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Macrophages play essential activities in homeostasis maintenance during different 
organism’s conditions. They may be polarized according to various stimuli, which 
subsequently subdivide them into distinct populations. Macrophages with inflammatory 
activity function mainly during pathological context, while those with regulatory activity 
control inflammation and also remodel the repairing process. Here, we propose to review 
and to present a concise discuss on the role of different components during tissue 
repair, including those related to innate immune receptors and metabolic modifications. 
The scar formation is directly related to the degree of inflammation, but also with the 
appearance of M2 macrophages. In spite of greater numbers of macrophages in the 
fibrotic phase, regulatory macrophages present some characteristics related to promo-
tion of fibrosis but also with the control of scar formation. These regulatory macrophages 
present an oxidative metabolism, and differ from the initial inflammatory macrophages, 
which in turn, present a glycolytic characteristic, which allow regulatory ones to optimize 
the oxygen consumption and minimizing their ROS production. We will emphasize the 
difference in macrophage subpopulations and the origin and plasticity of these cells 
during fibrotic processes.
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inTRODUCTiOn

Macrophages are cells of the innate immune system highly heterogeneous, involved in the primary 
response to microorganisms, in inflammatory responses, homeostasis, and tissue regeneration (1). 
Several evidences show that initial infiltration of macrophages culminates with pro-inflammatory 
cytokines and reactive oxygen species (ROS) production, which exacerbates inflammatory diseases 
such as diabetes mellitus, kidney disease, heart, and liver disease. Conversely, macrophages in the 
later phase of diseases have been associated with release of anti-inflammatory molecule and growth 
factors, which attenuate inflammation and promote tissue regeneration (2). However, there are 
macrophage dysfunction, which can impair the proper regenerative process, and otherwise, promote 
the development of fibrosis, deposition of type I and III collagen, and myofibroblasts activation. 
Emerging evidence demonstrates that both inflammatory and regulatory macrophages may partici-
pate in the pro-fibrotic processes, and this event may be dependent on the macrophage origin and 
the intrinsic aspects of the pathology (3, 4). Below, we will discuss the differences in macrophage 
subpopulations characteristics and their ontogeny with emphasis in the fibrotic process.
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OnTOGenY OF MACROPHAGeS

Since the description of macrophages in 1888 by the renowned 
scientist Elie Metchnikoff (5) considerable accumulating 
knowledge about their biology, development, and origin were 
generated, re-evaluated, and placed on discussion as a result of 
advances in biology technology such as conditional deletion and 
colored-labeled-monocytes, that unquestionably enable us to 
better understand these cells (6–9). One example is that for years 
we assumed that all resident macrophages come from circulat-
ing monocytes derived from a single myeloid precursor in bone 
marrow (7). However, nowadays we know resident macrophages 
are heterogeneous cells that can develop from different sources, 
including embryonic progenitor cells, bone marrow hematopoi-
etic cells or local proliferation (6–9).

Embryonic hematopoiesis begins on the eighth day after 
conception in the yolk sac (10, 11). Progenitors migrate to fetal 
liver to establish a temporary hematopoiesis (7, 12). Macrophages 
with embryonic origins may be regulated by CSF1R and their cor-
responding ligands IL-34 and CSF1 (13–15). Studies on CSF1R 
ablation verified CSF1R is important for the generation of resi-
dent macrophages once deletion of this receptor compromises the 
development of resident macrophages in brain, bone, skin among 
other tissue (15).

Monocytes derived from bone marrow myeloid progenitors 
also give rise to both dendritic cells and macrophages. Two dif-
ferent types of monocytes are described in mice: Ly6C+CCR2high 
and Ly6C−CX3CR1high. Ly6C+CCR2high are called “inflamma-
tory” monocytes and are considered to be recruited to inflamed 
lymph nodes and tissues where typically differentiate into DC 
or inflammatory macrophages. In contrast, Ly6C−CX3CR1high 
present low CCR2 expression, are smaller and are known as 
“resident-monocyte,” responsible by surveillance in homeostatic 
conditions, an essential task to accomplish the cleaning oxidized 
lipids, dead cells, and possible pathogens (16–18). Besides, these 
cells are also related to reduce inflammation and promotion of 
tissue repair (16). A schematic origin of macrophage is shown 
in Figure 1.

MACROPHAGe POLARiZATiOn

Resident and infiltrating macrophages may be polarized according 
to the microenvironment stimuli (6, 8). They may be considered 
M1, also known as classical or pro-inflammatory, and M2 also 
known as alternative macrophages, but with intermediate states 
of activation (19, 20).

Classically activation is acquired in presence of IFN-γ, derived 
from natural killer cells and Th1 lymphocytes, and LPS from 
pathogens. Such activation increases the phagocytic capacity 
of macrophages along with the expression of class II MHC and 
costimulatory molecules such as CD80/CD86 (21). This bio-
logical event makes the macrophage a cell specialized to present 
antigens, along with the production of inflammatory cytokines 
(TNF-α, IL-12, and IL-23), besides recruiting Th1 and Th17 lym-
phocytes. Consequently, the adaptive immune system maintains 
activation of macrophages in order to provide a stable defense 
against any pathogen. The role of M1 macrophages is associated 

with microbicide capacity, antigen presentation, antitumor activ-
ity, and they are related to inflammatory diseases (2, 21). M1 
macrophages also express ROS and chemokines such as CCR7, 
CXCL9, and CXCL10 (2, 22).

M2 macrophages, in turn, present different properties, 
sometimes opposite, to M1 macrophages. They secrete anti-
inflammatory factors, which help to diminish the inflammation 
(2, 20). The polarization of M2 cells is mainly promoted by Th2 
cytokines such as IL-4 and IL-13. The profile of chemokines and 
cytokines are also different between both cases. M2 macrophages 
produce chemokines that recruit Th2 lymphocytes and T regula-
tory cells such as CCL17, CCL22, and CCL24 (23). Other features 
that characterize M2 macrophages are the expression of Arg1, 
Ym1, and Fizz, secretion of angiogenic factors such as IL-8, 
VEGF, and EGF4, increased mannose receptor (CD206), besides 
reduced expression of pro-inflammatory cytokines and ROS. M2 
macrophages carry out the clearance of apoptotic cells, combat 
intestinal parasites, stimulate tumor growth, and promote the 
regeneration of organs (24, 25).

THe ROLe OF MACROPHAGeS in THe 
PROGReSSiOn OF FiBROSiS

Defining Fibrosis
The repair tissue damage is a fundamental biological process that 
allows the orderly replacement of damaged or dead cells due to 
some injury, an essential mechanism for survival. The damage 
tissue can result from various stimuli, acute or chronic, includ-
ing infections, autoimmune reactions, mechanical injury, or any 
stimulation of the immune response. The repair process typically 
involves two distinct stages: a regenerative phase, in which the 
damaged cells are replaced by cells of the same type without 
bringing any evidence of harm; and a phase called fibroplasia 
or more commonly called fibrosis, in which connective tissue 
replaces normal parenchymal tissue. Although initially benefi-
cial, the healing process becomes pathological when it becomes 
continuous, resulting in substantial remodeling of the ECM and 
formation of permanent scar. In some cases, this can lead to organ 
failure (26).

Unlike acute inflammatory reactions that are characterized 
by fast vascular changes, edema, and neutrophil infiltration, 
fibrosis usually originates from chronic inflammatory responses, 
defined as a response that persists for several weeks or months, 
and which inflammation and tissue destruction process repair 
occur simultaneously. Although different etiologies and clinical 
distinction, most fibrotic disorders have in common a persistent 
inflammation which maintains production of growth factors, 
proteolytic enzymes, angiogenic factors, and pro-fibrotic 
cytokines, which together stimulate the deposition of connective 
tissue elements remodel or progressively destroy normal tissue 
architecture (27, 28).

Irrelevant of the initial cause, the development of interstitial 
fibrosis is characterized by the appearance of activated fibroblasts, 
positive for α-smooth muscle actin (α-SMA), also called myofi-
broblasts. In renal parenchyma, the deposition of ECM products 
is largely attributed to these cells (29).
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FiGURe 1 | Macrophages are present in all mammalian tissues, contributing to homeostasis and organ disease. Most tissue macrophages have an 
embryonic origin, and they are not fully derived from circulating monocytes. From embryonic day 6.5–8.5, resident macrophages can be generated in yolk sac. 
These macrophages can be identified as being regulated by CSF1R, and they are independent of the factor myb. Subsequently, during day E 8.5 to E 10.5 
hematopoietic stem cells (HSCs)-derived aorta-gonad-mesonephros can migrate to fetal liver and establish a temporary hematopoiesis, giving rise, for example, to 
Langerhans cells and alveolar macrophages. In addition, resident macrophages derived from fetal liver may originate both HSCs precursors and mature erythro-
myeloid cells. Finally, during the perinatal period, HSCs migrate to the bone marrow to establish itself a definitive place of hematopoiesis that will last until the 
adulthood. On this point, they are produced as Ly6C+CCR2high and Ly6C−CX3CR1high monocytes capable of infiltrating organs and differentiate into macrophages. 
Both infiltrating and residents macrophages can be polarized to M1 and M2 according to the microenvironment stimuli.
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Myofibroblasts as effector Cells in 
Fibrosis
Myofibroblasts are recognized as the effector cells of fibrogenesis 
(30). These cells are recognized by synthesizing large amounts of 
ECM, a substance which is mainly comprised of fibers of type I 
and III collagen, fibronectin, laminin, and other basal membrane 
proteins that are the source of scar tissue (31, 32). In addition, 
myofibroblasts are characterized by generating contractility, 
and distort the architecture organs, a property that is due to the 
expression of smooth muscle proteins as α-SMA (33). It has been 
identified at least three different sources for myofibroblasts (34). 
The first origin is related to the activation of local stromal cells 
such as fibroblasts and pericytes in the presence of pro-fibrotic 
factors (35). The second myofibroblasts source is from circulating 
fibrocytes. These cells originate in the bone marrow and express 
markers such as CD34, CD45RO, 25F9, S100A8/A9, and type 1 
collagen (36). They can be recruited by inflammatory chemokines, 

and its importance is related to the role they have in lung, skin, 
heart, liver, and kidney fibrosis process (37). Other sources of 
myofibroblasts are epithelium or endothelium to mesenchymal 
transition (EMT and EndoMT), a reported process that occur 
in tubular cells in the presence of TGF-β in which such cells 
may adopt mesenchymal characteristics (38, 39). During EMT 
and EndoMT, renal tubular cells lose their phenotype and thus 
transdifferentiate into myofibroblast cells expressing α-SMA and 
type I collagen. The EMT/EndoMT process involves four key 
events: (1) loss of epithelial adhesion properties, (2) new α-sMA 
expression and actin reorganization, (3) increased permeability 
of the tubular basement membrane, and (4) increased migration 
and invasion ability (40).

TGF-β is the only factor described as participating in the four 
events of EMT and two molecules: hepatocytes growth factor 
(HGF) (41) and bone morphogenic protein-7 (BMP-7) (42) have 
been demonstrated as being capable of reversing the process of 
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EMT due to inhibition of TGF-β and hence decreasing renal 
fibrosis.

Macrophages and Fibrosis
Since embryonic stages, it has been shown that CSF1R+ 
macrophages participate in the homeostasis and architectural 
remodeling of tissue (43). However, it has also been shown that 
the degree and severity of damage and fibrosis correlates with 
infiltrating macrophages (44). Depletion of resident macrophages 
by clodronate or CCL2 blockade improves kidney injury and 
reduce the pro-fibrotic process (45, 46). Interestingly, Nishida 
et al. showed that there are apparently infiltrating macrophages 
with opposing functions, once angiotensin II type 1 receptor 
(AGTR1+) macrophages have an anti-fibrotic role. In fact, it 
was observed that AGTR1−/− animals have a more pronounced 
fibrosis (47). This suggests that there are diverse populations of 
macrophages that infiltrate the kidney, with pro- and anti-fibrotic 
capacities which could be related to the time the injury happens.

M1 macrophages are known to predominate during the onset 
of injury (48–50). They release pro-inflammatory cytokines 
that exacerbate the injury, amplify the inflammatory response 
and contribute to myofibroblasts proliferation and recruitment 
of fibrocytes (4, 32). M1 have been associated with the release 
of metalloproteinases that degrade ECM and promote EMT/
EndoMT (51). It was shown that blocking MMP-9 or MMP-2 
results in reduction of fibrosis in the UUO model of disease 
(52). Oppositely, Lutz et  al., have demonstrated that inhibition 
of MMP-2 in chronic allograft nephropathy results in a more 
severe fibrosis (53), which suggests that MMPs are also important 
enzymes for the control of fibrosis and scarring area limitation. 
Macrophage secretion of MMP-9, MMP-12 and MMP-13 in the 
liver is related to ECM degradation and resolution of fibrosis (54, 
55). Also, it has been identified a Ly6Clow macrophage popula-
tion that secrete MMPs and have anti-fibrotic role in the liver 
(56). However, by transcriptional analysis, such macrophage 
population could not be classified as M1 or M2. In the liver, as 
in the kidney, macrophages have an important role in fibrosis 
progression. For example, there is strong evidence showing 
that Kupffer cells activate hepatic stellate cells to promote their 
transdifferentiation into myofibroblasts (57). These cells are the 
main source of ECM in the liver and they are responsible for the 
progression of cirrhosis.

When the acute phase of inflammation finishes, Th2 cytokines 
are produced to promote the polarization and recruitment of M2 
macrophage (58). Added to this, apoptotic cells are recognized 
and phagocytosed by macrophages M1, an event that also pro-
motes macrophage alternative activation (59). M2 macrophages 
are intended to create an anti-inflammatory environment and 
promote healing and regeneration of wounds. However, when 
the lesion is persistent, M2 macrophages take an important pro-
fibrotic role and these cell population are known to secreting large 
amounts of pro-fibrotic factors such as TGF-β and Galactin-3 
(60). The latter is a protein that is widely associated with car-
diac fibrosis and atrial fibrillation (61). Preclinical studies have 
shown that infusion of recombinant galectin-3 activates cardiac 
fibroblast proliferation, leading to ventricular dysfunction (62). 
Furthermore, it has been observed that patients with paroxysmal 

atrial fibrillation have elevated levels of galectin-3 (63). Therefore, 
some authors believe that galectin-3 could act as heart failure 
and fibrosis biomarker. Furthermore, Braga et al. showed that in 
the absence of IL-4, mice underwent UUO are associated with 
improved parameters and decreased renal fibrosis (64).

M1 and M2 in the Context of 
Myofibroblasts Activation
There are growing evidences showing the relationship between 
macrophages and myofibroblasts activation during inflamma-
tion by different ways (50). M1 macrophages generate cytokines 
that activate myofibroblasts, either by the production of pro-
inflammatory cytokines such as TNF-α and IL-1β, or chemokine 
production, such as CCL2 that assist in fibrocytes recruitment 
(65). Fibrocytes can migrate to the site of the inflammation 
through the expression of receptors as CCR2, CCR3, CCR7, and 
CXCR4 (37, 66).

M2 macrophages contribute to the control of inflammatory 
process through the release of IL10, arginase, TGF-β and HO-1, 
a process which promotes controlled wound healing and tissue 
regeneration (67, 68). However, the healing process depends on 
whether the initial insult persists or not (69). In this sense, if 
the insult persists, chronic activation of M2 leads to an opposite 
effect. M2 can activate resident fibroblasts through the release of 
TGF-β, PDGF, VEGF, IGF-1, and Galactin-3 (50, 57, 70). This 
evidence demonstrates that the exacerbation of fibrosis could 
depend on the type of macrophage polarization and persistence 
of the inflammatory insult, as shown in Figure 2.

Macrophage Metabolism Regulation in 
Fibrosis
Recently, a large amount of data has been coming in focus 
concerning metabolism and macrophage plasticity (71–73). We 
know M1 macrophages present an glycolytic cellular metabo-
lism (74). It has been shown LPS, in an M1 polarization context, 
induces the transcriptional factor HIF-1α, which, in turn, 
transcriptionally couples glycolytic metabolism to macrophages’ 
inflammatory and microbicidal programs (74). HIF-1α is stabi-
lized by succinate, an effect that is inhibited by 2-deoxyglucose, a 
glycolytic pathway inhibitor (75). A metabolomic screen of LPS-
stimulated macrophages revealed not only the expected activa-
tion of the Warburg effect but also an unexpected accumulation 
of intermediates of the tricyclic acid cycle, in particular succinate 
(75, 76). In M1 macrophages, it was also identified a metabolic 
break at the enzyme that converts isocitrate to α-ketoglutarate, 
providing mechanistic explanation for tricyclic acid cycle frag-
mentation (76).

On the other hand, M2 polarization was found to activate 
glutamine catabolism (76). Given that M2 macrophage activation 
and chronic diseases are energetically demanding, both in terms 
of intensity and duration, Vats et al., demonstrated that distinct 
substrates and pathways might meet the metabolic demands of 
M2 (77). Microarray analysis of M2 revealed that genes important 
in fatty acid oxidation were preferentially expressed in such cells. 
Metabolic studies further verified that M2 present increased 
mitochondrial amount and function. Accordingly, inhibition of 
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FiGURe 2 | Participation of M1 and M2 macrophages in the process of fibrosis. The activation of myofibroblasts is a physiological process generated in 
order to repair and restore tissue homeostasis. However, if the insult persists, fibrosis progress with proliferation of myofibroblasts and deposition of ECM which 
replaces functional tissue, leading to scar tissue formation. In this context, M1 macrophages represent the starting point of pro-fibrotic process. Therefore, M1 
releases pro-inflammatory cytokines and chemokines that indirectly promote the proliferation of myofibroblasts. M1 can release CCL2, assisting in the recruitment of 
fibrocytes and also MMP-9, that promotes EMT/EndoMT. M1 has also been associated with an anti-fibrotic effect by releasing MMPs that degrade ECM. M2 
macrophages can be generated by phagocytosis of apoptotic bodies or Th2 cytokines stimulation. M2 is initially anti-inflammatory cells through the release of IL10, 
arginase, TGFβ and HO-1. But when the damage persists, M2 activation leads to EMT/EndoMT as well as proliferation of fibrocytes due to the release of several 
growth factors. In this sense, macrophage modulation is the central axis of the exacerbation or control of fibrosis.
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oxidative phosphorylation by metabolic inhibitors dramatically 
diminished the expression of M2 markers (77). It is also known 
that IL-4 and IL-13 induce oxidative metabolism by inhibiting 
mTOR, via activation of its upstream negative regulators TSC1 
and TSC2 (78). Inhibition of mTOR can also lead to a decrease 
in HIF-1α levels, and therefore could result in reduced HIF-1α-
dependent glycolytic and inflammatory gene expression (79).

There is a clear distinction in metabolism between macrophage 
subtypes, otherwise, the relevance of these observations and the 
implications for fibrosis are not fully understood. It is known 
pulmonary fibrosis development is related to mutations in mater-
nally inherited mtDNA encoding for key genes of mitochondrial 
energy-generating oxidative phosphorylation, rather than 
Mendelian nuclear genetic principles (80, 81). Mitochondrial 
ROS are also responsible by death of alveolar epithelial cells in 
the context of fibrosis originated from fibrogenic dusts, such as 
asbestos and silica (82). Also, liver kinase B1 (Lkb1), an upstream 
regulator of fatty acid metabolism, has been implicated in chronic 
kidney disease (CKD) development (83). Loss of Lkb1 impaired 
metabolic signaling and caused intracellular lipid accumulation, 
impaired fatty acid oxidation, and decreased glycolysis compared 
to control cells. Subcellular analyses of the mutant cells also 

identified a distorted mitochondrial structure, which negatively 
impacted upon cellular ATP content (83). Besides fatty acid, 
glucose metabolism has been implicated in CKD. High glucose 
concentrations may play important role in fibrosis development 
once leads to up-regulation expression of TGFβ, Smad3, Smad7, 
and CTGF (84).

However, much is expected in order to correlate macrophage 
metabolism and fibrosis formation. We still do not understand 
the scar formation in the context of drugs capable to modulate the 
metabolism in cells. It is known that chronic ethanol consump-
tion disturbs several hepatic enzymes, including those related to 
cellular metabolism, such as PGC-1α (85), in a cirrhosis model 
of disease, meanwhile new studies in fibrotic models that do not 
are related to metabolites ingestions are needed.

COnCLUSiOn

Macrophages represent a heterogeneous cell population that can 
develop from different sources. M1 macrophages are associated 
with pro-inflammatory functions, and an exacerbation of tissue 
inflammation initiates the pro-fibrotic process (69). In this direc-
tion, M1 activates myofibroblasts through the release of MMPs 
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that promote EMT/EndoMT and fibrocytes recruitment through 
CCL2 secretion. On the other hand, M2 macrophages have anti-
inflammatory properties due to the ability to secrete IL-10, argin-
ase, TGFβ, and HO-1 (65, 68). In this point of view, M2 becomes 
friend of the tissue repairing. However, when the insult is not 
controlled and there is a persistent activity of M2 macrophages, 
these cells act as an enemy for tissue homeostasis. Excessive M2 
macrophage activation leads to the continuous production TGFβ 
and growth factors that promote proliferation of myofibroblasts, 
activation of EMT/EndoMT and ECM deposition (34). In this 
scenario, M2 represents a break point between wound healing 
and exacerbation of pro-fibrotic process. Recently, much has 

been studied about macrophages metabolism. We know, for 
example, that pro-inflammatory cells present a glycolytic 
metabolism while anti-inflammatory ones are characterized by 
an oxidative metabolism. Otherwise, more studies are needed 
in order to identify macrophages components responsible 
by fibrosis triggering and different intervention manners in 
fibrotic process.
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