems to imply overfitting (by chance). Indeed, 
a very strong correlation ( r = 0.933) was observed 
between the estimate of heritability and r

(
yr , ûr

)
 , and 

a moderately strong negative correlation (r = − 0.543) 
between the estimate of heritability and r

(
yv , ûv

)
 (Fig. 2 

and Additional file  1: Table  S2). Importantly, these 
problematic relationships were not observed with either 
ρr
w,p or ρv

w,p.
Finally, we explored the changes in ‘consecutive pre-

dictions’, which are represented here by the move from 
partial (old) to whole (new) data. We used the absolute 
difference between predictions (statistics drw,p and dvw,p ) 
and the variance of the difference of predictions ( Vdrw,p 
and Vdvw,p ) and explored the relationships of these 
with the previous 12 statistics. Please note the strong 
negative correlation (r = − 0.838) between dvw,p and 
ρv
w,p . This contrasts with the not so strong correlation 

(r = − 0.548) between dvw,p and r
(
yv , ûv

)
 (Fig. 3).

Between two competing measures of accuracy, the 
measure that is more closely related to changes in 
predictions will be preferred. Based on this and our 
results, we conclude that ρv

w,p is better than r
(
yv , ûv

)
.

Discussion
Thompson [13] outlined and discussed methods for the 
statistical validation of genetic models for genetic evalua-
tion [14, 17, 48]. He emphasized the need for the statisti-
cal models to be based on genetic considerations. Today, 
different genetic considerations (e.g. oligogenic vs poly-
genic models) may lead to different prediction models, 
in particular in the area of genomic selection. Thus, the 
question “which model is best?” is today more impor-
tant than ever. In this work, we attempt to provide quan-
titative geneticists with a set of tools to make their own 
decisions.

Why do animal breeders aim at having predictions 
that are unbiased in both senses, i.e. µp − µw = 0 and 
bw,p = 1 ? Practically, to avoid suboptimal “biased” deci-
sions, e.g. choosing too few or too many, or simply the 
wrong set of, young animals. Theoretically, best predic-
tors, defined as conditional expectations, have optimal 
selection properties [49, 50], and therefore we should 
aim for models (not necessarily linear) that yield such 
best predictors. In practice, unbiasedness is a property 
that holds on expectation: for any real dataset, from one 
evaluation to the next, there will be small deviations; for 
instance, µp − µw may differ from 0 just because of small 
noises. However, it is important to ascertain if these devi-
ations are large (and affect the practice of selection) or 
not.

In selection, the expected genetic gain at the stage of 
selection is �G = 1

nΣ(EBVs)− 1
mΣ(EBVc) = ¯̂us − ¯̂uc , 

i.e. the average EBV of the “s” selected animals minus 
the average EBV of the “c” animals candidates to selec-
tion. To avoid surprises (over- or under-estimation of 

Fig. 3 Scatter plot of the relationship of the absolute difference in EBV between the whole and partial datasets ( dvw ,p ) with the correlation of the 
EBV based on the partial data with the adjusted phenotypes ( r

(
yv , ûv

)
 ; left panel) and the correlation between EBV based on the whole and partial 

data ( ρv
w ,p ; right panel) across the 1000 partial (random 50%) beef cattle datasets
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selected animals), we need ¯̂us = ūs , i.e., the estimate of 
the mean and the true mean of breeding values should 
be the same for selected animals. For this to hold, we 
must avoid two kinds of systematic errors: bias (wrong 
estimate of genetic trend) and over-/under-dispersion, 
which is often incorrectly referred to as “bias” in ani-
mal breeding literature. If selection is by truncation on 
EBV, the true mean after selection, under multivariate 
normality, is µT = ¯̂us =

(
1′u

)
/n+ irσu , where 

(
1′u

)
/n 

is the mean of all selection candidates and irσu is the 
genetic gain. This genetic mean is (implicitly) predicted 
before selection as µE =

(
1′û

)
/n+ iσû . For µT = µE 

to hold, we need an unbiasedness condition (i.e. ¯̂u = ū 
among all selection candidates) and a second condi-
tion that is σû = rσu . The latter condition, however, only 
holds if cov

(
u, û

)
= var

(
û
)
 , which amounts to the regres-

sion coefficient cov(u,û)
var(û)

 to be 1. However, the equality 

cov
(
u, û

)
= var

(
û
)
 holds under quite restrictive condi-

tions [30, 33]. In a frequentist context, Henderson [28, 
32] proved that selection can be ignored if the model is 
correct, selection is contained “in the data”, and under 
the assumption of multivariate normality. In a Bayes-
ian context, Sorensen et  al. [34] proved that selection 
can be ignored if the evaluation model is correct. How-
ever, models are rarely correct, at most they are robust. 
In particular, the widely used animal model that includes 
unknown parent groups [51] is biased by construction, 
because genetic groups are due to genetic selection but 
fitted as fixed effects, which ignores established genetic 
theory [52].

It may be argued that for the results in [14] to hold 
(roughly, future errors in prediction are not correlated to 
current errors in prediction), future data does not need 
to depend on past data. This is, however, not the case if 
there is selection: unborn progeny of unselected animals 
do not yield data. In principle, models should consider 
selection correctly, if all information is included. A coun-
terexample where, old data affect future errors of pre-
diction is as follows. Consider EBV ( up ) of a young bull 
based on one record of the dam, with var

(
up

)
= h4

4
 , and a 

subsequent EBV based on n progeny records ( uw ) but not 
on maternal performance. Then, cov

(
up,uw

)
= 1

8
h4 2n

n+�
 , 

which is not equal to var
(
up

)
 because the dam perfor-

mance was not included in uw . If there is no selection, 
there is no problem, but this is rarely the case, and it is 
actually selection that creates bias due to an increase in 
the genetic level of the trait and a reduction in genetic 
variance.

Thus, we see the process of estimation of accuracy and 
bias of EBV by our proposed method LR as a double pro-
cess. First, checking of the model in order to have a model 
that empirically has the “best” properties (estimation of 

bias); and then, estimation of its accuracy. We propose 
the following two-step praxis approach. First, to ascertain 
as best as possible that models are empirically unbiased 
using the statistics µp − µw and bw,p which should have 
values 0 and 1, respectively—perhaps using, if not all, 
many animals (as in the original paper of Reverter et al. 
[14]). Second, for all models that are empirically unbi-
ased, accuracies can be compared based on the proposed 
statistics, which rely on unbiasedness.

Still, there is a problem in method LR, and in all meth-
ods that rely on linear regression of “predictands” 
(pseudo-TBV from accurate progeny testing, less accu-
rate EBV or precorrected records) on “predictors” (typi-
cally EBV). As shown in the “Appendix”, due to family 
structure and the not complete accuracy of EBV, the true 
value of the regression of TBV on EBV, i.e. the “true” b , 
has an expectation lower than 1, E(b) < 1 . Accordingly, 
regression of “whole data” EBV (or of precorrected data) 
on “partial data” may seem to indicate bias: E

(
b̂
)
< 1 

because for the “true” b , E(b) < 1 . In other words, EBV 
may appear to be over-dispersed when they are actually 
not, which holds for method LR and for any other similar 
method such as “predictivity” or the Interbull tests, since 
it is a fundamental property of the crude regression of a 
vector of TBV u on a vector of EBV û . It seems relevant 
to assess, in practice, the extent of this inequality 
E(b) < 1 , since evaluations are often scaled such that b 
(actually its estimate) is equal to 1, which implies that 
EBV may be too much deflated after the scaling. How-
ever, we will not address these points here, since this 
should be the subject of a simulation study that goes far 
beyond this paper. The deviation of E(b) from 1 is impor-
tant if the cohort, or focal group, is small and related, and 
it does not depend on the quality of the “predictand”. 
Therefore, our recommendation is to use large cohorts 
for validation. This bias inherent to cross-validation anal-
ysis deserves further examination in future studies.

Fixing the models to observe constraints on estimated 
bias should be based on rigorous genetic or statistical 
arguments (i.e. re-estimating variance components and 
heritabilities), rather than quick fixing procedures such 
as multiplying by constants, manipulating relationships 
or changing hyper-parameters of prior distributions. 
For instance, [53] found empirically that equaling sta-
tistics of A22 and G provided unbiased predictions, but 
this has a genetic interpretation of modelling selection 
and drift from the base to the genotyped population 
[54, 55].

In the analysis of genetic trend for litter size in pigs, 
Sorensen et  al. [48] also emphasized “forward” cross-
validation for model checking, using what we called 
in this paper “predictivity”, instead of relying solely on 
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model-based predictions. Recently, Putz et al. [56] tested 
by simulation several methods to validate accuracies by 
cross-validation. They reported poor performance of 
comparisons of (in our notation) ûw and ûp , without real-
izing that r(ûw , ûp) is not an estimator of accuracy but of 
ratios of accuracies. In addition, they did not simulate 
selection, in which case theoretical accuracy is equal to 
validation accuracies.

We have shown that precorrection of phenotypes 
using whole data may bias the result of predictivity. 
This is particularly relevant for small contemporary 
groups such as in dairy or beef cattle as opposed to, say, 
sheep or aquaculture species. Some measure of error 
in precorrection due to estimation of contemporary 
groups should be reported in cross-validation results. 
Although the ranking of methods should be similar, 
estimates of population accuracies may be biased. Com-
paring ûw and ûp , as we propose in this work, might be 
a better option, although it involves more parametric 
assumptions.

One final consideration involves discussing the differ-
ence between population and individual accuracy. Quot-
ing [18]: “For response to selection, the [population] 
accuracy should reflect the correlation between true and 
EBV in the candidates for selection, which is a property 
of a population, not of an individual. For the stability of 
EBV, the accuracy should reflect the standard error of an 
EBV, which can be defined for a single individual.” Our 
work deals with population accuracies, not with individ-
ual accuracies. The former are useful for model selection 
and for genetic gain; the latter are useful for individual 
decisions. The population accuracy is not a function of 
individual accuracies. For instance, consider full sibs that 
are evaluated by using parent average and for which their 
parents are known exactly: individual accuracy is 0.71. 
However, population accuracy is 0, since all full-sibs have 
exactly the same parent average. Thus, population accu-
racies involve both individual reliabilities and co-reliabil-
ities [24, 25].

Conclusions
In this paper, we present properties of cross-validation 
measures obtained from successive genetic evaluations. 
These measures allow estimation of population accu-
racies and biases, which are of interest to quantitative 
geneticists in general, and animal and plant breeders in 
particular. We hope that with these tools, researchers 
can report and compare competing prediction models, 
in particular for complex cases such as for lowly herit-
able traits or for indirect genetic values such as maternal 
effects.
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Appendix
In this Appendix, we quantify the possible systematic 
error in E

(
X
Y

)
≈ E(X)

E(Y )
 , where X and Y are successive EBV, 

or EBV and TBV. Here, we show that this systematic 
error is small if the number of EBV in X and Y is large (in 
the hundreds or thousands). The second-order approxi-
mation of E

(
X
Y

)
 is E

(
X
Y

)
≈ E(X)

E(Y )
− Cov(X ,Y )

E(Y )2
 [57]. Consider 

for instance, bw,p = cov(ûp ,ûw)
var(ûp)

=
1
n

(
ûp−¯̂up

)′(
ûw−¯̂uw

)

1
n

(
ûp−¯̂up

)′(
ûp−¯̂up

)  . The 

systematic error incurred in the approximation 
E
(
X
Y

)
≈ E(X)

E(Y )
 is −Cov(X ,Y )

E(Y )2
 , where 

X = 1
n

(
ûp − ¯̂up

)′(
ûw − ¯̂uw

)
= 1

n

(
ûpSûw

)
 where 

S = I− 1
n J and Y = 1

n

(
ûp − ¯̂up

)′(
ûp − ¯̂up

)
= 1

n

(
ûpSûp

)
 . 

To simplify notation, consider K = G− Cuu
p  , K =

{
kij
}
 . 

Thus,

https://doi.org/10.1186/s12711-018-0426-6
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The expression for the covariance of bilinear forms is 
Cov

(
x
′
1A12x2, x3A34x4

)
= tr(A12C23A34C41 + A12C24A43C31)

+ µ′
1A12C23A34µ4 + µ′

1A12C24A43µ3 + µ
′
2A21C13A34µ4

+ µ′
2A21C14A43µ3

 

( C is the covariance matrix across xi ; p 58 [30]). Applied 
to our case, Cov

(
x
′
1
A12x2, x3A34x4

)
=

Cov
(
ûpSûw , ûpSûp

)
 , this yields (as 

Cov
(
ûp, ûw

)
= Cov

(
ûp, ûp

)
= K):

The terms linked to the means disappear, as before, 
because they have the form µ1′S′KS1µ which has a 
value of 0. The expression Cov(X ,Y ) = 2

n2
tr(SKSK) can 

be computed explicitly for ideal cases. A slightly more 
enlightening expression is, after algebra,

twice the average variance within rows minus the vari-
ance of rows means of K = G− Cuu

p  . Putting all together 
results in:

This is always positive, which means that the b esti-
mated as the linear regression of ûw , but also the “true” 
b of the regression of true EBV u on ûp , has an expecta-
tion less than 1, even when the model is correct, contrary 
to common assertions. The expectation of b is actually 
1− 2var(ki,:)−2var

(
k̄i,:

)

diag(K)−K̄
 . When the value of 2var(ki,:)−2var

(
k̄i,:

)

diag(K)−K̄
 

is high (i.e. sufficiently larger than 0), a punctual esti-
mate of b̂w,p = cov(ûp ,ûw)

var(ûp)
 with value equal to 1 means 

that the estimators ûp are deflated—too much regressed. 
This raises questions on the use of cross-validation to 
choose the best model for evaluation. The underestima-
tion depends on the total number of individuals in the 
focal set, on their relationships (on G ) and the accuracies 
and co-reliabilities on the “partial” dataset (on Cuu

p  ) but it 
does not depend on the final reliabilities on Cuu

w  (which 
implies that the derivation applies for TBV). Inclusion 
of sibs increases systematic error. For instance, n = 100 
with half-sibs of size 10 and information in “partial” eval-
uation equal to 1 observation with h2 = 0.3 , results in 
E(b) = 0.94 . Increasing to n = 400 results in E(b) = 0.98 . 

E(Y )2 =
(
1

n
tr(SK)

)2

=
(
diag(K)− K̄

)2
.

Cov(X ,Y ) = 2

n2
tr(SKSK).

Cov(X ,Y ) = 2var
(
ki,:

)
− 2var

(
k̄i,:

)
,

Cov(X ,Y )

E(Y )2
=

2var
(
ki,:

)
− 2var

(
k̄i,:

)

diag(K)− K̄
.

Setting n = 100 with families of five half-sibs results on 
E(b) = 0.96 . These systematic errors deserve further 
exploration (e.g. properties of the estimators for different 
accuracies and family structures)—but this is out of the 
scope of this paper.
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