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Abstract

Nelfinavir is a potent HIV-protease inhibitor with pleiotropic effects in cancer cells. Experimental studies connect its anti-
cancer effects to the suppression of the Akt signaling pathway, but the actual molecular targets remain unknown. Using a
structural proteome-wide off-target pipeline, which integrates molecular dynamics simulation and MM/GBSA free energy
calculations with ligand binding site comparison and biological network analysis, we identified putative human off-targets
of Nelfinavir and analyzed the impact on the associated biological processes. Our results suggest that Nelfinavir is able to
inhibit multiple members of the protein kinase-like superfamily, which are involved in the regulation of cellular processes
vital for carcinogenesis and metastasis. The computational predictions are supported by kinase activity assays and are
consistent with existing experimental and clinical evidence. This finding provides a molecular basis to explain the broad-
spectrum anti-cancer effect of Nelfinavir and presents opportunities to optimize the drug as a targeted polypharmacology
agent.
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Introduction

Tremendous effort has been directed at rational drug design

where one strives to understand, and subsequently optimize,

how a small molecule interacts with a single protein target and

impacts a disease state. However, such approaches are less

fruitful in discovering effective and safe therapeutics to treat

complex diseases such as cancer. It is suggested that the

inhibition or activation of a single specific target may fail owing

to the inherent robustness of the underlying biological networks

causing the disease state [1,2,3,4,5,6]. The goal then is to

perturb multiple relevant targets. Perturbation may be achiev-

able through the use of drug cocktails, or possibly through a

single drug that has the appropriate polypharmacological effect

[1,2,4,6,7,8,9,10,11]. To rationally design such a drug is a very

complex problem that begins by identifying the targets to which

that drug binds. Here we address a much simpler problem, that

is, to take a drug that is already believed to show this effect and

attempt to explain why it might be so. Nevertheless, we must

still begin by identifying the multiple targets to which it binds.

To this end, we have developed an off-target pipeline to

identify protein-drug interaction profiles on a structural

proteome-wide scale. The off-target pipeline integrates our

previous chemical systems biology approach [12,13,14] with

algorithms that accurately estimate binding affinity. We then

use the target list predicted from the off-target pipeline to

suggest physiological outcomes from the associated biological

networks and determine how well these outcomes map to what

is observed clinically.

The extension to our previous approach presented here is to

better estimate the binding affinity in forming a protein-ligand

complex, as both experimental and theoretical studies suggest that

even weak binding to multiple targets may have profound impact

on the overall biological system [15,16,17]. Available computa-

tional tools that quantitatively study protein-ligand interactions are

based predominantly on protein-ligand docking and free energy

calculations for the protein-ligand complex [18,19]. A formidable

task then is to include protein flexibility into the binding affinity

calculation since errors in scoring mainly result from the use of

rigid protein conformations [20]. The modeling of protein

flexibility requires computationally intensive molecular dynamic

(MD) simulations. However, it is impractical to apply MD

simulation to the whole structural proteome. Our approach pre-

filters the structural proteome to find the most likely cases to apply

MD. Specifically, we undertake a human structural proteome-

wide ligand binding site comparison using previously developed

algorithms [21,22,23] and add intensive binding free energy

calculations, based on protein-ligand docking, MD simulation and

MM/GBSA free energy calculations.

We apply this strategy to explore the molecular mechanism for

the observed anti-cancer effect of Nelfinavir, a human immuno-

deficiency virus (HIV) protease inhibitor. Recently, Nelfinavir has

been repurposed for cancer treatment [24,25,26]. However, its

molecular targets remain unknown. The majority of published
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data indicates that the drug suppresses the Akt signaling pathway

[27]. In human, the Akt family includes the serine/threonine

protein kinases Akt1, Akt2 and Akt3. These proteins are involved

in cell survival, protein synthesis and glucose metabolism and are

considered markers for many types of cancer [28,29,30]. Akt3 is

also known to be stimulated by platelet-derived growth factor

(PDGF), insulin and insulin-like growth factor 1 (IGF1) [31]. Thus

inhibition of the Akt pathway may also cause insulin resistance and

diabetes, a phenomenon observed as a side effect of treatment by

HIV protease inhibitors. Currently, there is no experimental

evidence to suggest that Nelfinavir binds directly to members of

the Akt family, rather it has been suggested that the drug acts

upstream of the Akt signaling pathway [32].

Using our structural proteome-wide off-target pipeline, we find

that multiple members of the protein kinase-like superfamily as off-

targets of Nelfinavir. Most of these protein kinases are found

upstream of the Akt, MAPK, JNK, NF-kB, mTOR and focal

adhesion pathways. We hypothesize that this weak but broad

spectrum protein kinase inhibition by Nelfinavir contributes to the

therapeutic effect against different types of cancer. Our hypothesis

is supported by kinase activity assays and consistent with other

existing experimental and clinical observations. This suggests that

the next challenges are specifically to optimize Nelfinavir as a

targeted polypharmacology agent, and more generally, to

determine whether our computational protocol can be applied

to other systems.

Results

Putative off-targets of Nelfinavir
The steps in our off-target pipeline are shown in Figure 1. In the

first step, the Nelfinavir binding pocket in the HIV protease dimer

structure (PDB Id: 1OHR) was used to search against 5,985 PDB

structures of human proteins or homologs of human proteins using

the SMAP software (see Supporting Information (SI) and methods

for details), which is based on a sensitive and robust ligand binding

site comparison algorithm [21,22,23]. Hits are considered

significant if the SMAP p-value ,1.0e-3. In step 2, the binding

poses and affinities of Nelfinavir to these putative off-targets are

estimated using two docking methods, Surflex [33] and eHiTs

[34], starting from the superimposed binding sites. If the docking

score indicates severe structural clashes between Nelfinavir and the

predicted binding pocket, the protein is removed from the off-

target list. After filtering by SMAP and the two docking programs,

92 putative off-targets remained for further analysis (SI, Table S1).

Among them, the top 7 ranked off-targets belong to the aspartyl

protease family that is the fusion form of the primary target HIV

protease dimer. The remaining 85 proteins belong to different

global folds from the primary target. These off-targets are

dominated by protein kinases (PKs) (51 off-targets) and other

ATP or nucleotide binding proteins (17 off-targets). The

distribution of the 51 protein kinases on the human kinome tree

[35] is shown in Figure 2. Even though these protein kinases have

a broad distribution among the different protein kinase families,

the majority of predicted off-targets belong to the tyrosine kinase,

cAMP-dependent, cGMP-dependent and protein kinase C

families. This distribution is more pronounced with a stringent

SMAP p-value smaller than 1.0e-4 (green in Figure 2). The 12 top-

ranked PKs with p-value smaller than 1.0e-4 were subject to

detailed protein-Nelfinavir docking and 10 of them were further

investigated through computational intensive molecular dynamic

simulations and MM/GBSA binding free energy calculations.

Predicted Nelfinavir binding to protein kinases
determined by protein-ligand docking

The SMAP alignments between the PKs and the Nelfinavir

binding sites reveal that ATP and its competitive inhibitors bind in

the vicinity of the predicted binding sites. An example is shown in

Figure 3 for the case of epidermal growth factor receptor (EGFR)

protein kinase domain (PDB id: 2J6M). The superimposed

Nelfinavir is accommodated in the protein kinase inhibitor

binding pocket and overlaps with the co-crystallized EGFR

inhibitor (PDB ligand id: AEE). If amino acid residues with

atomic distances less than 5.0 Å to the inhibitors are considered as

the binding site, approximately 73% (16/22) of the known AEE

binding site residues are included in the predicated binding site of

Nelfinavir to EGFR.

Binding poses and affinities of Nelfinavir to the identified PK

binding sites are firstly estimated using the docking software eHiTs

[34] and compared to the binding affinities of co-crystallized

inhibitors in those PKs. The binding pose of Nelfinavir is

optimized from its superimposed conformation obtained from

the SMAP output rather than by an ab initio global conformational

search. Systematic errors in the scoring function are cancelled out

by using a normalized docking score (NDS) [13]. A large negative

value for the NDS indicates a higher likelihood of binding. The

predicated binding affinity of Nelfinavir is comparable to that of

co-crystallized inhibitors for several classes of PKs, notably EGFR

(SI Table S2). The NDS for EPHA2 is 1.328, which implies that

the docking score of Nelfinavir to EPHA2 is higher than for

randomly selected molecules. This protein was removed from

further calculations.

Ensemble average binding free energy estimation using
MD simulation

In order to get more accurate estimates for the binding affinities,

MM/GBSA calculations were performed on 10 PK hits filtered by

the SMAP binding site similarity search and ligand docking scores.

Since in reality binding is dynamic, the structure will adopt

different conformations during binding, and this should be

anticipated. Hence one should generate a statistically sufficient

ensemble from molecular-dynamics trajectories and compare the

resulting ensemble averages to obtain a more reliable binding free

energy value. Recent studies on MM/GBSA binding free energy

Author Summary

The traditional approach to drug discovery of ‘‘one drug –
one target – one disease’’ is insufficient, especially for
complex diseases, like cancer. This inadequacy is partially
addressed by accepting the notion of polypharmacology –
one drug is likely to bind to multiple targets with varying
affinity. However, to identify multiple targets for a drug is a
complex and challenging task. We have developed a
structural proteome-wide off-target determination pipe-
line by integrating computational methods for high-
throughput ligand binding site comparison and binding
free energy calculations to predict potential off-targets for
known drugs. Here this method is applied to identify
human off-targets for Nelfinavir, an antiretroviral drug with
anti-cancer behavior. We propose inhibition by Nelfinavir
of multiple protein kinase targets. We suggest that broad-
spectrum low affinity binding by a drug or drugs to
multiple targets may lead to a collective effect important
in treating complex diseases such as cancer. The challenge
is to understand enough about such processes so as to
control them.

Nelfinavir Weakly Inhibits Multiple Kinases
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calculations show that a nanosecond scale MD simulation is

sufficient to perform a meaningful MM/GBSA calculation

[36,37,38]. Here, the binding free energies averaged over 200

snapshots from the last 2 ns trajectory of an 8 ns MD simulation

are listed in Table 1 for the complex structures of protein kinases

bound with Nelfinavir and co-crystallized ligands. To estimate the

stability of the MD simulations, structural root-mean-square-

deviations (RMSDs) for receptor backbone atoms and ligand non-

hydrogen atoms are examined as a function of time (Supporting

Information Figure S1). The RMSD is calculated based on

superimposed structures fitting to the first frame of the 8 ns MD

simulation using the coordinates of the receptor backbone atoms.

Thus, RMSD values for the ligands reflect both internal and rigid

body movements relative to the protein. In all cases, RMSDs for

the receptor backbone atoms are well below 3 Å for the last 2 ns

simulation, indicating robust simulations and reasonable samplings

for the MM/GBSA binding free energy calculation. The

conformational fluctuation of Nelfinavir bound to EPHB4 and

FGFR are higher than in other targets. Structural analysis of their

trajectories shows that Nelfinavir moves out of the binding pockets

of EPHB4 and FGFR during simulation, which indicates EPHB4

and FGFR may not be good candidates for Nelfinavir interaction.

Here, the MM/GBSA binding free energy calculation includes

gas-phase energies, solvation free energies and entropy contribu-

Figure 1. The structural proteome-wide off-target pipeline integrating ligand binding site characterization and comparison,
protein-ligand docking, MD simulation and MM/GBSA energy calculations, and biological network analysis.
doi:10.1371/journal.pcbi.1002037.g001

Nelfinavir Weakly Inhibits Multiple Kinases
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tions. As shown in Table 1, if only gas-phase energies and

solvation free energies, i.e., total binding enthalpy, are taken into

account, Nelfinavir shows comparable binding affinity to the co-

crystallized ligands. However, when considering the loss of entropy

during binding, Nelfinavir becomes less favorable than the co-

crystallized inhibitors due to its larger size and flexibility. For

example, when AEE enters the binding pocket of EGFR, the

entropy change for the whole system is 14.16 kcal/mol. However,

Figure 2. Distribution of predicted off-targets on the human kinome tree. Green represents off-targets with an SMAP p-value less than 1e-4.
Yellow represents off-targets with an SMAP p-value less that than 1e-3 and greater than 1e-4.
doi:10.1371/journal.pcbi.1002037.g002

Nelfinavir Weakly Inhibits Multiple Kinases
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the binding of Nelfinavir to EGFR causes an 18.12 kcal/mol

entropy losses for the whole system. Thus, even though the

entropy contribution is smaller than the enthalpy contribution, the

binding free energy difference between Nelfinavir and AEE comes

predominantly from the entropy change and this part of the free

energy cannot be omitted in providing a reliable estimate of

binding affinity.

Ligand binding pose and atomic interactions between ligand

and protein kinases are also important factors when measuring

ligand binding. The predicted binding pose of Nelfinavir

significantly overlaps with the known inhibitors of EGFR, IGF-

1R, FAK, Akt2, CDK2, ARK and PDK1 (SI, Figure S2 and S3).

The structure of Nelfinavir can be fragmented into five moieties:

the 2-methyl-3-hydroxy-benzamide portion A, the S-phenyl group

Figure 3. Overlap between EGFR ATP binding sites and Nelfinavir binding sites predicted by SMAP. The wheat cartoon represents the
backbone structure of EGFR (PDB id: 2J6M). Green sticks represent the co-crystal ligand of EGFR (PDB ligand id: AEE). Magenta sticks represent
superimposed Nelfinavir on EGFR according to SMAP alignment. Yellow sticks and balls represent the AEE binding site of EGFR. Orange sticks and
balls represent the predicted Nelfinavir binding site for EGFR. Blue sticks and balls represent the overlap between the AEE binding site and the
predicted Nelfinavir binding site for EGFR. The amino acid residues involved in the binding site are listed below the structure, colored accordingly.
doi:10.1371/journal.pcbi.1002037.g003

Nelfinavir Weakly Inhibits Multiple Kinases
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B, the tert-butyl carboxamide moiety C, the lipophilic dodecahy-

droisoquinoline ring D and the central hydroxyl group E (SI,

Figure S4). The benzamide ring A in the predicted conformations

superimposes well onto the aromatic groups of the co-crystallized

inhibitors for these protein kinases, and plays a critical role in

molecular recognition [39]. For other predicted protein kinases,

the binding pose of Nelfinavir still partially overlaps with their

respective co-crystallized inhibitors and occupies the ATP-binding

pockets.

Most of the hydrogen-bond interactions and hydrophobic

interactions between protein kinases and co-crystallized inhibitors

could be found between Nelfinavir and the respective protein

kinases. As shown in Figure 4, the hydrogen bond between the

pyrrolopyrimidine core of AEE and the main chain amide of

Met793 on EGFR is maintained between benzamide hydroxy

O38 of Nelfinavir and the same atom on EGFR. This hydrogen

bond interaction is critical for protein-ligand binding in EGFR.

Missing this hydrogen bond will cause ,3,700-fold loss of

inhibitor potency in EGFR [40]. Residues that form hydrophobic

interactions with AEE are also close to Nelfinavir and provide

appropriate hydrophobic interactions as shown in Figure 4. These

conserved hydrogen bond interactions and hydrophobic interac-

tions support the binding of Nelfinavir to EGFR. Similar

conserved hydrogen bond interactions and hydrophobic interac-

tions are observed for other protein kinases, excluding FGFR,

EPHB4 and Abl, that is, where Nelfinavir partially overlaps with

the co-crystallized ligands. The binding free energies for Nelfinavir

to FGFR and EPHB4 also indicate that the binding affinities of

Nelfinavir to these two proteins are weaker than the other eight

protein kinases.

In summary, MM/GBSA binding free energy, ligand binding

pose, conserved hydrogen bond interactions and hydrophobic

interactions supports the direct interaction of Nelfinavir with

EGFR, which has been shown as a possible Nelfinavir target based

on ligand binding site similarity and from experimental studies by

others [25]. For FGFR, EPHB4 and Abl, the results from MD

simulation and MM/GBSA free energy calculations indicate that

Nelfinavir is unlikely to bind to these three targets. For other

targets, IGF-1R, FAK, Akt2, CDK2, ARK and PDK1, the

calculated binding free energies and predicted ligand binding

poses suggested the possible inhibition by Nelfinavir, even though

there is no experimental support at this time.

Protein kinase activity assay for EGFR and Akt families
Given that computationally EGFR and Akt2 show favorable

binding affinities for Nelfinavir, MD simulation and MM/GBSA

binding free energy calculations were extended to other members

of the EGFR (ErbB2, ErbB4) and Akt families (Akt1 and Akt3). As

shown in Figure 5, the binding free energies for EGFR, ErbB2,

ErbB4, Akt1, Akt2 and Akt3 are -15.60, -25.76, -31.83, -15.39, -

19.25 and -12.13 kcal/mol, respectively. A HTRFH Transcree-

nerTM ADP Assay of 20 mM Nelfinavir was undertaken for

EGFR, ErbB2, ErbB4 and Akt (Akt1, Akt2 and Akt3) in an effort

to verify the predictions from the MM/GBSA calculations. Weak

inhibition by Nelfinavir is detected for ErbB2 (Figure 5). The lower

binding free energy of ErbB2 is consistent with its higher inhibition

rate and the experimental and computational results both show

inhibition of the EGFR family by Nelfinavir. Considering that a

prescribed dose of Nelfinavir is 1,250 mg (2.2 mmol) (http://

www.rxlist.com/viracept-drug.htm), the plasma concentration of

Nelfinavir in HIV patients can reach 7-9 mM [41]. However, these

concentrations only achieve a partial reduction of cancer cell

proliferation and are not efficient in inducing apoptosis in cancer

cells. Most cellular activity studies require concentrations of

Nelfinavir greater than 20 mM [42]. At such high concentration,

Nelfinavir demonstrated specific anti-cancer activity with no

reports of non-specific binding. As such, it is not likely that the

specific in vivo and in vitro anti-cancer activity when using a high

concentration of Nelfinavir is due to its aggregation. Likewise,

when the same concentration of Nelfinavir is used in our kinase

assay, it is unlikely that Nelfinavir is aggregated [43]. Since the

assay may not be sensitive enough to detect weak bindings, most of

assay results are inconclusive. It is necessary to develop more

robust assay methods for determining weak bindings.

The inhibition of EGFRs by Nelfinavir is consistent with Gills

et al.’s work on exploring the effect of HIV protease inhibitors on

endogenous and growth factor induced Akt activation [25]. In

their study, 20 mM Nelfinavir reduced the activation of EGFR,

IGF-1R and Akt signaling pathways. The decreased phosphory-

lation of EGFR, IGF-1R and Akt directly in response to EGF or

IGF-1 indicates that Nelfinavir can compete with EGF or IGF-1

and act at the plasma membrane to inhibit growth factor

receptors. However, the inhibition of Akt activation by Nelfinavir

is weaker than that observed using a known PI3K inhibitor and

the effect is transient, which may suggest a weaker inhibition of

EGFR or IGF-1R by Nelfinavir. No obvious inhibition of Akt1

and Akt3 by 20 mM Nelfinavir is observed. Even though the ADP

assay was not applied to every predicted protein kinase, the

comparable computational results indicate the possibility that

Nelfinavir may also inhibit other protein kinases through weak

interactions.

Table 1. Calculated binding free energies from MM/GBSA
calculations for Nelfinavir and co-crystallized inhibitors for
predicted off-targets.

Ensemble average calculation
(kcal/mol)

Target Ligand DHbinding DTSbinding DGbinding

ARK HPM -41.50 -26.70 -14.80

ARK 1UN -41.62 -20.36 -21.26

ABL P16 -30.14 -14.09 -16.05

ABL 1UN -31.22 -20.41 -10.81

AKT2 I5S -35.67 -24.38 -19.25

AKT2 1UN -43.64 -35.67 -18.53

CDK2 1CD -52.68 -10.10 -42.58

CDK2 1UN -49.54 -21.67 -27.87

EGFR AEE -34.73 -14.16 -20.57

EGFR 1UN -33.72 -18.12 -15.60

EPHB4 7X4 -39.61 -17.64 -21.96

EPHB4 1UN -21.40 -19.86 -1.54

FAK BI9 -50.02 -18.82 -31.20

FAK 1UN -44.73 -16.20 -28.53

FGFR SU1 -35.88 -18.44 -17.44

FGFR 1UN -26.86 -21.24 -5.62

IGF-1R BMI -38.26 -17.28 -20.98

IGF-1R 1UN -31.43 -21.37 -10.05

PDK1 BI1 -35.39 -13.65 -21.74

PDK1 1UN -30.32 -17.76 -12.56

Ensemble averaged binding free energies calculated for 200 snapshots
extracted from the last 2 ns of the MD simulation.
doi:10.1371/journal.pcbi.1002037.t001
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Comparison with other HIV protease inhibitors
Nelfinavir is the most potent inhibitor in cell proliferation and

Akt activation studies [25]. To compare Nelfinavir with other

protease inhibitors, MD simulation and MM/GBSA binding free

energy calculations were applied to two other protease inhibitors,

Saquinavir and Indinavir. Saquinavir has the most similar

inhibition effect to Nelfinavir in the cell proliferation analysis

involving 60 cell lines derived from nine different tumor types

and Indinavir has the weakest effect on cell proliferation [25].

Autodock Vina [77] was applied to get the starting structures for

Saquinavir and Indinavir when bound to EGFR, ErbB2 and

ErbB4. The docking energies for Nelfinavir, Saquinavir and

Indinavir are listed in SI Table S3 and show that there is no

significant difference between these three inhibitors. However,

the conserved hydrogen bond between Nelfinavir and EGFR

cannot be found for either Saquinavir or Indinavir. The

calculated MM/GBSA binding free energies for Saquinavir are

-8.51, -10.12 and -9.37 kcal/mol when bound to EGFR, ErbB2

and ErbB4, respectively and -1.11, -1.68 and -2.51 kcal/mol,

respectively, for Indinavir. Compared with the calculated MM/

GBSA binding free energies for Nelfinavir, the less negative

values for the binding free energies of Saquinavir indicate weaker

binding affinities. This is consistent with the observed effect of

these HIV protease inhibitors on Akt activity. The unfavorable

binding of Indinavir to the EGFR families is also supported

experimentally [25].

Effect of Nelfinavir off-target binding on Akt signaling
pathways

Putting together the results from the off-target predictions,

docking experiments, MD simulation, MM/GBSA free energy

calculations, and kinase activity assays, it appears that Nelfinavir

binds to different protein kinase (PK) off-targets through

relatively weak interactions. The majority of our top ranked

Figure 4. Comparative Interactions between EGFR and Inhibitor (PDB ligand id AEE; A) and EGFR and Nelfinavir (PDB ligand id
1UN; B). A: Cyan ribbon represents the backbone structure of EGFR bound to AEE (green). Cyan sticks represent the residues in contact with AEE.
Black dash line represents hydrogen bonding interactions between AEE and EGFR. The distance between N and N is 3.22 Å. B: Yellow ribbon
represents the backbone structure of EGFR bound to Nelfinavir. Yellow sticks represent the residues in contact with Nelfinavir. Black dash line
represents hydrogen bonding interactions between Nelfinavir and EGFR. The distance between N and O is 3.16 Å.
doi:10.1371/journal.pcbi.1002037.g004

Figure 5. Inhibition rates and calculated MM/GBSA binding free energies of Nelfinavir binding to EGFR, ErbB2, ErbB4, Akt1, Akt2
and Akt3.
doi:10.1371/journal.pcbi.1002037.g005
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Nelfinavir off-targets belong to the receptor tyrosine protein

kinase family, including EGFR, IGF-1R, Abl, FGFR and ephrin

receptor. The PKs in this family are high affinity cell surface

receptors that not only regulate normal cellular processes but also

play a critical role in the development of many types of cancers.

There are also other PKs identified as off targets for Nelfinavir,

such as CDK2, ARK2, FAK1, Akt2 and PDK1. By examining

pathways associated with each individual predicted off-target, we

constructed an integrated off-target interaction network (Figure 6).

To simplify the whole network, we only present the interactions

between predicted off-targets and the major pathways involved in

cancer development and insulin resistance. Effects of these off-

targets are not limited to these pathways. Predicted off-targets,

represented by yellow circles in the network, regulate PI3K,

MAPK, JNK, mTOR, NF-kB and focal adhesion pathways

through direct or indirect interactions with intermediate proteins

connecting the pathways. Inhibition of predicted off-targets is

predicted to down-regulate these pathways, and hence reduce

cancer risk and increase insulin resistance.

Consider EGFR as an example to show how inhibition by

Nelfinavir can result in an anti-cancer effect. Some major effects of

EGFR on cellular functions come from its regulation of the PI3K/

Akt pathway. As a receptor tyrosine protein kinase, EGFR can be

activated by epidermal growth factor and then induce activation of

Phosphoinositide 3-kinases (PI3K), resulting in the formation of a

PtdIns(3,4,5)P3 molecule (PIP3 in Figure 6). Akt will then bind to

PtdIns(3,4,5)P3 and be phosphorylated and activated by PDK1

and mTOR. As a consequence, the activation of Akt triggers the

downstream response of the Akt pathway, such as phosphorylation

of the Bcl-2-associated death promoter (BAD), activation of the

NF-kB pathway and inhibition of the retinoblastoma protein (Rb).

The inhibition of EGFR by Nelfinavir will reduce Akt signaling,

consistent with current experimental evidence. Along with the

regulation on the PI3K-Akt pathway, EGFR can also induce the

activation of the MAPK and JNK pathway through interaction

with Ras [44,45]. All these activities have the potential to increase

cell survival and cell proliferation and prevent cell apoptosis, as

shown in Figure 6. Conversely, over-activation of EGFR and the

associated down-stream pathways could result in uncontrolled cell

growth and division.

Other predicted off-targets of Nelfinavir, for example, IGF-1R,

Abl, FGFR, EPHB4 and FAK, have similar effects to EGFR,

again by controlling activation of PI3K and Ras. According to

our calculations, Nelfinavir can also bind to PDK1 and ARK.

While a different mechanism than EGFR inhibition, it is

hypothesized this can lead to regulation of the MAPK and

mTOR pathways. PDK1 is crucial for the activation of Akt

through direct phosphorylation.

CDK2 is also implicated by our off-target analysis. CDK2 is

part of the downstream regulation of the PI3K/Akt pathway, and

depending on cellular location, can either promote cell cycle

progression or cell death [46]. The presence of active nuclear

CDK2 during the transition to the G2 phase inhibits the cell cycle

progression while Akt-regulated nucleo-cytoplasmic CDK2-relo-

cation is required for cell cycle progression. The dual control of

CDK2 on cell proliferation and apoptosis makes it an interesting

anti-cancer target. Jiang et al. showed that Nelfinavir can inhibit

CDK2 activity in melanoma cells [30] in keeping with our

computational findings.

In summary, the dominant effect of Nelfinavir through off-

target binding to a variety of protein kinases comes from up-

stream regulation of the PI3K/Akt pathway. These protein kinases

are also hypothesized to regulate other cancer pathways such as

MAPK, JNK, NF-kB, mTOR and the focal adhesion pathway.

Similarly, Nelfinavir is predicted to inhibit IGF-1R, which

regulates the insulin/insulin-like growth factor signaling pathway,

and offers one possible explanation for the observed side effects of

Nelfinavir on insulin resistance and diabetes.

Figure 6. Interactions between predicted off-targets and PI3K/Akt, MAPK, JNK, NF-kB, mTOR, Glucose uptake, and Glycogenolysis
pathways. Yellow circles represent predicted off-targets. Blue circle represents intermediate proteins. Green squares represent pathways. Pink
squares represent cellular effects. Black lines represent activation. Red lines represent inhibition. Black dashed lines represent a dual effect (activation
or inhibition).
doi:10.1371/journal.pcbi.1002037.g006
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Discussion

This study indicates that Nelfinavir is capable of a broad based

polypharmacological effect against a number of protein kinases as

targets. Determining the total number of possible targets is limited

by the availability of the 3-D structures (or models) of human

proteins. A second limitation might arise based on the versatility of

Nelfinavir itself. The binding sites determined here map to the

image of the ligand in the conformation it is found when bound to

an HIV-1 protease. It might bind to a different target using a

different conformation with higher affinity than observed here and

these would not be found since the binding pocket itself would be

different.

Given that existing experimental data indicate that the off-

targets to Nelfinavir are involved in the Akt pathway, other

potential strong binding off-targets upstream of the identified

receptor tyrosine kinases also need to be considered. One of the

most likely alternatives is the b-arrestin regulated G-protein

coupled receptor signaling transduction pathway which regulates

MAPKs, SRC, PI3K, and Akt, and mediates EGFR transactiva-

tion [47]. Two major non-kinase proteins involved in the kinase

regulation and transactivation of the GPCR signaling pathway are

the GPCR and b-arrestin. If the GPCR or b-arrestin is strongly

inhibited by Nelfinavir, it is expected that the cellular functions

such as GPCR internalization, translocation of smoothened to the

primary cilium, and chemotaxis control, which are mediated by

the b-arrestin, should be affected [47]. However, the related

phenotype changes have not been reported. In addition, no

significant hits (p-value ,1.0e-5) are found for Nelfinavir using the

Similarity Ensemble Approach (SEA), which is one of the most

sensitive methods to identify GPCR related off-targets [48,49].

The SMAP similarity between b-arrestin and HIV protease is not

significant (p-value .1.0e-2). Although more analyses are required

to determine if Nelfinavir binds to other proteins that indirectly

regulate EGFR pathways, the data reported here at least suggest

that the pleotropic effect of Nelfinavir comes from the direct

inhibition of a variety of protein kinases.

A fundamental question raised by this work is whether weak

binding of a drug to multiple targets can cumulatively cause strong

phenotypic changes? Existing studies of biological networks have

shown that the malfunction of multiple nodes more likely causes

the system to fail than the removal of a single node as a result of

diversity, redundancy and system control of the biological

network. Multiple node failures have been called ‘‘fail-on’’ [50],

and used to explain neurological disorders [51] and cancer [52,53]

in recent genome-wide studies. Addressing the fail-on phenome-

non would require a polypharmacological effect. The therapeutic

efficacy of multiple protein kinase inhibitors suggested here has

already been demonstrated by less specific protein kinase

inhibitors which attack tumors through multiple mechanisms

and are used in more than one type of cancer therapy [54]. For

example, Sunitinib is the first cancer drug simultaneously

approved for two different cancer treatments, namely, renal cell

carcinoma and imatinib-resistant gastrointestinal stromal tumor. A

protein kinase assay against 113 different kinases shows that

Sunitinib can bind to 73 additional kinases apart from its primary

target [55]. In another example, moderate micomolar RAF

inhibitor PLX4720 is potent in inhibiting downstream signaling

and proliferation of the cell harboring BRAF, and in treating

melanoma cell lines [56]. In contrast, Sorafenib that was

developed as a potent nanomolar RAF inhibitor failed in the

clinical trial due to its low anti-melonoma efficacy. Araujo et al.

demonstrated the synergistic effect of multiple low-dose inhibition

of upstream processes on the attenuation of downstream signals in

the EGFR signaling pathway [57], and suggested that low-dose

combination therapy may reduce drug side effects and resistances

in the treatment of cancer [58]. Nelfinavir is a potential lead

compound in the design of the next generation of anti-cancer

drugs. As indicated by the MM/GBSA binding free energies for

different protein kinases, the binding affinity of Nelfinavir is

weaker than for the original inhibitors. Entropy changes during

binding contribute significantly to the differences in binding

affinity since Nelfinavir consists of more rotatable bonds and is

more flexible than many small molecule protein kinase inhibitors.

Covalent bonds could be added to the Nelfinavir structure to

reduce the degree of freedom and increase the specificity and

binding affinity. On the other hand, it can be hypothesized that

the weak binding of Nelfinavir to multiple protein kinases helps

avoid severe side effects, but still impacts the system enough to

have a positive effect. That is, weak inhibition of multiple protein

kinases may be just enough to return the system to a normal state,

as suggest by dynamic analysis of model systems [57,58].

There are a number of unmet computational challenges in

exploiting the concept of multiple weak interactions and designing

selective polypharmacology therapeutics, from target identification

to lead optimization. Computational techniques that are able to

identify optimal combination targets and their inhibition windows

in cellular networks have been developed, but their scope is still

limited [59,60,61]. It is well accepted that an optimal lead should

balance binding potency and molecular size [62]. A highly potent

lead compound usually leads to a drug candidate with high

molecular weight, which is often linked to a higher risk of failure in

drug development [63]. Analysis of the binding affinity of

marketed drugs and natural products indicates that therapeutic

efficacy is not necessarily associated with high binding affinity [63].

Moreover, drug-target interactions in vivo are different from those

in vitro. An increasing body of evidence suggests that the drug-

target residence time, a measurement of the lifetime of the drug-

target complex, better correlates to drug efficacy than does the

binding affinity [64,65]. This suggests that lead optimization

should focus on the drug-target residence time instead of binding

affinity. Although methodologies have been proposed for multi-

target screening based on binding affinity [66], there are simply no

computational tools available for the efficient and accurate a priori

estimation of the drug-target residence time from molecular

structures.

A detailed understanding of the effect of multiple interactions on

the biological network requires innovative systems biology

approaches. The qualitative description of the biological network

presented here is limited in its predictive power, considering the

highly dynamic nature of signal transduction pathways. A

mathematical modeling approach will be more powerful than

the static approach as we have demonstrated recently in a study of

CETP inhibitors [67]. Existing mathematical modeling methods

such as ordinary differential equations, Petri nets, and pi-calculus

require a large number of kinetics parameters to simulate the

dynamic behavior of the biological system [68]. In practice many

of these parameters may not be available. Thus the network model

has to be reduced. The qualitative properties derived from off-

target binding network may help to develop restrained but

functional dynamic models that are suitable for parameter

optimization and mathematical modeling.

In conclusion, by integrating methods from structural bioinfor-

matics, molecular modeling and network analysis, we propose that

the observed anti-cancer effects of the HIV protease inhibitor

Nelfinavir derive from weak binding to multiple protein kinases

that are mostly upstream of the PI3K/Akt pathway. Our

computational approach, enhanced from previous work with the
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use of MD simulation and MM/GBSA free energy calculations, is

supported by kinase activity assays and existing experimental and

clinical evidence. This type of approach has the potential to be

generalized as a form of rational polypharmacological drug design.

Materials and Methods

Overview of structural proteome-wide off-target pipeline
The structural proteome-wide off-target pipeline is outlined in

Figure 1. Firstly, the Nelfinavir binding pocket in the HIV

protease (PDB Id: 1OHR) was used to search against 5,985 PDB

structures of human proteins or homologous of human proteins

using the SMAP software [21,22,23]. Secondly, the binding poses

and affinities of Nelfinavir to these putative off-targets are

estimated using two docking methods, Surflex [33] and eHiTs

[34]. If the docking score indicates severe structural clashes

between Nelfinavir and the predicted binding pocket, the protein

is removed from the off-target list. Finally, the remaining putative

off-targets are subject to MD simulation, MM/GBSA calculation,

network reconstruction, and kinase activity assay.

Ligand binding site similarity search
5,985 PDB structures that are homologous to human proteins

(sequence identify .30%, alignment coverage larger than 90%)

are searched against the HIV-1 protease dimer (PDB id: 1OHR)

using SMAP, which can be downloaded from http://funsite.sdsc.

edu. The detailed algorithms implemented in SMAP are presented

elsewhere [21,22,23]. In brief, proteins are represented using Ca
atoms only and characterized by a geometric potential [21]. Then

two proteins are aligned to identify similar local binding sites using

the Sequence Order Independent Profile-Profile Alignment

(SOIPPA) algorithm [22]. The statistical significance of the

binding site similarity is estimated using an extreme value

distribution model [23].

Reverse docking of the human structural proteome
The binding affinity of Nelfinavir to the putative off-targets with

SMAP p-value less than 1.0e-3 are estimated by two docking

methods, Surflex [33] and eHiTs [34]. First, the complex structure

of HIV-1 protease with Nelfinavir is superimposed onto these

proteins according to the SMAP alignment. The superimposed

structure of Nelfinavir is used as the starting conformation for

docking. The binding pose of Nelfinavir in these statistically

significant off-targets is locally optimized and scored starting from

the starting conformation using Surflex 2.1 (default setting) and

eHits 6.2 (the fastest setting). The docking score is normalized

using the protocol described in reference [13].

MD simulation and MM/GBSA binding free energy
calculation

MM/GBSA [69,70] was developed for free energy calculations

and has been used to estimate the binding affinity for several

protein or DNA systems [71,72,73,74]. Here we perform ensemble

average MM/GBSA binding free energy calculation on the

snapshots from the MD simulation to compare binding affinity of

Nelfinavir with that of the co-crystallized ligands.

MD simulation on the complex structures of predicted
protein kinase off-targets and their inhibitors including
Nelfinavir

Explicit solvent molecular dynamics simulations were per-

formed with NAMD [75] on the structures of the Nelfinavir-

protein kinase complexes and co-crystallized ligand-protein kinase

complexes. The starting structure for Nelfinavir in each protein

kinase is the lowest energy conformation obtained through

Autodock Vina [76]. These complex structures are embedded in

rectangular boxes of TIP3P water [77] molecules to mimic the

solvent environment. The smallest distances between the edge of

the boxes and the atoms of the complex structures are adjusted to

be at least 10 Å. Ions are added to neutralize these systems and

satisfy the salt concentrations. The salt concentration is obtained

from individual experimental condition for each protein kinase.

The long distance cut-off for both van der Waals interactions and

electrostatic interactions is set as 14 Å. A switching function is used

to truncate the van der Waals energy smoothly at the cut-off

distance. The Particle Mesh Ewald (PME) [78] method is applied

to treat the long range electrostatic interactions. All covalent bonds

involving hydrogen atoms are constrained by the SHAKE

algorithm [79]. In order to simulate the NPT ensemble (system

with a fixed pressure P, temperature T, and number of atoms N),

the Langevin piston Nose-Hoover method [80,81] in NAMD

together with the periodic boundary conditions is used to maintain

a constant pressure and temperature for these systems.

Systems are first minimized by a five-stage minimization

protocol. Hydrogen atoms are optimized in the first stage, keeping

all other atoms fixed. Then water molecules and side chain atoms

are relaxed in the second and third stage, respectively. All atoms

are optimized in the fourth stage, with position restraints on

backbone atoms of proteins and ligands. Minimization is

completed by an additional 25,000 steps, without any restraints,

to remove bad contacts. All minimizations are preformed with the

conjugate gradient energy minimization method [82] in NAMD.

The optimized systems are then gradually heated from 0 K to

50K, 100 K, 150 K, 200 K, 250 K, and experimental temperature

(about 298 K) with position restraints on the backbone atoms. The

structures are equilibrated at each temperature for 250 ps with a 1.0

fs time step. The force constant of restraints is 4.0 kcal/mol?Å-2.

After the systems are heated to the experimental temperature,

position restraints are removed in the following 120 ps simulation by

gradually reducing the force constant. Subsequently 8 ns NPT MD

simulations are carried out on these systems with 1.0 fs time step at

the experimental temperature. 200 snapshots are extracted from the

last 2 ns simulations with 10.0 ps time intervals to generate

representative configurations for the MM/GBSA binding free

energy calculation.

MM/GBSA calculation
The binding free energy can be calculated through the following

equation:

DGbinding~Gcomplex{Greceptor{Gligand ð1Þ

where Gcomplex, Greceptor, Gligand are the free energies of the complex,

receptor and ligand respectively. The free energy of each

molecular on the right hand side can be considered as the sum

of molecular mechanical energy in gas phase, solvation energy and

entropy term, as shown in the following formula:

Gmolecular~EMMzGsol{TS ð2Þ

EMM is calculated by the molecular mechanics method with

standard force field parm9 in AMBER9 package [83,84]. The

electrostatic contribution to the solvation free energy is determined

by the Generalized Born (GB) model [85,86,87,88], a widely used

continuum solvent model. The ‘‘OBC’’ model with modified

Nelfinavir Weakly Inhibits Multiple Kinases

PLoS Computational Biology | www.ploscompbiol.org 10 April 2011 | Volume 7 | Issue 4 | e1002037



Bondi radii (mbondi2) [89,90,91] in AMBER9 is applied to

calculate this part of energy. This model is newer than the original

version of the GB model and provides a significant improvement

and is recommended for both proteins and nucleic acids. The

interior dielectric constant of the molecule of interest is set as 1.0

and the exterior or solvent dielectric constant is set as 78.5. The

non-polar contribution to the solvation free energy is proportional

to the solvent-accessible surface area [89,92]. The surface area is

calculated by the LCPO model [93] and the surface tension used

to calculate the non-polar part is taken as 0.0072 kcal/mol?Å-2.

The entropic term is the most time-intensive part of the MM/

GBSA calculation but is found to be indistinguishable among

different conformational states and contributes less than the other

two terms in many application for estimating relative binding free

energies [69,94,95]. The entropy change associated with ligand

binding is estimated by normal mode analysis [96] in AMBER9.

For each system, the MM/GBSA calculation is carried out on the

200 snapshots extracted from the last 2ns of the MD simulation.

Protein kinase activity assay
HTRFH TranscreenerTM ADP Assays were performed on

EGFR, ErbB2 and ErbB4 Akt1, Akt2 and Akt3 by GenScript

(New Jersey, U.S.A). Nelfinavir Mesylate was purchased from

Toronto Research Chemicals (North York, Canada). The

compound is diluted to a 10 mM concentration with acetone

and stored at -20uC. Inhibition of Nelfinavir at 20 mM was tested

on EGFR, ErbB-2, ErbB-4 and Akt (Akt1, Akt2, Akt3).
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