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2IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik, 808-1070 Brussels, Belgium
3WELBIO, Route de Lennik, 808-1070 Brussels, Belgium
4Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
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SUMMARY

Little is known about how RNA editing operates in
cancer. Transcriptome analysis of 68 normal and
cancerous breast tissues revealed that the editing
enzyme ADAR acts uniformly, on the same loci,
across tissues. In controlled ADAR expression ex-
periments, the editing frequency increased at all
loci with ADAR expression levels according to the
logistic model. Loci-specific ‘‘editabilities,’’ i.e., pro-
pensities to be edited by ADAR, were quantifiable by
fitting the logistic function to dose-response data.
The editing frequency was increased in tumor cells
in comparison to normal controls. Type I interferon
response and ADAR DNA copy number together ex-
plained 53% of ADAR expression variance in breast
cancers. ADAR silencing using small hairpin RNA
lentivirus transduction in breast cancer cell lines led
to less cell proliferation and more apoptosis. A-to-I
editing is a pervasive, yet reproducible, source of
variation that is globally controlled by 1q amplifica-
tion and inflammation, both of which are highly prev-
alent among human cancers.

INTRODUCTION

Although intense effort is currently being dedicated to cancer

genome sequencing, comparatively little attention has been

devoted at understanding how faithful RNA sequences are to

the DNA sequences from which they were derived. mRNA is

the target of a series of post-transcriptional modifications that
C

can affect its structure and stability, one of the most relevant be-

ing RNA editing (Bass, 2002; Levanon et al., 2004; Nishikura,

2010). The most common form of RNA editing in humans, the

A-to-I type, is catalyzed by the adenosine deaminases that act

on RNA (ADARs) family of enzymes, which bind double-stranded

RNA (dsRNA) and turn adenosines into inosines at precise posi-

tions (Bass, 2002; Nishikura, 2010). Inosines are subsequently

interpreted as guanosines by the cellular transcription machin-

ery. ADAR enzymes are essential in mammals (Higuchi et al.,

2000; Wang et al., 2000) and exist in three forms: ADAR (also

known as ADAR1), which is ubiquitous and has two isoforms—

p110 is constitutive and p150 is inducible; ADARB1 (also known

as ADAR2), principally expressed in the brain; and ADARB2 (also

known as ADAR3), which contrary to ADAR and ADARB1 seems

to be enzymatically inactive (Chen et al., 2000; Savva et al.,

2012).

A-to-I edits can profoundly influence cellular functions and

regulations by altering mRNA splicing, stability, localization,

and translation, and by interfering with the binding of regulatory

RNAs (Athanasiadis et al., 2004; Rueter et al., 1999; Wang et al.,

2013). In addition to mRNA, ADAR can target non-coding RNAs

such as micro-RNAs (miRNAs), small-interfering RNAs (siRNAs),

and long non-coding RNAs (lncRNAs), affecting both their struc-

ture and activities (Blow et al., 2006; Hundley and Bass, 2010;

Kapusta et al., 2013; Kawahara et al., 2007). A-to-I editing has

been shown to occur predominantly in highly repetitive Alu se-

quences, likely because their frequency (>106) in the human

genome makes their arrangement in quasi-palindrome configu-

rations prone to RNA duplex formation highly probable (Athana-

siadis et al., 2004; Bazak et al., 2014a; Kim et al., 2004; Levanon

et al., 2004). High-throughput sequencing studies suggest that

tens of thousands to millions of positions are targeted by A-to-I

editing in the human transcriptome (Bahn et al., 2012; Ju et al.,
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Figure 1. Detection of A-to-I Editing

(A) Substitution frequencies of RDDs.

(B) Percentage of RDDs confirmed in the validation

data set, n = 15 BCs (in red), and the DARNED

database (in blue). The negative control set is

composed of 1,000 sites selected at random

positions in randomly selected Alu regions. Sites in

immunoglobulin (Ig) hyper-variable regions were

excluded; see the Supplemental Experimental

Procedures.

(C) Each dot represents a sample for which

the frequency of edited AZIN1 transcripts has

been measured with Illumina full transcriptome

sequencing (x axis) and Roche FLX amplicon

sequencing (y axis). r denotes the Spearman’s

correlation.

(D) Distribution of the 560 edited sites into func-

tional categories.

(E and F) Number of detected Alu A-to-I sites as

a function of transcriptome and exome cover-

ages, respectively. Green dots represent tumor-

matched normal samples.
2011; Li et al., 2009; Park et al., 2012; Peng et al., 2012; Ramas-

wami et al., 2012, 2013), and a recent publication reports that

potentially all adenosines in specific Alu repeats undergo A-to-I

editing (Bazak et al., 2014b).

Currently, a limited number of studies on A-to-I RNA editing in

cancer have been published, with the findings pointing to a

diversity of effects. For example, in brain cancer, editing inhibits

cell growth and is reduced in glioma (Maas et al., 2001;

Paz et al., 2007) and pediatric astrocytoma (Cenci et al.,

2008). In contrast, A-to-I editing increases during chronic

myeloid leukemia progression (Jiang et al., 2013). In hepatocel-

lular carcinoma, A-to-I editing of the antizyme inhibitor 1 (AZIN1)

increases and neutralizes a key inhibitor of the polyamine syn-

thesis pathway, thereby promoting proliferation in vitro and

increasing tumor initiation and volume in a mouse xenograft

model (Chen et al., 2013). The studies published so far included

a small number of samples—an important limit given the sheer

diversity of tumor transcriptomes—and/or investigated a limited

number of editing sites. Whether the edited transcripts origi-

nated from cancer cells or other cell types, e.g., immune cells,

present in the tumor mass was not addressed. Hence, both

the magnitude and mechanisms regulating A-to-I editing in the

majority of cancers, including breast cancer (BC), remain largely

unknown.

The main objective of this study was to investigate the princi-

ples governing the A-to-I editing process in BC aswell as in other

types of cancer.
278 Cell Reports 13, 277–289, October 13, 2015 ª2015 The Authors
RESULTS

Detection and Validation of A-to-I
Editing Sites in Breast Tissue
The extent of A-to-I RNA editing in BC

was investigated by paired exome and

transcriptome sequencing of a broad

series of BC samples representing the

principal intrinsic subtypes including 17
triple-negative (TN), 14 HER2-positive (HER2), 16 luminal A

(LA), and 11 luminal B (LB) tumors (Table S1). Paired exome

and transcriptome sequencing of matched, tumor-adjacent

normal tissue was performed on ten cases from this series.

RNA-DNA single nucleotide differences (RDDs) were called as

outlined in Figure S1 (details in the Supplemental Experimental

Procedures).

Overall, we detected 16,027 RDDs in one or more samples,

with all possible base changes represented (Figure 1A). Among

these, 560 RDDs were located in Alu regions, and all were of

the A-to-I type (Figure 1A; Table S2), consistent with the notion

that A-to-I editing occurs predominantly in forward-facing Alu

forming dsRNA duplexes processed by ADAR. Forty-seven

percent of the A-to-I Alu RDDs were present in the DARNED

RNA editing site database (Kiran andBaranov, 2010). In contrast,

only 2.5% of A-to-I, non-Alu RDDs and 0.6% of non A-to-I RDDs

were found in the DARNED database (Figure 1B).

Breast tissue is not well represented in the studies covered by

the DARNED database. Given that gene expression and RNA

editing frequency (defined for each sample as the ratio of the

number of RNA sequencing (RNA-seq) reads documenting

the non-reference base relative to the total number of reads

covering the site) could be regulated in a tissue specific manner,

we further validated our findings in an independent breast

series. This independent validation series included 15 BC sam-

ples with paired transcriptome and full genome sequencing

data from the Sanger Institute. The genomic coordinates of our



putative RDDs and the coordinates of 1,000 random Alu

positions were sent to the Sanger Institute without any additional

information. This blind test—based on an independent RDD

detection pipeline (Supplemental Experimental Procedures)—

confirmed 90% of the Alu RDDs, while only one of the 1,000

random Alu sites was detected in the validation series. Beyond

Alu, overlapwith the validation serieswasbelow40% (Figure 1B).

Given the low confirmation rate of RDDs located outside of Alu

regions in both the DARNED database and the independent vali-

dation series, and that the majority of human editing events are

A-to-I detected in Alu repeats (Athanasiadis et al., 2004; Bazak

et al., 2014b; Kim et al., 2004; Levanon et al., 2004), our subse-

quent analyses focused exclusively on the subset of A-to-I RDDs

located in Alu sequences. Since several works have reported the

editing of AZIN1, this target was also included in our analyses

(Chen et al., 2013; Ju et al., 2011; Li et al., 2009, 2011; Peng

et al., 2012; Qin et al., 2014; Ramaswami et al., 2012; Shah

et al., 2009).

To evaluate the accuracy of edited transcript frequencies

measured in our full transcriptome data, we generated ampli-

cons of the AZIN1 editing site region for 36 samples that

were then analyzed by an independent sequencing technology

(Roche FLX sequencer). The edit frequencies measured from

full transcriptome and amplicon sequencing were remarkably

consistent (Figure 1C) and thereby validated the accuracy of

these estimations.

The distribution of A-to-I within Alu edits according to func-

tional effect is shown in Figure 1D; functional information for all

putative and confirmed edited sites is available Table S2.

The Apparent Size of the Editome Depends on the
Transcriptome Sequencing Depth and on the Span of
Sequenced Genomic Regions
Sequencing depth is a key factor in detecting single nucleotide

variations (Bazak et al., 2014b), leading us to ask whether the

exome and RNA sequencing depths could influence the number

of detectable Alu edit sites. While this number was not depen-

dent on the exome sequencing depth, it did greatly increase

with the transcriptome coverage (Figures 1E and 1F; Table S3).

No plateau was reached in our data set, which had a maximum

coverage of �3 3 107 reads/sample. This suggests that with

higher transcriptome coverage additional A-to-I editing sites

should be detectable in the breast transcriptome.

A comparison of our results and methods with previous litera-

ture is presented in Tables S4A and S4B. This analysis revealed

that genome sequencing span is among the main factors limiting

the RDD detection. Since our DNA sequencing covered the

exome and not the entire genome, we implemented a less con-

servative editing detection pipeline bypassing the exome DNA

comparison and focusing instead the detection of A-to-I editing

on sites previously reported in the literature (Supplemental

Experimental Procedures). This DNA-free pipeline detected

59,993 A-to-I editing sites. The main variable investigated in

this paper, namely, the mean editing frequency, estimated

from these 59,993 sites or the 560 Alu sites obtained with the

DNA-based pipeline, was nearly identical (r = 0.9, p = 2 3

10�16). Most of the sites detected by the DNA-free pipeline

were expressed in few samples (median, 14.7% of the samples;
C

interquartile range [IQR], 4.4%–50%) and/or edited at low fre-

quency (median, 0% of the reads; IQR, 0%–3.4%); i.e., they

were of limited interest as far as correlative analysis across a sig-

nificant fraction of the cohort is concerned and most probably

had negligible influence on cancer progression. The number of

sites dropped from 59,993 to 1,852 after filtering out positions

expressed at detectable levels in <75% of the samples and

not edited at a frequency >10% in any samples. By contrast,

applying the same filter to the DNA-based pipeline reduced the

number of sites from 560 to 455.

More A-to-I Editing Was Found in Tumor Compared to
Normal Matched Breast Tissue
To determine whether A-to-I editing is specifically altered in

BC, the mean editing frequencies across all edited sites were

compared between matched normal and tumor breast tissues

for ten caseswhere paired exomeand transcriptome sequencing

data were available for the normal tissue. We also compared the

specific edit frequency of the AZIN1 transcript determined by

high-depth amplicon sequencing (Roche FLX sequencer) be-

tween tumor and matched normal breast tissues. The global

mean editing frequency and theAZIN1 specific editing frequency

were higher in tumor compared to matched-normal breast tis-

sues (Figures 2A and 2B; Tables S3 and S5).

Normal breast samples may contain less epithelial cells;

hence, lower editing in these samples could be a trivial conse-

quence of lower editing in non-epithelial cells (e.g., adipocytes)

compared to epithelial cells. Thus, the site-averaged editing fre-

quencies across all 560Alu sites from the independent validation

series (15 BCs) were compared to eight normal breast organoids

(i.e., freshly isolated uncultured intact breast milk ducts). Editing

was higher in tumor compared to pure normal epithelial cells

(Figure 2C), which validates our findings.

Global A-to-I Editing Is Governed by ADAR Expression
and Site-Specific Editability
The general principles governing A-to-I editing in BC were inves-

tigated in multiple, matched exome-transcriptome data pairs.

The ADAR family of enzymes catalyzes A-to-I editing, leading

us to first determine their expression levels in normal and tumor

breast tissues as well as their association with editing frequency

using transcriptome sequencing data. ADAR was expressed

9-fold more than ADARB1 and >1,000-fold more than ADARB2

(p < 10�16, Figure S2), which was anticipated because these

last two isoforms are principally expressed in the brain. More-

over, while ADAR expression was higher in tumor compared

to patient-matched normal breast tissues (p = 0.005, Figure

S2), an inverse borderline-significant trend was observed for

ADARB1 (p = 0.1, Figure S2).

The mean editing frequency (defined as the average editing

frequency of all 560 Alu sites) was significantly positively corre-

lated with ADAR mRNA expression levels (Spearman’s r = 0.7,

p < 2 3 10�16; 40% of variance explained; Figure 3A; Table

S3), while it was weakly anti-correlated with ADARB1 expression

levels (Figure S2), as previously reported (Chen et al., 2013). The

global association detected between ADAR mRNA expression

and the mean editing frequency was also observed at individual

editing sites (Figure S2; Table S2). Considering both the high
ell Reports 13, 277–289, October 13, 2015 ª2015 The Authors 279
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Figure 2. A-to-I Editing and ADAR Expression in Normal and Tumor Breast Tissue

(A) Each dot represents a patient with the mean editing frequency in her normal (x axis) and her matched tumor breast tissue (y axis).

(B) Same as (A), except that the AZIN1 editing frequency measured by Roche FLX amplicon sequencing is depicted.

(C) The mean editing frequency of eight breast organoid cultures is compared to that of 15 breast tumors.

(D) Representative ADAR staining of a luminal A tumor.

(E) Zooming in (D) reveals that tumor staining (black arrows) is higher than in normal epithelium (green arrows) and lymphocytes (red arrows).

(F) Zooming further in (E) reveals a higher staining of nucleoli (black arrows).
levels of ADARmRNA expression and its strong correlation with

the mean editing frequency, our further analyses were focused

on ADAR.

Editing site distribution across normal and BC tissues was

investigated by plotting the maximum edit frequency for all edit-

ing sites against the number of samples where editing of these

sites was detected (Figure 3B). These two variables were highly

correlated indicating that if a site was highly edited in one sam-

ple, it was very likely to be edited in many other samples. This

also suggested that the editing sites detected in normal tissues

are also detected in matched tumor tissues and across all BC

patients.

Sites and samples were then ordered by increasing mean

editing frequencies, and the individual editing frequencies at all

560 Alu sites in all samples were displayed as a heatmap (Fig-

ure 3C; negative controls in Figure S2). This revealed that high

editing frequencies were present in the samples with more edit-

ing sites and high ADAR expression. Conversely, samples with

lower ADAR expression had fewer edited sites, which were

edited at lower frequencies. Taken together, these data suggest

a quantitative model of A-to-I editing (Figure 3D). In this model,

turning up the ADAR expression ‘‘knob’’ leads to detectable ed-

iting at more sites and an increased editing frequency of all the

editable sites. Conversely, when ADAR expression is low, editing

is detectable at fewer sites and at a lower frequency. We pro-

pose that ‘‘editability,’’ the propensity of a position to be edited

by ADAR, depends mostly upon biophysical interactions be-
280 Cell Reports 13, 277–289, October 13, 2015 ª2015 The Authors
tween an individual site with its surrounding RNA sequence

and partnering as a duplex with ADAR. We show below how to

quantitatively estimate it from dose-response data.

Validation of the A-to-I Editing Model
We challenged this A-to-I editing model by inducing ADAR

expression in four breast cell lines (three tumor and one normal

tissue derived cell lines) with interferon a, a known ADAR inducer

(Patterson andSamuel, 1995). The effect of inducingADAR over-

expression on the editing frequency of AZIN1 and four of the

most edited Alu regions in the discovery series was analyzed

by amplicon sequencing (Roche FLX sequencer). These experi-

ments demonstrated: First, that the same sites were edited in all

cell lines (Figure S3; Table S6), including 90 of the 91 sites de-

tected by whole-transcriptome sequencing in vivo. Second,

that the editing frequency profiles were similar across all cell

lines (Figure S3). Third, that ADAR induction increased editing

frequencies at all edited positions (Figures 4A and S3). Fourth,

that ADAR induction and/or increase of depth of coverage

increased the number of detected editing sites (Figure 4B).

Due to deeper coverage (typically >1,0003 for the Roche FLX

sequencer) of the cell line amplicons, we identified 137 new sites

in addition to the 90 in the discovery data set, which suggests

there are likely more sites to identify in breast tissue.

We took advantage of the long reads (>300 bp) and high

coverage of the Roche FLX data to further validate our model

by applying it to thousands of individual mRNA molecules
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(A) Each dot represents a sample with its RNA-

seq-estimated ADAR expression on the x axis (in

log2 of fragments per kilobase per million mapped

reads), and its mean editing frequency across all

560 Alu sites on the y axis. Green dots represent

tumor-matched normal samples. The RNA-seq

expression of ADAR is highly correlated with mi-

croarrays and qRT-PCR expression (Figure S2).

(B) Each dot represents an Alu A-to-I editing site

with themaximal edit frequency across all samples

on the x axis and the number of samples in which it

was detectably edited on the y axis.

(C) Heatmap of editing frequencies across all Alu

A-to-I edit sites in all samples. Both are ordered by

increasing (down-to-up, left-to-right) mean editing

frequencies. Smoothed contour lines labels give

the percentage of edited transcripts. The bottom

panel shows corresponding ADAR expression.

Green dots represent tumor-matched normal

samples. Negative controls are presented in Fig-

ure S2.

(D) Model of A-to-I editing. Turning the ADAR

‘‘expression knob’’ clockwise increases ADAR

expression. As a result, more transcripts are edited

(red dots), and the editing frequency of all editable

sites increases accordingly (compare green versus

red bars). Moreover, the detection limit at some

sites for which editingwas previously undetectable

is passed. The detection limit depends on

sequencing coverage, which is lower on the right-

most exon. Importantly, the ranking of editing

frequencies of the different sites is unaltered by

ADAR expression.
transcribed from the same DNA region in the same individual.

Focusing on one 256-bp Alu region in one cell line, 65 of 68

adenosines potentially targeted by ADAR (Figure 4C) were edi-

ted in at least one of the 2,842 mRNA molecules analyzed. The

number of edited positions per transcript was highly variable,

ranging from 0 to 26 (38% of all adenosines). As expected,

the sets of edited positions in ‘‘low-edited’’ mRNA molecules

tended to be subsets of those edited in ‘‘high-edited’’ mRNA

molecules. These findings further validate our A-to-I editing

model. Nevertheless, the editing process had a strong sto-

chastic component at the level of individual molecules. This is

at odds with the deterministic nature of editability, a quantity

defined at the level of populations of RNA transcripts. We pro-

pose to reconcile these two viewpoints by interpreting editability

as a probability of edition by ADAR.

Quantitative Estimation of Site-Specific Editability with
the Logistic Model
The dependence of site-specific editing frequencies on ADAR

protein expression in our in vitro experiments is shown in Fig-

ure 4D. Editing frequencies increase monotonously with ADAR

until a site-specific saturation threshold is reached. This sug-

gests that these frequencies could be approximated with the
Cell Reports 13, 277–289
logistic model, f(x) = εi/(1+exp(ui�x)),

at each site i. The offset of the s-shaped

curve is controlled by ui and the editing
frequency at saturation by εi.We propose εi—aquantity indepen-

dent of ADAR expression—as the mathematical definition of

site-specific editability, putting this concept on a firm quantita-

tive ground.

We estimated εi and ui by fitting the logistic model to each one

of the dose-response curves shown in the above graphics. A

typical fit is shown in Figure 4E (see also Figure S4) and the

distributions of εi and ui across all sites in Figures 4F and 4G.

As expected, εi estimates are spread over the entire [0, 1] inter-

val. The ui estimates are centered around a unique value, i.e., ui

is essentially site independent. Related p values (Figure S4) are

small considering that only four points were available for each

fit. Although saturation was reached for two ADAR expression

data points in one experiment but not in the others, the estimates

obtained for independent experiments were consistent (r = 0.97,

p < 2 3 10�16; Figure S4). The lower coverage of our in vivo

data was not sufficient to adequately fit the logistic model, but

εi estimated in vitro is highly correlated with the mean editing

frequency measured in vivo (Figure 4H). In vivo editing is, on

average, well below saturation (Figure 4H). Hence, the logistic

model provides an operational procedure to derive useful quan-

titative estimates of site-specific editability from dose-response

data.
, October 13, 2015 ª2015 The Authors 281
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Figure 4. Validation of the A-to-I Editing Model and Quantitative Estimation of Site-Specific Editability

(A) Effect of increasing ADAR expression in the cell line MCF7 on editing in four representative Alu regions and AZIN1. The full-length of sequenced regions are

shown in Figure S3 for MCF7 and three more cell lines. Complete ADAR western blots quantifications underlying the color scale are provided in Figure 5E (see

baseline t = 0 and IFN-a, t ˛ {1, 2, 5} days tracks) and in Figure S7. Increasing ADAR expression increases the editing frequency at all editable positions, as

predicted by the model of Figure 3D. Similar results were obtained for IFN-b and IFN-g (global, position-less, view Figure 5F). Arrows point at editing sites

detectable only at higher ADAR expression in our assay.

(B) Increasing sequencing coverage (x axis) or ADAR expression (color scale) increases the number of detectable editing sites (y axis). Coverage variation was

implemented by down-sampling the total pool of sequencing reads, starting from 2,0003, down to 1003, and re-running the variant detection pipeline for each

down-sampled alignment. Each data point is the mean of 30 down-sampling experiments. Error bars, SD.

(C) Editing of individual mRNAmolecules. Each black dot depicts an edited base in a given mRNAmolecule. The y axis goes from 0 to 60 and corresponds to the

adenosines in the �250-bp span that are edited in at least one of the 2,842 reads represented along on the x axis. Reads and adenosines were ordered by

decreasing editing frequencies. 185 non-edited reads were omitted from the figure.

(D) Dose-response curves for experiment in cell line BT474. ADAR was increased through IFN-a stimulation (as in A). We focused on 81 sites (color lines) with a

baseline editing frequency >2.5% in order to avoid trivial nonlinear effects caused by lack of detection at low ADAR expression.

(E) Example of a fit of the logisticmodel (line) to experimental data points (dots). The unit ofu is commensurate to the dimensionless ADAR relative expression and

ε is the fraction of edited transcripts at saturation.

(F and G) Distributions of ε and u across the 81 sites.

(legend continued on next page)
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Site-Specific Editability Is Correlated with Local
Sequence Features
We hinted that editability depends upon biophysical interactions

between an individual site with its surrounding RNA sequence

and partnering as a duplex with ADAR. This implies that editabil-

ity should be partially predictable from the sequence data, so

we sought to develop and validate a simple proof-of-principle

DNA-based statistical model for editability. The model relies on

the notions that (1) an edited site must be part of an RNA duplex,

implying that it lies within a sequence with a nearby palindromic

match, and (2) ADAR activity depends upon a specific nucleo-

tide sequence in the vicinity of the edited base (Figure 4I; Sup-

plemental Experimental Procedures). To build the model, we

analyzed the editing frequencies of 51,621 edited Alu sites

with R203 coverage from an independent sample sequenced

at very high coverage (Ramaswami et al., 2012). These sites

were then ordered by genomic position. The first half was used

to fit a statistical model of the edit frequency based on DNA

data alone. Editability scores were then computed for the sec-

ond half of the sites (not used to train the model), which turned

out to be strongly associated with the observed editing fre-

quencies (Figure 4J). Our validated statistical model supports

the notion that the editability of a given site is partly determined

by the local site-specific DNA features. Of note, the logistic fit of

dose-response data, not the DNA-based model, should be used

to estimate quantitatively editability.

Association of ADAR Expression, A-to-I Editing, and
Clinico-Pathological Variables
The relevance of ADAR expression to the A-to-I editing process

led us to analyze its tissue and cellular localization by immuno-

histochemistry (IHC). Uniform ADAR expression was detected

in cancer cells (Figures 2D–2F) but to a lesser extent in normal

cells and tumor-infiltrating lymphocytes (TILs; see Figure 2E).

Moreover, ADAR staining was markedly stronger in nucleoli (Fig-

ure 2F), in agreement with previous findings (Desterro et al.,

2003; Sansam et al., 2003).

To investigate the potential clinical impact of A-to-I editing, we

determined whether the mean editing frequency was associ-

ated with the tumor cell content (i.e., the proportion of malignant

epithelial cells, adipose, stroma, normal epithelial cells and

TILs) and/or well-established clinico-pathological parameters,

including estrogen receptor, progesterone receptor, the prolifer-

ation marker Ki67, HER2 status, tumor size, nodal status, and

histological grade. The mean editing frequency was positively

correlated with the percentage of TILs (Spearman’s correlation

r = 0.3, p = 0.02), tumor size (r = 0.3, p = 0.01), and HER2 IHC

staining (r = 0.3, p = 0.01; Figure S5; Tables S1 and S3). Multivar-

iate analysis of this data set suggests that TILs andHER2 IHC are
(H) The 81 edited sites are depicted as dots with the corresponding εi estimates d

on the y axis.

(D)–(H) are part of a more comprehensive analysis presented in Figure S4.

(I) DNA-based statistical model of editability. The model included three paramete

surrounding the editing site (green dot) within the 2,501-bp sequence surrounding

from this best alignment; (3) the 20 nucleotides surrounding the editing site. The

frequencies of half of 51,621 Alu editing sites with coverage R203 previously id

(J) Observed editing frequencies versus editabilities predicted from DNA for valid

C

dependent variables in their association with editing frequency

(Figure S5).

To circumvent our limited sample size, correlations between

these variables and ADAR expression were assessed in a large

cohort of 787 BC patients with HER2 analyzed by IHC (Curtis

et al., 2012). TILs were not scored in this series so the level

of Signal Transducer and Activator of Transcription 1 (STAT1)

expression, a proxy for type I interferon response, was used

instead. This independent BC series confirmed an association

between ADAR and STAT1 expression but not for HER2 status

or tumor size (Figure S5). The lack of an association with estro-

gen receptor, Ki67, and HER2 indicates that ADAR expression

is not correlated with a specific BC subtype beyond their link

with the adaptive immune response.

The Interferon Response and Gains in ADAR Copy
Number Independently Control A-to-I Editing in Cancer
The biological processes potentially associated with RNA editing

were investigated by searching for genes whose expression had

a strong positive correlation with the mean editing frequency

(details in the Supplemental Experimental Procedures). Remark-

ably, 62 of the 85 genes identified were located on chromo-

some 1q (p = 10�66). Since ADAR is located on chromosome

1q, we next used SNP array data to determine ADAR copy

numbers in our samples. ADAR amplification was frequent in

our series (44%) and correlated with high mean editing fre-

quencies (Figure 5A).

Chromosome 1q contains hundreds of genes and therefore its

amplification could have a systemic impact on the BC transcrip-

tome (Curtis et al., 2012). Therefore, we further characterized

the genes correlated with editing that were independent from

1q amplification. First, the microarray expression data were

adjusted for 1q copy number to remove any potential confound-

ing effects of ADAR amplification, and then gene set analysis

was performed (Efron and Tibshirani, 2007) to identify canonical

pathways associated with the mean editing frequency. The 13

significant pathway gene sets revealed by this analysis were all

involved in interferon responses, interferon-related DNA and

RNA sensing, and lymphocyte biology (Figure S6). We also

investigated gene sets with shared transcription factor binding

motifs between their promoters. The seven significant gene

sets identified were overwhelmingly related to NFkB and the

interferon response, including the Interferon Response Factors

IRF1, IRF2, and IRF7 (Figure S6). To further investigate the rela-

tionship between interferon-related genes and ADAR expres-

sion, the median expression levels of STAT1 (Figure 5B) and

389 type I interferon-inducible genes (Figure S6) derived from

ten microarray studies (Schoggins et al., 2011) were measured.

The expression of STAT1 and the 389 genes were positively
erived from the BT474 cell lines on the x axis and their in vivo editing frequency

rs: (1) the best Smith-Waterman global alignment score of the 51-bp sequence

the editing site on the reverse strand; (2) the distance separating the editing site

se 1 + 1 + 20 = 22 variables were fitted with a linear model against the editing

entified (Ramaswami et al., 2012).

ation sites.
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Figure 5. ADAR Amplification and the Interferon Response Are Independent Predictors of ADAR Expression in Cancer

(A) The top panel shows the frequencies of amplifications/deletions along chromosome 1 in our series. The middle panel shows the genes whose expression is

highly associated with that of ADAR. Nineteen genes not located on chr1 are omitted. The bottom panel shows the Spearman’s correlation coefficient and

associated p values of non-segmented copy-number array probes with the sample-wise mean editing frequencies.

(B) Dots represent tumor samples, with STAT1 expression on the x axis and ADAR expression on the y axis.

(C) Same as (B) with ADAR expression adjusted for ADAR copy number.

(D) Association p values of ADAR copy number and STAT1 expression with ADAR expression increase in a multivariate analysis, demonstrating that ADAR

expression is independently associated with these two variables.

(E) Seven breast cancer cell lines were exposed to interferon a, b, and g for 1, 2, and 5 days. Western blots quantifications are depicted for each cell line,

interferon, and time. Because expression dynamic ranges vary among cell lines, each line has its own color scale extending from low expression in green to high

expression in red. The underlying gels are presented in Figure S7 and blot quantification in Table S6. Corresponding mRNA RT-PCR expression data are shown

Figure S7 and detailed Table S7.

(F) Editing frequencies in the absence of treatment (x axis) versus interferon treatment (y axis). Points depict the editing sites in AZIN1 and the four Alu regions of

Figure S3. Points are above the identity line x = y (black diagonals); i.e., interferons increase editing frequencies at all sites. Library preparation failed for MCF7/

IFN-g at 5 days. Limited sequencing coverage precluded detection of some editing events for MDA-MB-231, t = 0 and t = 1 days.
associated with ADAR expression, suggesting that increased

editing was part of a broader type I interferon response related

to the chronic inflammatory state in cancer.

The respective roles of ADAR copy number and STAT1

expression (as a proxy for interferon response) in the A-to-I edit-

ing process were further defined using multivariate analysis

to demonstrate that they are independently associated with

ADAR expression (Figures 5B–5D). STAT1 was correlated with

ADAR expression (Figure 5B), and this correlation could be

strengthened by adjusting ADAR expression for ADAR DNA

copy number (Figures 5C and 5D). Taken together, STAT1 and

ADAR copy number explained 53% of ADAR expression varia-
284 Cell Reports 13, 277–289, October 13, 2015 ª2015 The Authors
tion. The independent effect of type I interferon response and

ADAR amplification was also supported by measuring the

constitutive p110 and interferon-inducible p150 ADAR isoforms

(Figure S6). STAT1 expression was more strongly correlated

with p150 than p110, and, conversely, ADAR copy number

was more strongly correlated with p110 than p150.

While ADAR amplification is likely limited to malignant epithe-

lial cells, the type-I interferon effect could be principally medi-

ated by TILs. To further explore this, we treated seven breast

cell lines (derived from the four principal BC molecular sub-

types and normal breast) with individual interferons (a, b,

and g) to determine whether editing can be directly increased
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Figure 6. ADAR Involvement in Cell Prolifer-

ation and Apoptosis

(A) Western blot analysis of ADAR silencing after

shRNA lentiviral transduction in MDA-MB-231,

MCF7, and BT474 breast cancer cell lines.

(B) ADAR silencing statistically decreases cell

proliferation. Cell growth curves for ADAR-

knockdown cells (shRNA ADAR) and control cells

(shRNA control) in MDA-MB-231, MCF7, and

BT474 BC cell lines.

(C) ADAR silencing statistically increases cell

apoptosis. Illustration of the percentage of

apoptotic cells in ADAR-knockdown cells (shRNA

ADAR) and control cells (shRNA control) in

MDA-MB-231, MCF7, and BT474 BC cell lines.

Error bars depict SDs of three independent

experiments.
by interferon. ADAR p150 protein expression increased with all

three interferons in all cell lines at each time point (Figures 5E

and S7), while p110 induction was weaker and less consistent.

The moderate but significant correlation between p110 and

STAT1 mRNA detected in primary tumors suggests that a small

amount of p110was induced (Figure S6). The same four cell lines

used to validate our A-to-I editing model were analyzed for p150

and p110 ADAR mRNA isoform expression levels, the editing

proportion of AZIN1 and the four most edited Alu regions previ-

ously selected. The mRNA levels for p110 and p150 isoforms

paralleled their protein expression (Figure S7). Moreover, editing

increased at all editable sites with all interferons in the four cell

lines (Figure 5F). Higher editing levels were observed at 2 or

5 days compared to untreated or 1 day. The induction of ADAR

and editing was lowest for IFN-g. These experiments confirm

that type-I interferon response affect A-to-I mRNA editing in

epithelial cells.

ADAR Is Involved in Cell Proliferation and Apoptosis in
Breast Cancer
Given that we have shown that both ADAR expression andmean

editing frequency were higher in breast tumors compared to

matched normal tissues, we aimed to further investigate ADAR’s

role on cell proliferation, migration, and apoptosis. To that pur-

pose, ADAR expression was stably knocked down in three
Cell Reports 13, 277–289,
representative BC cell lines (MDA-MB-

231, MCF7, and BT474) using small

hairpin RNA (shRNA) lentiviral particles

(shRNA ADAR). The three cell lines were

also transduced with scramble shRNA

lentiviral particles (shRNA control) as a

negative control for the functional experi-

ments. ADAR silencing was confirmed by

western blot analysis (Figure 6A).

To assess the role of ADAR in cell pro-

liferation, MTT assays were performed.

These experiments showed that ADAR

silencing led to a statistically significant

decrease in cell proliferation (shRNA

ADAR) compared to the control cells
(shRNA control) in all cell lines (Figure 6B). These results suggest

that ADAR promotes cell proliferation. No significant effect of

ADAR silencing was found on cell migration. The role of ADAR

in apoptosis was investigated using Annexin V assays. ADAR

silencing led to a statistically significant increase in cell

apoptosis (shRNA ADAR) compared to the control cells (shRNA

control) in all cell lines (Figure 6C) suggesting that ADARmay act

as an anti-apoptotic factor.

The Role of ADAR Copy-Number Gains and Interferon
Responses in Other Cancers
ADAR amplification is frequent in human cancers (Figure 7) and

inflammatory responses are pervasive in this disease. This infor-

mation led us to investigate whether these two factors were

related to ADAR expression in 4,480 cancers from The Cancer

Genome Atlas (TCGA, http://cancergenome.nih.gov/) for which

sample-matched expression and copy-number profiles were

available. The representative analyses shown in Figures 5B

and 5C were reproducible across the TCGA data set, which

spanned 20 types of cancer from 16 organs (Figure 7). Overall,

ADAR expression was consistently associated with both ADAR

copy number and STAT1 expression. Similar to BC, adjusting

ADAR expression for ADAR copy number increased the correla-

tion between ADAR and STAT1 for all except pancreatic, kidney,

and thyroid tumors. The frequency of ADAR amplification was
October 13, 2015 ª2015 The Authors 285
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Log2 (RPKM) Frequency (%) ρ -Log10 (p)Log2 (RPKM)

N ADAR expression ADAR DNA
losses and gains

STAT1 expression Correlation of
STAT1 vs ADAR expression

STAT1 vs CN-adj. ADAR expression

Figure 7. ADAR Amplification and the Interferon Response Predict ADAR Expression in Human Cancers

We included all TCGA data sets and tumors (see ‘‘N’’ column) for which both copy-number and RNA-seq expression data (pipeline v.3) were available. Data sets

are ordered by decreasing median ADAR expression (top to bottom). The three leftmost plots depict the distributions of ADAR expression, ADAR DNA copy

number, and STAT1 expression across each data set. The two rightmost bar plots extend to TCGA data the calculation presented for our data in Figures 5B and

5C. In most cancers, adjusting ADAR expression for ADAR copy number increases the Spearman correlation, r, with STAT1 (cf. the dark blue bars to the light

blue bars).
low in kidney and thyroid tumors, therefore correcting for ADAR

copy number had a limited effect. These data suggest that ADAR

expression could be principally driven by interferon in these two

types of cancer. Inmost cancers, however, the editing process is

driven by both type I interferon and ADAR copy-number amplifi-

cation. A correlation between ADAR copy number and ADAR

expression has also been recently reported in esophageal can-

cer (Qin et al., 2014).

DISCUSSION

The magnitude of A-to-I editing in cancer as well as the mecha-

nisms controlling and regulating the A-to-I editing machinery are

currently unknown. To address both points, we performed a

survey on RNA editing in cancer by profiling dozens of BCs

and matched healthy breast tissues. The sample size of this

study opened a window on principles governing A-to-I editing

that were previously out of reach. A significant finding from our

study was the demonstration that the same sites are edited in

normal and tumor breast tissues as well as in several BC cell

lines. We further showed that while the editing frequency profiles

are correlated across tissues and BC cell lines, the frequency of

editing is significantly higher in tumors compared to their

matched normal breast tissues. High editing frequencies are de-

tected in samples with high ADAR expression. These data pro-

vide the basis for our A-to-I editing model, where increases in

ADAR expression increase the editing frequency of all editable

positions in the transcriptome. We successfully validated this
286 Cell Reports 13, 277–289, October 13, 2015 ª2015 The Authors
model in BC cell lines and showed that ADAR control of site-

specific editing frequency can be approximated with the

logistic model. ADAR’s site-specific activity, that we call edit-

ability, is partly influenced by the biophysics of interactions

between nucleotides in the surrounding RNA sequences and

their duplex partnering with ADAR and can be estimated from

dose-response experiments. Finally, we showed that ADAR

expression is controlled by 1q amplification and inflammation

in human cancers.

In our study, longer ADAR induction times and/or deeper

sequencing coverage increased the number of editing sites de-

tected. Interestingly, no plateau was reached at the depths we

investigated, with up to 33 107 aligned reads per sample. A pre-

vious studymade a similar observation using a coverage of up to

5 3 108 mRNA reads/sample, where no plateau was reached

despite >140,000 A-to-I sites detected in the Alu’s (Ramaswami

et al., 2012). A hundred million sites could be edited in humans

(Bazak et al., 2014b). Differences in number of edited sites be-

tween the cited works and the present study could be due to

the cell type analyzed (e.g., lymphoblastoid cell line versus

breast tissues/cell lines) and the DNA (e.g., whole-genome

versus coding sequences and their neighborhood) and/or RNA

sequencing strategies (Table S4). For example, several studies

used the GM12878 and the YH (also known as SRA043767)

cell lines for which the transcriptomes were sequenced at the

outstanding depth of 0.5–1.2 billions reads and compared to

the matched whole-genome sequence. In these studies, the

number of editing sites, ranging from �20,000 to �2 million, is



commensurate to the number of callable bases. Conversely, the

studies with lower individual transcriptome coverages report

less editing sites, like ours (560 sites) and Bahn et al. (2012)

(5,965 sites). Bahn et al. had access to the full genome

sequence, while we had access only to the coding DNA

sequence (CDS) regions and their neighborhood. In addition,

the detection pipeline specificity versus sensitivity trade-off

may also play a role. Most previous studies used the A > G ratio

as a surrogate for error rates; i.e., they assumed that A-to-I is the

only significant RNA editing type and that all A > G RDDs are

bona fide editing events. The A > G rate in Alu regions is 80%

in Bazak et al. (2014a, 2014b), 90% in Peng et al. (2012), 96%

in Ramaswami et al. (2012), and 100% in our study. Our pipeline

is therefore more conservative according to this criterion, and

consequently less putative editing sites were detected. It is

anticipated that a large number of additional A-to-I editing sites

beyond those identified here remain to be discovered in BC. The

data presented here clearly demonstrate that A-to-I editing is a

pervasive phenomenon in cancer and suggest that it is a major

source of mRNA sequence variability in breast and potentially

other types of cancer (Paz-Yaacov et al., 2015; Han et al.,

2015). Editing has the potential to significantly impact tran-

scriptional regulation and cellular functions in tumor cells.

Indeed, our in vitro studies have shown that ADAR silencing

decreases cell proliferation and promotes apoptosis supporting

the potential carcinogenic role of ADAR and consequently A-to-I

editing in BC.

Multiple studies are revealing that aberrant expression of

ADAR and APOBEC families of enzymes occurs in many human

diseases, including cancer. Since the first studies implementing

the sequencing technology in humans, ADAR appeared to be

one of the highest overexpressed genes in BC, and its recoding

potential started to emerge (Shah et al., 2009). More recent

works have shown that in breast and other tumor types muta-

tional signatures are associated with APOBEC family proteins

(Alexandrov et al., 2013; Nik-Zainal et al., 2012) with evidence

that APOBEC-mediated mutagenesis is highly active in human

cancers (Burns et al., 2013; Roberts et al., 2013; Swanton

et al., 2015; Zhang et al., 2015). Although the relevance of

ADARs and RNA editing in cancer just begins to be recognized

(Avesson and Barry, 2014; Han et al., 2014; Mo et al., 2014; Sal-

ameh et al., 2015; Witkin et al., 2015), the link between A-to-I

editing by ADAR and the type I interferon response shown in

our study suggests that the cancer immune response can influ-

ence ADAR’s activity, as shown in other systems. A significant

role for ADAR is further supported by our demonstration that

its expression is significantly upregulated by ADAR copy-num-

ber gains in breast (up to 75%) and other cancers (up to

70%). Overall, these data highlight the potential magnitude of

A-to-I RNA editing in tumors and thereby the possibility for

large-scale clinical implications. RNA editing and/or APOBEC-

mediated mutagenesis could shape the immunogenicity of the

tumor and thereby directly affect anti- and/or pro-tumor im-

mune responses. RNA editing itself, the processes it regulates

and its potential to differentially direct activities in response

to the chronic inflammatory tumor microenvironment, may

have important implications for clinical progression in breast

and other cancers.
C

The widespread editing we observed, in combination with the

conservation of editing sites detected across tissues and pa-

tients, suggests there might be clinical and therapeutic implica-

tions for awide range of cancer patients. However, modulation of

editing at an individual site is entangled with many processes.

The model we established for A-to-I editing implies that modula-

tion of ADAR will also affect all editable sites in expressed tran-

scripts. In addition, ADAR has been shown to influence miRNA

processing (Heale et al., 2009; Ota et al., 2013; Shoshan et al.,

2015; Tomaselli et al., 2013; Yang et al., 2006), to control

mRNA transcript stability (Wang et al., 2013) and to affect several

RNA processing pathways (Bahn et al., 2015). Finally, variation of

ADAR expression in vivo will possibly be associated with modi-

fication of the hundreds of genes located on 1q and/or controlled

by interferon. Determining whether increasing A-to-I editing

limits or enhances cancer progression will need to take into ac-

count all of these potential variables. More research is needed to

identify the critical editing sites, establish their potential as

markers of cancer evolution, and investigate them as a new class

of therapeutic targets.

EXPERIMENTAL PROCEDURES

The study has been approved by the Institut Jules Bordet Ethics Committee

(approval number: CE1967). The methods are fully detailed in the Supple-

mental Experimental Procedures. In brief, the exome and transcriptome of

58 well-characterized BC samples representing the four main known sub-

types based on immunohistochemistry, namely, TN, HER2+, luminal A, and

luminal B, and ten matched normal samples were profiled using exome

sequencing and RNA-seq in paired-endmode on the Illumina HiSeq 2000 plat-

form. Gene expression and SNPs profiles were obtained with Affymetrix

HG-U133 Plus 2.0 Array chips and Affymetrix Genome-Wide Human SNP

Arrays 6.0 for 57 and 49 tumor samples, respectively. RNA reads obtained

from RNA-seq were aligned simultaneously on the human genome and all

known exonic junctions. Variant calls were submitted to a series of filters

limiting artifact associated with RNA-seq. The identified RNA-DNA differences

(RDDs) were validated in an independent cohort of 15 BC samples; moreover,

few events as well as their editing frequencies were validated using an inde-

pendent technology (Roche FLX sequencer). The effect of interferon (IFN) on

ADAR expression and editing was evaluated on six BC cell lines and one

immortalized, non-transformed mammary epithelial cell line, MCF-10A. Cell

lines were treated for 1, 2, or 5 days with IFN a, b, or g. The effect of treatment

on ADAR p110 and p150 protein and gene expression levels were evaluated

quantifying the immunoblot signals and qRT-PCR data, respectively, while

the effect of IFN treatment on editing distribution and frequency was investi-

gated using amplicon sequencing (Roche FLX sequencer). In each sample,

the mean editing frequency was correlated with clinico-pathological parame-

ters and the expression of ADAR. The intracellular localization of ADAR was

defined using immunohistochemistry. The association between editing and

ADAR amplification and/or a surrogate of interferon response (STAT1 expres-

sion) was evaluated in breast and 19 additional cancer types obtained from

TCGA. Finally, the effect of ADAR knockdown on cell proliferation, migration,

and apoptosis was evaluated in three representative BC cell lines transduced

with shRNA lentiviral particles.
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Figure S1. Overview of the pipeline for RNA/DNA differences (RDDs) detection (Related to 
Figures 1-5). Details are presented in the Supplemental Experimental Procedures. 
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Figure S2. Expression and correlation with A-to-I RNA editing for the ADAR isoforms (A-D, Related 
to Figures 2 and 3) and (E-I) additional controls associated with Figure 3. (A), Expression of ADAR, 
ADARB1 and ADARB2 across our cohort. (B), Each point represents a sample with the expression of 
ADAR in the normal breast tissue depicted on the x-axis and the expression in the matched tumor breast 
tissue on the y-axis. All but one point are above the x=y identity line, demonstrating that ADAR expression 
is higher in tumors than in normal tissues. The p-value was calculated from a Wilcoxon paired signed test. 
(C), Same as (B) for ADARB1. (D), each point represents a sample with ADARB1 expression on the x-axis 
and the mean editing frequency on the y-axis. ADAR expression quantification from whole transcriptome 
sequencing is highly consistent with, (E), Affymetrix microarray and, (F), qRT-PCR quantifications. (G), 
Distribution of Spearman’s correlations across the samples of the RNA-seq expression of ADAR and the 
editing frequencies of individual sites: 560 Alu A-to-I sites (red), and as negative control 11,312 putative 
non A-to-I RDDs (grey). (H and I), Heatmaps of editing frequencies after random permutation editing of 
frequencies across samples, depicted in panel (H), and of non-A-to-I putative RDDs, depicted in panel (I). 
The gradient in these negative control heatmaps is from top-to-bottom, without left-to-right component. 
Green dots represent tumor-matched normal samples.  
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Figure S3. The same sites are edited in four breast cell lines (three tumor and one normal tissue derived 
cell lines) and increasing ADAR expression increases the editing frequency at all these sites (Related to 
Figure 4A). Editing in AZIN1 and 4 Alu regions is shown in 4 breast cell lines and 4 ADAR protein expression 
levels (same color scale as in Figure 4A). The x-axis scales are different for each region (see right-side labels). 
(*) Library preparation failed for the two lower ADAR expression samples for MDA-MB-231, 
chr13:21949000-21949250.  
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Figure S4. Modeling editing frequency with the logistic function (Related to Figures 4E-H). (A and B) 
Dose-response curves for cell lines BT474 and MCF7 (A also shown in main text). ADAR was induced via 
interferon treatment. Note that saturation is reached for the third and fourth points for BT474, but not MCF7. 
(C), Fits of the logistic model to dose-response data for three editing sites are shown. (D-K), Overview of all 
the logistic fits for dose-response curves shown in (A) and (B), with distribution of  εi (D, H),  ωi (F, J) and 
associated p-values (E, I, G and K; Red lines denote the p=0.05 limit). εi but not ωi estimates are distributed 
around a central value, suggesting that εi, but not ωi, is site-specific. (L and M), comparison of the logistic 
parameters estimated from the BT474 and MCF7 experiments. (N and O), Correlations of εi, and ωi, between 
all pairs of interferon treatment experiments performed in this study for which enough data was available. 
Lower correlations typically resulted from aberrant fits caused by data scarcity, the fits rest on 4 data points, 
and suboptimal doses. 
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Figure S5. Correlations of A-to-I editing and breast cancer clinico-
pathological variables in our cohort (Related to Figure 2). The mean 
editing frequency is significantly correlated with (A), the proportion of 
tumor-infiltrating lymphocytes (TILs), (B), tumor size and (C), HER2 
defined by immuno-histochemistry. Point colors depict subtypes: navy 
blue, luminal A; sky blue, luminal B; orange, HER2; red, triple negative. 
These associations were tested in 787 patients of the Metabric cohort 
(Curtis et al., 2012) for whom HER2 IHC was available. ADAR 
expression (a surrogate for the editing frequency, Figure 3A) and STAT1 
expression (a surrogate for TILs) were used in this analysis. An 
association was found with STAT1 (D), but not tumor size (E) and 
HER2 IHC (F). (G), A multivariate analysis demonstrates that the 
associations of editing with HER2 and TILs are statistically related. 
Multivariate analysis decreases the significance of all variables when all 
three are combined together. We conducted bi-variate analyses to dispel 
the ambiguity of variables’ dependencies. HER2 status and TILs were 
less significant when analyzed together than with tumor size. Thus, the 
dependency is mostly between TILs and HER2 status. Importantly, this 
figure depicts only significant associations. No significant correlations 
could be found between mean editing frequency and adipose content, 
stromal content, grade, nodal status, and ER, PGR and Ki67 immuno-
histochemistry staining.  
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Figure S6. Gene set and metagenes analysis of the correlation of A-to-I editing with 
gene expression (A-C), and expressions of ADAR isoforms p110 and p150 support a 
control of ADAR expression by 1q amplification and interferon (D-K) (Related to 
Figure 5). Affymetrix expression data were adjusted for ADAR DNA copy number and then 
screened for gene sets associated with the mean editing frequency. (A), Screen of gene sets 
defining canonical pathways. (B), Screen of genes set defined by genes sharing binding 
motifs for the same transcription factor in their promoter. Null p-values and false discovery 
rate (FDR) means that no random gene sets in 500 had a higher GSA score (see 
Supplemental Experimental Procedures). (C), Correlation between DNA copy number-
adjusted ADAR expression and the median expression of 389 interferon-induced genes 
compiled from 10 studies. The relative expression of ADAR, its constitutively active form, 
p110, and the interferon-inducible form, p150, were measured by qRT-PCR for 58 samples 
(see Table S3), depicted as individual data points in the panels. (D), The truncated form of 
ADAR, p110, predominates over the full-length transcript, p150. (E), The expressions of the 
two isoforms are highly correlated and, (F and G), are correlated with the mean editing 
frequency. STAT1 is correlated with the expression of interferon-inducible p150 (H), but less 
with the expression of p110 (I). Conversely, the correlation with ADAR copy number is 
lower for p150 (J) than p110 (K) — in agreement with the notion that the association of 
p150 with ADAR copy number is confounded by its strong dependence on interferon control. 
Green dots represent tumor-matched normal samples. 
 

 

19
.5

20
.5

21
.5

17.5 18.0 18.5 19.0 19.5

C
N

V 
m

et
ag

en
e 

ex
pr

es
si

on
[lo

g 2 (
FP

KM
)]

IFN metagene expression
[log2 (FPKM)]

l = 0.5
(p = 9e-05)

AD
AR

 p
11

0 
ex

pr
es

si
on

AD
AR

 p
15

0 
ex

pr
es

si
on

AD
AR

 p
11

0 
ex

pr
es

si
on

AD
AR

 p
15

0 
ex

pr
es

si
on

H I J K

A

ï�
ï�

ï�
0

1

ï�
�
ï�
�

ï�
ï�

ï�

ï�
ï�

ï�
0

1

ï�
�
ï�
�

ï�
ï�

ï�

8
10

��
18

8
10

��
18

ï�
�
ï�
�

ï�
ï�

ï�

ï�
�

ï�
0

ï� ï� ï� 0 1ï�� ï�� ï� ï� ï�ï� ï� ï� 0 1ADAR p110 p150

m
R

N
A 

ex
pr

es
si

on

ADAR p110 expression

l � 0.7
�S� ��Hï���

ADAR p110 expression
M

ea
n 

%
 e

di
tin

g l � 0.5
�S� ��Hï���

ADAR p150 expression

M
ea

n 
%

 e
di

tin
g l � 0.5

�S� ��Hï���

19.5 20.5 21.5 22.5
�STAT1 expression [log2(FPKM)]

l � ���
�S� ��Hï���

19.5 20.5 21.5 22.5
�STAT1 expression [log2 (FPKM)]

l � ���
(p = 0.007)

2.0 2.2 ��� ��� 2.8
No. of ADAR copies in DNA

l � ���
(p = 0.09)

2.0 2.2 ��� ��� 2.8
No. of ADAR copies in DNA

l � ���
�S� ��Hï���

AD
AR

 p
15

0 
ex

pr
es

si
on

B C

D E F G



 8	
  

 
 

Figure S7. Interferon treatments increase ADAR mRNA and protein expressions in breast cancer cell 
lines (Related to Figure 5). (A), Western blots underlying Figure 5E and Table S6. (B), qRT-PCR for 
ADAR p110 and p150 (see also Table S7). The expressions of p110 and p150 are presented as fold changes 
relative to the expression of the untreated cells. Note the different y-axis scales used for the two isoforms. 
The scales for p150 are much larger. 
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Supplemental Tables 
 
Supplemental tables are provided as online excel files. 
 

• Table S1: Patients data (Related to Figures 1-5). Clinic-pathologic data of 
the patients involved in the study. 
 

• Table S2: Putative RNA-DNA differences (RDDs) in in vivo samples 
(Related to Figures 1-5). Characterization of the 16,027 RDDs identified in 
the patients under study. This data is necessary to reproduce most calculation 
in the paper. 

 
• Table S3: Sample data (Related to Figures 1-5). For each patient involved in 

the study, this table reports key information necessary to reproduce most 
analyses and figures in the paper. 

 
• Table S4: Comparison of (A) A-to-I RNA editing studies and (B) detection 

pipelines (Related to Figure 1). These tables report the comparison between 
the current study and the most relevant ones published in the field in the last 
years with what regards (A) their features and (B) their detection pipelines.  
 

• Table S5: AZIN1 editing measured by amplicon sequencing in 30 patient-
matched tumor/normal pairs (Related to Figure 2). Values representing the 
editing of AZIN1 measured by amplicon sequencing (Roche FLX) in tumor 
and normal matched pairs of 30 study patients. 

 
• Table S6: ADAR protein expression quantification (A) and editing 

frequency (B) in in vitro IFN experiments (Related to Figures 4 and 5).  
For cell lines treated with IFN α, β and γ for 24h, 48h and 120h, these tables 
report: (A) the ADAR protein expression determined by Western blot, and (B) 
the editing frequency of the sites investigated with amplicon sequencing. 

 
• Table S7: ADAR RT-PCR mRNA expression in in vitro IFN experiments 

Related to Figures 4 and 5). For cell lines treated with IFN α, β and γ for 
24h, 48h and 120h, this table reports the expression of ADAR determined with 
RT-PCR. 
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Supplemental	
  Experimental	
  Procedures 
Patients and samples characterization and preparation 
	
  
Samples selection. A total of 58 breast cancer (BC) patients for whom both fresh-
frozen tumor and matched normal breast tissue, as well as formalin-fixed paraffin 
embedded (FFPE) matched tumor breast tissue were available at Jules Bordet Institute 
Tumor Bank (Jules Bordet Institute, Brussels, Belgium) were selected for this project. 
Patients were recruited between 2007 and 2011; the associated clinico-pathological 
data can be found in Table S1. 

The use of the data is consistent with the informed consent signed by the 
patients or has been granted ethical approval by the local Ethics Committee and is in 
accordance with the applicable laws and regulations of Belgium. The study has been 
approved by the local Ethics Committee (approval number: CE1967). 
Samples histopathology. On the basis of their immunohistochemistry (IHC) profile, 
patients were classified in one of the principle IHC BC subtypes: triple negative (TN: 
estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth 
factor receptor 2 (HER2) negative), HER2 positive (any ER and PgR, HER2 
positive), luminal A (ER positive, HER2 negative, histological grade 1) and luminal B 
(ER positive, HER2 negative, histological grade 3).  

The ER and PgR status was defined using the anti-estrogen receptor antibody 
[SP1] (ab166600, Abcam®, Cambridge, UK) and the anti-progesterone receptor 
antibody [1E2] (Roche, Basel, Switzerland), respectively. The staining was scored 
according to Allred (Harvey et al., 1999; Leake et al., 2000) using a combined score 
for proportion and intensity, and was considered as positive if the global score was 
>2. The HER2 status was defined using the antiHER2/neu antibody (4B5) (Roche). 
The scoring and subsequent FISH-analyses were done in accordance to the ASCO-
CAP Guidelines on HER2-testing (Wolff et al., 2007). The histological grade was 
defined using the modified Bloom-Richardson grading system (Elston and Ellis, 
1991; Genestie et al., 1998). The Ki67 staining was performed using the Monoclonal 
Mouse Anti-Human Ki-67 Antigen (Clone MIB-1) (Dako, Glostrup, Denmark). 

For each sample, an hematoxylin and eosin (H&E) slide was made and was 
reviewed by a breast pathologist to confirm that the tumor specimen contained at least 
30% of tumor cell nuclei and that the matched, adjacent normal specimen contained 
no tumor cells. Evaluation of the quantity and location (stromal or intratumoral) of 
tumor-infiltrating lymphocytes (TILs) was defined as described previously (Denkert 
et al., 2010).  
DNA Extraction. DNA from both tumor and matched normal fresh-frozen tissues was 
extracted using the DNeasy Blood and Tissue kit® (Qiagen, Venlo, Netherlands) 
following the manufacturer’s instructions. DNA concentration was measured using 
the NanoDrop 1000 instrument (Thermo Scientific, Waltham, Massachusetts). All the 
samples yielded enough material for downstream analyses. 
RNA Extraction. RNA from both tumor and normal fresh-frozen tissues as well as 
from cell lines was extracted using TRIzol® (Life Technologies, Carlsbad, California) 
following the manufacturer’s instructions. RNA concentration was defined using the 
NanoDrop 1000, and RNA integrity (RIN: RNA Integrity Number) was assessed 
using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California). 
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All the samples yielded enough material for downstream analyses and had a RIN 
equal or superior to 6.5. 
Purification of organoids from primary breast tissues. The protocol is described in 
details elsewhere (Allinen et al., 2004; Choudhury et al., 2013).  

Detection of RNA-DNA differences 
The analysis pipeline for the detection of RNA-DNA differences (RDDs) is 
summarized in Figure S1 and described in details in the following sections. 
RNA Sequencing. Transcriptome sequencing was performed at DNAVision (Gosselie, 
Belgium). Transcriptome libraries from 58 tumor and 10 matched normal samples 
were constructed using the Illumina® TruSeq™ RNA Sample Preparation Kit for 
paired end reads sequencing on the HiSeq 2000 (Illumina, San Diego, California) 
following the manufacturer’s instructions. 

Briefly, starting from 1 µg of total RNA, the poly-A containing mRNA 
molecules were purified using poly-T oligo-attached magnetic beads. Following 
purification, the mRNA was fragmented into small pieces using divalent cations 
under elevated temperature. The cleaved RNA fragments were copied into first strand 
cDNA using reverse transcriptase and random primers. This was followed by second 
strand cDNA synthesis using DNA Polymerase I and RNase H and purification using 
the AMPure XP beads (Agencourt BioSciences Corporation, Beverly, Massachusetts). 
The cDNA fragments went through an end repair process, the addition of a single ‘A’ 
base and ligation of the adapters. The products were purified using the AMPure XP 
beads and enriched with PCR (15 cycles) to create the final cDNA library followed by 
purification using the AMPure XP beads. Libraries’ quality control and quantification 
were performed using the Agilent Bioanalyser 2100 and qRT-PCR; libraries were 
pooled (4 libraries/pool). Clusters were generated in a cBot Cluster Generation 
System using the Paired-End Cluster Generation Kit v2-HS and sequenced on the 
Illumina HiSeq 2000 platform with a 2x50 base-pairs (BP) paired-end mode. 
Exome Sequencing. Exome sequencing was performed at GATC (Konstanz, 
Germany). Genomic libraries from the tumor and matched normal samples were 
generated using the Illumina Paired End DNA sample preparation kit (Illumina) 
following the manufacturer’s instructions. Enrichment was performed using the 
Agilent SureSelect Human All Exon V3 kit (Agilent) following the manufacturer’s 
instructions.  

Briefly, 2-3 µg of total genomic DNA was randomly fragmented to between 
150 and 600bp by focused acoustic shearing (Covaris Inc, Wouburn, Massachusetts). 
A cleanup was performed using AMPure beads (Agencourt BioSciences Corporation) 
following the manufacturer’s protocol and quality of the material was assessed using 
the Agilent Bioanalyser 2100. The size fractionated DNA was end repaired using T4 
DNA polymerase, Klenow polymerase and T4 polynucleotide kinase and purified 
using AMPure beads. The resulting blunt ended fragments were A-tailed using a 3′-5′ 
exonuclease-deficient Klenow fragment, purified using AMPure beads and ligated to 
Illumina paired-end adaptor oligonucleotides in a ‘TA’ ligation at 20°C for 15 
minutes. The product was purified using AMPure beads. After estimation of the 
concentration, the adaptor-ligated library was amplified and then purified using 
AMPure beads. Quality and quantity were assessed using an Agilent 2100 
Bioanalyzer. The enriched regions were captured, purified, PCR amplified and 
purified using AMPure beads. After quantification and quality control of the captured 
library, samples were pooled (four samples/lane) for loading on an Illumina HiSeq 
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2000. Samples were sequenced in paired-end mode, with a read length of 2x100 
bases. 
Transcriptome read mapping. Because transcriptome read mapping is a key step to 
identify differences between RNA and DNA, we designed a dedicated framework to 
handle common errors associated to spliced reads. RNA reads were mapped 
simultaneously on the human reference genome (hg19) and a dedicated library of 
splice junction sequences using the Burrows-Wheeler Aligner (Li and Durbin, 2010) 
(BWA v0.5.9). We chose the BWA aligner due to its ability to handle gapped 
alignment and to report multiple matches for each read, which is required to identify 
reads mapping equally to the genome and the corresponding splice junction or to 
solve ambiguous read pairing. Paired reads were mapped independently with the 
command ‘bwa aln –n 6’ to report up to 6 matches for reads that can be aligned 
to multiple places. Splice junctions were designed by concatenating respectively the 
last and first 50 nucleotides for each pair of consecutive exons. We used gene 
annotations from Refseq, UCSC, Ensembl and Gencode, downloaded from the UCSC 
Table Browser (Karolchik et al., 2004). Junctions common to two or more annotation 
sources were added only once to the library. Also, because BWA concatenates all 
chromosome sequences before indexing the reference, buffers of 20 N letters were 
added at each extremity of the splice junctions. This prevents BWA from producing 
irrelevant alignments extending outside the boundaries of reference sequences. For 
exons shorter than 50 nucleotides, this procedure would add adjacent intronic bases 
immediately upstream or downstream of this exon to meet the required splice 
sequence length. Such additions could further introduce inaccurate mapping and 
recurrent alignment errors around splice junctions. To solve this issue, we used an 
incremental approach to create splice site sequences, allowing as many exons as 
necessary to meet the required sequence length of 100 nucleotides. After alignment, 
coordinates of reads mapped on splice junctions were converted to the hg19 
coordinate system. 

Trimmed RNA reads could be shorter than 50 bases, thus some could be 
equally placed on a splice junction and its genomic counterpart. In this case, unique 
matches could be mistaken with repeats and incorrectly discarded. After alignment, 
all matches reported for a given read were processed to remove those that were 
identical once alignments on splice sites were reverted back to hg19 coordinates.  

Paired-end sequencing often implies a pair rescue step in which ambiguous 
alignments can be fixed based on strand orientation and distance between mates. 
However, in the context of RNA sequencing, this procedure can sometimes introduce 
recurrent mismatches. When paired reads are processed independently, ‘bwa aln’ 
uniquely map them on the correct genomic location. However, when running ‘bwa 
sampe’ to perform read pairing, incorrect alignments can be preferred if they form a 
pair matching the expected insert size and strand orientation, even in presence of 
multiple mismatches. This mainly occurs for processed pseudogenes, because ‘bwa 
sampe’ does not compute the distance between mates with regard to the skipped 
introns spanned by transcriptome reads.  

To solve this issue without losing the benefit of paired-end information, we 
implemented our own read-pairing step similar to ‘bwa sampe’. For each read pair for 
which either one or both mates could not be uniquely mapped, we considered all 
possible correct pairings minimizing the cumulative edit distance over both mates. 
Read pairing was considered correct if strand orientation and inner distance between 
mates, after subtraction of intronic sequences between them, matched the Illumina 
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sequencing protocol. If multiple best pairings were found, both mates were flagged as 
repeats and discarded. Otherwise, the best pair was selected and both reads were 
considered unique. During this step, reads identified as repeats when mapped 
independently could be recovered as unique if they belonged to a single best pairing. 
However, unlike ‘bwa sampe’, we did not implement a Smith-Waterman local 
alignment to rescue read pairs where only one mate could not be mapped. 

Once non-canonical read pairs were discarded, duplicates were removed with 
Picard’s MarkDuplicates utility (v1.59) (http://broadinstitute.github.io/picard/) with 
default parameters and reads were realigned locally using the GATK’s IndelRealigner 
program (v1.4-15) (McKenna et al., 2010). Local realignment was run with options ‘-
-knownAlleles known.indels.vcf --consensusDeterminationModel USE_READS’ --
maxConsensuses 50 --maxReadsForRealignment 400000 --maxReadsInMemory 
300000’, where known.indels.vcf was downloaded from the GATK resource bundle. 
Exome read mapping. Paired-end reads from exome sequencing were mapped to the 
hg19 reference genome using BWA with default settings. As for transcriptome reads, 
only concordant unique read pairs were used. Duplicates were further removed using 
Picard and remaining reads were realigned locally with GATK. Both programs were 
used with the same parameters as for transcriptome alignments. 
Identification of RNA-DNA differences. We identified single nucleotide substitutions 
based on pileup alignments. Pileup was computed using SAMtools (v0.1.18) (Li et al., 
2009) with the command ‘samtools mpileup -B -D -d 100000 -f 
hg19.fa in.bam | pileup-to-vcf.pl’, where pileup-to-vcf.pl was an in-
house program designed to call a variant if the following conditions are met at a given 
position: 1) minimum depth of 10 reads, 2) minimum alternate allele frequency of 10 
percent, 3) a minimum of 2 confident mismatches with base quality equal or greater to 
25, 4) located in reads with a mapping quality of 20 or more and 5) not within the first 
of last 6 nucleotides of this read. Variants were then filtered based on strand bias and 
distance to read ends, to discard low confidence candidates relying on mismatches 
whose position relative to the query sequence harbors a suspicious pattern. 
Substitutions were further identified as RDDs if the corresponding position in DNA 
was homozygous for the reference. This implied 6) a minimum coverage of 10 reads 
in DNA, 7) a fraction of reference base equal to or greater than 95 percents and 8) 
allowing a maximum of 2 mismatches. However, because recent studies show that 
some dbSNP entries correspond to RNA edits (Eisenberg et al., 2005), we did not 
remove RDDs matching a known record from dbSNP (Sherry et al., 2001) v135.  
Recovery of clustered RDDs. Due to the low coverage in certain regions of our 
transcriptome datasets, many rare edits were lost considering our minimum depth and 
frequency thresholds. Previous studies (Ju et al., 2011; Peng et al., 2012; Ramaswami 
et al., 2012) also report that a large fraction of RNA edits are located within 
untranslated region of genes, which are poorly covered by exome libraries. ADAR 
mediated editing is known to operate on double-stranded RNA duplexes often caused 
by the presence of inverted Alu elements. As a consequence, RNA edits are often 
clustered in genomic regions corresponding to both strands of the latter duplexes. 
Based on the hypothesis that multiple edits are likely to be close one from each other, 
we added an additional step to our pipeline to rescue rare edits clustered with high 
confidence candidates. We selected all edits called within Alu elements, based on 
UCSC RepeatMasker (Smit et al.), and searched for identical substitutions in the same 
genomic region. We iteratively screened genomic intervals of 15 nucleotides 
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immediately upstream and downstream of each confident RDD, these intervals being 
extended until no more additional edits could be rescued.  
Cohort-wise integration of editing sites. Per-sample edits identified as described in 
the previous sections were then pooled together and fraction of edited bases for each 
sample was recomputed directly from pileup alignment in each samples in the cohort. 
This allowed rare edits detected only in highly covered transcriptomes to be rescued 
in other samples. 
Excluded regions. The majority of the RDDs (10,254) clustered in 8.6Mb spread 
across the following five regions that did not overlap the Alu regions. 

 
Name Chrom Strand txStart txEnd 
BL_1 chr6 * 28477796 33448353 
uc010yts.2 chr2 + 89890561 90471176 
uc021vkt.1 chr2 - 89156873 89630175 
uc021vku.1 chr2 + 89185067 89595920 
uc021ser.1 chr14 - 105994255 107283085 
uc021wml.1 chr22 + 22385571 23265082 

 

These five regions encompassed immunoglobulin variable regions and HLA genes, 
suggesting alignment artifacts and/or a potential immunological effect unrelated to A-
to-I editing. Therefore, we did not consider these RDDs, but used them as negative 
controls in several of our A-to-I editing analyses. 
DNA-free A-to-I editing detection pipeline. we downloaded a list of known A-to-I 
editing sites for hg19 from the RADAR database (Ramaswami and Li, 2014). 
REDItoolKnown, which is part of the REDItools package (Picardi and Pesole, 2013), 
was then invoked with default settings for each of the 68 RNA-seq samples 
(REDItoolKnown.py -i sample.bam -f hg19.fa -l RADAR.tab -u 
-o sample.edits.txt). The output was a list of positions of known editing 
sites for which editing is callable, but not necessarily present, in the sample at hand. 
Per-sample lists of edits were merged, resulting in a total of 115,087 non-redundant 
genomic positions callable in at least one sample. The number of sites for which at 
least one read across the entire cohort documented an editing event was 59,993. 
Importantly, this pipeline did not use our DNA exome sequences, and therefore is not 
limited by the small fraction of the genome they cover—dramatically extending the 
number of callable basis. Among the 59,993 events, 50,918 were from Alu regions. 

Measure of AZIN1 editing in tissues with the Roche FLX sequencer. A region 
containing the edited site of AZIN1 was amplified using designed fusion 
oligonucleotide primers (Forward 5’-ACCGGAAGTGATGAACCAGCCT-3’ and 
Reverse 5’-GCTGAATGCAAGAAGGCACAAAGA-3’ specific sequences). For 
each patient sample, PCR was performed on 50 ng of cDNA using the Platinum PCR 
System (Life Technologies Europe B.V., Gent, Belgium) and standard Touch-Down 
thermocycling conditions (2 min denaturation at 94°C, followed by 20 cycles of 
denaturation for 30 s at 94°C, annealing for 30 s at 65°C* and extension for 30 s at 
72°C (*with decrements of 0,5c° annealing temperature at the completion of each 
cycle), 20 cycles of denaturation for 30 s at 94°C, annealing for 30 s at 55°C and 
extension for 30 s at 72°C, and final extension for 6 min at 72°C). The fused primers 
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each contained a common 20-bp region at their 5’-end that is used in Multiplex 
Identifiers labeling, clonal amplification and sequencing on a 454 Genome Sequencer 
FLX system as described by manufacturer (Roche Applied Sciences, Indianapolis, 
USA).  

After removing primer and adapter sequences, 454 reads were mapped on the 
reference genome (hg19) using the BLAT program (Kent, 2002) due to its ability to 
handle long spliced reads. Blat was invoked with the following command: ‘blat -
stepSize=5 hg19.fa reads.fasta out.psl’. Editing at position 
chr8:103,841,636 was then computed for each sample based on pileup alignment. 

Protein expression, mRNA expression and DNA copy number profiling 
ADAR IHC. For each sample, a representative FFPE block containing invasive 
adenocarcinoma, including whenever possible a corresponding ductal carcinoma in 
situ-component, lymphocytes and normal ductal epithelium cells, was selected.  

ADAR IHC was performed as follows: briefly, sections were de-paraffinized 
and processed using the Ventana detection system with the iViewTM DAB detection 
kit (Ventana, Tucson, Arizona). Antigen retrieval was performed with EDTA 
(Tris/borate/EDTA; pH 8.4). The slides were then incubated in a 1:50 dilution of 
mouse polyclonal anti-ADAR antibody (Abcam, ab88574) at room temperature for 28 
minutes. After staining, slides were processed in accordance with routine protocols. A 
representative slide was chosen and scanned with a NanoZoomer 2.0RS scan 
(Hamamatsu Photonics Hamamatsu-SHI, Japan) in 40x mode using the NDP.scan 
software. 
Quantitative real-time PCR (qRT-PCR). In order to analyze the expression of ADAR 
p110, ADAR p150, total ADAR expression in both clinical samples and cell lines, we 
first reverse-transcribed 500 ng of total RNA using the High Capacity RNA-to-cDNA 
kit (Applied Biosystems, Foster City, CA) following the manufacturer's instructions. 
qRT-PCR was performed according to the TaqMan Gene Expression Assay protocol 
(Applied Biosystems) using the following primers: ADAR p110: forward, 5’- 
GGCAGTCTCCGGGTG -3’, reverse 5’- CTGTCTGTGCTCATAGCCTTGA-3’, 
FAM probe: 5’-CCGGCCGTGTCCCGAGGA-3’; ADAR p150: forward, 5’- 
CTTCCAGTGCGGAGTAGCG-3’, reverse 5’- GTGACGGTGTCTGCTTTCCA-3’, 
FAM probe: 5’- TCGGGCCAGGGTCGTGCC- 3’. For the quantification of total 
ADAR, we used commercially available primers and probe (Hs00241666_m1, Life 
Technologies). GUSB (Hs99999908_m1, Life Technologies) and TBP 
(Hs00427621_m1, Life Technologies) were used as reference genes. Real-time PCR 
was performed on a 7900HT Sequence Detection System (Applied Biosystems). All 
reactions were run in duplicate.  
Gene expression from RNA-seq data. RNA-seq data were generated and aligned on 
the human genome as described in previous sections. Expression was then estimated 
from the BAM files using Cufflinks v2.0.0 (Trapnell et al., 2012) with options -N -u 
--GTF. The transcript database provided with the --GTF option was ENSEMBL 
GRCh37.65. The expression FPKM (Fragment Per Kilobase per Million aligned 
reads) values, x, generated by Cufflinks were set to non null values and log2-
transformed with the formula f(x) = log2(x+1). 
Gene expression from Affymetrix® array. 100 ng of total RNA was profiled using the 
Affymetrix® HG-U133 Plus 2.0 Arrays (Affymetrix®, Santa Clara, California), 
following the manufacturer’s instructions. Briefly, the RNA was first reverse-
transcribed into double-stranded cDNA. This cDNA was transcribed in vitro. After 
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purification of the aRNA, 12.5 µg were fragmented and labeled prior to hybridization 
to the arrays. Quality control (QC) for each chip was performed following the 
recommendations posted on http://www.arrayanalysis.org/.  

CEL files were normalized with fRMA (McCall et al., 2010) v1.8.0 for R (R 
Development Core Team) v2.15.1. Probes were annotated from the ENSEMBL 
transcript database (same version as above) using BioMart (Smedley et al., 2009) 
v2.12.0. The best probe for a given gene was selected with Jetset (Li et al., 2011) 
v0.99.3. 
 When needed, RNA-seq and Affymetrix data were matched gene-wise on the 
basis of HUGO gene symbols. 
Genome Wide SNP analysis. Genome wide SNP analysis was performed at AROS 
Applied biotechnologies a/s (Aarhus, Denmark) on Affymetrix Genome-Wide Human 
SNP Arrays 6.0 (Affymetrix) following the manufacturer’s instructions. Briefly, 500 
ng of genomic DNA was digested with either Nsp I or Sty I and then ligated to 
adapters that recognize the cohesive four-basepair (bp) overhangs. A generic primer 
that recognizes the adapter sequence was used to amplify adapter ligated DNA 
fragments, with PCR conditions optimized to preferentially amplify fragments in the 
200 to 1,100 bp size range in a GeneAmp PCR System 9700 (Applied Biosystems). 
After purification and quantification, a total of 45 µl of PCR product was fragmented 
and a sample of the fragmented product was visualized on a 4% TBE agarose gel to 
confirm that the average size was smaller than 180 bp. The fragmented DNA was 
labeled with biotin and hybridized to the GeneChip Mapping Panels for 18 hrs. 
Arrays were washed and stained using an Affymetrix fluidics Station 450 and scanned 
using a GeneChip Scanner 3000 7G (Affymetrix). The Affymetrix GeneChip 
Operating Software (GCOS) was used to collect and extract feature data from the 
Affymetrix GeneChip Scanner. 

The Affymetrix Genome-Wide Human SNP 6.0 arrays were normalized for 
technical variation between chips using the copy number workflow of Affymetrix 
Power Tools release v1.14.3. We used the full version of the CDF, version na.32 of 
NetAffx’s annotation database for SNP 6.0 and version na.32 r1 of the HapMap 270 
reference file. We ran the procedure with the default parameter settings. The raw log2 
ratios from above were segmented using the circular binary segmentation algorithm 
(Olshen et al., 2004) implemented in the R/Bioconductor package DNAcopy version 
v1.34.0. We applied the full permutation method with default parameter settings, 
except undo.splits="sdundo", undo.SD=2. The segmented log2 ratios 
were used as input to a two-level hierarchical mixture model as described by van de 
Wiel et al. (van de Wiel et al., 2007) and implemented in the R package CGHcall 
version v2.20.0. Default parameter settings were used expect for prior="not 
all", nclass=4. 

Cell lines experiments 
Cell culture and Interferon treatment. MCF7 (ATCC® HTB22™), MDA-MB-231 
(ATCC® HTB26™), BT-474 (ATCC® HTB20™), MCF-10A (ATCC® 
CRL10317™), ZR-75-1 (ATCC® CRL1500™), BT-20 (ATCC® HTB19™) and 
HCC1569 (ATCC® CRL2330™) breast cells lines were obtained from ATCC 
(Manassas, Virginia) in December 2012 and cultured under standard conditions. All 
cell lines were regularly authenticated by morphological observation and tested for 
mycoplasma contamination (MycoAlert, Rockland, Maryland) before performing the 
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experiments described below. The cells were incubated at 37 °C in a humidified 
incubator containing 5% CO2. 

MCF7 and ZR-75-1 are ER+, HER2- tumor cell lines; MDA-MB-231 and BT-
20 are ER- HER2- tumor cell lines; BT-474 is an ER+ HER2+ tumor cell line and 
HCC1569 is HER2+ ER-. MCF-10A is an immortalized, non-transformed mammary 
epithelial cell line. Where indicated, cell lines were treated with the following doses 
of interferon (IFN): 1000UI/ml of Universal Type I IFN (Recombinant Human IFN-
alpha A/D [BglII]) (IFN-α; cat# 11200-1, R&D Systems, Minneapolis, Minnesota), 
1000UI/ml of Recombinant Human IFN-beta 1a (Mammalian) (IFN-β; cat# 11415-1; 
R&D Systems) or 500UI/ml of Recombinant Human IFN-gamma (IFN-γ; cat# 285-
IF-100; R&D Systems). Cells were treated for 24h (1 day), 48h (2 days) and 120h (5 
days); parallel cultures were left untreated as controls. 
Lentiviral transduction. ADAR gene expression inhibition was performed using 
transduction-ready lentiviral particles containing 3 target-specific constructs encoding 
shRNA specifically designed to knock down ADAR expression. Control shRNA 
lentiviral particles containing a scrambled shRNA were used as a negative control for 
experiments. MDA-MB-231, MCF7 and BT474 cells transduction were performed 
accordingly to manufacturer’s instructions (Santa Cruz biotechnology, Texas). 
Cell proliferation assay. Cell proliferation was determined by 3-(4,5-
dimethylthiazole-2-yl)-2.5 diphenyltetrazolium bromide assay (MTT, Sigma). All 
cells were seeded at a density of 6000 cells per well. At each time point, 25 µl of 5 
mg/ml MTT was added and incubated at 37°C for 3.5 h and 100 µl DMSO was added 
to the wells. Every 24 hours, the rate of cellular proliferation was determined by 
measuring the absorbance at 590 nm. Cell growth curves were calculated as mean 
values after normalization to the absorbance at day 1 from 3 independent experiments 
comprising each six replicates. Difference in cell growth was considered as 
significant when p<0.05 according to a paired t test. 
Apoptosis assessment. Apoptotic cell percentage was evaluated using the PE-
Annexin-V Apoptosis Detection kit I (BD Pharmingen, San Diego, CA) following the 
manufacturer’s instructions. Briefly, cells were double stained with Annexin V and 7-
AAD and were then analyzed by flow cytometry. Apoptotic cells were defined as 
Annexin V positive cells including Annexin V+/ 7-AAD- cells (early apoptosis) and 
Annexin V+/7-AAD+ cells (late apoptose). Difference in apoptosis was considered as 
significant when p<0.05 according to a paired t test. 
Western blot analysis. Cells were lysed in a buffer (NaCl 150mM, Tris-HCl 50mM, 
NP40 1%, SDS 20%, EDTA 5mM, protease inhibitors cocktail) at 4°C for 30 
minutes. Protein concentrations were determined using the PierceTM BCA Protein 
Assay kit (Thermo Scientific). Equal amounts of proteins (10µg) were separated on 4-
12% Bis-Tris gels, transferred to nitrocellullose membranes, blocked with TBST 
buffer (50 mM Tris pH 8.0, 150 mM NaCl, 0.1% Tween 20) containing 5% nonfat 
milk, washed with TBST buffer, and incubated overnight at 4°C with primary 
antibodies against ADAR1 antibody (Cat#12317S, Cell Signaling, Danvers, 
Massachusetts) at a dilution of 1:1000, and against Actin, Clone 4 (Cat# MAB1501R, 
Millipore, Billerica, Massachusetts), at a dilution of 1:5000. The membranes were 
then washed in TBST four times, incubated with HRP-conjugated secondary 
antibodies for 2 h at RT and washed in TBST buffer four times. Proteins were 
detected using the Western lightning Ultra system (Perkin Elmer, Waltham, 
Massachusetts). The immunoblot signals were visualized with a chemiluminescence 
system (Biorad, Hercules, California) and quantified using Biolab 4.0.1 software. 
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qRT-PCR analysis. The extraction, quantification and quality control of the RNA 
extracted from cell lines was performed as described above. Only four cell lines gave 
enough quality and quantity material for downstream analyses (MCF7, MDA-MB-
231, BT-474, and MCF-10A). For the analysis of the data obtained with qRT-PCR, 
relative expression of the genes of interest to GUSB and TBP was calculated using the 
2−ΔCt method. This normalized expression level allowed to determine the fold changes 
in the expression of the genes of interest between different subgroups. 
Processing of Roche FLX read mapping. Only four cell lines gave enough quality and 
quantity of material for downstream analyses (MCF7, MDA-MB-231, BT-474, and 
MCF-10A). Sequencing was performed as explained for the AZIN1 amplicon. The 
following primers were used:  
AZIN1ex11-13_F (Tag: AAGACTCGGCAGCATCTCCA; Specific Sequence: 
ACCGGAAGTGATGAACCAGCCT); 
AZIN1ex11-13_R (Tag: GCGATCGTCACTGTTCTCCA; Specific Sequence: 
GCTGAATGCAAGAAGGCACAAAGA);  
BPNT1_Alu1_F (Tag: AAGACTCGGCAGCATCTCCA; Specific Sequence: 
CCAATTGACAGTTCAGGTCAATGTTC);  
BPNT1_Alu1_R (Tag: GCGATCGTCACTGTTCTCCA; Specific Sequence: 
AAAATTGTGCCCTAAAGAAATCTGG);  
MRPS16_Alu_F (Tag: AAGACTCGGCAGCATCTCCA; Specific Sequence: 
TTCCCATGTGTTTTAAAAGCCTGAA);  
MRPS16_Alu_R (Tag: GCGATCGTCACTGTTCTCCA; Specific Sequence: 
GCCAAATTATGTAATGTTTTCTTTTTC);  
BPNT1_Alu2_F (Tag: AAGACTCGGCAGCATCTCCA; Specific Sequence: 
GCCGAGTTCCAGAATCTATTAAAAATG);  
BPNT1_Alu2_R (Tag: GCGATCGTCACTGTTCTCCA; Specific Sequence: 
TCTTTCTCCTAGCTAAGTAAATGAAACTT);  
ZDHHC20_Alu_F (Tag: AAGACTCGGCAGCATCTCCA; Specific Sequence: 
AAATCACTTTTCATTCACCCAATAAA);  
ZDHHC20_Alu_R (Tag: GCGATCGTCACTGTTCTCCA; Specific sequence: 
GGCCAAATTATAAACAAATTATAAACCT).  
A total of 39 samples, each corresponding to a specific combination of cell line, 
interferon treatment and duration, were multiplexed on a single 454 sequencing run. 
We first extracted per-sample amplicons and trimmed MID sequences at each ends of 
sequencing reads. During this step, we required that the read sequence start by the 
MID and ends by its reverse complement, for a total read length of 250bp, primer 
sequences included. This ensures that most reads retained for alignment correspond to 
amplicons sequenced at full length. Adaptor and primer sequences were further 
removed and reads were mapped on the reference genome with the bwasw (v0.5.9) 
aligner (Li and Durbin, 2010) with default parameters. 

Once reads were mapped on the reference genome, edited positions were 
identified based on pileup alignment. Only target regions were screened for RNA 
editing. Mapped bases at each position were obtained using the SAMtools (v0.1.16) 
mpileup program (Li et al., 2009) called with the following command line: 
‘samtools mpileup -B -D -r range -q 0 -Q 0 -f hg19.fa 
aln.bam > out.pileup’, where range corresponds to regions targeted for 
amplicon sequencing. Since read depth was greatly superior compared to our whole 
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transcriptome datasets, we considered a position as edited if the number of non-
reference bases was at least 10, so that low frequency editing events could be 
detected. Additionally, as target regions correspond to UTRs of genes transcribed on 
the reverse strand, we restricted identification of editing to positions where the 
reference base was a T and non-reference bases were Cs.  

To investigate the incidence of coverage over the detection of RNA editing, 
we estimated the mean number of detected edits for different read depth. We first 
examined in what extend alignments could be downsampled. The only genomic 
region having a very high coverage (> 2,000 reads) in every sample was the Alu 
region located within MRPS16 gene (chr10:75008708-75008970). For each sample, 
we then generated 10 replicates of the original alignment at specified depth D by 
randomly selecting D reads mapped on MRPS16 Alu region. We computed the mean 
number of edits detected across all downsampled replicates based on pileup alignment 
(10 or more edited bases at a given position). Note that this downsampling makes 
sense only for amplicon sequenced at full length and covering the whole target region, 
since in this case, number of mapped reads and read depth are equivalent. 

Long 454 amplicons allow for the analysis of editability on a per-read basis. 
The main hypothesis is that if a given genomic position Pi is more often edited than 
another position Pj located in the same region (and consequently covered by the same 
amplicon sequence), then we can expect that Pj will be edited in amplicons where Pi 
has already been edited. In other words, if a given amplicon harbors a total of N 
edited positions, these should correspond to the N most edited positions across all 
amplicon sequences covering this region. 

To verify this hypothesis, we extracted amplicon sequences mapped on each 
target Alu and overlapping all editable positions detected within this Alu. We then 
determined which positions were edited for each amplicon individually. This 
produces a binary matrix M for each target Alu, where Mi,j = 1 if position i is edited in 
amplicon j, 0 otherwise. Reads were further ordered from the highest edited to the one 
harboring the lowest number of edited bases. Similarly, genomic positions were also 
sorted from the most edited to the least edited.  

Statistical Analysis 
All computations were implemented in R (R Development Core Team) v2.15.1 and 
Bioconductor (Gentleman et al., 2004) 2.10. Defaults functions’ parameters were used 
unless specified otherwise. 
Third party data. Our analysis rests on a number of public domain data sets: 

• Alu were located from the RepeatMasker (Smit et al.) downloaded from 
UCSC (http://genome.ucsc.edu). 

• The DARNED database (Kiran and Baranov, 2010) for hg19 was downloaded 
from darned.ucc.ie.  

• The RNA editing sites from the GM12878 lymphoblastoid were obtained from 
the Supplemental table of Ramaswamy et al. (Ramaswami et al., 2012). 

• RNA-seq data from the TCGA were downloaded from the public access 
repository on 08/02/2013 and assembled using custom R scripts whilst CBS 
segmented log2 ratios for matching samples were downloaded. 

Calculation of editing frequencies. For all RDD sites determined by the pipeline 
described in Figure S1, editing frequency was defined for each sample as the ratio of 
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the number of RNA-seq reads documenting the non-reference base by the total 
number of reads covering the site. Since gene expression varied from sample to 
sample, some RDD sites were not covered in some samples. In such cases, the editing 
frequency was considered undefined (i.e., ‘NA’ in R’s terminology). 
Statistical tests and related graphics. Spearman correlation coefficients, ρ, and 
corresponding p-values were calculated with R’s cor.test function. All group 
comparisons were evaluated with the Wilcoxon tests as implemented by R’s 
wilcox.test. All tests were two-sided, except for the paired comparison, which were 
single-sided. The multivariate analyses were performed with R’s lm. Correlations 
coefficients and p-values were rounded to the nearest one significant digit number 
with R’s signif. Because cancer is a heterogeneous disease, revealing the variability of 
statistics is essential. We displayed all individual sample-level data points for almost 
all the analyses conducted in this study in the form of scatter plots or strip charts with 
overlaid boxplots. Numerical data underlying each plot are provided as Supplemental 
Tables. 
Confirmation of editing sites. Since our sequencing protocol was unstranded, RDDs 
were considered confirmed in the DARNED database if we could find a RDD in 
DARNED with the same genomic position and the same or reverse complement 
substitution. 
 The genomic positions of all putative RDDs and 1,000 random positions 
within 1,000 randomly selected Alu were sent to the Sanger Institute team (A.S. and 
P.C.). No other information was provided in order to avoid confirmation bias. They 
then computed DNA and RNA allelic frequencies at these putative RDD and random 
control positions in 15 breasts cancers. Tumor DNA sequences are described 
elsewhere (Nik-Zainal et al., 2012a, 2012b). RNA sequences were obtained from 
2x75bp paired-end HiSeq 2000 Illumina sequencing with each sample run on two 
lanes. RNA-seq reads were aligned with TopHat (Trapnell et al., 2009, 2012) 1.3 in 
unsupervised mode (i.e., no transcript database provided to guide the alignment). The 
resultant binary alignment files (BAM) were merged then duplicates were removed 
with Picard (http://broadinstitute.github.io/picard/) MarkDuplicates. Multi-mapped 
reads were excluded from this analysis. SAMtools (Li et al., 2009) and a custom 
script were used to determine the allelic frequencies of each putative RDD. Hence, the 
data generation and computational processing of the validation samples differed 
substantially from those used to derive the original RDDs, reinforcing the value of the 
confirmation. The computed allelic frequencies were sent back to the Brussels team 
for comparison to the original RDDs. A RDD was considered confirmed if there was 
at least one sample with 1) a coverage >20 reads in both DNA and RNA at the RDD 
position, 2) an alternative allele identical to the original RDD in >2% of the RNA-seq 
reads, 3) The reference allele present in >95% on the DNA reads. 
Editing frequencies heatmap. Rows and columns were ordered by increasing row-
wide and column-wise mean editing frequencies. Contour lines were drawn from the 
smoothing of the resulting frequencies matrix. Smoothing was computed with the 
image.smooth function from R’s fields package v6.7 with scale parameter theta=3. 
Logistic dose-response fitting. Dose-response curves were established from the site-
specific editing frequencies shown in Figure 5F and matched ADAR protein 
expression shown in Figure 5E (data in Supplemental Table S6). We included the two 
ADAR isoforms as (p150 + p110)/actin. We filtered out sites with less than 4 data 
points and for which the editing frequency at the lower ADAR expression was below 
0.025. This filter excluded from the analysis sites for which trivial detection artifacts 
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caused departure from the logistic model. The dose-response curve of each editing 
site was then fit to the model with the drm function (with argument fct= 
L.5(fixed=c(-1,0,NA,NA,1)), i.e. the two-parameters logistic model, 
f(x)=εi/(1+exp(ωi−x))) from R package drc (Ritz and Streibig, 2005) v2.5.12.  
DNA-based statistical model of editability. RNA editing sites from biological sample 
GM12878 (see ‘Third party data’ above) were filtered to retain editing events falling 
within Alu regions and covered at a depth >20x. 51,621 sites passed this filter. They 
were ordered by order of appearance in the human genome. The first half of them 
were assigned to the training set, the second half to the validation set. Note that 
because editing sites tend to cluster per Alu, assigning them randomly to the training 
and validation sets would not guaranty independence of these sets. 
  The training set was used to derive DNA sequence features associated with the 
RNA editing ratio. We found highly significant association with the following 
variables defined on a per-site basis: 

• Smith-Waterman alignment score of the 51bp hg19 DNA sequence centered 
on the edit site within the 2,501bp DNA sequence, also centered on the edit 
site, but on the opposite strand. We computed the alignment with the 
pairwiseAlignment function from Bioconductor package GenomicRanges 
v1.8.13 using the local-global mode with mismatch penalty of -3 and default 
parameters of function nucleotideSubstitutionMatrix. 

• The distance between the best Smith-Waterman alignment and the edit site. 

• The 20 nucleotides surrounding the edit site. 
The edit ratios in the training set were then modeled with these 1+1+20=22 variables 
using a linear model as implemented by R’s lm function. We attempted to use 
alternative parameters, e.g. larger windows around the edited sites and compute 
models with RBF kernel support vector machines, but did not obtain radically better 
fits of the training data. 

Finally, the linear model was used to estimate the editability scores of the 
validation editing sites shown in Figure 4J. 
Gene set analysis. We derived the genes whose expression had a strong positive 
correlation with the mean editing frequency by taking the intersection of the 250 
genes the most positively correlated (Spearmans’ ρ) with the mean editing frequency 
in the RNA-seq expression data, and the Affymetrix expression data. The intersection 
contained 85 genes.  

The Affymetrix expression values were adjusted for ADAR amplification with 
a procedure akin to that of a previous publication (Venet et al., 2011). For each gene, 
expressions were fitted to the level of ADAR amplification determined from our 
Affymetrix SNP6.0 arrays. ADAR CN-adjusted expressions were then computed for 
each gene as the sum of its mean expression across the cohort and the residuals of the 
fit. 
 Adjusted Affymetrix data were then analyzed with the GSA (Efron and 
Tibshirani, 2007) package v1.03 for R, first using the ‘canonical pathway’ and then 
the ‘transcription factor targets’ gene sets from MSigDB (Liberzon et al., 2011; 
Subramanian et al., 2005) v3.1 (files c2.cp.v3.1.symbol.gmt and 
c3.tft.v3.1.symbol.gmt downloaded from www.broadinstitute.org/gsea). We searched 
for gene sets correlated with the patient-averaged editing frequency (using GSA’s 
resp.type=”Quantitative”). 
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