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Abstract: Due to its excellent performance, aerogel is considered to be an especially promising new
material. Cellulose is a renewable and biodegradable natural polymer. Aerogel prepared using
cellulose has the renewability, biocompatibility, and biodegradability of cellulose, while also having
other advantages, such as low density, high porosity, and a large specific surface area. Thus, it can be
applied for many purposes in the areas of adsorption and oil/water separation, thermal insulation,
and biomedical applications, as well as many other fields. There are three types of cellulose aerogels:
natural cellulose aerogels (nanocellulose aerogels and bacterial cellulose aerogels), regenerated
cellulose aerogels, and aerogels made from cellulose derivatives. In this paper, more than 200 articles
were reviewed to summarize the properties of these three types of cellulose aerogels, as well as the
technologies used in their preparation, such as the sol–gel process and gel drying. In addition, the
applications of different types of cellulose aerogels were also introduced.
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1. Introduction

In today’s world, due to the increasing scarcity of oil resources and serious environmental
pollution problems caused by petroleum-based polymers, biodegradable, inexpensive, and non-toxic
natural polymer materials have attracted considerable attention from researchers, corporations,
and governments.

Cellulose is the most abundant natural polymer on Earth. In terms of structure, it is a linear
polymer formed by the linkage of D-glucose with 1,4-β-glycosidic bonds [1]. The length of its molecular
chain depends on the source and extraction process of cellulose [2]. Cellulose has many properties
that are different from those of petroleum-based polymers, such as biocompatibility, biodegradability,
thermal stability, chemical stability, and low cost [3,4]. Its industrial applications, such as in paper,
cardboard, fabric, and building materials, can be traced back thousands of years, although only the
multi-layer structure and hardness of cellulose have been exploited in these materials, and they cannot
meet the requirements for new materials in the 21st century in terms of functionality, durability,
and homogeneity. With advancing research on the physical and chemical properties of cellulose,
environmentally-friendly functional cellulose-based materials, such as cellulose fibers, cellulose films,
cellulose hydrogels, cellulose aerogels, and cellulose-based composites, have been developed [5].
In particular, cellulose aerogels have the renewability, biocompatibility, and biodegradability of
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cellulose, while also having additional advantages such as low density, high porosity, and a large
specific surface area, making it one of the most promising materials in the 21st century.

In the early 1930s, Kistler developed an aerogel for the first time by removing the liquid in a
wet gel using supercritical drying [6,7]. However, the complicated multistage preparation process
hindered the development of aerogels. In the past few decades, different types of aerogels, such as
inorganic aerogels (i.e., SiO2, TiO2, SnO2, V2O5, and Al2O3) [8–12], synthetic polymer-based aerogels,
(i.e., resorcinol–formaldehyde, polyvinylchloride, polypropylene, and polyimide) [13–16], natural
macromolecule-based aerogels (i.e., alginate, protein, chitosan, and hemicellulose) [17–21] and carbon
aerogels (i.e., carbon, carbon nanotubes, and graphene) [22–24], have been developed due to progress
in the technologies used for the synthesis and drying of aerogels.

Aerogel is a type of special porous material with excellent physical and chemical properties,
such as low density (0.003–0.500 g·cm−3), high porosity (80~99.8%), large specific surface area
(100~1600 m2/g), and adequate surface chemical activities. Technologies with the potential to be
improved by aerogel include those used in the areas of optoelectronics, adsorption catalysis, sound
insulation, medical materials, aerospace materials, and many other fields [25–30]. However, the
mechanical properties of silica aerogels are poor [31], and the precursors of synthetic polymer-based
aerogels are toxic and non-degradable. Coupled with their high cost of preparation, these factors have
significantly restricted the application of aerogels.

Cellulose aerogel is a porous solid material. Cellulose aerogel is generally prepared in three
steps: dissolving/dispersing cellulose or cellulose derivatives, forming cellulose gel by the sol–gel
process, and drying cellulose gel while basically retaining its 3D porous structure. Figure 1 shows the
preparation process of cellulose aerogels and their applications.
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Figure 1. Schematic of the preparation and application of cellulose aerogels.

The specific surface area (10–975 m2/g), porosity (84.0–99.9%), and density (0.0005–0.35 g·cm−3)
of cellulose aerogels are comparable to those of traditional silica aerogels and synthetic polymer
aerogels, but cellulose aerogels have a higher compressive strength (5.2 kPa–16.67 MPa) and
better biodegradability. Therefore, cellulose aerogels are a type of environmentally-friendly and
multi-functional new material that has great potential in the application of adsorption and oil/water
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separation, heat insulation, biomedical materials, metal nanoparticle/metal oxide carriers, the
preparation of carbon aerogels, and many other areas. However, as far as we know, few reviews and
books have covered the preparation and application of cellulose aerogels, and only a few reviews
and some book chapters have mentioned cellulose aerogels [5,32–35] or a particular type of cellulose
aerogels [36,37]. Based on the recent literature regarding cellulose aerogels, this article reviewed
research progress in the preparation of cellulose aerogel and its applications.

2. Preparation of Cellulose Aerogel

Cellulose can be extracted from a wide range of different sources [33,38,39], which mainly include
plants and plant-based materials such as rice straw [40], cannabis [41], cotton [42], wood [43,44],
potato tubers [45], and bagasse [46]. The performance characteristics of cellulose, such as its molecular
chain length (degree of polymerization, DP), size, degree of crystallinity, and thermal stability [47,48],
are determined by the species of plant from which it is derived, as well as the extraction processes
used in its production, including the pretreatment, post-treatment, and disintegration processes;
therefore, the structure and performance of cellulose aerogels are influenced by the plant source from
which their cellulose is derived [49,50]. Cellulose can also be synthesized by the static culturing
of Acetobacter xylinum and other bacteria. However, although the chemical structure of cellulose
obtained from bacteria culture is the same as that of plant cellulose, the former has a higher degree
of crystallinity (>80%). In addition, bacterial cellulose does not contain impurities such as lignin
and hemicellulose, and its physical and biological characteristics are also better than those of plant
cellulose [51–53]. Furthermore, cellulose with a low molecular weight can be synthesized in vitro
through cellulase catalysis or ring-opening polymerization [54]. To the best of our knowledge, no
available literature has discussed cellulose aerogels prepared from synthetic cellulose, although
synthetic cellulose typically has high purity and a short production cycle, and its molecular weight is
easily controlled [54]. These characteristics of synthetic cellulose make it an ideal raw material for the
preparation of cellulose aerogels. It is worth mentioning that each of the glucose units in the cellulose
chain has three hydroxyl groups (two secondary alcohols located in C2 and C3, respectively, and one
primary alcohol located in C6) with high chemical reactivity. Therefore, cellulose derivatives such as
carboxymethylcellulose, cellulose ester, and cellulose ether can be obtained by grafting, sulfonation and
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation [55,56]. At present, there are a large
number of reviews on the structure, properties, and applications of cellulose and its derivatives [57–60].
In order to avoid redundancy, we will not repeat the contents of those reports in this article.

Cellulose and its derivatives can enhance the mechanical properties and moisture affinity of
aerogel materials [61–63]. In addition, the following advantages can be obtained by using cellulose
as the precursor for the preparation of aerogels. (1) First, the reserve of cellulose raw material
is inexhaustible and renewable; (2) Second, the cellulose chain is rich in hydroxyl groups, so no
cross-linking agent is needed in the aerogel preparation process. A stable three-dimensional (3D)
network structure can be obtained by intramolecular and intermolecular physical cross-linking of
hydrogen bonds, thus making the aerogel preparation process quite simple; (3) Third, the chemical
modification of cellulose to improve the mechanical strength and structural characteristics of cellulose
aerogels is relatively easy to accomplish.

The preparation method and structural properties of cellulose aerogels are largely dependent on
the performance of cellulose and its concentration. Therefore, cellulose aerogels are divided into three
categories based on their raw materials: natural cellulose aerogels (nanocellulose aerogels, bacterial
cellulose aerogels), regenerated cellulose aerogels, and cellulose derivate aerogels. The preparation of
these three types of aerogels and differences in their performance are discussed below.

2.1. Sol–Gel Process

In a sol, colloidal particles with diameters ranging from 1 nm to 1000 nm are dispersed in a liquid.
A gel consists of a sponge-like, three-dimensional solid network whose clusters are filled with another
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substance (usually a liquid) [64]. The sol–gel reaction is a process in which the material transforms
from the liquid sol phase to the solid gel phase. The sol–gel reaction is the most critical step in the
formation of a 3D porous network structure in an aerogel. At present, almost all of the aerogels are
obtained by a wet chemical synthesis: the sol–gel method [64–66].

The cellulose solution or suspension can lead to a gel by agglomeration of polymers or by a phase
separation process when coagulative regeneration is used. The exchange of solvent with non-solvent
(regeneration) leads to a desolvation of the cellulose molecules and to the supposed reformation of
the intramolecular and intermolecular hydrogen bonds. The gelation of cellulose from, for instance,
N-methylmorpholine-N-oxide (NMMO) solutions using water as the coagulation system results from
a phase separation process that forms polymer-rich and polymer-poor phases [67]. Typically, two
mechanisms of phase separation can take place during liquid–liquid demixing of polymer solutions;
either nucleation/growth (i.e., the nuclei of one phase grows in the mixture), or spinodal decomposition
(i.e., a periodic variation of concentration leads to the final phase separation) [68].

In general, by adding chemical crosslinking agents such as epichlorohydrin (ECH) and
N,N′-methylenebisacrylamide (MBA) to the liquid sol or changing physical conditions (temperature,
pH, ultrasonic treatment, etc.), colloidal particle aggregation can be induced to form a 3D
interconnected network structure, thus converting the material into a solid gel [69,70].

Physical gels are cross-linked by physical interactions such as van der Waals forces, hydrogen
bonds, hydrophobic or electronic associations, and chain entanglements. Usually, the gelation speed of
physical gels mainly relies on the concentration of cellulose solution or dispersion and the temperature.
The stable structure and effective swelling of cellulose gels are usually achieved by the use of chemical
cross-linkers, which can form covalent bonds between polymer chains during gelation. In contrast to
the covalent bond in chemical gels, the binding energy of cross-links in physical gels is of the order of
thermal energy, so that the network junctions can be created and destroyed by the thermal motion
of polymers, thus leading to unique properties of physical gels. In addition, the degree and speed of
phase separation depend on the species or concentration of the anti-solvent and temperature.

In general, the gelation speed achieved by chemical cross-linking is faster than that achieved by
physical gelation, and a more stable gel structure can be formed in this way. In addition, electrolytes
such as calcium chloride can change the charge distribution in the solution and promote the physical
gelation process [71,72]. Graphene oxide (GO) can form hydrogen bonds with cellulose, so it can also
accelerate the process of physical gelation [73].

The formation of a gel can be determined by the following methods: (1) the gel will not flow
when the mold is tilted by 70◦ or inverted; (2) the storage modulus (G′) is equal to the loss modulus
(G”) [67,74].

The sol–gel process varies based on the particular type of cellulose aerogel desired. For example,
because the molecular chains of cellulose derivatives have a reduced number of hydroxyl groups,
a cross-linking agent is generally needed to obtain a stable gel structure. Regenerated cellulose gel
is prepared by the regeneration of cellulose solutions, whereas nanocellulose gel is made from a
nanocellulose suspension.

2.1.1. Natural Cellulose Aerogels

Since there is a broad range of different hydrogen bond connection networks and changes of
molecular direction in cellulose, cellulose is associated with a variety of different crystalline structures,
which depend on the source of cellulose, extraction method, and post-treatment processes. There
are six known cellulose crystal structures: I, II, III1, III2, IV1, and IV2. The crystalline structure of
natural cellulose is cellulose I, which has two sub-forms: Iα and Iβ [75,76]. The crystalline structure of
bacterial cellulose is usually cellulose Iα, whereas plant cellulose can have both Iα and Iβ structures [3].
Table 1 summarizes the current literature related to natural cellulose aerogels, including nanocellulose
aerogels and bacterial cellulose aerogels. This table describes the drying methods, density, porosity,
specific surface area, and modulus of natural cellulose aerogels.
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Table 1. Properties of natural cellulose aerogels.

Materials Drying Method Density (g·cm−3) Porosity (%) Specific Surface Area (m2·g−1) Compression Modulus (kPa) Ref.

Bleached cellulose fibers, CNC, TEMPO-NCF Freeze dried - - 143–162 13–176 [62]
Cellulose whisker, clay, PVA Freeze dried 0.01–0.101 - - 18–788 [77]

CNC Freeze dried - - 91.47–93.89 - [78]
BC ScCO2 dried 0.008 - 200 - [79]

CNC Freeze dried 0.02–0.03 95–98.7 20–66 200–240 [80]
NCF Freeze dried 0.003 - 20.09 37 [81]
CNC ScCO2 dried - - 260–353 - [72]
CNC ScCO2 dried 0.078–0.155 91–95 216–605 - [82]
NCF Freeze dried 0.0005–0.01 99.38–99.97 - 0.2–5.2 [83]

NCF, Kymene Freeze dried 0.0018–0.005 - 389 - [84]
BC, GO Freeze dried - 99.84–99.92 - - [85]

BC, silica Freeze dried 0.007–0.229 89–99.6 129–541.1 270–16670 [86]
NCF Freeze dried 0.02 98.6 - - [87]
NCF Freeze dried 0.0053–0.03 98.2–99.7 11–15 - [88]

NCF, SiO2 Freeze dried 0.055–0.295 85.15–96.46 11.3–700.1 1740–5930 [89]
BC Freeze dried 0.009–0.01 - - - [90]

NCF Freeze dried 0.025 97.8 - - [91]
NCF Freeze dried 0.02 - - - [92]

CNC, SiO2 Ambient pressure drying 0.137–0.151 - 620–688 - [93]

CNC, cellulose nanocrystals; TEMPO-NCF, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated nanofibrillated cellulose (NCF); PVA, poly(vinyl alcohol); CNC, cellulose nanocrystals;
BC, bacterial cellulose; GO, graphene oxide.
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Nanocellulose Aerogels

Nanocellulose fibers have a diameter of less than 100 nm [94,95] and are separated from pure
cellulose using mechanical [45,96–100] or chemical [101,102] approaches. According to differences
in separation methods, nanocellulose can be divided into two categories: (i) cellulose nanocrystals
(CNC) or cellulose whiskers, and (ii) cellulose nanofibers (CNF), which are also known as nanofibrillar
cellulose (NFC) or microfibrillated cellulose (MFC) [32]. Detailed information regarding differences in
the extraction methods and the average size for the various types of nanocellulose can be found in
Klemm’s review [60].

Nanocellulose aerogels are prepared by dispersing nanocellulose in water using ultrasonic or
mechanical methods, followed by subsequent drying with or without solvent exchange. In comparison
with other types of cellulose, nanocellulose has a higher degree of crystallinity and a larger aspect
ratio. Therefore, compared with other cellulose aerogels, the shrinkage rate of nanocellulose aerogels
is very low (<7%), and their modulus can be as high as 5.93 MPa [89].

The skeletal structures of nanocellulose aerogels consist of randomly connected bundled
nanofibers, thus resulting in no optical transparency and no linear elasticity, and much lower surface
areas than expected. In addition, large amounts of chemical reagents and a significant amount of
energy are required during the chemical separation of nanocellulose, thus increasing its cost and
hindering the development of nanocellulose aerogels.

Bacterial Cellulose Aerogels

Bacterial cellulose is collected from static bacterial cultures and has a natural 3D network gel
structure [51]. After the removal of bacteria and other impurities and subsequent drying, cellulose
aerogels can be obtained. Although the chemical structure of bacterial cellulose is similar to that
of plant cellulose [103], bacterial cellulose does not contain organic impurities such as lignin and
hemicellulose, and thus has certain advantages such as high purity, a high degree of polymerization,
and a high degree of crystallinity [104]. Therefore, bacterial cellulose aerogels are associated with the
highest modulus among cellulose aerogels [86], as well as high porosity and a high specific surface area.

On the other hand, the production of bacterial cellulose is challenged by a long production cycle
(30 d), low yield, and high cost, thus reducing its attraction among academic researchers.

2.1.2. Regenerated Cellulose Aerogels

Among all types of cellulose, cellulose I is not associated with the most stable crystalline structure.
In fact, it is possible to obtain cellulose II, which is more stable thermodynamically, by dissolution and
regeneration or mercerization treatment [75,76]. Regenerated cellulose aerogels are currently studied
very extensively. The preparation of regenerated cellulose aerogels has four main steps: cellulose
dissolution, cellulose regeneration, solvent exchange, and drying. Table 2 summarizes the current
literature on regenerated cellulose aerogels and describes cellulose solvents, drying methods, and the
properties of regenerated cellulose aerogels.
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Table 2. Properties of regenerated cellulose aerogels.

Materials Solvent Drying Method Density (g·cm−3) Porosity (%) Specific Surface Area (m2·g−1) Compression Modulus (kPa) Ref.

Wood pulp ILs scCO2 dried 0.058 94–96 315 - [4]
Cellulose powder/GO NaOH/thiourea Freeze dried - - - 870–1130 [73]

MCC/lignin 8% NaOH scCO2 dried 0.1–0.135 - 200 - [74]
MCC 8% NaOH scCO2 dried 0.06–0.3 91–96 200–300 - [67]

Cotton linter

NMMO
Ca(SCN)2/LiCl
TBAF/DMSO

[EMIm][OAc]/DMSO

scCO2 dried 0.03–0.067 95.5–98.1 190–328 22–240 [105]

Wood pulp NMMO scCO2 dried 0.014–0.5 - 50–420 - [106]
Cellulose powder Ca(SCN)2 scCO2 dried 0.009–0.137 91–99 120–230 1400–16200 [107]
Cellulose powder Ca(SCN)2 Freeze dried - - 160–190 - [108]

Cotton linter NaOH/thiourea Freeze dried 0.2–0.4 <84.88 - 5700–8200 [109]
Paper pulp Alkali/urea scCO2 dried 0.03–0.14 89.7–97 291–485 - [110]

MCC ZnCl2 scCO2 dried 0.082–0.245 212–864 800 [111]
Wood ILs scCO2 dried 0.06–0.2 - 150–200 1000–10000 [112]
MCC LiCl/DMAc Freeze dried 0.12–0.35 - - - [113]

Bagasse LiCl/DMSO Freeze dried 0.088–0.236 84.4–94.2 119–185 - [114]
MCC LiCl/DMSO Freeze dried 0.068–0.137 - 185–213 - [115]

Cellulose fibers Ca(SCN)2 Freeze dried or scCO2 dried 0.01–0.06 - 80–250 2000 [116]
Wood ILs scCO2 dried 0.141–0.157 97 - - [117]
Wood ILs scCO2 dried 0.095–0.143 - 2–80.7 - [118]

Cellulose NMMO scCO2 dried 0.05–0.26 - 172–284 - [119]
Paper pulp LiOH/urea scCO2 dried 0.12–0.17 95 363–406 - [120]

MCC ILs Freeze dried - - - - [121]
Cotton linter NaOH/urea Freeze dried 0.027–0.056 96.3–98.2 - - [122]

Waste newspaper ILs Freeze dried 0.017–0.029 98.2–98.9 296–412 - [123]
Recycled cellulose NaOH/urea Freeze dried 0.04 94.8 - 11 [124]
Waste newspaper ILs Freeze dried 0.02–0.029 96.8 - [125]
Recycled cellulose NaOH/urea Freeze dried 0.04 97.3 - - [126]

Cotton linter NaOH/urea Freeze dried 0.0196 98.7 - - [127]
Wood pulp ILs Freeze dried <0.034 >98.5 - - [128]

Wheat straw NaOH/PEG Freeze dried 0.04 - 36.46–101.13 - [129]
Plant NaOH/PEG Freeze dried 0.053–0.092 - 63–152.5 - [130]

Cellulose/SiO2 Alkali/urea scCO2 dried 0.14–0.58 70–92 356–652 7900–12000 [131]
Cellulose/SiO2 ILs/DMSO scCO2 dried 0.125–0.225 87–94 290–975 - [132]
Cellulose/SiO2 Ca(SCN)2 scCO2 dried 0.041–0.163 - - 1500–4200 [133]

Cellulose: lignin, xylan ILs scCO2 dried 0.025–0.114 - 108–539 - [134]

GO, graphene oxide; MCC, microcrystalline cellulose; ILs, ionic liquids; NMMO, N-methylmorpholine-N-oxide; TBAF, tetrabutylammonium fluoride; DMSO, dimethyl sulfoxide;
[EMIm][OAc], 1-Ethyl-3-methyl-1Himidazolium acetate; DMAc, dimethylacetamide; PEG, polyethylene glycol.
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Due to the complex intramolecular and intermolecular hydrogen bond network in cellulose, it
is not soluble in water and other typical organic solvents such as ethanol [135]. On the other hand,
cellulose macromolecules are amphiphilic. Therefore, cellulose solvents must eliminate hydrogen bond
networks and hydrophobic interactions [136]. Conventional cellulose solvents such as carbon disulfide
are environmental pollutants, but environmentally-friendly cellulose solvents such as alkali (NaOH or
LiOH) solution systems (alkali/water [137], alkali/water/urea or thiourea, and polyethylene glycol
(PEG) [138–140]), LiCl/DMSO [141,142], LiCl/dimethylacetamide (DMAc) [143,144], and ionic liquids
(ILs) [145] are currently used in the preparation of regenerated cellulose aerogels (see Table 2). Cellulose
solvent systems can affect the performance of regenerated cellulose [146]. Therefore, aerogels prepared
using different cellulose solvent systems may have different properties [105], and the selection of
cellulose solvent systems during the preparation of regenerated cellulose aerogels is very important.

The preparation of regenerated cellulose aerogels requires dissolution–regeneration and multiple
steps of solvent exchange, which are time-consuming. The rate of shrinkage of regenerated cellulose
aerogels is generally >30%. Thus, regenerated cellulose aerogels are denser than natural cellulose
aerogels and have a larger mean pore size. On the other hand, since the production process of
regenerated cellulose aerogels is simple and low-cost, it has been studied most extensively.

2.1.3. Cellulose Derivative Aerogels

Chemical modifications that can change the physical and chemical properties of cellulose
are an important way to functionalize cellulose aerogels. Some cellulose derivatives are
soluble in water and typical organic solvents. For example, carboxymethylcellulose (CMC) and
hydroxypropyl methylcellulose (HPMC) are soluble in water, triacetyl cellulose (TAC) is soluble
in dioxane/isopropanol, ethyl cellulose (EC) is soluble in dichloromethane, and cellulose acetate
(CA) is soluble in acetone. Since acetone and some other organic solvents are soluble in ScCO2, the
time-consuming solvent exchange process can be omitted [147], thus improving the efficiency of
aerogel synthesis. On the other hand, because the molecular chains of cellulose derivatives have a
reduced number of hydroxyl groups, a cross-linking agent is generally required during the gelation of
the solution [148,149]. Due to the uneven distribution of the substituent groups, the effect of different
degrees of substitution of cellulose derivatives on the performance of cellulose aerogels remains
unclear. With respect to published research results, the degree of substitution has shown no significant
effect on the density or compressive modulus of cellulose aerogels [150,151], but a high degree of
substitution can reduce the hygroscopicity [151].

The process of preparing nanocellulose derivative aerogels is the same as that of nanocellulose
aerogels (Section “Nanocellulose Aerogels”). At present, the most common types of nanocellulose
derivative aerogels are nanocellulose aerogels oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl
radicals (TEMPO) and nanocellulose aerogels with functionalized surfaces. TEMPO can selectively
oxidize the primary alcohols on the molecular chain of cellulose and introduce negatively
charged groups (such as carboxyl groups) into cellulose fibers to increase the separation of
nanocellulose and produce more homogeneous suspensions [32]. Therefore, compared with
nanocellulose aerogels, TEMPO–nanocellulose aerogels have a higher specific surface area and greater
density. Surface-functionalized nanocellulose includes maleic acid-grafted CNF (CNF-MA) [152],
bifunctional (aldehyde and carboxyl) nanocellulose (BMCC), and cross-linked carboxymethyl chitosan
(CMCT) [153], as shown in Table 3. Table 3 summarizes the literature related to cellulose derivate
aerogels and nanocellulose derivate aerogels, and lists their respective properties.
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Table 3. Properties of cellulose derivative aerogels.

Materials Solvent Drying
Method

Density
(g·cm−3) Porosity (%) Specific Surface

Area (m2·g−1)
Compression

Modulus (kPa) Ref.

Cellulose derivative aerogels

TAC Dioxane/Isopropanol scCO2 dried 0.005–0.05 96.1–99.6 229–958 - [147]
CA Acetone scCO2 dried 0.25–0.85 - 140–250 - [148]

CMC Water Freeze dried - - - - [149]
CMC Water Freeze dried 0.062–0.12 - - 830–3442 [150]

HPMC Water Freeze dried 0.018–0.023 - - 111–133 [151]
CA Acetone scCO2 dried 0.16 - - - [154]
EC Dichloromethane Freeze dried - - - - [155]

CMC/CNF Water Freeze dried 0.05–0.109 93.19–96.84 - 1000–8700 [156]

Nanocellulose derivative aerogels

CNF-MA - Freeze dried 0.0112–0.0315 - 19.5 120–411 [152]
BMCC/CMCT - Freeze dried - 98.8 - - [153]
TEMPO-CNF - Freeze dried 0.008–0.187 98.8–99.5 12.72–117.8 - [157]
TEMPO-CNF - Freeze dried 0.014–0.105 92.8–99 153–284 34.9–2800 [158]
TEMPO-CNF - Freeze dried - - 94–319 - [159]
TEMPO-CNF - Freeze dried 0.0069–0.0083 123–209 94–209 [160]

TEMPO-CNF/PVA - Freeze dried 0.0047–0.0165 98.7–99.7 35.1–117 - [161]
TEMPO-CNF - Freeze dried 0.0017–0.0081 99.5–99.9 10.9 54.5–25.3 [162]

Hydrophobic CNF - Freeze dried 0.0232 98.5 18.4 - [163]
TEMPO-CNF/Eumelanin - Freeze dried 0.04 97.5 - - [164]

TAC, triacetyl cellulose; CA, cellulose acetate; CMC, carboxymethylcellulose; HPMC, hydroxypropyl
methylcellulose; EC, ethyl cellulose; CNF, cellulose nanofibers; CNF-MA, maleic acid-grafted CNF; BMCC,
bifunctional (aldehyde and carboxyl) nanocellulose; CMCT, cross-linked carboxymethyl chitosan; TEMPO,
2,2,6,6-tetramethylpiperidine-1-oxyl; PVA, poly(vinyl alcohol).

2.2. Gel Drying

Drying is the most critical step in the preparation of aerogels. The morphology of cellulose
aerogels strongly depends on the method of drying. When conventional drying methods are used, the
capillary pressure induced by the bending of the air–liquid interface can cause the gel pore structure to
collapse and crack. Therefore, supercritical drying (using i.e., alcohol, acetone, or CO2) and vacuum
freeze-drying are generally utilized in current methods of cellulose aerogel preparation. Freeze-drying
is a sublimation of the solid, usually frozen water, from the pores of a wet precursor. In supercritical
(sc) conditions, the liquid/gas surface tension is zero, because there is no longer liquid/gas meniscus.
Aerogels prepared by drying with scCO2 usually present a cauliflower-like arrangement of cellulose:
an agglomeration of small shaggy beads. However, freeze-drying leads to a sheet-like cellulose network
with large and interconnected pores that are several micrometers in diameter due to ice growth during
water freezing [165].

2.2.1. Supercritical Carbon Dioxide Drying

Since CO2 has a suitable critical point (304 K, 7.4 MPa) and the advantages of low cost and high
safety, it is a kind of fluid that is most commonly used for the process of drying cellulose aerogels.
Supercritical drying involves a two-way mass transfer of scCO2 and gel solvent to and from the
pores of the wet gel [17]. Firstly, the drying is predominantly influenced by a high dissolution of
scCO2 in the liquid gel solvent, leading to an expanded liquid and the spillage of the excess liquid
volume out of the gel network. Secondly, the CO2 content in the pore gel liquid increases with time
until supercritical conditions are attained for the fluid mixture in the pores, without any previous
intermediate vapor–liquid transition. Finally, the presence of supercritical fluid mixtures in the
pores with no liquid phases leads to the absence of surface tension, thus avoiding the pore collapse
phenomenon in the gel structure (i.e., changes in the macroscopic level) during solvent elimination [17].

The water that has high surface tension may damage the fragile and highly porous structure of
the cellulose network, which is initially formed after the drying process. The reasons why it happens
are the formation of inward forces alongside the capillary walls adjacent to the solvent menisci and
arise from differences of the specific energies of the solid–liquid and liquid–gas phase transitions. So,
it is necessary to completely replace the water that has high surface tension [79]. For example, when
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regenerated cellulose aerogels are prepared in an NMMO solvent system, the cellulose gel should be
re-primed with water, followed by ethanol and acetone exchange or acetone exchange alone [105,118].
When an ionic liquid is used as the solvent system, the cellulose gel must be re-primed with water
first, followed by multiple acetone exchange [166]. Natural cellulose aerogels are generally subject to
ethanol exchange [71,82].

The residue of cellulose solvents can reduce the drying performance [106]. In addition, the surface
tension of different liquids and shaking during the process of re-priming and solvent exchange may
damage the gel structure of cellulose [106,111]. The solvent exchange process is very slow, and
generally takes 2–3 d. In summary, supercritical drying by scCO2 can help to avoid damage to the
gel 3D network caused by capillary pressure inside the pores, which allows the production of aerogel
materials with a more uniform structure. However, this process involves expensive equipment, because
it needs a high-pressure vessel.

2.2.2. Vacuum Freeze-Drying

Vacuum freeze-drying is a simple and environment-friendly drying approach to produce cellulose
aerogels. During the freeze-drying process, the gel is first frozen at a temperature below the freezing
point of the liquid medium (usually water), after which the liquid is mainly eliminated by sublimation,
which is a key factor in preventing structural collapse and limiting shrinkage. Therefore, liquid
crystallization and growth behavior, which depend on the cooling rate and temperature, play an
important role in the pore structure (pore morphology and pore distribution) of porous aerogels.
The rate of sublimation is also influenced by many factors (i.e., the concentration of cellulose, the size
and shape of gel, temperature), and is often slow.

Aerogels made from nanocellulose and its derivatives are generally freeze-dried, but the
self-agglomeration of nanocellulose can lower their specific surface area. tert-butyl alcohol has low
interfacial tension and contains only one hydroxyl group that can form a hydrogen bond with the
hydroxyl or carboxyl group on the surface of nanocellulose and its derivatives. At the same time,
the steric hindrance induced by a large number of butyl groups can prevent the agglomeration of
nanocellulose. Therefore, the use of tert-butyl alcohol in solvent exchange can better protect the gel
structure of nanocellulose and its derivatives as compared to water, thus more effectively preventing
the cellulose aerogel structure from collapsing [72,108,157,167].

When thermal conductivity is increased using liquid nitrogen or liquid propane, cellulose gel can
be rapidly cooled, which further inhibits the agglomeration of cellulose and the growth of ice crystal,
thus increasing aerogel porosity. Zhang et al. studied three cooling rates provided by liquid nitrogen
(−196 ◦C, 30 min), an ultralow temperature freezer (−80 ◦C, 12 h), and a conventional refrigerator
(−20 ◦C, 24 h). They found that liquid nitrogen induced the rapid formation of ice crystals, which
effectively inhibited the self-agglomeration of cellulose and produced a more uniform and smooth
surface structure [83]. Anti-freezing agents [168] and spray freeze-drying techniques [84,169] also
rely on an accelerated freezing rate to produce aerogels with a uniform structure. However, there are
similar freezing rate and local temperature gradients ahead of the moving solid–liquid interface, such
as when freeze-drying thin samples in a fridge while also cooling a big sample.

The drying technology that is used to produce a particular type of cellulose aerogel greatly
influences its specific surface area and pore size distribution [71,119]. Usually, due to the growth of
ice crystals and the high interfacial tension of water, freeze-drying produces cracks in the aerogel
material. Other drawbacks of freeze-drying include its long processing times and high electric energy
consumption. On the other hand, drying by scCO2 can better protect the gel structure of cellulose
and produce aerogels with a low rate of shrinkage, a smaller pore size, and a higher specific surface
area [82,110,116,170].
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3. Applications of Cellulose-Based Aerogels

Due to cellulose’s high chemical reactivity, the large number of different derivatives with different
functions, flexible preparation process, and numerous methods of modification, cellulose aerogels are
generally multi-functional. There are three main ways to modify cellulose aerogels:

(1) Add other components in the solution/suspension of cellulose. For example, Gawryla et al.
added a montmorillonite suspension dropwise into a suspension of nanocellulose and subjected
the mixture to freeze-drying after it was mixed evenly. Using this method, they obtained an
aerogel with a nanoscale wattle and daub structure and high modulus [77].

(2) Coat or apply other substances, such as SiO2, onto the surface of cellulose gel using a sol–gel
method (see Section 3.2).

(3) There are many techniques available to achieve the surface modification of cellulose aerogels,
including modification by a silane coupling agent and atomic layer deposition.

Cellulose aerogels are ultra-light 3D porous materials. Currently, they are mainly used in
adsorption and separation, insulation, and biomedical applications. They are also used in the
preparation of carbon aerogels and to carry metal nanoparticles/metal oxides.

3.1. Adsorption and Separation Materials

Frequent oil spill incidents and the discharge of oil-containing industrial wastewater during
crude oil extraction and transport can cause significant economic losses and damage to aquatic
ecological environments. Traditional adsorbent materials, including polypropylene (PP), zeolite,
and activated carbon, are often used in the treatment of these accidents, but they suffer from
disadvantages such as poor reusability, insufficiently selective oil adsorption capacity, and a lack
of biodegradability [35,171–173]. Although natural adsorption materials made of kapok fiber,
bagasse, raw cotton fiber, and coconut shell [174–177] have appropriate adsorption properties and
biodegradability, they also have shortcomings such as a low selective adsorption capacity, weak
buoyancy, and poor water resistance [35,173,178].

Therefore, cellulose aerogels, with their porous structure, large specific surface area, and light
density are highly adsorptive for water, oil, and organic solvents [121,179,180]. The adsorption capacity
of cellulose aerogels is one order of magnitude higher than that of natural adsorbents and several
times that of commercial PP adsorbents. In addition, cellulose aerogels can adsorb dyes such as Congo
red and methylene blue from water [151,153,164,181,182], and are biodegradable. Therefore, cellulose
aerogels have received increasing attention in recent years.

The oil adsorption performance of cellulose aerogels is related to the density, viscosity, and
surface tension of oily liquids, and is also dependent on capillary effects, van der Waals forces, and
hydrophobic interactions, as well as density and morphological characteristics of cellulose aerogels
such as their surface wettability, total pore volume, and pore structure. The adsorption performance of
cellulose aerogels is affected by liquid viscosity in two ways. First, a liquid of lower viscosity tends to
penetrate into the porous network of aerogels, but this property limits the adhesion between the liquid
and the pore walls [125,126,183]. Cellulose aerogels with low density, high porosity, and a large pore
volume tend to have a large internal free volume and high adsorption capacity [127,128,183].

On the other hand, there are a large number of hydroxyl groups on the surface of cellulose
aerogels that are amphiphilic and associated with poor oil/water selective adsorption capacity [85,162].
By increasing the surface roughness of cellulose aerogels or introducing substances with low surface
energy, the hydrophobicity and lipophilicity of cellulose aerogels can be improved, thus significantly
enhancing the oil/water selective adsorption capacity of the aerogels. The surface modification
methods and post-modification adsorption performance of different cellulose aerogels are shown in
Table 4.
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Table 4. Hydrophobic treatments and absorption capacity of cellulose aerogels. GO: graphene oxide.

Classification Hydrophobic Treatment WCA (◦) Porosity (%) Specific Surface
Area (m2/g)

Absorption
Capacity (g/g) Ref.

Natural cellulose aerogel CVD of TMCS 135 - 20.09 52 [81]

GO/natural cellulose aerogel - - 99.86, 99.84 - 135–150 [85]

Regenerated cellulose aerogel CVD of MTCS 141 98.0 -. 40.16–59.32 [122]

Regenerated cellulose aerogel CVD of TMCS 135 98.2 405 26–45 [123]

Regenerated cellulose aerogel Water repellent spry or
CVD of MTMS 130.7, 135.2 94.8 - 18–20 [124]

Regenerated cellulose aerogel CVD of MTCS 136 96.8 - 12–22 [125]

Regenerated cellulose aerogel CVD of MTMS 145 97.3 - 18.4–20.5 [126]

Regenerated cellulose aerogel Cold plasma technology 150 98.7 - 34.5 [127]

Regenerated cellulose aerogel Plasma treatment and
subsequent silane modification >156 >98.5 - 14–42 [128]

Regenerated cellulose aerogel CVD of TMCS 138 - 36.46–101 16.8–18.7 [129]

Regenerated cellulose aerogel CVD of MTCS - - 63.3–152.5 13.5–20.6 [130]

Cellulose derivate aerogel Cross-linking with diisocyanate - - 216–228 42.4–54.47 [160]

Cellulose derivate aerogel
microsphere CVD of MTCS - 98.7–99.7 35.1–117 54–140 [161]

Cellulose derivate aerogel Vapor deposition with
triethoxyl(octyl) silane - 99.5–99.9 10.9 139–375 [162]

Cellulose derivate aerogel Polymerization with a monomer
dropwise-feeding method - 98.5 18.4 29.9–46.6 [163]

Natural cellulose aerogel CVD of MTMS 150.8–153.5 97.2–99.4 - 40.4–95 [183]

Natural cellulose aerogel CVD of MTMS 142.8 99.43–99.66 - 40–100 [184]

GO/natural cellulose aerogel CVD of DDTS 150.3 - 47.3 80–197 [185]

CVD, chemical vapor deposition; TMCS, trimethylchlorosilane; MTMS, methyltrimethoxysilane; MTCS,
methyltrichlorosilane; DDTS, n-dodecyltriethoxysilane.

As shown in Table 4, commonly used methods for hydrophobizing cellulose aerogels include
chemical vapor deposition (CVD) using coupling agents such as trimethylchlorosilane (TMCS),
methyltrimethoxysilane (MTMS), methyltrichlorosilane (MTCS), and octadecyltrimethoxysilane
(OTMS), n-dodecyltriethoxysilane (DDTS), atomic layer deposition, cold plasma treatment,
hydrophobic modification using isocyanate cross-linking [160], surface fluorination [87,88] or
esterification [186,187], and alkyl ketene dimer (AKD) modification [188]. After hydrophobic
modification of cellulose aerogels, their water contact angle (WCA) is usually >135◦, and their
adsorption performance regarding oil and organic solvents is generally in the range of 10–400 g·g−1;
these characteristics indicate a performance equivalent to that of carbon aerogels and polymer-based
aerogels [189,190].

Oil and water separation can also be achieved by creating a hydrophilic rough surface on the
aerogels. Peng et al. have prepared a superhydrophilic cellulose aerogel by mixing cellulose and
chitosan solutions. After immersing the aerogel into water, its rough surface formed a thin layer of
water film, and thus possessed an ultraoleophobic capability underwater. The aerogel was used to
effectively separate oil–water mixtures through filtration [191], although its reusability was limited.

Modification by a silane coupling agent is currently the most important way to hydrophobically
modify cellulose aerogels. Aerogels modified in this way have excellent selective oil adsorption
capacity. However, the cost of the silane coupling agent is high. In addition, the porous structure of
cellulose aerogels is fragile. After the adsorption–desorption cycle, the internal structure of the cellulose
aerogel is damaged, which decreases its adsorption performance, thus limiting its actual applications.

3.2. Thermal Insulation Material

Thermal conduction by aerogels is generally categorized as solid-state thermal conduction,
gas-phase thermal conduction in an open pore structure, and radiation thermal conduction. According
to the Knudsen effect, when the pore size in a porous material is close to the average free path (70 nm
when ventilated) of the gas, the thermal conductivity of the material will be reduced because the pores
will restrict gas movement and inhibit convection.
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The thermal conductivity of mesoporous cellulose aerogels is mainly determined by their solid
state thermal conduction and gas phase thermal conduction, which are in turn closely related to
the aerogel density (determined by the initial concentration of cellulose), pore size distribution,
and surface structures. Table 5 describes the density, pore size, and thermal conductivity of
cellulose aerogels and corresponding measurement techniques. As shown in Table 5 [192], the
thermal conductivity of cellulose aerogels is between 0.018–0.075 W·m−1·K−1 and is typically less
than 0.045 W·m−1·K−1, which is between that of modified silica aerogels (0.041 W·m−1·K−1) [31]
and common commercial insulating materials such as polyurethane foams (0.026 W·m−1·K−1),
mineral wool (0.03–0.05 W·m−1·K−1), glass fiber (0.04 W·m−1·K−1), and polypropylene foam
(0.030 W·m−1·K−1) [64,193–195].

Table 5. Thermal conductivity of cellulose aerogels.

Classification Density
(g·cm−3) Pore Size (nm) Technique Conductivity

(W·m−1·K−1) Ref.

Natural cellulose aerogel - 5–13 Hot filament 0.023–0.028 [62]
Natural cellulose aerogel, SiO2 0.007–0.229 - Transient plate method 0.0295–0.0369 [86]
Natural cellulose aerogel, SiO2 0.055–0.295 - Double plate method 0.0226 [87]
Regenerated cellulose aerogel 0.009–0.137 10–100 Transient plane source 0.04–0.075 [107]
Regenerated cellulose aerogel 0.2–0.4 - Conductometer 0.029–0.046 [109]

Regenerated cellulose aerogel 0.095–0.143 10.5–28.9 Model digital thermal
diffusivity instrument 0.03–0.137 [118]

Regenerated cellulose aerogel 0.04 - Transient plate method 0.029, 0.032 [124]
Regenerated cellulose aerogel, SiO2 0.14–0.58 3–20 - 0.025–0.045 [131]
Regenerated cellulose aerogel, SiO2 0.125–0.225 - Steady state method 0.026–0.033 [132]
Regenerated cellulose aerogel, SiO2 0.041–0.103 - HotDisk™ 0.04–0.052 [133]

Cellulose derivate aerogel 0.25–0.85 13–25 Hot-wire method 0.029 [148]
Cellulose derivate aerogel 0.05–0.109 5000–40,000 Transient plane source method 0.040–0.0532 [156]
Cellulose derivate aerogel 0.012–0.033 10–100 Hot strip 0.018–0.028 [169]

Natural cellulose aerogel, SiO2 0.007–0.201 - Transient plate method 0.029–0.037 [192]

In the porous structure of regenerated cellulose aerogels, the proportion of large pores is higher
than that of other types of cellulose aerogels. Since large pores enhance gas transmission, they also
increase thermal conductivity. Karakagli et al. prepared bulk cellulose aerogels with a pore size
of 10–100 nm by dissolving microcrystalline cellulose (MCC) in an aqueous calcium thiocyanate
solution and subjecting the mixture to ethanol exchange and supercritical drying. Due to the
presence of large pores in the gel structure and test errors, its thermal conductivity was as high as
0.04 W·m−1·K−1 [107]. They also found that the thermal conductivity of the aerogel was proportional
to the MCC concentration [107], which was consistent with the findings of the Seantier group [169].
However, Lu et al. argued that the structure of 3% cellulose aerogels was better than the structure of 2%
cellulose aerogels. Since the 3% cellulose aerogels had lower density and higher porosity in comparison
with the 2% cellulose aerogels, their thermal conductivity (0.029 W·m−1·K−1) was lower [109]. The
Seantier group has reduced some of the large pores (120–300 µm) in bleached cellulose fibers (BCF) to
the nanoscale by adding CNC, thereby reducing gas phase thermal conductivity. The overall thermal
conductivity of the modified aerogel was decreased from 0.028 W·m−1·K−1 to 0.023 W·m−1·K−1 [62].
In addition, silanization can also reduce the average pore size in cellulose aerogels and thus decrease
their thermal conductivity [124,196].

SiO2 aerogels are a common type of ultra-adiabatic material, but their poor mechanical strength
greatly limits their practical applications. Cellulose–SiO2 aerogels can be synthesized using the sol–gel
method, direct embedment, or a forced flow impregnation process. These methods can be used to
produce ultra-adiabatic aerogels with good mechanical strength, low cost, and low hydrophilicity. SiO2

can be embedded in the large pores of cellulose aerogels to reduce their average pore size and enhance
the Knudsen effect, thereby reducing the gas phase thermal conductivity [132,133]. In addition, Fu et al.
found that the silica particles attached to the nanocellulosic scaffold could promote the thermal stability
of the cellulose matrix [197]. GO can also enhance the thermal stabilities of cellulose, because of the
formation of an extensive H-bonded network between the GO and the cellulose [198]. However, as
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the content of SiO2 increases, the specific surface area and density of the aerogels increase, and the
aerogels may even rupture. In addition, their solid-state thermal conductivity also increases, thus
increasing the thermal conductivity of the composite aerogels [86,89,131,192].

Cellulose aerogels have low thermal conductivity and relatively strong mechanical strength,
which suggests that they have great potential in thermal insulation applications. However, because
the pore size and density of cellulose aerogels are larger than that of other conventional aerogels such
as silica aerogel and resorcinol/formaldehyde (RF) carbon aerogel, and the cellulose matrix also has
a larger thermal conductivity, cellulose aerogels have a higher thermal conductivity compared with
conventional aerogels. Additionally, the maximum working temperature of cellulose aerogels is less
than 300 ◦C, which limits the development of thermal insulation applications.

3.3. Precursor of Carbon Aerogels

Porous carbon aerogels are often used in adsorption, capacitance deionization, catalysis, and
supercapacitors due to their large specific surface area, low density, high conductivity, excellent
stability, low cost, and long service life [199,200].

The preparation of traditional carbon aerogel involves pyrolyzing the high carbon-content
template (resorcinol/formaldehyde aerogel) under high temperature (normally 800~1200 ◦C), ambient
pressure, and an inert atmosphere [201]. The specific surface area of carbon aerogels prepared by
resorcinol/formaldehyde (RF) is 706 m2/g, while their average pore size is 10.9 nm, and their specific
capacitance is 81 F/g [202] in a 1-M H2SO4 electrolyte solution with a scanning rate of 10 mV/s.

Recently, the use of renewable biomass resources, such as starch, alginate, chitosan, and cellulose
as raw materials in the preparation of carbon aerogels has attracted great interest [203–205]. Porous
cellulose aerogels prepared using cellulose may be a candidate for making carbon aerogels.

Carbon aerogels are obtained through the carbonization of cellulose aerogels in a nitrogen or
argon atmosphere by heating the aerogels to 500–1000 ◦C at a specific rate. The performance of
carbon aerogels is related to the performance of cellulose aerogels, the rate of heating, gas atmosphere,
carbonization temperature, and post-processing treatment. Table 6 [206–214] summarizes the current
literature on carbon aerogels derived from cellulose aerogels, and shows the specific surface area,
average pore size, specific capacitance, and adsorption performance of carbon aerogels. As shown
in Table 6, the specific surface area and average pore size of carbon aerogels derived from cellulose
aerogels are 100–1364 m2·g−1 and 2–100 nm, respectively, which are values comparable to those of
RF–carbon aerogels. Therefore, carbon aerogels derived from cellulose aerogels also have excellent
performance in terms of hydrophobicity, flame retardancy, high conductivity, and specific capacity, as
well as strong adsorption capacity [90–92,203,215,216].

The specific surface area of carbon aerogels obtained by the direct pyrolysis of bamboo fibers
is only 26.2 m2/g, and their maximum adsorption capacity for oil and organic solvents is only
51 g/g [204]. Therefore, the unique high 3D porosity and large specific surface area of the cellulose
aerogel structure are key considerations in the quest to obtain carbon aerogels with good performance.
The carbonization of cellulose aerogel causes significant decreases in the volume and mass, because
of the removal of O and H atoms [217]. In addition, the activation process can increase the specific
surface area of carbon aerogels and improve their pore structure. At present, carbon aerogels derived
from cellulose aerogels can be activated in two ways. In one procedure, carbon aerogels are mixed
with KOH at a 1:3 mass ratio, followed by 1–3 h of activation after heating the aerogels to 900 ◦C at
a rate of 10 ◦C/min in a nitrogen atmosphere [149]. In the other procedure, cellulose aerogels are
pyrolyzed in a CO2 atmosphere, in which the C in the aerogels is oxidized to CO by the presence of
CO2, while the C=C and oxygen groups on the surface of lignocellulose are eliminated to enhance the
surface chemical stability of the final carbon aerogels [154].
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Table 6. Properties of carbon aerogels derived from cellulose aerogels.

Cellulose Aerogel Precursor Specific Surface
Area (m2·g−1)

Mean Pore
Diameter (nm)

Specific
Capacitance (F/g) Adsorption Capacity Ref.

Natural cellulose aerogel - 10–20 - Organic solvents and oils: 106 to
312 times its own weight [90]

Natural cellulose aerogel 145–521 10–20 Oil: 55.8–86.6 g/g [91]
Natural cellulose aerogel - - - Oil: 67.26–94.18 [92]

Cellulose derivate aerogel 230–428 2.81–4.25 92.34–152.6 Methylene blue: 249.6 mg/g
Malachite green: 245.3 mg/g [149]

Cellulose derivate aerogel 400–450 - - - [154]
Regenerated cellulose aerogel 113 7.2 - - [203]
Regenerated cellulose aerogel 859–1364 - 328 CO2: 3.01–3.42 mmol/g [206]
Regenerated cellulose aerogel 496–615 2–3 225 CO2: 4.99 mmol/g [207]

GO/Regenerated cellulose aerogel - - - - [208]
Regenerated cellulose aerogel - - - - [209]
Regenerated cellulose aerogel 450–853 20–100 129–193 - [210]
Regenerated cellulose aerogel 170.05 3.44–4.52 73.18–294.01 - [211]

GO/Natural cellulose aerogel 110.4 - - Organic solvents and oils:
393–1002 g/g [212]

Cellulose derivate aerogel 742.34 2–75 - - [213]
Cellulose derivate aerogel 185 2–259 - Organic solvents and oil: 20 g/g [214]

Carbon aerogels have an excellent ability to capture CO2. Under a carbon dioxide atmosphere,
Zhuo et al. have carbonized activated cellulose aerogels to develop a layered and porous carbon
aerogel with an excellent CO2 absorption capacity (3.42 nmol/g) [206]. In order to improve the
absorption capacity of CO2, Hu et al. have carbonized cellulose aerogels under a NH3 atmosphere and
embedded CO2-philic nitrogen-containing groups in carbon aerogels to increase their CO2 absorption
capacity to 4.99 nmol/g [207]. In another method to prepare N-doped carbon aerogels, urea or other
nitrogen-containing substances are added into cellulose aerogels, which then undergo pyrolysis in an
inert gas to reach a nitrogen content as high as 7.64% [210].

The preparation of cellulose aerogels is a flexible process that provides many convenient
opportunities for functionalizing carbon aerogels. For example, the Li group at Northeast
Forestry University used cellulose aerogels as precursors to synthesize GO/carbon aerogels and
goethite (α-FeOOH)/carbon aerogels with excellent performance in terms of protection against
electromagnetic interference. In addition, they have also synthesized NiO/carbon aerogels with
excellent electrochemical performance [208,209,211]. The Chen group subjected GO/bacterial cellulose
(BC) aerogels to carbonization to develop a carbon aerogel with an adsorption capacity as high as
1002 g/g [212].

Cellulose aerogels provide carbon aerogels with a rich carbon source, a large specific surface
area, and mesoporous structures. However, because the porous structure of the physically linked
network is fragile during the high temperature pyrolysis process, the modification of cellulose is
usually needed [218]. In addition, the solvent exchange and drying processes of cellulose aerogels
are time-consuming, while the large-scale production of large cellulose aerogels is difficult, and these
factors limit the practical application of cellulose aerogels. Besides, the oxygen in the ring and the OH
groups in the cellulose chain make pyrolysis tricky.

3.4. Biomedical Materials

Cellulose aerogels are an ultra-light biocompatible material with a 3D network structure associated
with high porosity and a high specific surface area. They can be used in drug transport, cell culture,
biosensors, and many other biomedical applications.

The 3D cell culture is an important method used in cell biology, regenerative medicine, cell
therapy, and drug development. Natural, non-toxic, and biocompatible cellulose aerogels with an
interconnected structure of high porosity are ideal scaffolds for 3D cell cultures. Cai et al. have
cultured NIH 3T3 cells (mouse embryonic fibroblast cell line) for two weeks on nanocellulose aerogel
microspheres cross-linked by Kymene, and found that the number of cells continuously increased,
indicating that the cellulose aerogel microspheres could be used as scaffolds for 3D cell culture [84].
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Zhang et al. have cultured 3T3 NIH cells on poly(vinyl alcohol)/CNF composite aerogel microspheres
and reached the same conclusion [219].

Bacterial adsorption or bacterial growth inhibition can be achieved by fixing antibacterial
substances on the surface of cellulose aerogels. Henschen et al. have used a layer-by-layer (LbL)
self-assembly technology to adsorb polyvinylamine and polyacrylic acid onto the surface of cellulose
aerogels and produced an antibacterial cellulose-based aerogel with contact activity. This material
was able to adsorb more than 99.9% of the live bacteria from a bacterial suspension [220]. Uymin et al.
have prepared a nanocellulose derivate aerogel with a bacterial inhibition rate of >99.99% by loading
lysozymes and silver nanoparticles on the surface of a cationic CNF aerogel [221].

Ethyl cellulose is a water-soluble cellulose derivative that is often used to make vehicles for
controlled drug release [222,223]. Choy et al. have used a precision particle fabrication (PPF)
technology to produce ethyl cellulose aerogel microspheres under sound and hydrodynamic forces.
Such microspheres can provide encapsulation efficiencies of 6.4–51% and 63–80%, respectively, for
piroxicam and rhodamine, and near zero-order drug release was observed at 24 h [155]. In addition,
pH-controlled or temperature-controlled drug delivery vehicles can be synthesized by modifying
cellulose derivate aerogels using cellulose grafting or compounding methods [224,225].

Cellulose aerogels have a connected porous structure and high specific surface areas, so they can
be used in biosensors. Edwards et al. used a method based on polypeptide chemistry to graft tripeptide
molecules onto a nanocellulose aerogel under the protection of fluorenylmethoxycarbonyl to obtain a
polypeptide–nanocellulose aerogel (PepNA). The detection sensitivity of PepNA for human neutrophil
elastase is 0.13 U/mL, so it can be used to monitor the level of protease in chronic wounds [226].

Cellular aerogels with biomedical functions can be obtained by surface modification or grafting
molecules with specific biological functions onto the molecular chain of cellulose. Due to the organic
solvents that are usually used to dissolve cellulose, purifications to avoid toxicity are always needed.
Furthermore, the performance stability and reusability of cellular aerogels are currently insufficient for
many biomedical applications.

3.5. Carrier of Metal Nanoparticles and Metal Oxides

The electronic and chemical properties of metal nanoparticles make them useful for a wide range
of applications in electronic devices, optical materials, sensors, and catalysts [227–229]. However,
the difficulty of immobilizing metal nanoparticles on solid substrates and carrying out separation and
processing limits the development and application of metal nanoparticles.

The key problem in the synthesis of metal nanoparticles is to prevent their agglomeration,
which can be accomplished by ensuring that cellulose gels have an appropriate nanostructure [120].
In addition, the polar surface of cellulose aerogels is rich in oxygen-containing groups (hydroxyl,
carboxyl, and ester groups), which can promote dense nucleation and provide a large number of
stable attachment points for metal nanoparticles [230,231]. Therefore, cellulose aerogels with high
porosity, a large specific surface area, and good mechanical strength are ideal media for the synthesis
and loading of metal nanoparticles.

At present, the metal salt in the nanostructure of cellulose gels is reduced by a hydrothermal
method or NaBH4 reduction method. In this way, cellulose aerogels loaded with metal nanoparticles
can be obtained after drying. The diameter of these metal nanoparticles is typically <100 nm, and
their number and size can be determined by controlling the metal salt concentration, temperature, and
reaction time.

Metal nanoparticles can provide cellulose aerogels with excellent performance. In addition, the
unique 3D network structure of aerogels can also strengthen the catalytic and conductive capabilities of
metal particles. Keshipour and Khezerloo deposited gold nanoparticles onto the surface of regenerated
aerogels to obtain a catalyst that efficiently catalyzed styrene epoxidation (96%, 1 h) [232]. Then,
they prepared a new cellulose derivative aerogel by modifying cellulose aerogel with chloroacetic
acid, dimercaprol, and Au(III) to get an efficient heterogeneous catalyst in the oxidation reactions of
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aliphatic, benzyl alcohol, and ethylbenzene [233]. Thiruvengadam and Vitta prepared a Ni–BC aerogel
nanocomposite with thermally sensitive magnetic behavior [234]. The Yao group developed an aerogel
consisting of pressure-sensitive conductive material Ag/CNF by combining a silver mirror reaction
with ultrasonic treatment [235]. The Zhang group prepared a polyaniline (PANI)/Ag/CNF elastic
supercapacitor (176 mF/cm2 at 10 mV·s−1) by electroplating a layer of PANI on the surface of an
Ag/CNF aerogel [236].

Unlike metal nanoparticles, metal oxides are typically deposited on the surface of aerogels
by chemical vapor deposition or in situ precipitation. For example, the Kettunen and Korhonen
groups coated a uniform thin layer of 7-nm titanium dioxide (TiO2) on the surface of aerogels using a
chemical vapor deposition method and an atomic layer deposition method, respectively, and obtained
TiO2-cellulose aerogels with strong light-controlled water absorption capacity or strong oil adsorption
capacity [237,238].

In addition, metal (metal oxide) aerogels may also be prepared by immersing
nanoparticle–cellulose aerogels in cellulose solvents or by pyrolyzing the aerogels in oxygen
to remove the cellulose [239,240]. Although the performance of metal (metal oxide) aerogels obtained
this way is better than those obtained through other means, the time required to produce such aerogels
is several fold greater.

3.6. Other Applications

The low ionic conductivity of PP separators has greatly limited their application in lithium ion
batteries. Liao et al. used ice-separation induced self-assembly to coat a hydroxyethyl cellulose aerogel
on a commercial PP separator and greatly improved the size stability of the PP separator, as well as the
adsorption and retention rate of electrolytes, thus increasing the ionic conductivity and reusability of
the PP separator [241].

In actual applications, phase-change composite materials must have high thermal conductivity, a
high latent heat of melting, and good structural stability. Yang et al. impregnated polyethylene
glycol (PEG) onto the surface of a cellulose/graphite nanoplatelet (GNP) aerogel to prepare a
phase-change composite material with high thermal conductivity (1.35 W·m−1·K−1) and high latent
heat of melting (156.1 J·g−1) [242]. This type of surface impregnation method is often used in
the functionalization of cellulose aerogels. Pääkkö et al. impregnated a conductive polymer,
polyaniline-sodium dodecylbenzenesulfonate, on the surface of a natural cellulose aerogel to confer
high conductivity (approximately 1 × 10−2 S·cm−1) [80].

In addition, the nanoscale and connected nature of the porous networks in cellulose aerogels, as
well as high specific surface areas, confer an excellent filtration performance and provide a large number
of contactable sites, making them ideal materials for producing air filters and sensors [58,243,244].

4. Conclusions and Prospect

Cellulose aerogels have the environmentally-friendly renewability, biocompatibility, and
biodegradability of cellulose, but also have excellent properties such as low density, high porosity,
and a high specific surface area. Cellulose aerogels are particularly well suited for applications in the
areas of adsorption and separation of biomedical and thermal insulation materials, as well as many
other fields.

However, there are still some issues regarding the preparation and modification of cellulose
aerogels. (1) First, the cost of nanocellulose and bacterial cellulose is high, and nanocellulose is prone
to self-agglomeration during the drying process. In addition, it is difficult to recover cellulose solvents
during the preparation of regenerated cellulose aerogels, and the solvent exchange process tends
to be very time-consuming; (2) Second, some modification methods for cellulose aerogels, such as
modification by a silane coupling agent, are complex and have a relatively high cost; (3) The structural
strength and stability performance (such as thermal stability and capability for repeated adsorption) of
cellulose aerogels still cannot meet the requirements of many actual applications.
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Therefore, the following problems should be addressed by the future research and development
of cellulose aerogels. Efficient, inexpensive, environmentally-friendly and non-toxic cellulose solvent
systems are necessary to improve the dissolution efficiency of cellulose. In addition, the sol–gel and
solvent exchange processes must be expedited to shorten the production cycle. Low-cost equipment, as
well as easy and safe gel drying methods, should be explored. Finally, the potential for the performance
and stability of cellulose aerogels to be improved by physical mixing or chemical modifications should
be assessed.
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