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THE BROCARD CONJECTURE

JAN FELIKSIAK

Abstract.
The Brocard Conjecture asserts that the number of primes, within the

interval, between the squares of two subsequent primes is:

(0.1)

(
πp2

(n+1)
− πp2

(n)

)
≥ 4 ∀pn ∈ N | n ≥ 2

Although the number of primes within this interval varies to a great degree,
there is a common ground, which makes it possible to settle this old conun-

drum. Three bounds are developed: the least lower bound and the lower/upper
bounds. The least lower bound is implemented to prove the conjecture. The
lower/upper bounds exploit the shortest such interval, namely between the
twin primes. This has been done in order to establish the bounds, on the

smallest number of primes within that interval. The research objective was
not only to provide a true/false answer, but to clarify some aspects of the
distribution of prime numbers within this interval as well.

c⃝2020 Jan Feliksiak
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1. Preliminaries

Within the scope of the paper, prime gap of the size g ∈ N | g ≥ 2 is defined as
an interval between two primes pn, p(n+1), containing (g− 1) composite integers.
Maximal prime gap of the size g, is a gap strictly exceeding in size any preceding gap.
All calculations and graphing were carried out with the aid of the Mathematicar

software. For all n ∈ N | n ≥ 8 (unless indicated otherwise), we define:

Definition 1.1 (Maximal Prime Gap).
g = p(n+1) − pn

Theorem 1.2 (Maximal Prime Gaps Supremum and Infimum for primes).
For any n ∈ N | n ≥ 11 there exists at least one p ∈ N | n < p ≤ n + c = t;

where p is as usual a prime number and c or upper bound on maximal prime gaps
is given by:

(1.1) UB = c =

⌊
5 (log10 n)

2 − 15

8
(log10 n)

⌋
∀n ∈ N | n ≥ 11

Equivalently, pi+1 − pi ≤ c

For the proof, please consult Feliksiak [8].

2. Brocard Conjecture

The Brocard’s conjecture asserts that, there are at least four prime numbers
between p2n and p2(n+1); where pn is as usual the n-th prime number. Since the

Brocard’s assertion concerns successive squares of primes, we may begin with a
general formula (please refer to a standard text for proofs) for the difference
between the squares of two consecutive numbers. Let’s denote two arbitrary
integers m, s ∈ N|m = s + 1. Then the difference between their squares is given
by:

(2.1) m2 − s2 = 2s+ 1

For general integer squares m, s ∈ N| m > s we have to implement the sum to
compute the difference:

(2.2) m2 − s2 =
m−1∑
k=s

(2k + 1)

The sum 2.2 therefore, also produces the difference between two arbitrary squares
of prime numbers for all pn ∈ N | pn ≥ 2.

Theorem 2.1 (Brocard Conjecture).
The Brocard conjecture holds for all pn ∈ N | pn ≥ 3:

(2.3) πp2
(n+1)

− πp2
(n)

≥ 4

Furthermore, the least number of primes within the interval increases as pn in-
creases unboundedly. The least lower bound for the number of primes within that
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interval is given by:

(2.4) LLB =
4(pn + 1)(

5 (log10 p
2
n)

2 − 15
8 (log10 p

2
n)
)

Remark 2.1. The objective is to prove the least bound for primes within the
interval (p(n+1))

2 − (pn)
2. The purpose of the least bound however, is solely to

validate the Brocard conjecture. Obviously, at the twin primes we have
the shortest such interval, necessarily therefore, the least number of
primes will be found in that interval. Consequently, the whole proof of
the Brocard Conjecture will proceed at the twin primes only, under the
assumption that the twin primes continue indefinitely. This assumption will not in
any way affect the validity of the proof, as it will be explained later on.

Proof.
From equation 2.2 in the case of twin primes, we obtain therefore for all

pn, p(n+1) ∈ N | pn ≥ 3 and p(n+1) = pn + 2:

(2.5) (p(n+1))
2 − (pn)

2 =

(p(n+1)−1)∑
k=pn

(2k + 1) = 2(pn + p(n+1)) = 4(pn + 1)

Theorem 1.2 states that there exists at least one prime number within c. Hence,

the ratio
(
p2(n+1) − p2n

)
/c measures the least multiplicity of prime numbers within

that interval, which at the twin primes is given by:

(2.6)
p2(n+1) − p2n(

5 (log10 p
2
n)

2 − 15
8 (log10 p

2
n)
) =

4(pn + 1)(
5 (log10 p

2
n)

2 − 15
8 (log10 p

2
n)
)

Evidently, increasing the difference between the respective primes e.g. in case of
pk > pn + 2, increases in direct proportion the value of ratio 2.6. Thus making the
dependence, on the concept of infinitude of twin primes redundant. Suppose that
for some pn ≥ 59 Theorem 2.1 is false. This implies that,

(2.7)
4(pn + 1)(

5 (log10 p
2
n)

2 − 15
8 (log10 p

2
n)
) < 4

However, at pn = 59, the inequality 2.7 attains ∼ 4.279780531 and further increases.
The limit of inequality 2.7 by the L’Hôpital’s rule is:
(2.8)

lim
n→∞

 4(pn + 1)(
5 (log10 p

2
n)

2 − 15
8 (log10 p

2
n)
)
 = lim

n→∞

(
16 (log 10)

2
pn

5 (16 log p2n − log 1000)

)
→ ∞

Therefore, necessarily we have a contradiction to the initial hypothesis. The limit
2.8, clearly indicates that the least number of primes within the interval increases, as
pn increases unboundedly. Hence, for all pn ∈ N | pn ≥ 59, Theorem 2.1 holds. For
all pn ∈ N | 3 ≤ pn ≤ 59, direct evaluation evidently confirms that inequality 2.3,
hence Theorem 2.1, hold in this range as well. Please refer to Fig. 1. Consequently,
Theorem 2.1 holds ∀pn ∈ N | pn ≥ 3, concluding the proof. �
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Figure 1. The drawings show the graphs of the output of the
inequality 2.3. The L.H. figure shows the graph within the range
pn ∈ N | 3 ≤ pn ≤ 59. The R.H. figure shows the graph within the
range pn ∈ N | 3 ≤ pn ≤ 48611. The graph in Blue depicts the
inequality 2.3 at every n in the range. The Red curve depicts the
inequality 2.3 at the twin primes only. The green curve shows
the output of the R.H. side of the ratio 2.6.

Figure 2. The drawings show the graphs of the output of the
R.H. side of the ratio 2.6. The L.H. figure shows the graph within
the range pn ∈ N | 3 ≤ pn ≤ 59. The R.H. figure shows the graph
within the range pn ∈ N | 3 ≤ pn ≤ 48611.
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3. Lower and Upper Bounds on (πp2
(n+1)

− πp2
(n)

)

Figure 3. The log-log drawing shows the graphs of the difference
(πp2

(n+1)
− πp2

(n)
) (Blue) vs. the Lower and Upper Bounds (Red),

at the twin primes, in the range pn ∈ N | 3 ≤ pn ≤ 2307229.
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Theorem 3.1 (The Lower Bound On (πp2
(n+1)

− πp2
(n)

)).

The lower bound on the number of primes within the interval p2(n+1) − p2(n), at

the Twin Primes, for all pn ∈ N | p(n) ≥ 3 is given by:

(3.1) LB =

(
2 (pn + 1)

(log pn) + 1

)
< (πp2

(n+1)
− πp2

(n)
)

Proof.
Suppose that Theorem 3.1 is false for pn ∈ N | p(n) ≥ 701. This implies that in

accordance with the hypothesis, at the twin primes we must have:

(3.2) (πp2
(n+1)

− πp2
(n)

) <
2 (pn + 1)

(log pn) + 1

The Cauchy’s Root Test:

(3.3) n
√
|an| = n

√∣∣∣∣(πp2
(n+1)

− πp2
(n)

)− 2 (pn + 1)

(log pn) + 1

∣∣∣∣
at pn = 701 attains approximately 1.03002 and strictly from above, tends towards
1 as pn increases unboundedly. Please refer to Figure 4a. By the definition of the
Cauchy’s root test therefore, this implies that the sequence an diverges. Conse-
quently, in accordance with the hypothesis:

(3.4) (πp2
(n+1)

− πp2
(n)

)− 2 (pn + 1)

(log pn) + 1
< 0

the value of the inequality 3.4 must decrease, as pn increases unboundedly. However,
at pn = 701, inequality 3.4 attains approximately 34.782 and further increases at
a rate exceeding k

√
pn with k = log 2, and the rate increases as pn increases

unboundedly. Please refer to Figure 4b. Therefore, we have a contradiction to the
initial hypothesis. Consequently, ∀n ∈ N | n ≥ 701 the inequality is valid:

(3.5) (πp2
(n+1)

− πp2
(n)

) >
2 (pn + 1)

(log pn) + 1

Direct computer evaluation for all pn ∈ N | 3 ≤ p(n) ≤ 701 confirms that inequality
3.5 is valid in this range. Please refer to Figure 5. Consequently, we deduce that
for all pn ∈ N | p(n) ≥ 3 Theorem 3.1 is valid as stated, concluding the proof. �

Theorem 3.2 (The Upper Bound On (πp2
(n+1)

− πp2
(n)

)).

The upper bound on the number of primes within the interval p2(n+1) − p2(n), at

the Twin Primes, for all pn ∈ N | p(n) ≥ 3 is given by:

(3.6) (πp2
(n+1)

− πp2
(n)

) <

(
2 (pn + 1)

(log pn)− 1

)
= UB

Proof.
Suppose that Theorem 3.2 is false for pn ∈ N | p(n) ≥ 701. This implies that in

accordance with the hypothesis, at the twin primes we must have:

(3.7) (πp2
(n+1)

− πp2
(n)

) >
2 (pn + 1)

(log pn)− 1
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Figure 4. The L.H. figure shows the graph of the Cauchy Root
Test of 3.3. The R.H. figure shows the graph of the difference 3.4
(Blue) vs (log 2)

√
pn (Red). Both log-log figures are drawn in the

range pn ∈ N | 701 ≤ pn ≤ 1299709.

Figure 5. The figure shows the graph of the difference 3.4. The
log-log figure is drawn in the range pn ∈ N | 3 ≤ pn ≤ 863.

The Cauchy’s Root Test:

(3.8) n
√
|an| = n

√∣∣∣∣ 2 (pn + 1)

(log pn)− 1
− (πp2

(n+1)
− πp2

(n)
)

∣∣∣∣
at pn = 701 attains approximately 1.02858 and strictly from above, tends towards
1 as pn increases unboundedly. Please refer to Figure 6a. By the definition of the
Cauchy’s root test therefore, this implies that the sequence an diverges. Conse-
quently, in accordance with the hypothesis:

(3.9)
2 (pn + 1)

(log pn)− 1
− (πp2

(n+1)
− πp2

(n)
) < 0

the value of the inequality 3.9 must decrease, as pn increases unboundedly. However,
at pn = 701, inequality 3.9 attains approximately 29.4055 and further increases at
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a rate exceeding k
√
pn with k = 1, and the rate rapidly increases as pn increases

unboundedly. Please refer to Figure 6b. Therefore, we have a contradiction to the
initial hypothesis. Consequently, ∀n ∈ N | n ≥ 701 the inequality is valid:

(3.10) (πp2
(n+1)

− πp2
(n)

) <
2 (pn + 1)

(log pn)− 1

Direct computer evaluation for all pn ∈ N | 3 ≤ p(n) ≤ 701 confirms that inequality
3.10 is valid in this range. Please refer to Figure 7. Consequently, we deduce that
for all pn ∈ N | p(n) ≥ 3 Theorem 3.2 is valid as stated, concluding the proof. �

Figure 6. The L.H. figure shows the graph of the Cauchy Root
Test of 3.8. The R.H. figure shows the graph of the difference 3.9
(Blue) vs (log 2)

√
pn (Red). Both log-log figures are drawn in the

range pn ∈ N | 701 ≤ pn ≤ 1299709.

Figure 7. The figure shows the graph of the difference 3.9. The
log-log figure is drawn in the range pn ∈ N | 3 ≤ pn ≤ 863.
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Corollary 3.3 (Brocard Conjecture Summary.).
By Theorem 3.1 and Theorem 3.2, the difference (πp2

(n+1)
− πp2

(n)
) at the Twin

Primes, for all pn ∈ N | p(n) ≥ 3 has the following bounds:

(3.11) LB =
2 (pn + 1)

(log pn + 1)
< (πp2

(n+1)
− πp2

(n)
) <

2 (pn + 1)

(log pn − 1)
= UB

With the average estimate AE , of the number of primes in the interval (p2(n+1) −
p2(n)):

(3.12) (πp2
(n+1)

− πp2
(n)

) ≈ 2 (pn + 1)

log pn
= AE

Remark 3.1.
The average estimate AE graph, considered at the Twin Primes, cuts

through the graph of the difference (πp2
(n+1)

− πp2
(n)

) in such a way that it per-

sistently generates alternatively over/under estimates.
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