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Abstract: Although widely used in many applications, accurate and efficient human action
recognition remains a challenging area of research in the field of computer vision. Most recent surveys
have focused on narrow problems such as human action recognition methods using depth data,
3D-skeleton data, still image data, spatiotemporal interest point-based methods, and human walking
motion recognition. However, there has been no systematic survey of human action recognition.
To this end, we present a thorough review of human action recognition methods and provide a
comprehensive overview of recent approaches in human action recognition research, including
progress in hand-designed action features in RGB and depth data, current deep learning-based
action feature representation methods, advances in human–object interaction recognition methods,
and the current prominent research topic of action detection methods. Finally, we present several
analysis recommendations for researchers. This survey paper provides an essential reference for
those interested in further research on human action recognition.

Keywords: action detection; action feature; human action recognition; human–object interaction
recognition; systematic survey

1. Introduction

Human action recognition has a wide range of applications, such as intelligent video surveillance
and environmental home monitoring [1,2], video storage and retrieval [3,4], intelligent human–machine
interfaces [5,6], and identity recognition [7]. Human action recognition covers many research topics
in computer vision, including human detection in video, human pose estimation, human tracking,
and analysis and understanding of time series data. It is also a challenging problem in the field of
computer vision and machine learning. At present, there are many key problems in human action
recognition that remain unsolved.

The key to good human action recognition is robust human action modeling and feature
representation. Feature representation and selection is a classic problem in computer vision and
machine learning [8]. Unlike feature representation in an image space, the feature representation of
human action in video not only describes the appearance of the human(s) in the image space, but must
also extract changes in appearance and pose. The problem of feature representation is extended
from two-dimensional space to three-dimensional space-time. In recent years, many kinds of action
representation methods have been proposed, including local and global features based on temporal and
spatial changes [9–11], trajectory features based on key point tracking [12,13], motion changes based
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on depth information [14–16], and action features based on human pose changes [17,18]. With the
successful application of deep learning to image classification and object detection, many researchers
have also applied deep learning to human action recognition. This enables action features to be
automatically learned from video data [19,20]. Additionally, some studies have reviewed these
action recognition approaches. However, these review articles have only discussed specific aspects,
for example, spatial temporal interesting point (STIP)-based human action recognition methods,
human walking analysis approaches, and deep learning based methods. Many new methods have
recently been developed, particularly regarding the application of depth learning methods to feature
learning. Therefore, a thorough survey of these new human action recognition approaches is of
considerable interest.

In this work, we summarize many recent works and present a new survey of research on human
action recognition techniques including action classification (focusing particularly on the action
representation methods of action classification), human–object interaction recognition, and action
detection methods. The action classification methods are summarized into methods based on
handcrafted features and those based on feature learning. These methods can be applied to different
types of data.

From a data perspective, most reviews of human action recognition are limited to approaches
based on specific data, such as RGB data, depth data, or skeleton data. Most of the above-mentioned
works focus on human action recognition in RGB video data. With the development of depth cameras,
depth data are now widely used in many computer vision tasks, especially the estimation of human
poses to extract human skeleton data. Moreover, the latest research results on human detection and
pose estimation [21–23] in RGB video show that deep learning-based methods can achieve efficient and
accurate multihuman pose estimation in complex scenes. Several human action recognition techniques
based on depth sequences and skeleton data have also been proposed [5,17,24]. To a certain extent,
these methods have solved some of the problems of human action recognition with RGB cameras or
video, and have demonstrated good recognition performance. Works on human action recognition
methods using depth and skeleton data have been reviewed by Ye et al. [15], who summarized
human action recognition methods using depth data and Presti et al. [6], who discussed human action
recognition methods based on 3D skeleton data. In addition, Guo et al. [25] analyzed human action
recognition methods from still images. Although some of these review articles cover data fusion
approaches, they still provide a narrow summary of human action recognition approaches toward
specific types of data. To solve this problem, in this work, we summarize human action recognition
methods applicable to different types of data and involving handcrafted feature-based and feature
learning methods.

Another important aspect of the status on human action recognition research is that most studies
concentrated on human action feature representations. The processed image sequence data are usually
well-segmented and contain only one action event. This then becomes a classification problem.
However, there are two key problems in the actual scenario: interaction recognition and action
detection. Interaction refers to actions that involve more than two people or actions between people
and objects, such as carrying a knife or playing an instrument. Action detection refers to locating
the position at which an action occurs in time and space from image sequence data that have not
been segmented. In recent years, interaction [26–28] and human action detection [29–31] have become
prominent research topics. However, there is no overarching summary of the methods applicable to
these two issues. To this end, the state of research on interaction recognition and action detection is
reviewed in this paper.

Human action recognition surveys similar to our work have been presented in recent years [32–36].
For example, Vishwakarma et al. [34] provided a comprehensive survey of human action recognition
methods developed from 2008 to 2012. Those human action recognition methods were divided
into three different levels: human detection (low-level vision), human tracking (intermediate-level
vision), and behavior understanding methods (high-level vision). Similarly, Subetha et al. [33] used
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the same strategy to summarize action recognition methods from 2013 to 2016. Wang et al. [35]
summarized existing literature in the context of three aspects: sensor modality, deep models,
and application. However, in contrast to those works, we here divide human action recognition
into action classification and action detection. Furthermore, both handcrafted feature-based methods
and deep learning-based methods are discussed in this work. The study most similar to the present
work is that by Herath et al. [32], which also summarizes action recognition methods according to
handcrafted feature-based methods and deep learning-based methods. However, in our work, these
two methods are further discussed with consideration of different data types. Herath et al. [32]
discussed the classification methods of human action only, omitting a survey of interaction recognition
and action detection methods. Note also that Yu et al. [36] performed a recent survey of literature on
action recognition and action prediction; the latter predicts the future state of human actions based
upon incomplete action executions.

To collocate together previous surveys and fill the gaps between them, we here provide a
comprehensive survey of human action recognition techniques (see Figure 1), including action feature
representation methods, interaction recognition methods, and action detection methods. To perform
this survey, various studies are reviewed in our work. When preparing this paper, a key problem was
literature selection. First, a survey framework was implemented to span the main effective methods
of human action recognition. The selected works were then collected based on relevant keywords,
such as “action recognition”, “action feature representation”, “interaction recognition”, and “action
detection”. Second, based on the initially selected literature, relevant works were added. Finally,
based on the action recognition dataset, further studies were added to complete this work. In our study,
most literature was collected from academic journals and conferences on computer vision. The articles
published in important journals and conferences such as IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), IEEE Transactions on Image Processing (TIP), International Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer
Vision (ICCV), among others, will be preferred. Subsequently, we expand upon these articles to gather
more relevant work. The acceptance criteria of the literature are high citations or good recognition
performance. Simultaneously, to make our work cover more different methods, for similar methods,
we only choose a basic or representative method for detailed discussion.
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Figure 1. Classification framework for human action recognition methods.

The contributions of this paper are threefold:

(1) We provide a comprehensive survey of human action feature representation methods involving
different data types, including hand-designed action features and deep learning-based action
feature representation methods for RGB, depth, and skeleton data.

(2) Different from most previous reviews, which discussed methods of action modeling and action
classification only, human–object interaction recognition and action detection methods are also
summarized in this work.

(3) We propound some suggestions for future research on human action recognition.
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The remainder of this paper is organized as follows. An overview of human action recognition
is provided in Section 2. The human action feature presentation methods are then introduced in
Section 3, including handcrafted features based on RGB video, handcrafted features based on depth
and skeleton data, and deep learning-based methods. In Section 4, we introduce approaches that
recognize human–object interactions. In Section 5, methods of human action detection are summarized.
In each section, we present an overview of recent developments and the classical methods of human
action recognition. Finally, some research suggestions are provided in Section 6.

2. Overview of Human Action Recognition

From the perspective of data type, research on human action recognition can be divided
into methods based on color (RGB) data [9,37–40] and methods combining color and depth data
(RGBD) [14,17,24,41,42]. The human action recognition approaches for these data, following the
progress of machine learning research, can be categorized as either hand-designed features with
machine learning methods or end-to-end deep learning algorithms. Regardless of data type and
computing method, the core aim is to extract robust human action features. Many action features have
been proposed for RGB data, such as spatiotemporal volume-based features [10,43], spatiotemporal
interesting point features [9,44], and joint trajectory features [12,13]. However, factors such as
camera movement, occlusion, complex scenes, and the limitations of human detection and pose
estimation methods limit the performance of human action representation and recognition based on
handcrafted features.

Because depth data are stable with respect to changes in environment and background and
allow objects to be quickly segmented according to depth, the application of depth sensors enables
real-time, robust human pose estimation. Human action recognition methods based on depth
information and skeleton sequences demonstrate high recognition accuracy and low time complexity.
These methods are popular in human action recognition research [16–18,24,41]. However, the accuracy
and cost of depth sensors mean that depth- and skeleton-based action recognition methods are
currently only applicable over limited ranges and in specific environments. There are three types of
commonly used depth cameras: triangulation (with two camera views), time-of-flight (TOF) cameras,
and structured-light-based cameras. Structured-light and TOF-based depth sensors are easily affected
by light, with large errors and low precision in outdoor environments. The cost of the two-camera
system is lower, but the depth information calculation has higher complexity and cannot be applied
in darker environments. In addition, there are other sensors that can be used to measure depth,
such as laser scanners; however, these devices are expensive and unsuitable for video surveillance and
home monitoring.

Unlike handcrafted action features, deep learning methods perform well with regard to automatic
feature learning from images. This provides a new insight into human action recognition, and
many researchers have attempted to use deep learning methods to extract action features from RGB,
depth, and skeleton data. Such data are applicable to multimodal feature learning [19,20,42,45] from
deep networks, such as appearance/image information, optical flow sequences, depth sequences,
and skeleton sequences. Deep learning networks can learn human action features from single-mode
data or multimodal fusion data. As the appearance sequence and optical flow sequence are relatively
easy to obtain, most deep learning methods adopt the appearance sequence and optical flow sequence
as their input, with few depth- and skeleton-based techniques. However, recent high-efficiency
multiperson pose estimation methods based on deep learning [21–23] have drawn increased attention
to human action feature learning based on skeleton sequences, and this is now a prominent research
topic in the field of human action recognition [46].

Human action recognition can be divided into action classification and action detection. Action
classification is the analysis of a segmented video containing only a single action that must be classified
into a defined action category. Action detection detects the start and end times of each action in the
video, locates their position in space, and identifies the action category. In early research, the study
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of human action recognition focused on the action classification problem. With the development
of related research topics, such as machine learning, object detection, and human pose estimation,
research on the more challenging human action detection has become popular in recent years [47–51].

Many studies have considered human action recognition. According to the complexity of the
human action, previous techniques can be categorized into the following four classes of action
semantics [1] from low to high: primitive action recognition [52], single-person action recognition [6,9],
interaction recognition [26], and group action recognition [53]. Primitive action refers to basic
movement changes of human body parts, which is the minimum structure of action. These changes
can be combined into more complex actions through various elementary movements. For example,
“waving”, “lifting a foot”, and “bending” are common primitive movements, and gesture recognition
is a common primitive action recognition problem. Single-person actions refer to the set of primitive
actions of a single person, such as “walking”, “punching”, and “jumping”. Interaction refers to actions
involving the relationship and movement between humans and objects, such as “carrying a knife” and
“playing an instrument”. Group actions refer to those that occur in a group composed of many people
or objects, such as a “parade”, “group meeting”, and “group fighting”. Previous research has mainly
focused on the first two levels of action recognition. Although interaction recognition has received
more attention in recent years, the research on group action recognition is still in its infancy.

In addition, in current research, only action classification problems span these four different
semantic levels of action. Previous research has focused on the first two levels of action classification.
Although interaction recognition has received greater attention in recent years, research on group
action recognition remains in its infancy. Meanwhile, the key problem regarding classification of
primitive action and single-person action is action feature representation. However, research on action
detection mainly focuses on primitive action and single-person action. Therefore, to render the survey
presented in this paper more pertinent, we summarize and analyze action recognition methods from
three aspects: feature representation, interaction recognition, and action detection for primary and
single-person actions, as shown in Figure 1.

The following sections present a comprehensive survey of human action recognition methods,
including human action feature extraction methods, interaction recognition methods, and action
detection methods.

3. Human Action Feature Representation Methods

3.1. Overview of Handcrafted Action Features for RGB Data

Handcrafted features are intended to capture the human movements and spatial and temporal
changes in video representing action, including spatiotemporal volume-based action representation
methods, STIP-based methods, action representation methods based on the trajectory of skeleton joints,
and action representation based on human image sequences. These features are mainly used in classic
machine learning methods such as Boost, support vector machines, and probability map models to
recognize action.

The spatiotemporal volume-based methods are template matching techniques, but unlike object
recognition in image processing, they use a three-dimensional spatiotemporal template for action
recognition. The key to these methods is to construct a reasonable action template and perform
effective matching based on this template. This was the earliest approach to human action recognition,
with the main methods being those developed by Bobick and Davis et al. [54], who proposed the
motion energy image (MEI) and motion history image (MHI) for representing action; Zhang et al. [55],
who used polar coordinates to divide the central region of the human body in MHI and a Motion
Context descriptor based on SIFT to represent the action; Klaser et al. [56], who extended the histogram
of gradients (HOG) feature of an image to the space-time dimension and proposed the 3DHOG feature
to describe human actions in video; and Somasundaram et al. [57], who used sparse representation
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and dictionary learning methods to calculate the self-similarity of a video in the temporal and spatial
dimensions, thus providing a representation of human actions.

When the camera is fixed, these methods can use background subtraction techniques to obtain
shape information such as human silhouettes and contours. However, in the case of complex scenes
and camera movements, accurate silhouettes and contours are difficult to obtain, and in cases where
the human body is occluded, an accurate human appearance cannot be identified. To determine
multiple actions in the same scene, most methods use a sliding window, but this approach is
computationally expensive.

STIP-based methods, which are widely used for action recognition, extract the key region of
movement change from a video to represent action. Similar to the local features for object recognition in
images, STIP methods must determine which key region detection method to use, which feature vector
to use to describe the key region, and which classification algorithm to employ. Therefore, most of
these methods are extended from object recognition methods applied to images. The “interesting
points” in STIP generally refer to the position that changes most dramatically in the spatiotemporal
dimension [9]. Popular STIP methods include 3D-Harris spatiotemporal feature points [58] and similar
or improved techniques [59]. The main idea is to extend the local feature detection technology from
images to the 3D spatiotemporal domain. The feature descriptors are then computed and the visual
dictionary for representing human actions is learnt. Nguyen et al. [10] proposed a key region extraction
method based on a spatiotemporal attention mechanism to construct a visual dictionary and action
features. Peng et al. [60] reviewed and contrasted methods based on local spatiotemporal features
and visual dictionary construction, and proposed a hybrid supervector human action representation
method that achieved good performance with several common human action datasets. Nazir et al. [61]
integrated the 3D-Harris spatiotemporal features and 3D scale-invariance feature transform detection
methods to extract the key regions of a video, and used traditional visual word histograms to represent
human actions.

Methods based on spatiotemporal features have attracted the attention of many researchers. The
main advantage is that such methods do not require preprocessing such as background segmentation
or human detection. Local features offer scale and rotation invariance, are stable under illumination
changes, and are more robust to occlusion than other methods. However, the spatiotemporal feature
points are easily affected by changes of camera view. In the case of background motion and camera
motion, methods based on local spatiotemporal features will generate many background feature points,
and the motion estimation of the object will suffer from large errors.

Trajectory-based features use the tracking path of key points or the joints in the human skeleton
to represent actions. The representative trajectory-based action recognition method is the improved
dense trajectories (iDT) proposed by Wang et al. [13]. Sampling dense point clouds from a video
frame, the displacement information is calculated by tracking these feature points using an optical flow
approach. The background motion can be eliminated, allowing the motion trajectory to be calculated
so that the feature is more focused on the description of the human motion. A number of studies have
improved iDT or incorporated its features. Gaidon et al. [62] used split clustering to analyze local
motion trajectories, and used the clustering results to represent different motion levels in calculating
human action features. Wang et al. [63] fused the results of human detection into iDT features, thereby
reducing the interference of background trajectories. Peng et al. [64] used stacked Fisher vectors to
represent human actions based on iDT features, resulting in one of the more successful methods for
improving iDT. The main advantage of trajectory-based action recognition methods is that they can be
used to analyze the local motion information of the human body, and most methods can overcome
changes in the viewing angle. However, this approach requires an accurate two- or three-dimensional
human skeleton model, and accurate tracking of key points. However, human modeling and tracking
itself remains a challenging problem in the field of computer vision.
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3.2. Overview of Handcrafted Action Feature for Depth and Skeleton Data

With the application of depth sensors for action recognition, good human detection and pose
estimation performance has been achieved using depth data. As a result, most human action
recognition methods can be divided into depth sequence-based methods [14,16,24,65–68], skeleton-
based methods [5,18,69–73], and feature fusion methods [17,41,74,75].

The depth sequence-based approach primarily uses motion changes in the depth map of the
human body to describe actions. In an RGBD video, the depth data can be seen as a space-time
structure composed of depth information. The feature representation of action is the process of feature
extraction in this space-time structure, and appearance or motion information regarding depth changes
is generally used to describe the action. Yang et al. [14] constructed a supernormal vector feature based
on the depth map sequence to represent action. Oreifej et al. [16] extended the HOG feature to the
spatiotemporal depth structure, and proposed an orientation histogram feature of the four-dimensional
normal vector to represent the appearance information of a three-dimensional spatiotemporal depth
structure. Rahmani et al. [67] proposed an action representation method based on the main direction
of the depth curved surface. Rotating the perspective of the video in accordance with the main
direction, a perspective-independent action feature representation can be calculated, and the principal
component direction histogram is used to represent action.

All of the above methods use appearance information to describe human action in depth data.
Other methods calculate the motion change from depth information to represent action. Yang et al. [68]
proposed a depth motion map (DMM) to project and compress the spatiotemporal depth structure
from the front, side, and upper views to form three motion history maps. The HOG feature is then
used to represent these motion history maps, and the resulting features are connected in series to
describe action. Instead of HOG, Chen et al. [66] used local binary pattern features to describe human
action based on DMMs. Chen et al. [76] also analyzed the spatiotemporal depth structure in the front,
side, and upper directions. Different from the use of depth information compression, motion trajectory
shapes and boundary histogram features of spatiotemporal interest points are extracted and dense
sample points and joint points in each view are used to describe the action. In addition, Miao et al. [65]
used the discrete cosine variation to compress the depth map and construct action features using
transform coefficients.

From depth data, the human skeleton can be estimated quickly and accurately. Shotton et al. [77]
proposed a real-time pose estimation method from depth images, which allows rapid human
segmentation according to depth. The joint detection problem has been regarded as a simpler per-pixel
classification problem. Skeleton-based action recognition methods are another active area of research
using depth data. Methods based on the human skeleton sequence use changes in the human joint
points between video frames to describe the action, including the position and appearance changes
of the joint points. Xia et al. [72] used a 3D joint point histogram to represent the human pose,
and modeled the action through a discrete hidden Markov model. Keceli et al. [73] used the Kinect
sensor to obtain depth and human skeleton information, and then extracted human action features
based on the angle and displacement information of the skeleton joint points. Gowayyed et al. [71] used
the histogram of oriented displacements (HOD) to describe the trajectory of joint points, and extracted
HOD features from the front, side, and upper views to form a 3D HOD feature. Yang et al. [18]
proposed the EigenJoints method, whereby an accumulative motion energy (AME) function is used
to select video frames and more informative joint points to model action. Pazhoumanddar et al. [69]
used the longest common subsequence algorithm to select high-discriminative power features from
the relative motion trajectories of the skeleton to describe the associated action.

Based on the above discussion, methods that use the skeleton joint point trajectory can obtain
the corresponding relationship among the joint points from different perspectives. Thus, more robust
action features can be extracted in the case of a perspective transformation. However, the performance
of these methods depends on the results of human pose estimation. When occlusion occurs in the scene,
the joint point estimation will be missing or incorrect, which will affect the action recognition results.
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Comparing the action features in RGB data with those of depth data, the advantage of RGB data
is the abundance of appearance information, although depth data can more accurately describe the
motion features of the human body. Research results [5,24,67] show that the methods based on depth
information achieve real-time action recognition and better recognition performance than RGB-based
methods. Therefore, some researchers have also tried to model human action using multifeature fusion.

Chaaraoui et al. [75] attempted to merge the joint feature and depth information feature to
overcome errors in the skeleton feature caused by occlusion and perspective changes. Furthermore,
Li et al. [17] proposed a sparse regression learning method based on the joint point group to fuse
joint and depth features in modeling actions. Althloothi et al. [78] calculated a spherical harmonics
representation of depth information in the frequency domain, and fused this with position information
of the skeleton joints through a multikernel learning method to model human actions. In addition
to the fusion of depth information and skeletal features, some researchers have attempted to fuse
features in RGB data with features in depth data [79]. For example, Liu et al. [74] used genetic
algorithms to automatically learn RGB data and depth data fusion features for representing human
actions. Jalal et al. [80] merged spatiotemporal features in RGB data and depth data, and Ni et al. [81]
proposed a multilevel fusion of RGB and depth data features. Based on object detection, human
actions have been modeled by the spatiotemporal features of RGB and depth data. Overall, methods
based on data fusion attempt to exploit the advantages between different data to obtain a more robust
feature representation. Thus, the following problem is mainly considered during development of
most data-fusion-based methods. What is the most effective way of combining data of different types?
The common approach involves early and late fusion. The former fusion is carried out at feature
level, also known as feature concatenation, which is regarded as the input of the recognition model.
In the latter, the fusion is carried at the score level, which fuses the output score of recognition model
with different types of data. However, most methods based on multimodal data fusion can provide
superior recognition results to those given by single data-based methods. Of course, multimodal data
fusion means that processing of larger data volumes is required and the feature dimension is higher.
These factors increase the computational complexity of the action recognition algorithm.

3.3. Overview of Action Feature Representation Methods Based on Deep Learning

In recent years, the application of deep learning to computer vision has received considerable
attention. Many deep learning-based action representation methods have been proposed in the field of
human action recognition [19,20,42,45,46,82].

Depending on the structure of the deep learning network, the main representative works can be
summarized as discussing methods based on two-stream convolutional networks [19], those based on
3D convolutional networks [20], and those based on long short-term memory (LSTM) [83].

In a two-stream convolutional network, the optical flow information is calculated from the
image sequence. The image and optical flow sequence are respectively used as the input to the two
convolutional neural networks (CNNs) during the model training process. Fusion occurs in the last
classification layer of the network. The inputs of the two-stream network are a single-frame image and
a multioptical flow frame image stack, and the network applies 2D image convolution. In contrast,
a 3D convolution network regards the video as a 3D space-time structure, and uses a 3D convolution
method to learn human action features.

Many studies attempting to improve the performance of these two network structures have been
reported. Some representative extensions of the two-stream convolution network include the work of
Zhang et al. [82], who used the motion vector in the video stream instead of the optical flow sequence to
improve the calculation speed and realize real-time human action recognition. Feichtenhofer et al. [84]
changed the process of spatial and temporal information fusion from the original final classification
layer to the middle of the network, further improving the action recognition accuracy. The input,
convolutional network structure, and training strategy of the two-stream convolutional network have
been discussed in detail by Wang et al. [85], and a temporal segment network (TSN) was proposed to
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further improve the results of the two-stream convolution network. In addition, Lan [86] and Zhou [87]
also enhanced the recognition results of TSN. Similarly, based on the idea of 3D (Three Dimension)
convolutional networks, many researchers have attempted to extend different 2D convolutional
networks to 3D spatiotemporal structures for the learning and recognition of human action features.
Carreira et al. [88] extended the network structure of inception-V1 from two to three dimensions
and proposed the two-stream inflated 3D ConvNet for action recognition. Diba et al [89] extended
DenseNet and proposed the temporal 3D ConvNet, while Zhu et al. [90] extended the pooling operation
from the original spatial dimension to three space-time dimensions, and expanded the two-stream
convolution network to a three-dimensional structure.

Another important human action recognition method involves use of LSTM with CNNs [83,88,91,92].
In Carreira’ work [88], five different architectures, including an LSTM with CNN, 3D ConvNet,
a two-stream network, a two-stream inflated 3D ConvNet, and a 3D-Fused two-stream network,
are compared. Different from two-stream and 3D convolutional networks, in which action is modeled
by various convolutional temporal feature pooling architectures, LSTM-based methods regard a video
as an ordered sequence of frames. Human action can then be represented by the feature changes
of each frame. Ng et al. [91] proposed a recurrent neural network to recognize human action that
connects the LSTM cell with the output of the underlying CNN. Further, Qiu et al. [92] proposed
a new architecture named Pseudo-3D Residual Net (P3D ResNet), which composes each block in a
different ResNet placement. Donahue et al. [83] proposed long-term recurrent convolutional networks
to map variable-length video frames to variable length outputs (e.g., action descriptive text) rather
than a simple action category. Liu et al. [42] proposed a spatiotemporal LSTM model for 3D human
action recognition, which extends recurrent neural networks (RNNs) to spatiotemporal domains
to analyze the hidden sources of action-related information. Song et al. [93] constructed the action
recognition model on top of the RNN with LSTM, which used different levels of attention to learn the
discriminative joints of the skeleton within each input frame.

From the modality of the input data, deep learning methods can learn human action features from
a variety of modal data. The above methods are based on image data or optical flow data, and model
human actions from the appearance information and motion information of temporal and spatial
changes. In addition, Wang et al. [94] used a convolutional network to learn action features based on
depth image sequences. Ye et al. [95] used 3D convolutional networks to embed time series information
into dense motion trajectories to model action. Yan et al. [46] used graph-oriented CNN to model the
underlying relationships between skeleton joints with a graph. Zhu et al. [96] attempted to integrate
the calculation of the optical flow sequence into the network, and merge the original image and optical
flow sequence to represent human action. Although the action features learned by deep learning
methods offer superior recognition performance to handcrafted action features, some problems also
exist as regards recognition of human actions based on deep learning, especially multimodal data
fusion in deep learning methods. Most of the above deep learning-based methods focus on the problem
of action feature learning from different modality data; however, few works consider multimodal data
fusion. Effective combination of multimodal data, such as RGB, optical flow, depth, and skeleton data,
remains an open issue in human action recognition and deep learning. This topic is also a prominent
research direction in the field of human action recognition.

3.4. Performance Evaluation Criteria and Datset

There are many datasets for evaluation of algorithm performance in the context of human action
recognition. The confusion matrix and recognition accuracy are the commonly used evaluation criteria.
The confusion matrix indicates the detailed results concerning recognition between each category.
The recognition accuracy is the ratio of the number of correctly recognized data elements to the total
number of test data elements. Details of popular datasets that contain more than 300 samples are
presented in Table 1. The recognition accuracies of the popular methods for these datasets are presented
in Tables 2 and 3.
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Table 1. The popular dataset of human action recognition.

Dataset Name Color Depth Skeleton Samples Classes

Hollywood2 [97]
√

× × 1707 12
HMDB51 [98]

√
× × 6766 51

Olympic Sports [99]
√

× × 783 16
UCF50 [100]

√
× × 6618 50

UCF101 [101]
√

× × 13,320 101
Kinetics [102]

√
× × 306,245 400

MSR-Action3D [103] ×
√ √

567 20
MSR-Daily Activity [104]

√ √ √
320 16

Northwestern-UCLA [105]
√ √ √

1475 10
UTD-MHAD [106]

√ √ √
861 27

RGBD-HuDaAct [107]
√ √

× 1189 13
NTU RGB+D [108]

√ √ √
56,880 60

Table 2. Recognition accuracies of methods on RGB datasets. The superscript D indicates a deep
learning-based method.

Methods Year Hollywood2 HMDB51 Olympic Sports UCF50 UCF101 Kinetic

[82]D 2018 86.4%
[46]D 2018 81.5%
[61]D 2018 68.1% 94%
[96]D 2017 78.7% 97.1%
[89]D 2017 63.5% 93.2%
[86]D 2017 75% 95.3%

[102]D 2017 79%
[90]D 2017 74.8% 95.8%
[88]D 2017 80.2% 97.9%
[95]D 2016 55.2% 85.4%
[85]D 2016 69.4% 94.2%
[63] 2016 66.8% 60.1% 90.4% 91.7% 86%

[29]D 2016 94.8% 78.86%
[84]D 2016 65.4% 92.5%
[45]D 2015 63.2% 91.5%
[109] 2016 61.7% 88.3%
[110] 2015 68% 65.1% 91.4% 94.4% 89.1%
[20]D 2015 49.9% 85.2% 79.5%
[40] 2015 70% 61.8%
[57] 2014 37.3% 86.04% 70.1%
[50] 2014 57.2% 85.9%
[19] 2014 59.4% 88% 81.3%
[62] 2014 54.4% 41.3% 85.5%

[100] 2013 27.02% 68.20%
[111] 2013 49.3%

Tables 2 and 3 show the methods exhibiting good recognition performance for each year on
these datasets. From these tables, it is apparent that the deep learning-based methods have better
recognition performance than those based on handcrafted features developed in the last three years,
especially for the action recognition problem involving RGB data. Following application of deep
learning methods for action feature learning, the action recognition accuracy improved significantly,
such that the recognition accuracy for the UCF 101 dataset is improved from 89.1% to 97.9%, and that
for the HMDB51 dataset is improved from 65.1% to 80.2%.

Among these RGB datasets, HMDB51 and UCF 101 are the most commonly used to evaluate
the proposed approaches. Studies on almost all the most recent deep learning-based methods have
employed these two datasets to verify algorithm effectiveness. The recognition accuracy for the UCF
101 dataset has exceeded 97%; however, equivalent accuracy has not yet been achieved on HMDB51.
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Note that the Kinetics dataset is a new and more challenging dataset for human action recognition.
Deep learning-based methods have been less frequently applied to its RGBD and skeleton datasets
than its RGB dataset. One of the main reasons for this is that these datasets are small-scale. However,
with the development of large-scale and challenging RGBD and skeleton datasets, for example, the NTU
RGB+D dataset, deep-leaning-based methods for depth and skeleton data are becoming the primary
research topic in the field of human action recognition.

Table 3. Recognition accuracies of methods on RGBD (Red, Green, Blue Depth) and skeleton datasets.
The superscript D indicates a deep learning-based method.

Methods MSR-Action3D MSR-Daily
Activity

Northwestern-
UCLA UTD-MHAD NTU

RGB+D

[31] 2018 96.2%
[93]D 2018 73.4%
[46]D 2018 30.7%
[80] 2017 93.3 94.1%

[108]D 2016 62.93%
[42]D 2016 100% 69.2%
[94]D 2015 100% 81.88%
[69] 2015 91.2%
[76] 2015 94.9% 83.8%

[106] 2015 79.1%
[14] 2014 93.09% 86.25% 31.82%

[105] 2014 73.1% 81.6%
[18] 2014 82.30%
[70] 2014 92.46% 50.1%
[67] 2014 88.82% 81.25%
[78] 2014 94.4% 93.1%
[16] 2013 88.89% 30.56%
[74] 2013 85.6%
[71] 2013 91.26%
[75] 2013 91.80%

4. Overview of Interaction Recognition Methods

In complex scenes, such as those acquired by intelligent video surveillance, abnormal actions are
often related to the attachments carried by humans. This is also the problem of interaction recognition in
human action recognition research, which is a challenging task. Studies on interaction recognition have
become a popular research topic in recent years. Because objects and poses provide rich action features
for interaction recognition, many methods are based on image data [25]. In early studies [112–114],
researchers attempted to use the relationship between the object, human pose, and action to integrate
object detection, pose estimation, and action analysis methods into one framework. The middle-level
semantic feature of interaction is extracted based on the object detection and pose estimation results.
A summary of these methods reveals that the design of the interaction feature mainly follows a set
of principles:

(1) Local interaction features should be dense enough to represent information at various locations
in the image.

(2) The model of interaction between the human and the object(s) is based on the structure of
body parts.

(3) The core of the interaction model is the co-occurrence and position relationship between the
human body and the object(s).

(4) Features with higher discriminative power are selected from dense features.

Other researchers have attempted to use depth information and skeleton data to model
human–object interactions [26,115,116]. Meng et al. [115] expressed the interaction based on the
joint points detected in the depth information, the relative position changes between these joint points,
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and the relative positional changes between the joint points and the objects. Koppula et al. [116] used
a Markov random field to model the interaction, where the graph nodes represent the object and the
human motion and the edges represent the relationship.

With the development of deep learning technology, interaction recognition methods based on deep
learning have attracted attention. However, a large number of datasets are required for the application
of deep learning. Le et al. [28] provided the first large interaction recognition dataset named TUHIO.
Chao et al. [27] released the HOIC dataset in 2015, including more than 600 interactions across 47,774
images. The synonymous interactions of TUHIO have been integrated into HOIC. Gupta et al. [117]
provided the V-COCO dataset, which is a subset of the COCO dataset including 10,346 images and
16,199 human instances. In that dataset, each person is annotated with a binary label vector for 26
different actions. The above three datasets are image-based. Yu et al. [118] proposed a video-based
dataset for online human object interaction recognition named ORGBD, which contains three sets
of depth sequences collected using a Kinect device. The first set contains 16 subjects and each
subject performs every action twice. The second set contains eight new subjects recorded in different
environments from the first. Each sequence in the third set consists of multiple unsegmented actions.
Furthermore, Meng et al. [26] constructed a new video-based human object interaction recognition
dataset in 2018, called Lille Douai.

Based on these data, Chao et al. [119] proposed the human body and object region-based CNN
to analyze the relationship between humans and objects, with a deep neural network used to detect
the interaction. Mallya et al. [120] calculated human and object features from pretrained CNNs,
and merged them with pretrained human and object relationship models learned from the HIOC
dataset to detect interactions. Gkioxari et al. [121] hypothesized that the appearance of the human body,
such as posture, clothing, and action, is closely related to the position of the object. They proposed
an interactive network (InterNet) to model the relationship between the human body and objects for
specific actions. For interaction recognition, the strategy of deep learning methods is to automatically
learn the relationship model between the human body and objects based on human detection and
the available data. With limited data, especially in the intelligent monitoring environment, abnormal
actors will deliberately obscure the objects being carried, resulting in errors in the position relationship
between the human body and the objects caused by the camera imaging. These issues mean that
interaction recognition remains a challenging problem.

5. Overview of Human Action Detection Methods

Compared to action classification, action detection is a more challenging task in the context of
human action recognition. In early research, action detection mainly used object tracking and sliding
windows to locate the action position [50]. However, because of the difficulty of object tracking and
the complexity of sliding windows, action detection is still a difficult task in human action recognition.
Building on the strong performance of dense trajectories (DT) in action classification, researchers
have used DT features to locate actions in the time dimension [51,111,122]. Van et al. [3] also used DT
features to extend the action location from the time dimension to the space-time dimension, resulting in
faster processing speeds. At the same time, depth sensors have a natural advantage in human location
and skeleton extraction, so action detection based on depth sensors is simpler and more effective than
that using RGB data [31].

With the successful application of deep learning methods in multiobject detection, some methods
for detecting action in video based on deep learning have been proposed. The basic idea of these
methods is to extend the network of object classification to action detection problems, including R-CNN
networks, 3D convolutional networks, and recurrent neural networks. Peng et al. [29] proposed
multiregion two-stream R-CNN networks to locate action in the time dimension, while Shou et al. [123]
used three 3D convolutional networks to detect action. First, the candidate region extraction network is
used to segment video in the time dimension. Based on the extracted candidate segmentation regions,
the classification network and the location network are then used to detect action. Zhao et al. [47]
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regarded action detection as the problem of segmenting the video content, and proposed structured
segment networks to implement the segmentation of action in the time dimension. Liu et al. [30]
proposed a multimodality multitask recurrent neural network to model action in RGB and skeleton
data, and integrated action classification and localization into a unified network to recognize action.
Zhu et al. [4] fused the context among video frames into a long-term recurrent convolutional network,
and proposed spatial-temporal convolution regression networks for action detection. In addition,
Yu et al. [124] calculated the similarity scores of each region and action using appearance and motion
features. Based on this, the problem of spatiotemporal candidate region extraction can be regarded as
the extraction of the largest set. Weinzaepfel et al. [125] calculated the relevance scores between each
frame and action based on CNN features of appearance and motion, and tracked the spatiotemporal
motion histograms to locate human action.

In action detection research, the ActivityNet challenge is very famous task. This challenge was
first hosted during the 2016 Conference on Computer Vision and Pattern Recognition and focused on
the recognition of daily life, high-level, goal-oriented activities. There are three tasks based on the
ActivityNet dataset: action temporal proposal, action localization, and action caption. The ActivityNet
dataset [126] is a large-scale video benchmark for human activity understanding, which contains 200
action classes and 100 untrimmed videos per class, yielding a total of 648 hours. The results obtained
through application of different methods to these three tasks are provided on the ActivityNet challenge
webpage [127].

Although the research on action detection has already achieved some promising results, most of
the work has focused on locating the position of the action in the time dimension, and most approaches
have a high computational complexity. Action detection in real applications involves the semantic
segmentation of the video content. This technology is still far from being mature.

6. Conclusions and Discussion

In this work we have provided a comprehensive overview of human action recognition research
and discussed future research directions for those seeking to enter the field. Although there have been
many excellent studies on human action recognition, confounding factors, such as the diversity and
complexity of body postures, occlusion, and background clutter, mean that human action recognition
in real scenes remains challenging in the context of understanding video streams. In this paper,
we have reviewed human action recognition methods and provided a comprehensive overview of
recent approaches to human action recognition research, including hand-designed action features
in RGB and depth data, deep learning-based action feature representation methods, human–object
interaction recognition techniques, and action detection methods. After summarizing the literature
relevant to each research direction in the field of action recognition, the main effective methods were
introduced, to rapidly familiarize researchers with the relevant research areas. The primary conclusions
of this study on human action recognition research are provided below.

(1) In action recognition research, suitable data to capture the action must first be selected. In addition,
a reasonable algorithm should be used to recognize human action.

(2) For action feature learning problems, deep learning-based methods have superior performance.
(3) In addition to action classification of primitive and single-person actions, interaction recognition,

and action detection have become the new prominent research topics.

The performance of deep learning in human action representation, interaction recognition,
and action detection has been validated in certain circumstances. However, in complex scenes such
as intelligent video surveillance, there are many issues with feature learning under multimodal data,
interaction recognition, and spatial and temporal action localization. Given the current state of research,
human action recognition based on deep learning in intelligent video surveillance should address the
following problems.
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(1) Multimodal visual perception and action representation problems based on multimodal fusion
methods. In current research, based on accurate depth information and skeleton data, human
action features can be efficiently studied. However, in most real scenes, the data acquisition
platform can only provide RGB data. While depth sensors can be applied outdoors, problems
with accuracy and cost mean they are not suitable for monitoring scenarios. Obtaining accurate
modal data, such as accurate depth information and skeleton data from existing RGB data, is not
only the basis of efficient action recognition, but also has important applications in many visual
analysis tasks. Based on RGB data, depth data, and skeleton data, the integration of multimodal
data is a key issue in behavior recognition research.

(2) Interaction recognition problems. The recognition of interactions between humans and objects has
a high level of semantic information, such as carrying dangerous items, legacy items, and waving
equipment. Modeling the interaction between humans and articles based on multimodal data,
and quickly analyzing the interaction, is not currently possible to an appropriate level of accuracy.
This will be an important direction of future research on human action recognition.

(3) Fast action detection in the spatiotemporal dimension. Research on human action recognition
is more about classifying segmented video content. Although there have been some attempts
to discuss how the action is located in the time and space dimensions, the effect and speed are
below current application requirements. Analyzing the features of different information based on
multimodal data perception, and achieving fast and accurate action detection, are the key issues
for the successful application of human action recognition. In recent years, several methods have
been proposed, but this is another challenge that is yet unresolved.
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