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Antibiotic resistance has become a significant and growing threat to public and
environmental health. To face this problem both at local and global scales, a better
understanding of the sources and mechanisms that contribute to the emergence and
spread of antibiotic resistance is required. Recent studies demonstrate that aquatic
ecosystems are reservoirs of resistant bacteria and antibiotic resistance genes as well
as potential conduits for their transmission to human pathogens. Despite the wealth of
information about antibiotic pollution and its effect on the aquatic microbial resistome,
the contribution of environmental biofilms to the acquisition and spread of antibiotic
resistance has not been fully explored in aquatic systems. Biofilms are structured
multicellular communities embedded in a self-produced extracellular matrix that acts
as a barrier to antibiotic diffusion. High population densities and proximity of cells in
biofilms also increases the chances for genetic exchange among bacterial species
converting biofilms in hot spots of antibiotic resistance. This review focuses on the
potential effect of antibiotic pollution on biofilm microbial communities, with special
emphasis on ecological and evolutionary processes underlying acquired resistance to
these compounds.
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ENVIRONMENTAL BIOFILMS

Nature is often unpleasant. It is then better to face environmental uncertainties under the principle
of “strength through unity”. In many habitats, either natural or artificial, microorganisms attach
themselves to surfaces, either abiotic or biotic, forming a complex matrix of biopolymers known
as biofilm that protect them from environmental hazards (Costerton et al., 1978). Biofilms
may be composed of a single bacterial species (e.g., Vibrio cholerae, Teschler et al., 2015) but
more frequently they are formed by a complex and diverse community of microorganisms
(bacteria, algae, fungi and protozoa) embedded in an extracellular matrix of polysaccharides,
exudates, and detritus (Costerton et al., 1978; Wimpenny et al., 2000). Many microbial species
are able to change their lifestyle (free-living vs. attached) depending on their physiological
status and the physicochemical conditions in their surroundings, taking advantage of the greater
availability of organic matter in suspended particles and surfaces (Simon et al., 2002; Grossart
et al., 2004; Grossart, 2010; Teschler et al., 2015). In aquatic habitats, biofilms develop not only
in benthic substrata, such as streambed cobbles and sand (epilithic and epipsammic biofilms,
respectively), but also on floating macro– and microaggregates (Simon et al., 2002). From an
ecological perspective, microorganisms in environmental biofilms actively participate in organic
matter decomposition, nutrient dynamics and biogeochemical cycling, being a key component of
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ecosystem functioning (Sabater and Romaní, 1996; Sabater
et al., 2002; Simon et al., 2002; Battin et al., 2007; Romaní,
2010). Moreover, streambed biofilms are considered as good
indicators of the overall water quality and the ecological status
of the system (i.e., ecosystem health) (Burns and Ryder, 2001;
Sabater et al., 2007). It is then of special interest to assess
how biofilm communities respond to anthropogenic pollution
of aquatic environments (e.g., rivers, lakes, and reservoirs)
considering the increasing amount of chemical compounds
(metals, personal care products and drugs used in veterinary and
humanmedicine) released into these waterbodiesmainly through
wastewater treatment plant (WWTP) effluents and agricultural
run-off (Pruden et al., 2006; Sarmah et al., 2006; Baquero et al.,
2008). This review focuses on the role of streambed biofilms as
reservoirs of antibiotic resistant bacteria and resistance genes,
providing a general overview of the causes and consequences
of a chronic exposure of biofilm communities to sub-inhibitory
concentrations of antibiotics and their role in the spread and
persistence of antibiotic resistance.

BIOFILMS AND ANTIBIOTICS

Biofilms show an increased survival and resistance to
environmental and chemical stressors (e.g., antibiotics) mainly,
but not only, by the protection conferred by the extracellular
polysaccharide matrix (Mah and O’Toole, 2001; Stewart and
Costerton, 2001; Donlan, 2002; Donlan and Costerton, 2002;
Stewart, 2002; Hall-Stoodley et al., 2004; Høiby et al., 2010). In
biofilms, bacterial cells exhibit 10 to 1,000 times less susceptibility
to specific antimicrobial agents compared with their planktonic
counterparts (Gilbert et al., 2002). This reduced susceptibility is
caused by a combination of different factors, namely: (i) a poor
antibiotic penetration into the polysaccharide matrix; (ii) the
arbitrary presence of cells showing a resistant phenotype (known
as “persisters”); and (iii) the presence of either non-growing
cells or cells that triggered stress responses under unfavorable
chemical conditions within the biofilm matrix (Stewart and
Costerton, 2001; Stewart, 2002). These protective mechanisms
act synergistically to those responsible for conventional
resistance linked to the presence of antibiotic resistance
genes (ARGs) in bacterial genomes or extrachromosomal
elements, yielding an overall increased resistance of biofilms to
antimicrobial compounds. For instance, β-lactamase producing
bacteria offered increased protection in biofilms because the
β-lactam antibiotic, such as ampicillin, was inactivated by those
β-lactamases (Anderl et al., 2000). Moreover, the ampC gene
of Pseudomonas aeruginosa biofilms was strongly induced by
exposure to antibiotics, such as imipenem (Bagge et al., 2004).
Additionally, biofilm formation may result as a defensive reaction
to the presence of antibiotics. Hoffman et al. (2005) found that
sub-inhibitory concentrations of aminoglycosides induce biofilm
formation as part of a defense response in Escherichia coli
and P. aeruginosa. Similar results were described by Salcedo
et al. (2014), who observed that sub-inhibitory concentrations
of tetracycline and cephradine induce biofilm formation and
enhance the transfer rate of the pB10 plasmid among the biofilm

biomass (E. coli and P. aeruginosa) at rates 2–5 times faster than
without antibiotic treatment. Since biofilm formation is also
common for most bacterial pathogens, the enhanced resistance
of biofilms to antibiotics is a serious concern for human health
as many chronic infections are linked to biofilm growth on
either natural surfaces (e.g., teeth, lungs) or foreign-body
devices (e.g., pacemakers, catheters, prosthetic heart valves). The
characteristics, composition, growth dynamics, and resistance
mechanisms of clinically relevant biofilms have been reviewed
in detail by several authors (Donlan and Costerton, 2002; Parsek
and Singh, 2003; Hall-Stoodley et al., 2004; Høiby et al., 2010),
and are out of the scope of this review. In clear contrast, lesser
is known about the role of environmental biofilms as natural
reservoirs of ARGs, their contribution to ARGs spreading
among biofilm inhabitants and their transfer to free-living
bacteria, increasing the risk for their transmission to aquatic
microorganisms and potential human pathogens (Vaz-Moreira
et al., 2014 and references therein).

ENVIRONMENTAL BIOFILMS UNDER
CHEMICAL STRESS

Many aquatic systems (rivers, lakes, reservoirs) are affected by
human activities such as continuous discharges from WWTP
effluents. Under such conditions, macro- and microorganisms
inhabiting these waterbodies are exposed to a low but constant
concentration of a wide range of chemical pollutants (antibiotics
but also analgesics, anti-inflammatory, and psychiatric drugs,
β-blockers, pesticides, etc.) that alter their behavior at different
levels, with consequences that we are only beginning to grasp
(Bernier and Surette, 2013; Boxall, 2014). Several studies have
demonstrated the effects of the so-called emerging pollutants
on the composition, activity, and resilience of streambed
biofilms (Bonnineau et al., 2010; Ricart et al., 2010; Proia
et al., 2011, 2013a,b; Osorio et al., 2014), although the
ecological implications of such background pollution are difficult
to envisage. A serious drawback arises when comparing
the environmental concentrations of antibiotics measured in
polluted aquatic habitats (from ng/L to μg/L) to those used to
treat bacterial infections (i.e., therapeutic concentrations, which
are usually ≥1 mg/L). Since environmental concentrations of
antimicrobial compounds are several orders of magnitude below
the minimum inhibitory concentration (MIC) of most bacterial
pathogens, their antibiotic effect is doubtful, if any (Waksman,
1961; Davies, 2006; Davies et al., 2006; Davies and Davies,
2010). Current data strongly suggest that antibiotics, at these
sub-MIC concentrations, act as signaling molecules mediating a
wide variety of cell processes (gene transcription and expression,
quorum sensing, inter- or intra-species communication, biofilm
formation, among others; Davies, 2006; Romero et al., 2011;
Sengupta et al., 2013; Andersson and Hughes, 2014), instead of
causing growth arrest or cell death. Moreover, low concentration
of antibiotics may also trigger different stress responses that
might accelerate horizontal gene transfer (HGT) and the spread
of ARGs in a broad range of bacterial species (Beaber et al., 2004;
Miller et al., 2004; Maiques et al., 2006). Under this perspective,
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the chronic exposure to subinhibitory antibiotic concentrations
that occurs in most aquatic ecosystems offers new avenues for
research that deserve exploration. For instance, is the effect of
this chronic exposure strong enough to shape the composition
of microbial communities? Or is it buffered by the many other
physico-chemical constraints that microbes face in their habitat?
Is the antibiotic pollution adding a background noise that
interferes with normal communication among bacterial cells in
their habitats (e.g., biofilms)? If so, how can this noise effect be
measured? And what about activity? Does antibiotic pollution
have measurable effects on biogeochemical cycles at both local
and global scales? In this regard, Roose-Amsaleg and Laverman
(2015) have recently reviewed 31 articles dealing with the effects
of antibiotics on microorganisms involved in biogeochemical
cycles to ascertain if environmental concentrations of these
compounds have side-effects on such cycles, with special focus
on N cycling (anammox, denitrification, and nitrification).
Despite the few studies available and the variability in terms
of antibiotic types and conditions tested, conclusions of their
work point to a clear alteration of microbial activity in key
biogeochemical cycles, thus affecting ecosystem functioning at
different levels.

Despite these considerations, it is now clear that chronic
exposure to antibiotics, even at very low concentrations,
promotes and maintains a pool of resistance genes in natural
microbial communities (Séveno et al., 2002; Allen et al., 2010;
Sengupta et al., 2013; Andersson and Hughes, 2014). It should
be mentioned, however, that most of these genes, although
conferring a resistant phenotype when expressed, are probably
not “true” resistance genes (Martinez et al., 2015) thus having a
function distantly related to that under therapeutic conditions
(Allen et al., 2010; Martinez et al., 2015). Notwithstanding this,
current data indicate that the extensive use of antibiotics over the
last century has generated a selective pressure that has accelerated
the acquisition and spread of ARGs among environmental
bacteria posing a risk for human health assuming the striking
capacity of microbes to share genes.

ACQUISITION AND SPREAD OF ARGs IN
BIOFILMS

Susceptible bacteria may become resistant to antibiotics through
chromosomal mutations or by HGT, being the latter the major
contributor to the spread of antibiotic resistance determinants.
The significance of HGT to microbial adaptation was initially
recognized when antibiotic-resistant pathogens were identified
(Sobecky and Hazen, 2009). HGT is mediated by mobile
genetic elements (MGEs), which play an important role in
the evolution and adaptation of bacterial species to new
and/or changing environmental conditions (Frost et al., 2005).
MGEs are segments of DNA encoding a variety of enzymes
and proteins that mediate their movement within the host
genome (intracellular mobility) or between bacterial cells
(intercellular mobility). Interchange of DNA fragments between
a cell donor and a receptor takes place through conjugation,
transformation, or transduction, whereas intracellular movement

is facilitated by integrons and transposons (Modi et al.,
2014).

Together with phage transduction and natural transformation,
the exchange of genetic material through conjugation is one of
the most efficient pathways to disseminate antibiotic resistance
among bacterial cells, where donor and recipient cells are in
close contact. Conjugation is mainly mediated by the so-called
“conjugative plasmids”, although “conjugative transposons” are
also capable of triggering the process. One of the most
important aspects of conjugative plasmids is that they can
be exchanged among both related and phylogenetically distant
bacteria (Dionisio et al., 2002). The high cell density and
close contact among cells within the biofilm matrix together
with increased genetic competence and accumulation of MGEs
in these habitats convert them into an optimal scenario
for the acquisition and spread of ARGs (Fux et al., 2005).
Several studies have shown increased conjugation efficiencies
in biofilms when compared to free-living bacterial cells. In
fact, conjugation of the broad-host-range plasmid RP4 between
two species of Pseudomonas occurred in a biofilm reactor at
high frequencies (Ehlers and Bouwer, 1999). In situ assessment
of gene transfer rates in biofilms using automated confocal
laser scanning microscopy revealed conjugation rates 1,000-fold
higher than those determined by classical plating techniques
(Hausner and Wuertz, 1999). Molin and Tolker-Nielsen (2003)
also showed that the efficiency of gene transfer seems to be
correlated with the biofilm surface, suggesting that a high
surface/volume ratios favor transfer within or between biofilm
populations.

The diversity and abundance of ARGs in environmental
biofilms have been investigated by several authors to unveil
differences in the concentration of target genes between
planktonic and benthic compartments. Less information is
available, however, on the contribution of MGE to the acquisition
and spread of ARGs among biofilm inhabitants and between
them and free-living bacteria. Table 1 summarizes some relevant
studies dealing with the presence, diversity and abundance
of ARGs in biofilms from different environmental settings
such as rivers exposed to WWTP effluent discharges, WWTP
and drinking water network pipelines, experimental mesocosm,
and sand filters. Although not exhaustive, Table 1 provides
a general overview of results obtained by different research
groups studying the role of environmental biofilms as hot spots
for the accumulation and transfer of ARGs. Schwartz et al.
(2003) demonstrated that the vanA gene, which confers a high-
level resistance to vancomycin, was detected in drinking water
biofilms in the absence of any vancomycin-resistant enterococci,
suggesting a potential gene transfer from them to autochthonous
bacteria in drinking water systems. Gillings et al. (2008)
investigated the presence of a MGE, the class 1 integrase (intI1)
gene, in bacterial isolates collected from diverse environmental
samples near Sydney. Authors found that 1 to 3% of bacterial
isolates from lake sediments were intI1 positive, while in biofilms
from a groundwater treatment plant, the number of intI1-positive
isolates reached 30% despite no antibiotics were used as selective
agents for culturing. Moreover, Engemann et al. (2008) found that
the abundance of six genes conferring resistance to tetracycline
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was reduced at different rates in the water column, and some
genes, particularly tetW, readily migrated into biofilms. Transfer
to biofilms did not, however, completely explain disappearance
of tet genes from the planktonic compartment and other factors
such as sunlight and potential microbial degradation would
probably contributed (Engemann et al., 2006, 2008). In a similar
experimental approach but using periodical piglet waste loadings,
Zhang et al. (2009) observed that tet genes migrate rapidly
to biofilms, where they persist longer than in adjacent waters.
Recently, Farkas et al. (2013) also observed that 9.4% of isolates
from drinking water biofilms harbored class 1 integrons, which
were mainly detected in bacteria (e.g., Enterobacteriaceae) that
may be associated with microbiological contamination.

Because biofilms play an important role as reservoirs for
ARGs, they could be considered as biological indicators of
antibiotic resistance pollution in the same way as river ecologists
use streambed biofilms as indicators of the overall “ecological
status” of the river ecosystem (Sabater et al., 2007). The chronic
exposure to sub-MIC concentration of antibiotics exerts a
selective pressure on biofilm bacterial communities that may
stimulate the emergence and spread of antibiotic resistance (Allen
et al., 2010; Andersson and Hughes, 2014; Marti et al., 2014a;
Chow et al., 2015). The presence of other pollutants, such as heavy
metals from feed additives, organic, and inorganic fertilizers,
pesticides and anti-fouling products, also contributes in the co-
selection of antibiotic resistance because the close location of
genes encoding for these resistance phenotypes in the sameMGE
(Seiler and Berendonk, 2012). Such exposures may eventually
have consequences on the selection and abundance of MGEs,
thereby facilitating the spread of ARGs among different species;
different biofilm compartments (e.g., epilithic, epipsammic, and
hyporheic streambed); or even between different prokaryotic
communities as recently assessed by plasmid metagenomics
(Sentchilo et al., 2013). Besides, several studies provided evidence
that ARGs tend to accumulate in biofilms rather than in
the planktonic compartment. In this regard, Börjesson et al.
(2009) found a high proportion of genes encoding resistance to
aminoglycosides and tetracyclines in biofilm samples collected
at a WWTP. Winkworth (2013) demonstrated that, while the
levels of ARGs in biofilm samples collected along the Taieri
River were low, sites subjected to combined influences of greater
human activity and intensive dairy farming showed an increased
level of ARGs. Likewise, a study carried out by our research
group clearly showed the effect of WWTP effluents on the
prevalence of several ARGs in the Ter River, accompanied by
a significant increase in their relative abundance in biofilm
samples collected downstream theWWTPdischarge point (Marti
et al., 2013). Moreover, we have investigated the prevalence of
plasmid-mediated quinolone resistance (PMQR) determinants in
ciprofloxacin-resistant strains isolated in biofilm and sediments
from a WWTP discharge point and its receiving river (upstream
and downstream sites). We observed that, while the number of
strains harboring PMQR determinants was higher in sediments,
PMQR-positive strains were also detected in biofilm samples,
especially in those from the WWTP discharge point and
downstream sites (Marti et al., 2014b). In a study carried out
in a horizontal subsurface flow constructed wetland, Nõlvak

et al. (2013) found that copy numbers of tetA and sul1 genes
in the wetland biofilms were one order of magnitude higher
than in the effluent water, despite the fact that this facility
had a similar efficiency to conventional WWTP in removing
ARGs from wastewater. Altogether, these studies undoubtedly
demonstrate the contribution of biofilms in the acquisition and
spread of ARGs.

ANTIBIOTIC RESISTANCE IN BIOFILMS
ASSESSED BY METAGENOMICS

Until the last decade our knowledge of antibiotic resistance has
largely depended on data provided by traditional culture-based
methods (Cockerill, 1999). Although useful, these data are limited
and biased towards cultivablemembers of the community. Recent
advances in genomics and metagenomics are now providing new
avenues for understanding evolutionary processes controlling
antibiotic resistance mechanisms and their spreading among
microbial populations.

To date, several thousand metagenomes have already been
sequenced from a large variety of environments, and this number
is set to grow rapidly in the forthcoming years. Most of these
metagenomes are publically available through various databases
and annotation platforms, such asMG-RAST (Meyer et al., 2008),
CAMERA (Sun et al., 2011), and IMG/M (Markowitz et al., 2012),
which provide additional insight in the function of complex
microbial communities through comparative analyses.Moreover,
the availability of specialized databases such as the ARGDatabase
(ARDB; Liu and Pop, 2009), the Comprehensive Antibiotic
Resistance Database (CARD; McArthur et al., 2013), the Integron
Database (INTEGRALL; Moura et al., 2009), the Bush, Palzkill,
and Jacoby’s collection of curated β-lactamase proteins (http://
www.lahey.org/Studies/), and the implementation of high-
throughput sequence analysis tools such as BLAT (Kent, 2002),
USEARCH (Edgar, 2010), and DIAMOND (Buchfink et al.,
2015), provide a comprehensive molecular toolbox that allow a
better understanding of the evolution, ecology, and spread of
antibiotic resistance in different organisms and ecosystems.

We have conducted a comparative analysis of selected
metagenomes corresponding to several projects and
environments publically available in the MG-RAST database
(http://metagenomics.anl.gov/) to provide an overall insight on
the prevalence of MGEs and ARGs in environmental biofilms.
This analysis showed that MGEs-related sequences, such those
from phages and plasmids, were found in a lower proportion
in metagenomes from river biofilms than those from WWTPs
and river water environments. Remarkably, transposons were
detected in a higher proportion in WWTPs and river biofilms
than those from river water environments (Figure 1). Similarly,
sequences related to genes conferring resistance to β-lactam
antibiotics were also detected more frequently among microbial
communities from WWTPs and streambed river biofilms than
those from river water environments. Sequences related to genes
conferring resistance to tetracyclines were also abundant in
WWTPs and river biofilms, but to a lesser extent than β-lactams.
Finally, no differences in the proportion of genes conferring
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resistance to sulfonamides were observed among the examined
environments.

Interestingly, the analysis of the selected metagenomes also
showed that two acid mine drainage biofilm samples from
the Richmond Mine (4441138.3 and 4441137.3) yielded a high
proportion of sequences related to genes conferring resistance to
β-lactam antibiotics (5.7 to 7.2%). These relatively high values
of β-lactamases might be related to the higher proportion of
transposons in these acidophilic biofilms (0.5 to 1.6%) than those
detected in environments close to neutral pH such as riverbed
biofilms, WWTPs and freshwater systems (Figure 1).

A recent study revealed a remarkable abundance and
diversity of genes encoding transposases in the metagenome
of a hydrothermal chimney biofilm (Brazelton and Baross,
2009). The comparative analysis between this metagenome

(4461585.3) and the metagenomes mentioned above confirmed
these observations (8.1% of transposase sequences), but
similar proportions were observed for β-lactamases between
the hydrothermal vent biofilms and those from river water
environments. The high relative proportion of transposases may
favor an enhanced gene transfer between bacterial genomes
that confer new and useful accessory functions, including
resistance to heavy metals or antimicrobial compounds.
The presence of genes conferring resistance to β-lactams
in environments not subjected to antibiotic pollution such
as deep sea vents or pristine systems raises interesting
questions not only about the origin and ecological function
of these genes in nature but also the criteria that researchers
adopt when defining a resistance gene (Martinez et al.,
2015).

FIGURE 1 | Metagenomic exploration of the resistome from environmental sources. Relative distribution of reads assigned to six functional subsystems
among 23 metagenomes (based on MG-RAST annotation, E-value = 10−5) Data are normalized by the total annotated sequences and are expressed as a
percentage. The horizontal line in each box plot represents the mean of the relative distribution in each of the three environments (river water, WWTPs, and river
biofilms), and the black circles represent the outliers. The 23 metagenomes used for the analysis are available at http://metagenomics.anl.gov. Accession numbers
for river waters: 4511251.3, 4511252.3, 4511253.3, 4511254.3, 4511255.3, 4511256.3, and 4511257.3; WWTPs: 4455295.3, 4463936.3, 4467420.3, and
4511199.3; and river biofilms: 4528142.3, 4528143.3, 4528144.3, 4528145.3, 4528146.3, 4528147.3, 4589537.3, 4589538.3, 4589539.3, 4589540.3,
4589541.3, and 4589542.3.
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FINAL REMARKS AND FUTURE
PROSPECTS

Biofilms occur in almost any submerged surface in both
natural and man-made systems providing a suitable and
optimal environment for the growth, activity, and interaction
of different bacterial species. Biofilms also provide a shelter
where to cope with transient or permanent stress conditions,
also favoring metabolic interactions and genetic interchange
between different bacterial species struggling for survival in
a changing environment. Punctual or continuous discharges
of pharmaceutical compounds into aquatic systems might
constitute not only a selective pressure on aquatic bacterial
communities that stimulate the transmission and spread of
ARG, but also a chronic source of background biochemical
noise that may potentially interfere the communication networks
that microbes finely tuned during evolution. Although little
information is available on the actual capacity of aquatic bacteria
to transfer antibiotic-resistance determinants to potential human
pathogens, current data corroborate that environmental biofilms
are true reservoirs of ARGs. Further research is needed;
however, to elucidate to which extent such hot spots of
antibiotic resistance may constitute a serious concern for
human health, how the diversity and abundance of ARG

change between different biofilm compartments, how this
resistance genetic pool moves among communities and how
this gene transfer varies in response to the amount of chemical
pollution (antibiotics but also other stressors such as heavy
metals and xenobiotic compounds) in the receiving waters.
The continuous refinement of sequencing technologies (e.g.,
metagenomics, metatranscriptomics) and bioinformatic tools
and the availability of specialized and properly curated databases
may help to reach these goals and hit new research targets.
Answering these (and other) questions will provide a better
knowledge of the transfer dynamics of resistance genes at
ecosystem level (between species, communities, and/or habitats),
yielding clues to fight against antibiotic resistance and the
threat that it poses to the environment and to the human
health.
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