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Abstract

Background: It is often assumed that selection (including participation and dropout) does

not represent an important source of bias in genetic studies. However, there is little evi-

dence to date on the effect of genetic factors on participation.

Methods: Using data on mothers (N¼ 7486) and children (N¼ 7508) from the Avon

Longitudinal Study of Parents and Children, we: (i) examined the association of polygenic

risk scores for a range of sociodemographic and lifestyle characteristics and health condi-

tions related to continued participation; (ii) investigated whether associations of polygenic

scores with body mass index (BMI; derived from self-reported weight and height) and self-

reported smoking differed in the largest sample with genetic data and a subsample who

participated in a recent follow-up; and (iii) determined the proportion of variation in partici-

pation explained by common genetic variants, using genome-wide data.

Results: We found evidence that polygenic scores for higher education, agreeableness

and openness were associated with higher participation; and polygenic scores for smok-

ing initiation, higher BMI, neuroticism, schizophrenia, attention-deficit hyperactivity

disorder (ADHD) and depression were associated with lower participation. Associations

between the polygenic score for education and self-reported smoking differed between

the largest sample with genetic data [odds ratio (OR) for ever smoking per standard devi-

ation (SD) increase in polygenic score: 0.85, 95% confidence interval (CI): 0.81, 0.89} and
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subsample (OR: 0.96, 95% CI: 0.89, 1.03). In genome-wide analysis, single nucleotide

polymorphism based heritability explained 18–32% of variability in participation.

Conclusions: Genetic association studies, including Mendelian randomization, can be

biased by selection, including loss to follow-up. Genetic risk for dropout should be con-

sidered in all analyses of studies with selective participation.
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Introduction

Missing data are a pervasive problem in cohort studies,

with decreasing participation over the duration of the

study, and concern about the extent to which this biases

analyses.1,2 Individual characteristics, including social and

lifestyle characteristics, may influence both initial enrol-

ment and continued participation.3,4 Throughout this

paper we use the word ‘participation’ to mean both initial

enrolment in a study and continued participation (e.g. via

questionnaire completion or attendance at research clinics)

once involved. However, our analyses all relate to contin-

ued participation after enrolment.

Sample representativeness is critical for estimating

prevalence of exposure or disease,5 but may not be essen-

tial for estimating associations between exposures and out-

comes.5–7 The bias arising from selection into studies is

often relatively small and may not always qualitatively af-

fect interpretation of results.1,8,9 Selection bias might be

less problematic in genetic epidemiology because individ-

uals are generally unaware of their genotype (so will not

self-select into a study on the basis of this) and genetic vari-

ants that influence a given trait should not be associated

with confounding factors which could also influence selec-

tion.6,10 However, when both exposure and outcome relate

to participation in a study, this can induce spurious associ-

ations between them, or between genetic variants that

influence them, in participants.11,12 For example, the asso-

ciation between higher genetic risk for schizophrenia and

reduced participation in the Avon Longitudinal Study of

Parents and Children (ALSPAC)13 indicates that selection

bias may be a problem in both genetic and non-genetic

analyses of schizophrenia.

To estimate the impact of selective participation for a

given analysis, we need to know which factors cause par-

ticipation. Here, we extend previous work relating partici-

pation and polygenic risk for schizophrenia and autism

in ALSPAC13,14 by: (i) investigating polygenic scores for

other factors which could influence participation in the

ALSPAC mothers and children; (ii) investigating the poten-

tial impact of selection bias by comparing associations be-

tween genetic factors and measured phenotypes in the

largest sample with genetic data and a more selected sub-

sample; and (iii) conducting genome-wide association stud-

ies of participation measures.

Methods

Study population

ALSPAC is a longitudinal birth cohort that recruited 14 541

pregnant women resident in Avon, UK, with expected dates

of delivery between 1 April 1991 and 3 December 1992. Of

these initial pregnancies, there were a total of 14 676 fetuses,

resulting in 14 062 live births and 13 988 children who were

alive at 1 year of age. The children and their mothers have

been followed up through postal questionnaires and at clin-

ics.3,15 We included only children who had been enrolled in

the study during the first phase of data collection and sur-

vived to age 1 year (resulting in the exclusion of five children

Key Messages

• Polygenic scores for a range of sociodemographic, health and lifestyle factors are related to continued participation

after enrolment in the Avon Longitudinal Study of Parents and Children.

• There was evidence that associations between polygenic scores and measured phenotypes differed between the full

sample with genetic data and a more selected subsample, indicating that genetic association studies can be biased

by selection.

• Common genetic variation explained a moderate amount (18–32%) of variability in participation.

• Researchers should consider selective participation as a potential source of bias in genetic and non-genetic associ-

ation studies.
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and 43 mothers from the analysis sample). Please note that

the study website contains details of all the data that are

available through a fully searchable data dictionary: [http://

www.bris.ac.uk/alspac/researchers/data-access/data-diction

ary]. Ethical approval for the study was obtained from the

ALSPAC Ethics and Law Committee and the local research

ethics committees.

Participation

Participation was defined by responding to a questionnaire

or attending a clinic for which the whole cohort was eligible

to participate (i.e. we excluded clinics and questionnaires tar-

geted at a subset of the cohort). The ALSPAC mothers have

answered questionnaires about themselves (mother question-

naires) and about their children (child-based questionnaires).

The ALSPAC children have answered questionnaires about

themselves (child-completed questionnaires). A full list of

the questionnaires and clinics included is provided in

Supplementary Table 1, available as Supplementary data at

IJE online. From these, we calculated the following continu-

ous phenotypes by summing the number of questionnaires/

clinics completed: total participation [all questionnaires and

clinics for both mother and child (including child-based and

child-completed)]; total questionnaire (all questionnaires for

mothers and children); mother questionnaire (mother ques-

tionnaires); child questionnaire (child-completed question-

naires); and child clinic (child clinics attended). We created

two binary variables for the mothers and children indicating:

(i) participation in the most recent clinic; and (ii) completion

of the most recent questionnaire. For both mothers and the

offspring, we generated variables from data collected at clin-

ics 17–18 years after the child’s birth and from question-

naires 19–20 years after birth.

Genetic data

ALSPAC children were genotyped using the Illumina

HumanHap550 quad chip genotyping platforms. ALSPAC

mothers were genotyped using the Illumina Human660W-

quad array at the Centre National de Genotypage (CNG),

and genotypes were called with Illumina GenomeStudio.

Imputation was performed using Impute V2.2.2 against

the 1000 genomes phase 1 version 3 reference panel.

Quality control procedures removed related individuals

and individuals of non-European genetic ancestry (see

Supplementary materials for full details, available as

Supplementary data at IJE online).

Polygenic scores

We calculated polygenic scores for a number of traits that

could be related to participation and for which genome-

wide summary statistics were publicly available: body

mass index,16 height,17 smoking initiation,18 depression,19

attention-deficit hyperactivity disorder (ADHD),20 bipolar

disorder,21 autism,21 schizophrenia,22 years of educa-

tion,23 sleep duration,24 chronotype (morningness),24 age

at menarche,25 personality traits (openness, agreeableness,

conscientiousness, extraversion and neuroticism)26 and

Alzheimer’s disease.27 For the purposes of this paper, we

use the term ‘trait’ to describe the phenotype each genome-

wide association study (GWAS) was conducted on but ac-

knowledge that, for binary phenotypes, we are looking at

genetic liability for that phenotype. Full details of sources

for each of these scores are shown in Supplementary

Table 2, available as Supplementary data at IJE online.

The ALSPAC cohort was not included in the GWAS that

generated the summary statistics for these traits, except for

education and age at menarche. For education, we used

summary statistics excluding ALSPAC and 23andme,

which were obtained directly from the study authors. For

age at menarche, the ALSPAC sample made up 7% of the

GWAS discovery sample.25 To minimize potential bias

from sample overlap, we used an unweighted polygenic

score for age at menarche.28 All other scores were weighted

according to the association magnitude of each single nu-

cleotide polymorphism (SNP) in the original GWAS.

Statistical analysis

All analyses were performed separately in mothers and

children and were adjusted for sex (in the children) and the

first 10 genetic principal components.

Polygenic scores

Polygenic scores were derived using the PRSice software

[http://prsice.info/]29 for each trait within the ALSPAC

genome-wide data using the following P-value thresholds:

0.0005, 0.005, 0.05, 0.1, 0.5 (see Supplementary Methods,

available as Supplementary data at IJE online). In addition,

we generated scores in PRSice by inputting only the independ-

ent genome-wide significant SNPs reported by the discovery

samples (Supplementary Table 3, available as Supplementary

data at IJE online). We assessed associations of standardized

polygenic scores with participation phenotypes using linear

and logistic regression in Stata (version 14.1).30 We used ro-

bust standard errors to account for the non-normal distribu-

tion of the continuous participation variables. For age at

menarche, analyses were conducted in females only.

Genome-wide association analysis

Analyses were conducted separately for mothers and chil-

dren. We used SNPTEST31 to test associations between
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dosage scores for each genetic variant and missingness

phenotypes using univariate regression models and assuming

an additive genetic model. Continuous phenotypes were ini-

tially tested in linear models, and then dichotomized at

arbitrary midpoints (Supplementary Table 4, available as

Supplementary data at IJE online) and re-tested in logistic

models to ensure results were robust to any assumption on

the distribution of residuals. Genome-wide results were fil-

tered to remove SNPs with a minor allele frequency of<0.01

and imputation quality (info) score of<0.8. Genome-wide

significance was considered to be P<5 x 10–8.32

Heritability

SNP-based heritability estimates h2
SNP were calculated for

each participation phenotype using the genetic restricted

maximum likelihood (GREML) method implemented

within the GCTA software.33

Investigating the impact of selection bias in

ALSPAC

We used linear and logistic regression to calculate associ-

ations between polygenic scores for BMI, smoking, educa-

tion and schizophrenia (constructed at aP-value threshold

of 0.05) and body mass index and smoking status (ever vs

never smoking) which were self-reported by the ALSPAC

mothers in questionnaires administered during pregnancy.

These analyses were conducted first in the largest sample

with genome-wide data and then in the sample attending

the most recent clinic.

Results

Of the 13 793 mothers with 13 988 children alive at 1 year,

11 560 mothers and 10 780 children had provided DNA

samples. After removal of non-Europeans, related individuals

and samples which did not pass quality control, 7486 moth-

ers and 7508 children were eligible for analysis (Table 1,

Supplementary Figures 1 and 2, available as Supplementary

data at IJE online). Individuals included in the analysis had

higher participation levels than the enrolled cohort

(Supplementary Table 5, available as Supplementary data at

IJE online). Continuous participation phenotypes were

highly correlated (Pearson’s correlation coefficients ranged

between 0.71 and 0.99) (Supplementary Table 6, available

as Supplementary data at IJE online).

Associations of polygenic scores with

participation phenotypes

Only the results for total participation and last question-

naire completion are presented, with results for all other

participation measures in Supplementary material, avail-

able as Supplementary data at IJE online.

In ALSPAC mothers, we found strong evidence for posi-

tive associations between polygenic scores for years of edu-

cation and participation. This was observed consistently

across all participation phenotypes (Figures 1 and 2, and

Supplementary Figures 3–5, available as Supplementary

data at IJE online). Higher values of polygenic scores for

height and agreeableness were also associated with higher

participation across most participation phenotypes. There

was also some evidence that higher polygenic scores for

openness were associated with the mother completing

more questionnaires about herself. In contrast, polygenic

scores for BMI, schizophrenia, ADHD, smoking initiation

and depression were negatively associated with participa-

tion. Polygenic scores for neuroticism were associated with

lower participation by the mothers.

Associations between polygenic scores and participation

were similar for ALSPAC children (Figures 3 and 4, and

Table 1. Summary of participation phenotypes

Mother (N¼7486) Child (N¼7508)

Range Median (IQR) Median (IQR)

Total participation 0–77 59 (31,71) 62 (39,72)

Total questionnaire 0–67 53 (29,63) 55 (35,63)

Mother questionnaire 0–19 16 (10,18) –

Child questionnaire 0–24 – 17 (8,22)

Child clinic 0–9 – 7 (3,9)

N (%) N (%)

Mother attended most recent clinic 3215 (43.0) –

Mother completed most recent questionnaire 3052 (40.8) –

Child attended most recent clinic – 3538 (47.1)

Child completed most recent questionnaire – 2957 (39.4)

IQR, interquartile range.
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Supplementary Figures 6–9, available as Supplementary

data at IJE online). Polygenic scores for education

and agreeableness were positively associated with

participation. Polygenic scores for smoking initiation,

schizophrenia, ADHD and depression were negatively as-

sociated with participation. In contrast to the ALSPAC

mothers, there was little evidence for associations between

polygenic scores for neuroticism, height or openness and

participation.

We found no consistent evidence that polygenic scores

for morningness (chronotype), sleep, bipolar disorder, aut-

ism, conscientiousness, extraversion, age at menarche or

Alzheimer’s disease were associated with participation.

Correlations between polygenic scores

The degree of correlation between polygenic scores for

different traits at P<0.0005 and P<0.5 is shown in

Supplementary Tables 7–10, available as Supplementary

data at IJE online. Correlations tended to be stronger for

scores derived using the higher P-value thresholds.

Investigating the impact of selection bias in

ALSPAC

Figure 5 shows associations (in the largest sample with

genome-wide data and in a subsample who attended the

Figure 1. Association between polygenic scores in ALSPAC mothers and total participation score (N¼ 7468).

Figure 2. Association between polygenic scores in ALSPAC mothers and completion of most recent questionnaire (N¼ 7468).
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most recent clinic) between polygenic scores (constructed

at the P<0.05 threshold) for BMI, smoking, education and

schizophrenia and self-reported BMI and smoking.

Associations between each polygenic score and smoking or

BMI were in the same direction in both the full sample and

the subsample, and in many cases of similar magnitude.

However, associations between the polygenic score for

education and being an ever smoker were substantially

attenuated in the subsample [odds ratio (OR): 0.96 per

standard deviation (SD) in polygenic score for smoking,

95% confidence interval (CI): 0.89, 1.03, compared with

the full genetic sample (OR: 0.85, 95% CI: 0.81, 0.89)]

(Figure 5A). The association between the education poly-

genic score and BMI was also attenuated in the subsample

compared with the full sample (Figure 5B). In contrast, the

association between the smoking polygenic score and

BMI appeared stronger in the subsample compared with

the full genetic sample, although the confidence intervals

overlapped.

Genome-wide association studies

Only one locus reached genome-wide significance with par-

ticipation in the ALSPAC mothers. In the mothers, variants

located in an intergenic region on chromosome 7:

51995163–52042976 were associated with total participa-

tion, total questionnaire and mother questionnaire

(Figure 6, Supplementary Figures 10–11 and Supplementary

Figure 3. Association between polygenic scores in ALSPAC children and total participation score (N¼ 7508). Age at menarche analysis only in

females.

Figure 4. Association between polygenic scores in ALSPAC children and completion of most recent questionnaire (N¼ 7508). Age at menarche

analysis only in females.
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Tables 11–13, available as Supplementary data at IJE on-

line). Genome-wide hits were all in strong linkage disequi-

librium (R2 > 0.8), indicating that this represents a single

genetic signal. The SNP with the smallest P-value was

rs10626545 for total (P¼ 1.50 x 10–9) and total question-

naire (P¼8.55e-10), and rs406001 for mother questionnaire

(P¼ 8.27 x 10–9). SNPs in this region reached genome-wide

significance or close to genome-wide significance (P<7 x

10–7) with dichotomized total participation, total question-

naire and mother questionnaire (data not shown). However,

the minor allele frequency of these variants was relatively

low (0.012) and beta-coefficients large (beta for total par-

ticipation for top SNP¼10.9), suggesting that this associ-

ation is driven by a few individuals.

In the children, two loci reached genome-wide signifi-

cance (Figure 6, Supplementary Figures 12–13 and

Supplementary Tables 14–16, available as Supplementary

data at IJE online). SNPs in the bradykinin receptor B1

gene (BDKRB1) (chromosome 14: 96721850–96729885)

were associated with total participation, total questionnaire

and child questionnaire. The SNP with the smallest P-value

was rs28631073 for all three participation measures

(P between 1.29 x 10–8 and 2.27 x 10–8) and the beta with

total participation was �3.20. Two SNPs in an intergenic

region on chromosome 1 reached genome-wide significance

with child clinic participation: rs1336852 (1: 191752825,

beta: �0.59, P¼ 3.15 x 10–8) and rs74626786 (1:

191759598, beta: �0.59, P¼ 3.32 x 10–8). Plots showing

linkage disequilibrium and nearest genes for each of the

genome wide significant loci (created using LocusZoom34)

are shown in Supplementary material (Figures 14–20, avail-

able as Supplementary data at IJE online).

SNP-based heritability

Estimates of heritability of participation phenotypes from

SNPs included in the genome-wide analyses ranged

20–27% for the mothers and 18–32% for the children

Figure 5. Association between genetic risk scores for BMI, smoking, education and schizophrenia, and self-reported smoking and BMI, conditioned

on attendance at the most recent clinic. Analyses adjusted for first 10 genetic principal components.

Figure 6. Manhattan plots for genome-wide analyses of total participation in the mothers and children and clinic participation in the children. A. Total

participation score in the mothers, B. Total participation score in the children, C. Number of clinics attended by the child. Line represents P ¼ 5 x 10�8.
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(P-values all<0.001) (Supplementary Table 17, available

as Supplementary data at IJE online).

Discussion

Continued participation in the ALSPAC cohort is related

to polygenic scores for a number of lifestyle factors, per-

sonal characteristics and health conditions, including level

of education, BMI, height, smoking, agreeableness, open-

ness, schizophrenia, ADHD and depression. We did not

find robust evidence in genome-wide analyses that specific

single genetic variants influence degree of participation in

ALSPAC, though there was evidence of common genetic

variants explaining a modest proportion of the variation in

participation (up to 30%).

Our findings show that genetic variants which are

related to specific phenotypes are also related to participa-

tion. Using a Mendelian randomization framework, this

could imply that these phenotypes cause continued partici-

pation. For example, the polygenic risk score for education

was the score most robustly associated with participa-

tion—implying that higher education causes greater con-

tinued participation in ALSPAC. This interpretation

requires that the key assumptions of Mendelian random-

ization are met,35 namely that: (i) the polygenic score is ro-

bustly associated with the trait of interest; (ii) there are no

confounders of the polygenic score-participation associ-

ation; and (iii) the genetic risk score only affects participa-

tion through the trait of interest. The third of these

assumptions is more likely to be met as the threshold for

polygenic score construction gets closer to genome-wide

significance.

Polygenic scores created using higher P-value thresholds

could explain more of the variance in that trait than gen-

ome-wide significant scores,36 but are likely to be less spe-

cific for the trait of interest and more likely to be

pleiotropic, influencing more than one trait. This is shown

by the stronger correlations between risk scores for differ-

ent traits created at high P-value thresholds than those cre-

ated using low P-value thresholds. We found traits for

which genome-wide scores were not associated with par-

ticipation, but scores at higher P-value thresholds were, for

example depression. This could be explained by low power

in the original GWAS, meaning that truly associated SNPs

are less likely to be included in a score constructed using a

low significance threshold,37 or that effects on participa-

tion are acting through a trait that is only distally related

to the GWAS trait used in score construction. As the

P-value threshold increases, this also introduces more noise

into the polygenic scores and may explain why some scores

at the P¼ 0.5 threshold are less strongly associated with

participation than the scores created at lower thresholds.

We also showed that it is possible to introduce bias

into genetic analyses even when sample sizes are relatively

modest. Therefore, we cannot assume that genetic-

association studies, including GWAS, candidate gene

studies and Mendelian randomization, are not biased by

incomplete participation. We recommend that researchers

consider how likely non-participation is as a potential

source of bias when running genetic association studies

and acknowledge this when reporting findings. The same

implications hold for non-genetic studies—e.g. a study of

the association between education levels and BMI in a se-

lected subsample is likely to be biased by selection, since

our genetic results show that both exposure and outcome

cause participation.

For both genetic and non-genetic studies, there are po-

tential methods to correct for this bias. For example, where

there is some information about participants who have

dropped out, it may be possible to apply inverse probabil-

ity weighting.38 Where such data are not available, other

approaches could be triangulated to examine likelihood of

bias. Negative control exposures and/or outcomes can be

used to see if associations between genetic variants and

outcomes exist that are not biologically plausible and

should only arise through selection bias.39 Similarly, where

there is a well characterized association (replicated in a

number of studies) of known magnitude between a genetic

variant and an outcome, this can be used as a positive con-

trol. Finally, novel associations should be replicated in

populations which have not undergone the same degree of

selection.

We found three loci associated with participation at

genome-wide significance level. SNPs in the genomewide

locus in mothers (e.g. rs406001) were identified in a previ-

ous GWAS of post-traumatic stress disorder (PTSD), but

not replicated in the original GWAS.40 Furthermore, this

locus was only nominally associated with PTSD in a much

larger GWAS.41 This, coupled with the low minor allele

frequency of SNPs in the genome-wide significant locus in

our GWAS, suggests that this may be a chance finding, ra-

ther than an effect of PTSD on participation. The signal on

chromosome 14 is located in the bradykinin receptor B1

gene (BDKRB1). Bradykinin is a peptide hormone which is

a pro-inflammatory mediator and is involved in vascular

permeability and mitogenesis.42 To our knowledge, vari-

ants in this gene and the genome-wide significant SNPs on

chromosome 1 have not been identified in previous GWAS

of any phenotype.43,44 We have not attempted to replicate

the genome-wide hits in independent samples, as we can-

not assume that different studies would have the same in-

fluences on participation.

There are a number of limitations to this analysis. First,

our analysis sample was restricted to just over half of the
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enrolled sample, due to availability of DNA samples for

GWAS and exclusion criteria (non-Europeans and related

individuals). Individuals in the analysis sample had higher

participation rates than the full sample, meaning that asso-

ciations between polygenic scores and participation are

likely to be weaker than we would observe if we had full

genetic data for the whole cohort. Second, our results may

not be generalizable to studies with different selection cri-

teria or specific cultural or contextual factors influencing

participation. It is also possible that characteristics influ-

encing participation will change over time and with age.

We have shown here that genetic associations can be used

to shed light on the selection mechanisms operating in a

given study, but this will need repeating in studies in differ-

ent populations or with different recruitment mechanisms.

These are context-specific, rather than biological associ-

ations—although there is evidence that some associations

(e.g. with education) may be fairly replicable.45 Third, we

have not attempted to disentangle the relative influence of

maternal and offspring genetics on participation. It is likely

that child participation is heavily influenced by maternal

traits in childhood and this may continue into adolescence

and adulthood. Finally, we have not explored all possible

traits that might be associated with participation, since our

analyses required access to GWAS summary statistics.

In conclusion, we demonstrate that polygenic scores

related to a wide range of traits are associated with degree

of participation in ALSPAC, and that this may introduce

bias into genetic and non-genetic analyses. This highlights

the importance of considering selection bias in all studies,

and the need for the development of statistical methods to

account for this issue.

Supplementary Data

Supplementary data are available at IJE online.
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