DNA Sequencing Predicts 1st-Line Tuberculosis Drug Susceptibility Profiles

Supplementary materials

Contents:

Further details on sampling frame (including Table S0), missing data, in silico predictions for commercial molecular assays, and mislabeling rates. p. 2
S1 summary. p. 4
S1 details. p. 5
(All isolates, SRA accession numbers, phenotypic methods and results, and genotypic predictions)
S2: p. 94(Knowledgebase of mutations used to make genomic predictions)
S3: p. 108(Performance of predictions by drug, and against different associated drug phenotypes)
S4: p. 117(Performance of predictions for de-duplicated data set, i.e. using only one representative pergenomic cluster)
S5: p. 118
(Drug profile predictions)
S6:p. 119(Performance for individual drugs for isolates with complete phenotypic data available)
S7:p. 120
(Performance of drug profile predictions for isolates from countries' collections that werenot enriched for resistance)
S8: p. 121
(Re-phenotyping results, and results of clerical cross-checking analysis)
S9: p. 122
(Performance of individual mutations that led to discrepancies, across the whole data set)
S10: p. 124(Estimated proportion of isolates discrepant due to mislabelling error)

1. Sampling frame:

Isolates were derived from different collections, as detailed in table S1. All were enriched for resistance, with the exception of the collections from Germany (Hamburg), UK (Birmingham, Oxford, Leeds), Netherlands, and Italy (MGIT study).

The unenriched UK isolates were drawn from a prospective population study from Birmingham (200913) and from a collection of routinely sequenced clinical isolates from all of Birmingham since 2013. The surrounding region (the 'Midlands') has been prospectively sequenced since 2014, and was retrospectively sequenced from 2012-14. All isolates from the Midlands region are referred to the one centralised reference laboratory and stored there. Additional UK isolates were prospectively sequenced in Leeds as part of a study to sequence all positive MGIT cultures coming through Leeds laboratory between Oct 2013 to January 2014. Samples from Oxford were all sequenced as part of a prospective local surveillance effort, as well as part of the same study as in Leeds.

The unenriched Italian isolates were sequenced as part of a different prospective study of all positive MGIT cultures in Florence and surrounding province between February and October 2016. In Florence, all TB samples are referred to this one, centralised laboratory.

Isolates from Germany were all sequenced as part of a population study in Hamburg.
Isolates from the Netherlands were sequenced as part of a prospective population-based study in 2016, with additional samples sequenced from previous years as part of outbreak surveillance work. These latter samples were not enriched for resistance.

Although samples from the Birmingham, Oxford and Hamburg population studies were included in a previous study from which part of the knowledgebase of resistance mutations was derived, as described in the methods section (http://www.thelancet.com/journals/laninf/article/PIIS1473$3099(15) 00062-6 / a b s t r a c t)$, no samples that were included in that 2015 paper were re-used in this study (i.e. there is zero overlap across the studies).

Had any of the components of this subset been inadvertently enriched for resistance, we would expect bias towards worse outcome in terms of the negative predictive value, rather than better outcomes. To be secure that no bias occurred, the subset analysis was re-run using only the truly prospectively sampled isolates (samples from Birmingham, only prospective samples from the Midlands outside of Birmingham, samples from Leeds, from Florence, from Hamburg over the final 3 years of that study, and from the Netherlands from 2016 only). The results are shown in table S0 below and are not materially different from those presented in Table 2c, based on all isolates from 'collections unenriched for resistance'.

Table S0:

		tan	eno	, n			p	,	,					
	R	S	U	F		R	S	U	F		Sensitivity	Specificity	PPV	NPV
INH	269	8	5	4	286	14	2,746	80	59	2,899	97.1	99.5	95.1	99.7
RIF	113	0	0	9	122	27	2,877	85	104	3,093	100.0	99.1	80.7	100.0
EMB	64	1	0	0	65	44	2,716	342	33	3,135	98.5	98.4	59.3	100.0
PZA	92	6	3	6	107	23	2,938	10	51	3,022	93.9	99.2	80.0	99.8

2. Missing phenotypic data

Missing phenotypic data was largely systematic, with different countries and laboratories having different policies on what was routinely tested. Details are shown in table S1. Some within centre variation was seen, which reflects of occasional assay failure or individual clinical decision to only test a subset of drugs - for example in the context of >1 isolate from the same patient having been referred to the laboratory for testing, or one culture becoming contaminated and another clinical isolate being sought. Alternatively, where PZA susceptibility was not routinely tested, clinical grounds occasionally determined that phenotypic PZA assays were performed.
3. In silico predictions for the MTB/RIF Xpert and the HAIN MTBDRplus and MTBDRs/ v1.0

All genomic loci probed by these tests were explored in the genome sequence data. Where a nucleotide call other than 'wild type' was identified, a prediction was made that the molecular assay in question would report 'resistance'. This included both synonymous and non-synonymous mutations, and therefore covered both HAIN line-probe eventualities of 'MUT' or 'wild type loss'. No prediction for these assays was made where there was a mixed population in the genomic data as it is not clear how the molecular assays would perform in such circumstances.
4. Mislabelling rates

The estimated mislabelling rate for isoniazid was greater than for rifampicin. The reason for this is not certain, but a significantly higher error rate was seen in mono-resistant isolates than for MDR-TB. For example, for isoniazid susceptible isolates containing rpoB_S450L mutations, 8/347 (2.2\%) were phenotypically rifampicin susceptible, whilst for isoniazid resistant isolates containing rpoB_S450L mutations only $11 / 1527$ (0.7%) were phenotypically rifampicin susceptible ($p=0.01$). Similarly, for katG_S315T mutations, for riampicin susceptible isolates containing katG_S315T mutations, 20/1093 (1.8%) were phenotypically isoniazid susceptible, whereas for riampicin resistant isolates containing katG_S315T mutations, only $13 / 1501$ (0.9%) were phenotypically isoniazid susceptible ($p=0.03$). It may therefore be that concern about MDR-TB resulted in more careful cross-checking in individual centres, and that this concern was more often present when rpoB mutations had been detected (e.g. by MTB/RIF Xpert pre-testing), leading to a lower error rate than for katG mutations.

Table S1 summary

Birmingham and surrounding Midlands, UK	Public Health England, Birmingham, UK	UK	UK	MGIT 960	HREZ	H $0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E}$ $5 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{Z} 100 \mu \mathrm{~g} / \mathrm{mL}$
British Columbia, Canada	British Columbia Centre for Disease Control, Canada	Canada	Canada	MGIT 960	HRE	H $0.1 \mu \mathrm{~g} / \mathrm{mL} ;$ R $1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E}$ $5 \mu \mathrm{~g} / \mathrm{mL}$; Z - direct detection of pyrazinamidase activity
Samara, Russian Federation	Casali et. al. Nat Genet. 2014 (PMID: 24464101)	Russia	Russia	Resistance ratio method on L slopes. Modified Marks biphasic method for pyrazinamide, with confirmation in MGIT 960	HREZ	n/a
Belgium	Genoscreen	Belgium	France	MGIT 960	HREZ	$\mathrm{H} 0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1.0 \mu \mathrm{~g} / \mathrm{mL}$; E $5.0 \mu \mathrm{~g} / \mathrm{mL} ;$ Z $100 \mu \mathrm{~g} / \mathrm{mL}$
Hamburg	Forschungszentrum Borstel, Germany	Germany	Germany	MGIT 960	HREZ	$\mathrm{H} 0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E}$ $5 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{Z}^{100 \mu \mathrm{~g} / \mathrm{mL}}$
Netherlands	Harvard School of Public Health, USA	Netherlands	USA	MGIT 960	HREZ	$\mathrm{H} 0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1.0 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E}$ $5.0 \mu \mathrm{~g} / \mathrm{mL} ;$ Z $100 \mu \mathrm{~g} / \mathrm{mL}$
Peru	Harvard School of Public Health, USA	Peru	USA	MGIT 960	HREZ	$\mathrm{H} 0.2 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1.0 \mu \mathrm{~g} / \mathrm{mL}$; E $5.0 \mu \mathrm{~g} / \mathrm{mL} ;$ Z $100 \mu \mathrm{~g} / \mathrm{mL}$
Italy	San Raffaele Hospital, Milan, Italy	Italy	Italy	MGIT 960	HREZ	$\mathrm{H} 0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL}$; E $5 \mu \mathrm{~g} / \mathrm{mL} ;$ Z $100 \mu \mathrm{~g} / \mathrm{mL}$
Italy, MGIT study in Florence	San Raffaele Hospital, Milan, Italy	Italy	Italy	MGIT 960	HREZ	H $0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E}$ $5 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{Z} 100 \mu \mathrm{~g} / \mathrm{mL}$
Leeds	Public Health England and Leeds NHS teaching hospital, UK	UK	UK	MGIT 960	HREZ	H 0.1 $\mathrm{g} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E}$ $5 \mu \mathrm{~g} / \mathrm{mL} ;$ Z $100 \mu \mathrm{~g} / \mathrm{mL}$
London	Public Health England, London and Birmingham, UK	UK	UK	Resistance ratio method on L slopes. Modified Marks biphasic method for pyrazinamide, with confirmation in MGIT 960	HREZ	n/a
Swaziland	MSF Swaziland and Forschungszentrum Borstel, Germany	Swaziland	Germany	MGIT 960	HRE	H $0.1 \mu \mathrm{~g} / \mathrm{mL} ;$ R $1 \mu \mathrm{~g} / \mathrm{mL}$; E $5 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{Z} 100 \mu \mathrm{~g} / \mathrm{mL}$
Netherlands	RIVM, Netherlands	Netherlands	Netherlands	MGIT 960	HREZ	H $0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL}$; E $5 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{Z} 100 \mu \mathrm{~g} / \mathrm{mL}$
Oxford	Oxford University Hospitals NHS Foundation Trust	UK	UK	Resistance ratio method on L slopes. Modified Marks biphasic method for pyrazinamide, with confirmation in MGIT 960	HREZ	n/a
Pakistan	National TB Control Programme, Pakistan and San Raffaele Hospital,Milan	Pakistan	Italy	U proportion method	HREZ	H $0.2 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 40 \mu \mathrm{~g} / \mathrm{mL}$; E $2 \mu \mathrm{~g} / \mathrm{mL} ;$ Z $100 \mu \mathrm{~g} / \mathrm{mL}$
Lima, Peru	Lima, Peru and London School of Hygiene and Tropical Medicine, UK	Peru	UK	MODS	HR	H 0.4 $\mu \mathrm{g} / \mathrm{mL} ;$ R $1.0 \mu \mathrm{~g} / \mathrm{mL}$
Serbia	University of Belgrade, Serbia and Forschungszentrum Borstel, Germany	Serbia	Serbia	MGIT 960	HREZ	H $0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL}$; E $5 \mu \mathrm{~g} / \mathrm{mL} ;$ Z $100 \mu \mathrm{~g} / \mathrm{mL}$
South Africa	NICD, Johannesburg, South Africa	South Africa	South Africa	MGIT 960	HREZ	H $0.1 \mu \mathrm{~g} / \mathrm{mL} ;$ R $1 \mu \mathrm{~g} / \mathrm{mL}$; E $5 \mu \mathrm{~g} / \mathrm{mL} ;$ Z $100 \mu \mathrm{~g} / \mathrm{mL}$
Valencia, Spain	Valencia, Spain	Spain	Spain	MGIT 960	HREZ	$\mathrm{H} 0.1 \mathrm{gg} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E}$ $5 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{Z}^{100 \mu \mathrm{~g} / \mathrm{mL}}$
Thailand	National University of Singapore	Thailand	Singapore	Middlebrooks 7H10 Agar	HRE	$\begin{aligned} & \mathrm{H} 0.2 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1.0 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E} \\ & 5.0 \mu \mathrm{~g} / \mathrm{mL} \end{aligned}$
New South Wales, Australia	University of Sydney, Australia	Australia	Australia	MGIT 960	HREZ	H $0.1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 1 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{E}$ $5 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{Z}^{2} 100 \mu \mathrm{~g} / \mathrm{mL}$
Shanghai, China	Yang et. al. Lancet Infect Diseases 2017 (PMID: 27919643)	China	China	MGIT 960	HRE	$\mathrm{H} 0.1 \mu \mathrm{~g} / \mathrm{mL} ;$ R $1 \mu \mathrm{~g} / \mathrm{mL}$; E $5 \mu \mathrm{~g} / \mathrm{mL}$
China	Zhang et. al. Nat Genet. 2013 (PMID: 23995137)	China	China	Agar proportion	HRE	$\mathrm{H} 0.2 \mu \mathrm{~g} / \mathrm{mL} ; \mathrm{R} 40 \mu \mathrm{~g} / \mathrm{mL}$; E $2 \mu \mathrm{~g} / \mathrm{mL}$

Table S1, details

PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593
PRJNA13593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593
PRJNA413593 PRNA4413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRINA413593 PRJNA413593
PRJNA413593
 PRJNA413593
PRJNA413593 PRJNA413593

PRJNA413593 | PRJNA413593 |
| :--- |
| PRJNA413593 |
| PRNA | PRJNA413593

PRJNA413593 PRJNA413593
PRJNA13593
 PRNAA413593
PRJNA413593
PRINA413593 PRNA4
PRJNA413593
PRINA413593 PRJNA4135933
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA4 ${ }^{2} 13593$
PRJNA $_{13593}$ PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593
PRNA13593 PRJNA413593 PRJNA413593 PRJNA413593 PRNA 44_{13593}
PR NA 43593 PRJNA $_{413593}$
PRJNA $_{13593}$ PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593
 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593

A95390	British Columbia Centre for Disease Control
105353	British Columbia Centre for Disease Control
125193	British Columbia Centre for Disease Control
A5512	British Columbia Centre for Disease Control
115329	British Columbia Centre for Disease Control
135310	British Columbia Centre for Disease Control
115361	British Columbia Centre for Disease Control
135313	British Columbia Centre for Disease Control
A95007	British Columbia Centre for Disease Control
A9s377	British Columbia Centre for Disease Control
135373	British Columbia Centre for Disease Control
A9s264	British Columbia Centre for Disease Control
115173	British Columbia Centre for Disease Control
125034	British Columbia Centre for Disease Control
A8s332	British Columbia Centre for Disease Control
125069	British Columbia Centre for Disease Control
A8s054	British Columbia Centre for Disease Control
105092	British Columbia Centre for Disease Control
105022	British Columbia Centre for Disease Control
A75112	British Columbia Centre for Disease Control
115246	British Columbia Centre for Disease Control
115323	British Columbia Centre for Disease Control
A95096	British Columbia Centre for Disease Control
A65120	British Columbia Centre for Disease Control
A8s234	British Columbia Centre for Disease Control
A95323	British Columbia Centre for Disease Control
A85043	British Columbia Centre for Disease Control
105053	British Columbia Centre for Disease Control
A95235	British Columbia Centre for Disease Control
A5s014	British Columbia Centre for Disease Control
105234	British Columbia Centre for Disease Control
A9s405	British Columbia Centre for Disease Control
A9s346	British Columbia Centre for Disease Control
A6s431	British Columbia Centre for Disease Control
A6s368	British Columbia Centre for Disease Control
A45086	British Columbia Centre for Disease Control
135292	British Columbia Centre for Disease Control
A5s254	British Columbia Centre for Disease Control
A75007	British Columbia Centre for Disease Control
135456	British Columbia Centre for Disease Control
A3s053	British Columbia Centre for Disease Control
145395	British Columbia Centre for Disease Control
A5s232	British Columbia Centre for Disease Control
10s256	British Columbia Centre for Disease Control
A8s240	British Columbia Centre for Disease Control
A55093	British Columbia Centre for Disease Control
135502	British Columbia Centre for Disease Control
A8s356	British Columbia Centre for Disease Control
145145	British Columbia Centre for Disease Control
125087	British Columbia Centre for Disease Control
125172	British Columbia Centre for Disease Control
125094	British Columbia Centre for Disease Control
A8s174	British Columbia Centre for Disease Control
125304	British Columbia Centre for Disease Control
A9s398	British Columbia Centre for Disease Control
135023	British Columbia Centre for Disease Control
A6s131	British Columbia Centre for Disease Control
A45018	British Columbia Centre for Disease Control
115284	British Columbia Centre for Disease Control
125082	British Columbia Centre for Disease Control
A8s219	British Columbia Centre for Disease Control
A55178	British Columbia Centre for Disease Control
A75294	British Columbia Centre for Disease Control
115348	British Columbia Centre for Disease Control
A9s251	British Columbia Centre for Disease Control
10544	British Columbia Centre for Disease Control
125212	British Columbia Centre for Disease Control
125326	British Columbia Centre for Disease Control
A65074	British Columbia Centre for Disease Control
A5s051	British Columbia Centre for Disease Control
A9s248	British Columbia Centre for Disease Control
A7s167	British Columbia Centre for Disease Control
125155	British Columbia Centre for Disease Control
A8s095	British Columbia Centre for Disease Control
A75333	British Columbia Centre for Disease Control
125204	British Columbia Centre for Disease Control
145166	British Columbia Centre for Disease Control
A8s143	British Columbia Centre for Disease Control
135079	British Columbia Centre for Disease Control
A5s140	British Columbia Centre for Disease Control
A5s279	British Columbia Centre for Disease Control
135006	British Columbia Centre for Disease Control
115021	British Columbia Centre for Disease Control
115252	British Columbia Centre for Disease Control
A7s315	British Columbia Centre for Disease Control
145129	British Columbia Centre for Disease Control
A95064	British Columbia Centre for Disease Control
105121	British Columbia Centre for Disease Control
A5s038	British Columbia Centre for Disease Control
135174	British Columbia Centre for Disease Control
A95044	British Columbia Centre for Disease Control
A65043	British Columbia Centre for Disease Control
A85063	British Columbia Centre for Disease Control
A5s163	British Columbia Centre for Disease Control
A95328	British Columbia Centre for Disease Control
125419	British Columbia Centre for Disease Control
105173	British Columbia Centre for Disease Control
A75172	British Columbia Centre for Disease Control
135466	British Columbia Centre for Disease Control
A6s315	British Columbia Centre for Disease Control
A8s358	British Columbia Centre for Disease Control
125436	British Columbia Centre for Disease Control
A9s104	British Columbia Centre for Disease Control
125338	British Columbia Centre for Disease Control
A9s112	British Columbia Centre for Disease Control
A95062	British Columbia Centre for Disease Control
A7s123	British Columbia Centre for Disease Control
A75045	British Columbia Centre for Disease Control
A8s363	British Columbia Centre for Disease Control
A8s104	British Columbia Centre for Disease Control
A6s128	British Columbia Centre for Disease Control
105071	British Columbia Centre for Disease Control
A75321	British Columbia Centre for Disease Control
A35233	British Columbia Centre for Disease Control

$n u$

\square

125074	bia Centre
A5s181	sh Columbia Centre for Disease Control
115395	British Columbia Centre for Disease Control
A85212	British Columbia Centre for Disease Control
125280	British Columbia Centre for Disease Control
115038	British Columbia Centre for Disease Control
125312	British Columbia Centre for Disease Control
105432	British Columbia Centre for Disease Control
135301	British Columbia Centre for Disease Control
A65094	British Columbia Centre for Disease Control
A95087	British Columbia Centre for Disease Control
A55240	British Columbia Centre for Disease Control
A65217	British Columbia Centre for Disease Control
A6s366	British Columbia Centre for Disease Control
115438	British Columbia Centre for Disease Control
A8s139	British Columbia Centre for Disease Control
A6s144	British Columbia Centre for Disease Control
145041	British Columbia Centre for Disease Control
A75246	British Columbia Centre for Disease Control
115157	British Columbia Centre for Disease Control
A65077	British Columbia Centre for Disease Control
145457	British Columbia Centre for Disease Control
A4s109	British Columbia Centre for Disease Control
A75268	British Columbia Centre for Disease Control
145181	British Columbia Centre for Disease Control
135013	${ }^{\text {British Columbia Centre for Disease Control }}$
A85282	British Columbia Centre for Disease Control
115105	British Columbia Centre for Disease Control
A75064	British Columbia Centre for Disease Control
A6s218	British Columbia Centre for Disease Control
135058	British Columbia Centre for Disease Control
135080	British Columbia Centre for Disease Control
135377	British Columbia Centre for Disease Control
A75230	British Columbia Centre for Disease Control
115161	British Columbia Centre for Disease Control
A75005	British Columbia Centre for Disease Control
A9s263	British Columbia Centre for Disease Control
A65213	British Columbia Centre for Disease Control
A85168	British Columbia Centre for Disease Control
135026	British Columbia Centre for Disease Control
135329	British Columbia Centre for Disease Control
125428	British Columbia Centre for Disease Control
105016	British Columbia Centre for Disease Control
145026	British Columbia Centre for Disease Control
135142	British Columbia Centre for Disease Control
A65069	British Columbia Centre for Disease Control
A95321	British Columbia Centre for Disease Control
A55285	British Columbia Centre for Disease Control
105223	British Columbia Centre for Disease Control
145012	British Columbia Centre for Disease Control
A45019	British Columbia Centre for Disease Control
A65319	British Columbia Centre for Disease Control
135190	British Columbia Centre for Disease Control
A85285	British Columbia Centre for Disease Control
A75009	British Columbia Centre for Disease Control
A95369	British Columbia Centre for Disease Control
115177	British Columbia Centre for Disease Control
A55267	British Columbia Centre for Disease Control
A9s193	British Columbia Centre for Disease Control
A85016	British Columbia Centre for Disease Control
105399	British Columbia Centre for Disease Control
A99241	British Columbia Centre for Disease Control
125300	British Columbia Centre for Disease Control
A65331	British Columbia Centre for Disease Control
A95314	British Columbia Centre for Disease Control
125129	British Columbia Centre for Disease Control
145397	British Columbia Centre for Disease Control
115116	British Columbia Centre for Disease Control
A65013	British Columbia Centre for Disease Control
A99243	British Columbia Centre for Disease Control
A55252	British Columbia Centre for Disease Control
105336	British Columbia Centre for Disease Control
145017	British Columbia Centre for Disease Control
A9s139	British Columbia Centre for Disease Control
125161	British Columbia Centre for Disease Control
A99249	British Columbia Centre for Disease Control
135129	British Columbia Centre for Disease Control
A75008	British Columbia Centre for Disease Control
115043	British Columbia Centre for Disease Control
A9s071	British Columbia Centre for Disease Control
A9s025	British Columbia Centre for Disease Control
A75293	British Columbia Centre for Disease Control
145419	British Columbia Centre for Disease Control
115087	British Columbia Centre for Disease Control
145313	British Columbia Centre for Disease Control
A95379	British Columbia Centre for Disease Control
A65327	British Columbia Centre for Disease Control
A45099	British Columbia Centre for Disease Control
A8s194	British Columbia Centre for Disease Control
${ }^{\text {A85035 }}$	British Columbia Centre for Disease Control
115092	British Columbia Centre for Disease Control
135388	British Columbia Centre for Disease Control
A99234	British Columbia Centre for Disease Control
125306	British Columbia Centre for Disease Control
A85263	British Columbia Centre for Disease Control
125394	British Columbia Centre for Disease Control
145271	British Columbia Centre for Disease Control
A55185	British Columbia Centre for Disease Control
105266	British Columbia Centre for Disease Control
A85346	British Columbia Centre for Disease Control
115418	British Columbia Centre for Disease Control
A75220	British Columbia Centre for Disease Control
A9s140	British Columbia Centre for Disease Control
A99344	British Columbia Centre for Disease Control
A7s107	British Columbia Centre for Disease Control
A85076	British Columbia Centre for Disease Control
135053	British Columbia Centre for Disease Control
125050	British Columbia Centre for Disease Control
145163	British Columbia Centre for Disease Control
A85073	British Columbia Centre for Disease Control
115230	British Columbia Centre for Disease Control
125107	British Columbia Centre for Disease Control
A65076	British Columbia Centre for Disease Control
A65351	British Columbia Centre for Disease Control
$\begin{aligned} & \text { A5s107 } \\ & \text { 13s498 } \end{aligned}$	British Columbia Centre for Disease Control British Columbia Centre for Disease Control

A95385	British Columbia Centre for Disease Control
467	British Columbia Centre for Disease Control
15442	British Columbia Centre for Disease Control
5071	British Columbia Centre for Disease Control
A65168	British Columbia Centre for Disease Control
5045	British Columbia Centre for Disease Control
A6s163	British Columbia Centre for Disease Control
135154	British Columbia Centre for Disease Control
145315	British Columbia Centre for Disease Control
A85021	British Columbia Centre for Disease Control
125218	British Columbia Centre for Disease Control
135266	British Columbia Centre for Disease Control
A65320	British Columbia Centre for Disease Control
A75067	British Columbia Centre for Disease Control
A5s164	British Columbia Centre for Disease Control
A85289	British Columbia Centre for Disease Control
A75347	British Columbia Centre for Disease Control
125346	British Columbia Centre for Disease Control
125058	British Columbia Centre for Disease Control
145355	British Columbia Centre for Disease Control
145256	British Columbia Centre for Disease Control
A65270	British Columbia Centre for Disease Control
135158	British Columbia Centre for Disease Control
145162	British Columbia Centre for Disease Control
145302	British Columbia Centre for Disease Control
A85303	British Columbia Centre for Disease Control
115354	British Columbia Centre for Disease Control
145242	British Columbia Centre for Disease Control
A75291	British Columbia Centre for Disease Control
A45048	British Columbia Centre for Disease Control
A55035	British Columbia Centre for Disease Control
A85302	British Columbia Centre for Disease Control
A75302	British Columbia Centre for Disease Control
135132	British Columbia Centre for Disease Control
135057	British Columbia Centre for Disease Control
115394	British Columbia Centre for Disease Control
A9s005	British Columbia Centre for Disease Control
A5si30	British Columbia Centre for Disease Control
125438 r	British Columbia Centre for Disease Control
A75352	British Columbia Centre for Disease Control
A75044	British Columbia Centre for Disease Control
A8s276	British Columbia Centre for Disease Control
A75131	British Columbia Centre for Disease Control
A9s194	British Columbia Centre for Disease Control
145487	British Columbia Centre for Disease Control
A6s417	British Columbia Centre for Disease Control
125437r	British Columbia Centre for Disease Control
125185	British Columbia Centre for Disease Control
A6s286	British Columbia Centre for Disease Control
A85072	British Columbia Centre for Disease Control
A5s008	British Columbia Centre for Disease Control
A85327	British Columbia Centre for Disease Control
115172	British Columbia Centre for Disease Control
A75214	British Columbia Centre for Disease Control
A85304	British Columbia Centre for Disease Control
A85049	British Columbia Centre for Disease Control
A9s 100	British Columbia Centre for Disease Control
${ }^{115151}$	British Columbia Centre for Disease Control
A9s391	British Columbia Centre for Disease Control
A65031	British Columbia Centre for Disease Control
A88359	British Columbia Centre for Disease Control
115182	British Columbia Centre for Disease Control
A6s157	British Columbia Centre for Disease Control
A3s176	British Columbia Centre for Disease Control
A5s011	British Columbia Centre for Disease Control
A65015	British Columbia Centre for Disease Control
A55282	British Columbia Centre for Disease Control
A8s231	British Columbia Centre for Disease Control
115453	British Columbia Centre for Disease Control
A45023	British Columbia Centre for Disease Control
A65008	British Columbia Centre for Disease Control
145286	British Columbia Centre for Disease Control
A65169	British Columbia Centre for Disease Control
A7s125	British Columbia Centre for Disease Control
A8s226	British Columbia Centre for Disease Control
125263	British Columbia Centre for Disease Control
A75290	British Columbia Centre for Disease Control
A45083	British Columbia Centre for Disease Control
125310	British Columbia Centre for Disease Control
145128	British Columbia Centre for Disease Control
105438	British Columbia Centre for Disease Control
A8s317	British Columbia Centre for Disease Control
A6s346	British Columbia Centre for Disease Control
A75024	British Columbia Centre for Disease Control
A85208	British Columbia Centre for Disease Control
A8s130	British Columbia Centre for Disease Control
A6s256	British Columbia Centre for Disease Control
A95396	British Columbia Centre for Disease Control
115015	British Columbia Centre for Disease Control
A75202	British Columbia Centre for Disease Control
A9s224	British Columbia Centre for Disease Control
A75300 A75097	British Columbia Centre for Disease Control
A75097	British Columbia Centre for Disease Control
125091	British Columbia Centre for Disease Control
125092	British Columbia Centre for Disease Control
145365	British Columbia Centre for Disease Control
115324	British Columbia Centre for Disease Control
A75033	British Columbia Centre for Disease Control
A9s111	British Columbia Centre for Disease Control
135436	British Columbia Centre for Disease Control
A85328	British Columbia Centre for Disease Control
145517	British Columbia Centre for Disease Control
105227	British Columbia Centre for Disease Control
A9s116	British Columbia Centre for Disease Control
A55271	British Columbia Centre for Disease Control
A95049	British Columbia Centre for Disease Control
125277	British Columbia Centre for Disease Control
145253	British Columbia Centre for Disease Control
A75357	British Columbia Centre for Disease Control
A65018	British Columbia Centre for Disease Control
A9s047	British Columbia Centre for Disease Control
105011	British Columbia Centre for Disease Control
105425	British Columbia Centre for Disease Control
$\begin{aligned} & \text { A7s240 } \\ & 13 \mathrm{~s} 302 \end{aligned}$	British Columbia Centre for Disease Control British Columbia Centre for Disease Control

㟥

\sim
\square

5129	British Columbia Centre for Disease Control
138	British Columbia Centre for Disease Control
A5s007	British Columbia Centre for Disease Control
280	British Columbia Centre for Disease Control
A6s272	British Columbia Centre for Disease Control
5086	British Columbia Centre for Disease Control
A8s284	British Columbia Centre for Disease Control
105233	British Columbia Centre for Disease Control
105341	British Columbia Centre for Disease Control
115337	British Columbia Centre for Disease Control
105212	British Columbia Centre for Disease Control
105237	British Columbia Centre for Disease Control
A45076	British Columbia Centre for Disease Control
205	British Columbia Centre for Disease Control
A5s258	British Columbia Centre for Disease Control
A7s185	British Columbia Centre for Disease Control
A9s158	British Columbia Centre for Disease Control
105032	British Columbia Centre for Disease Control
145252	British Columbia Centre for Disease Control
A5s189	British Columbia Centre for Disease Control
A7s155	British Columbia Centre for Disease Control
105130	British Columbia Centre for Disease Control
A5s026	British Columbia Centre for Disease Control
A8s003	British Columbia Centre for Disease Control
115199	British Columbia Centre for Disease Control
115018	British Columbia Centre for Disease Control
105228	British Columbia Centre for Disease Control
115235	British Columbia Centre for Disease Control
135204	British Columbia Centre for Disease Control
A75340	British Columbia Centre for Disease Control
135207	British Columbia Centre for Disease Control
A45096	British Columbia Centre for Disease Control
115263	British Columbia Centre for Disease Control
A85020	British Columbia Centre for Disease Control
A9s233	British Columbia Centre for Disease Control
145207	British Columbia Centre for Disease Control
A8s005	British Columbia Centre for Disease Control
A8s278	British Columbia Centre for Disease Control
A8s300	British Columbia Centre for Disease Control
145298	British Columbia Centre for Disease Control
115179	British Columbia Centre for Disease Control
A8s115	British Columbia Centre for Disease Control
A5s241	British Columbia Centre for Disease Control
A9s135	British Columbia Centre for Disease Control
A5s147	British Columbia Centre for Disease Control
145351	British Columbia Centre for Disease Control
115374	British Columbia Centre for Disease Control
135243	British Columbia Centre for Disease Control
A95026	British Columbia Centre for Disease Control
125245	British Columbia Centre for Disease Control
A75053	British Columbia Centre for Disease Control
125456	British Columbia Centre for Disease Control
145205	British Columbia Centre for Disease Control
341	British Columbia Centre for Disease Control
145239	British Columbia Centre for Disease Control
A9s152	British Columbia Centre for Disease Control
A95054	British Columbia Centre for Disease Control
135155	British Columbia Centre for Disease Control
125213	British Columbia Centre for Disease Control
125429	British Columbia Centre for Disease Control
135360	British Columbia Centre for Disease Control
125083	British Columbia Centre for Disease Control
145241	British Columbia Centre for Disease Control
14s066r	British Columbia Centre for Disease Control
A8s312	British Columbia Centre for Disease Control
115198	British Columbia Centre for Disease Control
A75329	British Columbia Centre for Disease Control
145305	British Columbia Centre for Disease Control
145515	British Columbia Centre for Disease Control
A8s177	British Columbia Centre for Disease Control
A9s372	British Columbia Centre for Disease Control
A6s150	British Columbia Centre for Disease Control
A35009	British Columbia Centre for Disease Control
145273	British Columbia Centre for Disease Control
A65288	British Columbia Centre for Disease Control
A95336	British Columbia Centre for Disease Control
A75189	British Columbia Centre for Disease Control
A7s160	British Columbia Centre for Disease Control
105283	British Columbia Centre for Disease Control
A95143	British Columbia Centre for Disease Control
A65029	British Columbia Centre for Disease Control
${ }_{135007}$	British Columbia Centre for Disease Control
125290	British Columbia Centre for Disease Control
A9s169	British Columbia Centre for Disease Control
105222	British Columbia Centre for Disease Control
115135	British Columbia Centre for Disease Control
105308	British Columbia Centre for Disease Control
145064	British Columbia Centre for Disease Control
A9s299	British Columbia Centre for Disease Control
A75327	British Columbia Centre for Disease Control
A85071	British Columbia Centre for Disease Control
125321	British Columbia Centre for Disease Control
135500	British Columbia Centre for Disease Control
125417	British Columbia Centre for Disease Control
A5s230	British Columbia Centre for Disease Control
A75085	British Columbia Centre for Disease Control
105411	British Columbia Centre for Disease Control
A95349	British Columbia Centre for Disease Control
125176	British Columbia Centre for Disease Control
A75181	British Columbia Centre for Disease Control
145066	British Columbia Centre for Disease Control
115238	British Columbia Centre for Disease Control
115187	British Columbia Centre for Disease Control
115255	British Columbia Centre for Disease Control
A55299	British Columbia Centre for Disease Control
A9s269	British Columbia Centre for Disease Control
145204	British Columbia Centre for Disease Control
A45039	British Columbia Centre for Disease Control
105313	British Columbia Centre for Disease Control
A6s177	British Columbia Centre for Disease Control
A5s072	British Columbia Centre for Disease Control
A8s082	British Columbia Centre for Disease Control
A5s141	British Columbia Centre for Disease Control
115282	British Columbia Centre for Disease Control

British Columbia Centre for Disease Control British Columbia Centre for Disease Control
British Columbia Centre for Disease Control British Columbia Centre for Disease Control
British Columbia Centre for Disease Control British Columbia Centre for Disease Control
British Columbia Centre for Disease Control British Columbia Centre for Disease Control

EAI

PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA 413593
PRA13593 PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593
 PRJNA413593 PRNJNA4135993
PRJN PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593 PRJNA413593
PRJNA $_{113593}$ PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593

PRJNA413593
PRJNA413593

PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRINA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593
PRJNA13593 PRJNA4 ${ }^{2} 13593$
PRJNA $^{2} 1359_{3}$ PRNAA413593
PRJNA413593
PRINA413593 PRJNA413593 PRRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593 PRNNA413593
PRJNA413593 PRJNA413593 PRJNA413593 PRJNA413593 PRJNA413593采 PRJNA413593
PRJNA413593 PRJNA413593 PRJNA413593 PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593
 ${ }_{P R J N A} 4_{13593}$
 PRJNA $^{2} 113593$
PRJNA $_{13593}$ PRNAA413593
PRJNA413593
PRJNA413593 PRJNA413593
PRJNA413593
$\backsim \frac{2}{\infty}$
\qquad

$\backsim \infty$

125154 135380
105068 10s066 13s282 11 s 212
11 s 150 115150
125151 12ss51
A9s261 A5s108 A9s009 115346 A85024
A6s348 A6s401 A4s041
A8s366 A6s122
115047 115120
125309 A5s228 135345 115149
A8s027 A9s246
125146 125146
135371 115168
A7s013 A7s013
A8s182 125203 A8s198
135305 A5s001 A6s254
A9s 151 A6s273
A8s111 A9s149
14s165 14s165
A5s213 115006 135386 A45061 A8s255 A75036 A75056 A5s089
A4s022 10s267 A6s329
$12 s 142$ 125214
A9s131 A9ss131
A8s097 Ass097
As 148 13 s 218
11 s 356 1025012
125268 12s305 A6s082 10s103 A8s 314
12s44

A6s211
105364
103388
115388
115388
A65425 125388
105443 125169
A 65303^{3} A65159
A 53514 A8s A 1110 Abs259
A9s129 145169 145277 105322 A0s075 A 75303
$A 75017$ 14

British Columbia Centre for Disease Control British Columbia Centre for Disease Control
British Columbia Centre for Disease Control British Columbia Centre for Disease Control
British Columbia Centre for Disease Control British Columbia Centre for Disease Control
British Columbia Centre for Disease Control British Columbia Centre for Disease Control
British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control British Columbia Centre for Disease Control Bish Columbia Centre for Disease Control British Columbia Centre for Disease Control
British Columbia Centre for Disease Control Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 C Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China

 $n n$

1872	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
10＿1081	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
09．0784	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
12＿1050	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
－0643	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿1730	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
11＿0344	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
11＿1549	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
10＿0122	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
09＿0620	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
12＿1055	ng et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
09＿1994	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
10＿0806	Yang et．al．Lancet Infect Dis． 2017 Mar；173（3）：275－28
12＿1813	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
090817	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
12＿0219	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
10＿0621	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
09＿0994	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：
10＿0190	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
12＿1484	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
09＿1161	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
12＿0567	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$
09.0295	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Chir
12＿0358	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$
11＿1912	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
12＿0603	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－2840
09＿1303	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－2840
09＿1333	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
09＿1862	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－2280
11＿0144	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
12＿0043	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿0381	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
11＿2094	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
10＿0757	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$
10＿2132	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
10＿0539	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 C
10＿1563	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－2840
12＿0659	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿2065	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
12＿1614	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
10＿0768	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿2206	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 C
10＿0020	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿2303	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
09＿0511	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿0054	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
09＿1413	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿1180	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿2094	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
11＿1025	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
09＿1780	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
10＿2246	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
10＿1753	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
11＿0370	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275
10＿0560	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
12＿0696	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
11＿0209	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
10＿0614	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
09＿1687	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
11＿0227	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$
11＿0295	Yang et．al．Lancet Infect Dis． 2017 Mar ；17（3）：275－284 Ch
12－0569	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
12＿1655	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
10＿0876	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$
11＿2277	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
09＿1585	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$
11＿0644	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
11＿0870	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
09＿0294	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
12＿1198	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
11＿1430	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－28
09＿0007	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
09＿1011	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$
10＿1628	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284
11＿0431	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 C
10＿0592	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 C
12＿0701	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
12＿1810	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
10＿0360	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
09＿0645	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 C
10＿1232	Yang et．al．Lancet Infect Dis． 2017 Mar； 1773 （3）275－284 Ch
09－0682	Yang et．al．Lancet Infect Dis． 2017 Mar ；17（3）：275－284 Ch
10－1603	Yang et．al．Lancet Infect Dis． 2017 Mar； $177(3): 275-284 \mathrm{Ch}$
12＿2164	Yang et．al．Lancet Infect Dis． 2017 Mar； 1773 ）：275－284 Ch
10＿1781	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$ Chis
12＿0429	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
11＿0697	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$ Chis
09＿1121	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$ Chis
10＿0600	Yang et．al．Lancet Infect Dis． 2017 Mar； 1773 ）：275－284 Ch
10＿2232	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
09＿1924	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
10＿0297	Yang et．al．Lancet Infect Dis． 2017 Mar； 1773 ）：275－284 Ch
09＿1928	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
09＿0647	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
11＿0293	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Ch
09＿0116	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
10＿1770	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
11＿0867	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Chin
10＿1647	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
10－0183	Yang et．al．Lancet Infect Dis． 2017 Mar； 1773 （3）275－284 Ch
09＿0004	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
10－0208	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$ Chi
10＿1007	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
12－0779	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
09＿1098	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
09＿0783	Yang et．al．Lancet Infect Dis． 2017 Mar； 17 （3）：275－284 Chis
09＿1060	Yang et．al．Lancet Infect Dis． 2017 Mar； $17(3): 275-284$ Chi
12＿0242	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
09＿0956	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
09＿1543	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
12＿2121	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
09＿1578	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
12＿0715	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
11 －0426	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 China
$\begin{aligned} & 10 _2010 \\ & 09 _0799 \end{aligned}$	Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Chin Yang et．al．Lancet Infect Dis． 2017 Mar；17（3）：275－284 Chin

刀 $刀$

 IT＿mdr＿17－LB－IT18 T＿mdr＿IT131
 Italy

Germany

Haarlem lineage 4 lineage4
Beijing
Beijing
Beijing $\begin{array}{lll}\text { Germany } & \text { Beijing } & \text { ERR219978 } \\ \text { Germany } \\ \text { Beijing }\end{array}$ $\begin{array}{lll}\text { Germany } & \text { Beifing } & \text { ERR2199843 ER } \\ \text { Germany } \\ \text { Beijing } & \text { ERR1798638 }\end{array}$ Germany
Germany Germany $\begin{array}{ll}\text { Germany } & \text { lineage4 } \\ \text { Germany } & \text { lineage }\end{array}$ $\begin{array}{lll}\text { Germany } & \text { S－type } & \text { ERR2199986 } \\ \text { ERR2199916 }\end{array}$ Germany Haarlem ERR2199875 $\begin{array}{lll}\text { Germany } & \text { Beijing } & \text { ERR551693 ERR } \\ \text { Germany } & \text { Beijing } & \text { ERR551927 ERR }\end{array}$ Germany Haarlem Germany Tur ERR2199913 $\begin{array}{lll}\text { Germany } & \text { Beijing } & \text { ERR552689 ER } \\ \text { Germany } & \text { Beijing } & \text { ERR2199835 }\end{array}$ $\begin{array}{ll}\text { Germany } & \text { Beijing } \\ \text { Germany } & \text { Beijing } \\ \text { Germany } & \text { Delhi }\end{array}$ Germany
Germany Germany
Germany Germany lineage4 ERRS51977 $^{\text {ERR }}$ ERR2199770 ERR2200121 ERR2199909
ERR2199852 ERR2199784 ERR2199795

 Germany
Germany Germany Germany
Germany
Germany $\begin{array}{ll}\text { Germany } & \text { M．bovis } \\ \text { Germany } & \text { Haarlem }\end{array}$ ERR2200055

ERR2199957 ERR2199957 ERR22000 ${ }_{16}$ | ERR2200131 |
| :--- |
| ERR2199802 | ERR2200072 ERR498296 ERR

ERR553214 ERR $\begin{array}{lll}\text { Germany } & \text { LAM } & \text { ERR553214 ER } \\ \text { Germany } & \text { lineage4 } & \text { ERR2199754 } \\ \text { Germany } & \text { Haarlem } & \text { ERR2199983 }\end{array}$ $\begin{array}{lll}\text { Germany } & \text { Haarlem } & \text { ERR2199983 } \\ \text { Germany } & \text { lineage4 } & \text { ERR2199878 } \\ \text { Germany } & \text { lineage4 } & \text { ERR2200083 ER }\end{array}$ Germany lineage4 ERR2200003 Germany lineage 4 ER ERR2200146 ER Germany Germany Germany Germany LAM $\begin{array}{ll}\text { Germany } & \text { Beijing } \\ \text { Germany } & \text { Haarlem }\end{array}$ Germany lineage 4 Germany Germany Germany
Germany Germany
 ERR2199961 ERR2199772
ERR498383 ERR ERR2199858 ERR2200091
ERR2199809 ERR2199853 ER ERR2199792 ERR2199752 ER
ERR2199866 ER ERR2199799
ERR2199848
ERR2200133 ERR2200133 ERR2200107 ERR2199789
ERR2200053 ERR498293 ERR ERR2200097 ERR2200114 ERR2199889
ERR2199744 ERR2199744 ERR2199828 ERR2199742 ERR2200057
ERR2199836 ER ERR551122 ERR
ERR552283 ERR ERR552283 ERR
ERR2200125 ERR2199808 ERR2199808
ERR2200126 ERR2200126
ERR2199919 ERR2199824 ER ERR2199818 ERR2200134
ERR550927 ERR550927
ERR2199897 ERR2199894 ERR551400 ERR
ERR2200071 ERR2199980
ER2199855 ER ERR2199810 ERR2199907 ER Germany Germany
근 글
豆豆
总旁
> $\backsim \pi \backsim \backsim$ $n \backsim$
n
n

$\backsim \backsim \backsim$

いいc
\square
$\backsim \backsim \backsim$

いいいい
號
\square
いいいい
ひひいいいい

Netherlands
Pakistan
Pakistan
Pakistan
Pakistan
Pakistan
Netherlands EAI
Netherland LAM
Netherlands Haarlem
Netherlands LAM
Netherlands Haarlem
Netherlands LAM
Netherlands lineage4
Netherlands LAM
Netherlands lineage
Netherlands LAM
Netherlands Haarlem
Netherlands Haarlem
Netherlands West Africar
Netherlands Beiijg
Netherlands Beijing
Netherlands Delhi
Netherlands Delhi
Netherlands lineage4
Netherlands LAM
Netherlands LAM
Netherlands lineage4
Netherlands Haarlem
Netherlands Delhi
Netherlands Delhi
Netherlands Haarlem
Netherlands lineage 4
Netherlands lineage 4
Netherlands Delhi
Netherlands BCG
Netherlands lineage4
Netherlands Beiiing
Netherlands Beijing
Netherlands lineage
Netherlands Haarlem
Netherlands Delhi
Netherlands Delhi
Netherlands lineage
Netherlands lineage
Netherlands lineage
Netherlands Delhi
Netherlands Delhi
Netherlands Delhi
Netherlands Haarlem
Netherlands Haarlem
Netherlands Haarlem
Netherlands LAM
Netherlands Haarlem
Netherlands Delhi
Netherlands Delh
Netherlands EAI
Netherlands Cameroon
Netherlands Cameroon
Netherlands M．bovis
Netherlands Haarlem
Netherlands Haarlem
Netherlands Delhi
Netherlands Delhi
Netherlands Tur
Netherlands LAM
Netherlands lineage4
Netherlands lineage
Netherlands Beijing
Netherlands S－type
Netherlands S－type
Netherlands lineage4
Netherlands Beijing
Netherlands LAM
Netherlands Beijing
Netherlands Delhi
Pakistan
$\begin{array}{ll}\text { Nethertand } & \text { Delhi } \\ \text { Pakistan } & \text { Dell } \\ \text { Delhi }\end{array}$
$\begin{array}{ll}\text { Pakistan } & \text { Del } \\ \text { Pakistan } & \text { Del }\end{array}$
Pak
Pak
Pak
Pak
Pak

Pak
Pak
Pak
Pa
Pa
Pa

02-R0272 03-R0110 2-R0971 00-R1405 02-09928
02-R0286 O2-R0286
02-R0890 01-R0239 02-R114 02-R0407 99-R1083 03-R0979 02-R0360 01-R0244 03-R0821 03-R0908 02-R1871 02-R1793 02-R1479
03 -R0221 02-R1709 00-R0435 02-10028 02-10028 03-R0324
02 -R1106 02-R1106
03-R0736 03-R0736
03-R0058
$01-$ R0697 03-R0058
01-R0697
01-R0903 01-R0903
01-R0737 0-R0312 $02-R 0312$
$02-R 0417$ 00-R0025 02-R172 02-R0241 99-R890 00-R1156
$02-$ R1742 02 -R1742 02-R1952 03-R1338 03-R1337
01-R1559 02-R0191 02-10098 02-R1942 02-R1945 02-R1854
$02-$ R1728 $02-$ R1728
$02-R 1137$ 02-R1137
02-R1641
04-R0273 02-R1641
04-R0273
01-R0276 01-R0276
02-R1260
00-R0453 00-R0453 22-R210793 99-R887 01-R0647 01-R124 02-R0861 O2-R1286
02-R1753
02-R153 02-R1753 00-R0178 $00-\mathrm{R} 1549$
$03-10150$ 02-R1543 01-R1341 92-R141 99-R141 02-R1825 01-R1540
02-R0328 02-R0328
03-R1404
02-R1527 O2-R1527
9 9-R855 03-R1373 02 -R1444
01-R0902 03-R10902 01-R0290 03-10019 02-R1941 14893_2_49
14722 _6_94
14892 _2_31 14893_2_1 14892 _2_41
14892 2_57 14893_2_43 $14893-2-34$
15277 _3_50 15277_3_50
14722_6_33 14892 _2_33 14893 _2_61
14893_2_45
14892 _2_10 148922 _6_26
14893 _2_20
14893247 14893_2_47 14892_2_22 14893_2_9 14893_2_18 14893 _2_5
14893 _2_65 148933^{2} _2_65
148932 2 36 14893 _2_-36
14892 _2_9 14892_2_9 $14892 _2 _36$
$14722 _6$

Peru via LSHTM, UK
Peru via LSHTM, UK
? ㄲ․ .

14892 _2_44
14893 2_5 14893_2_55
 $1472227-80$
$147227-29$ 14722 _7_2_14
$14893-28$ $148722 _6$ _ 84
$14893 _2 _10$ $14893-2 _21$
$14722 _$_6_13 14722_6_13
14893_2_50
15277 _3 52 15277_3_52 148932 2_23

$14722_{-6} 21$ | 14722 _6_21 |
| :--- |
| 14892 2_1 |
| 14722 _ | $14722-7-77$

14893257 14893 _2_57
$14722 _635$ 14893_2_60 14892_2_60 14722 _6_59
14722 648 14722 _6_48
14892 _2_59 14722_-7-62 14722 _6_49
14893 _2_62 14892_2_50 $14893 _2$ 2 54
14722 _7_74 $148922^{2}-42$
$148922^{2} 23$ 14892_2_58 14893_2_48 15277_3_57 14892_2_7 14722_6_19 15277_3_53
14722_6_64 148922_-61 14722_6_22 14893 _2_53
14893 _23
$14722-38$ 14722_7-88 14722 _6_40
$14722 _6 _86$ 14722 _7-61 $14892 _2-43$
$14722-641$
$14893-228$ 14892_2_39 14893_2_6 $14822-6.27$
$14893-27$ $14893 _2$ _ 51
14892 2_37
14892 _ 51 14892 _2_51
148932 2_56
14722753 14722_7_53
$148922^{2}-2$ 14722_7-81 14722_6_66 14893__2_52 14722_6_38 14892 _2_29
14893 _2_41
14722 _6_36 $148923-246$
$14722 _6 _71$ 14722 -6_70 14893_2_24 14722_6_54 0528A

Beijing
Haarlem Haarlem
Haarlem Haarlem
LAM LAM
Haarlem

 LAM
lineag
LAM LAM
LAM lineage 4
LAM
Haarlem Haarlem
LAM lineage4
Haarlem Haarlem
LAM
Haarlem Haarlem
lineage4
lineage
LAM
lineage
lineage4
lineage4
M. caprae
M. caprae
lineage 4
lineage 4
Beijing
Beijing
S-type
S-type
LAM
LAM
LAM
Beijing
LAM
LAM
LAM
LAM
LAM
LAM
LAM
Haarlen
Beijing
Haarlem
Beijing
LAM
LAM
LAM
LAM
lineage
lineage
LAM
lineage
lineage 4
M. caprae
M. capr
LAM
Haarlem

Haarlem
Haarlem
Haarle
LAM
LAM

X-type
Haarlem
LaM
Beijing
Beijin
LAM
LAM
Haarlem
Beijing
Haarlem
Beijing
Haarlem
x-type
X-type
LAM
LAM
$\sum_{S} \sum_{S} \sum_{S}$
lineage4
Beijing
Haarlem
Beijing
Haarlem
lineage4
lineag
LAM
lineag
LAM
LAM
LAM
LAM
lineage
LAM
lineage4
LAM
Haarlem
Haarlem
Beijing
LAM
LAM
lineage4
Beijing
Beijing
LAM
LAM
Haarlem ERR133
Beijing ERR229935
Beijing
Beijing
Ural
Beijing
Beijing
Beijing
Beijing
Beijing
Beijing
Beijing
lineage4
lineage4
Haarlem
Beijing
Beijing
Beijing
Beijing
Beijing
Beijing
Beijing
Beijing
Ural
Beijing
Beijing
Beijing
Beijing
Beijing
Beijing
Beiling
LAM
Beijing
Ural
Ural
Haarlem
Haarlem
Ural
Unal
lineage4
Beijing
ERR06768

き き
πn
$o n$

Casali et. al. Nat Genet. 2014 Mar;;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;;46(3):279-86
Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86
Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet 2014 Mar:46(3);279-8 Casali et al. Nat Genet 2014 Mar:46(3):279-86 Casali et Nat Genet 2014 Mar, $1(3) 279$ Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et al Nat Genet 2014 Mar 46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar,46(3).279-86 Casali et. al. Nat Genet 2014 Mar, $46(3) \cdot 279-8$ Casali et. al. Nat Genet 2014 Mar;46(3) 279 Casali et. al. Nat Genet. 2014 Mar-46(3):279-8 Casali et al Nat Genet 2014 Mar:46(3):279-8 Casali et al. Nat Genet 2014 Mar -46(3):279-86 Casali et. al. Nat Genet. 2014 Mar ;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar, $46(3) \cdot 279-8$ Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et al Nat Genet 2014 Mar;46(3):279-8 Casali et. al. Nat Genet 2014 Mar:46(3):279-86 Casali et. al. Nat Genet. 2014 Mar:46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casall et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et al. Nat Genet 2014 Mar;46(3):279-8 Casali et al. Nat Genet 2014 Mar;46(3) 279 Casali et. Nat Genet. 2014 Ma; 4 (3) 272 278 Casali et. al. Nat Genet 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3) :279-86 Casali et al Nat Genet 2014 Mar:46(3) $\cdot 279-86$ Casali et. al. Nat Genet. 2014 Mar-46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casall et. al. Nat Genet. 2014 Mar,46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar,46(3):279-8 Casali et. al. Nat Genet. 2014 Mar:46(3):279-86

Russia	Ural	ERR234
Russia	Beijing	ERR2299
Russia	Beijing	
Russia	lineage 4	ERR133
Russia	lineage 4	ERR10
Russia	Beijing	ERR234
Russia	Beijing	
Russia	Beijing	ERR13
Russia	Haarlem	ERRO6
Russia	Beijing	ERR13
Russia	Beijing	ERR2
Russia	Beijing	ERR13
Russia	Beijing	ERR13
Russia	Beijing	ERRO6
Russia	Haarlem	ERR22
Russia	Ural	ERR
Russia	Beijing	ERR
Russia	Beijing	ERR
Russia	Ural	
Russia	Beijing	ERRO6
Russia	Beijing	ERR14
Russia	LAM	ER
Russia	Beijing	ERR
Russia	Beijing	ERR2
Russia	LAM	ERR
Russia	Beijing	ERRO
Russia	Beijing	ERR1
Russia	Ural	ERR2
Russia	Beijing	ERR2
Russia	Haarlem	ERR
Russia	Haarlem	ERR
Russia	LAM	ER
Russia	Ural	ERR1
Russia	lineage 4	ERR
Russia	Beijing	ERR
Russia	Beijing	ERR
Russia	Beijing	ERR14
Russia	Haarlem	ERR23
Russia	Beijing	ER
Russia	Beijing	ER
Russia	lineage 4	ERR
Russia	LAM	ERR1
Russia	Beijing	ERR1
Russia	Beijing	ERRO6
Russia	lineage 4	ERR10
Russia	LAM	ERR2
Russia	Ural	ERR2
Russia	Beijing	ERR
Russia	Beijing	ERR1
Russia	Beijing	ERrob
Russia	Beijing	ERrob
Russia	Beijing	ER
Russia	Beijing	ERR13
Russia	Beijing	ERRO
Russia	Haarlem	ERR10
Russia	Beijing	ERR1
Russia	LAM	ERRO
Russia	lineage 4	ERR
Russia	Beijing	ERR
Russia	Beijing	ERR
Russia	lineage 4	ERR1
Russia	LAM	ERROG
Russia	Ural	ERRO
Russia	Haarlem	ERR1
Russia	Haarlem	ERRO
Russia	lineage 4	ERRO
Russia	Haarlem	ERR2
Russia	lineage 4	ERR13
Russia	Beijing	ERR23
Russia	lineage 4	ERR10
Russia	Beijing	ERR23
Russia	Beijing	ERR13
Russia	Beijing	ERR22
Russia	Beijing	-
Russia	Beijing	ERR15
Russia	Haarlem	ERR133
Russia	Beijing	ERR067
Russia	Beijing	ERR11
Russia	Haarlem	ERR22
Russia	Beijing	ERR158
Russia	Ural	ERR06
Russia	Beijing	ERR108
Russia	Beijing	ERR14
Russia	lineage 4	ERR23
Russia	Beijing	ERR2
Russia	LAM	ERR06
Russia	Beijing	ERR22
Russia	Beijing	ERR1339
Russia	Beijing	ERR22
Russia	Beijing	ERR133
Russia	Beijing	ERR234
Russia	Beijing	ERR11
Russia	Beijing	ERR13
Russia	lineage 4	ERRO6
Russia	Beijing	ERR1
Russia	Beijing	ERRO
Russia	Beijing	ERR2
Russia	LAM	ERR22
Russia	Beijing	ERR067
Russia	Beijing	ERR13
Russia	Beijing	ERR229
Russia	lineage 4	ERrob
Russia	Beijing	ERR13
Russia	Beijing	ERR1
Russia	Beijing	ERR23
Russia	Haarlem	ERrob
Russia	Beijing	ERR14459
Russia	Beijing	ERR227
Russia	Beijing	ERR06772
Russia	lineage 4	ERR23
Russia	Haarlem	ERR144
Russia	LAM	ERR22
Russia	Bejijing	ERR22
Russia Russia	lineage4 Beijing	ERR

会

[^0]

Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3)::279-86
Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3)::279-86
Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casall et. al. Nat Genet. 2014 Mar;46(3):279-86 Casall et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Ne Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet $2014 \mathrm{Mar}, 46$ (3):279-8 Casali et. al. Nat Genet 2014 M , 46 (3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et al Nat Genet $2014 \mathrm{Mar} 46(3): 279-86$ Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar; $46(3): 279-86$ Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8
Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. al. Nat Genet. 2014 Mar;46(3)::279-86 Casali et. al. Nat Genet. 2014 Mar;46(3)::279-86 Casali et. a. Na Genet. 2014 Mar;46(3):279-8 Casali et. Casali et. al. Nat Genet 2014 Mar,46(3) 279 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar:46(3):279-8 Casali et. al. Nat Genet. 2014 Mar:46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. $2014 \mathrm{Mar} \cdot 46$ (3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86
Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3)::279-86
Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet $2014 \mathrm{Mar} 46(3) \cdot 279-8$ Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar:46(3):279-8 Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casal et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar,46(3):279-8 Casal et. al. Nat Genet. 2014 Mar;46(3):279-86 Casall et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali t. N Genet. 2014 Mar,46(3):279-86 Casali t. a. Nat Genet. 2014 Mar,46(3):279-86 asali et. al. Nat Genet 2014 Mar 46 (3):279-86 Casali et. al Nat Genet 2014 Mar;46(3):279 Casali et al Nat Genet 2014 Mar:46(3):279-86 Casali et. al Nat Genet 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al Nat Genet. 2014 Mar 46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casall et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet 2014 Mar;46(3):279-279 Casali t. a. Ne Genet. 2014 Mar;46(3):279-8 Casali et al Nat Genet $2014 \mathrm{Mar} 46(3): 279-86$ Casali et. al. Nat Genet. 2014 Mar;46(3):279-86

Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86
Casali et．al．Nat Genet． 2014 Mar：46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86
Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet 2014 Mar；46（3）279－8 Casali et．al．Nat Genet 2014 Mar：46（3） 279 Casali et al．Nat Genet 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et al Nat Genet $2014 \mathrm{Mar} 46(3) \cdot 279-86$ Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar，46（3）：279－86 Casali et．al．Nat Genet 2014 Mar； $46(3) \cdot 279-8$ Casali et．al．Nat Genet 2014 Mar； $46(3)$ ）279 Casali et．al．Nat Genet 2014 Mar－46（3）：279－8 Casali et al Nat Genet 2014 Mar：46（3）：279－8 Casali et al．Nat Genet 2014 Mar －46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar －46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar，46（3）．279－86 Casali et．al．Nat Gent 2014 Mar；46（3）：279－8 Casali it Nat Genet 2014 Mar，46（3）279 8 Casali et al Nat Genet 2014 Mar：46（3）：279－8 Casali et．al．Nat Genet 2014 Mar：46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casalli et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－86 Casali et al．Nat Genet 2014 Mar；46（3） 279 Casali et al Nat Genet． 2014 Ma；46（3）：279－8 Casali et al Nat Genet 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）$\cdot 279-86$ Casali et．al．Nat Genet． 2014 Mar－46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casal et．al．Nat Genet． 2014 Mar，46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar，46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－8

Russia	Beijing	ERR22804
Russia	Beijing	ERR2
Russia	LAM	ERR22
Russia	Beijing	ERR2
Russia	Beijing	ERR10
Russia	Ural	ERR
Russia	Haarlem	ERR13
Russia	Beijing	ERR
Russia	Beijing	ERR06
Russia	Beijing	ERR1
Russia	LAM	ERR2
Russia	LAM	
Russia	Beijing	ERR10
Russia	Beijing	
Russia	Beijing	ERR14
Russia	lineage 4	ERR
Russia	Beijing	ERR13
Russia	lineag	
Russia	Ural	ERR23
Russia	Beijing	
Russia	Beijing	ERR234
ussia	Beijing	ERR
Russia	Beijing	ERR22
ussia	Haarlem	ERR2
Russia	Beijing	ERRO6
Russia	Haarle	ERR
Russia	Beijing	ERR13729
ssia	Delhi	
Russia	Beijing	ERR13
Ssia	Beijing	
Russia	Ural	ERR13
ssia	Beijing	
Russia	LAM	ERR13
Ssia	Beijing	
Russia	Beijing	ERR22
	Beijing	ERR
Russia	Beijing	ERR10
ssia	Beijing	ERR
Russia	Beijing	ERRO
ussia	Ural	ERR
Russia	Beijing	ERRO
Russia	Beijing	ERRO
Russia	S－type	ERR22
ssia	Ural	ERR
Russia	Beijing	ERR
Russia	lineage 4	ERR
Russia	Beijing	ERR
Russia	Beijing	ER
Russia	LAM	ERR1
Russia	Beijing	ERR
Russia	Beijing	ERR
Russia	Ural	ERR13
Russia	Beijing	ER
Russia	Beijing	ER
ussia	Ural	ERR
Russia	Beijing	ERR
Russia	Beijing	ER
Russia	LAM	ERR22
ussia	lineage 4	
ssia	Beijing	ERR
ssia	Beijing	ERR13
ssia	Beijing	ERR2
ssia	lineage 4	ERR2
ssia	Ural	ERro
ussia	Beijing	ERRO6
ussia	Beijing	ERR13
Russia	Beijing	ERR1
Russia	Beijing	ERR132
Russia	LAM	ERRO6
Russia	Beijing	ERR13
Russia	Beijing	ERR22
Russia	Beijing	ERR10
Russia	Beijing	ERR22
Russia	Beijing	ERR23
Russia	Beijing	ERR13
Russia	Beijing	ERR2
Russia	Haarlem	ERR2
Russia	Ural	ERR1
Russia	Ural	ERR1029
Russia	Beijing	ERR22
Russia	Beijing	ERR0672
Russia	Beijing	ERR067
Russia	Beijing	ERR2346
Russia	lineage 4	ERR229
Russia	Beijing	ERR1372
Russia	Ural	ERR14
Russia	LAM	ERR14
Russia	LAM	ERR10
Russia	Beijing	ERR228
Russia	Ural	ERR108
Russia	Beijing	ERR1445
Russia	lineage4	ERR1371
Russia	Beijing	ERR1084
Russia	lineage4	ERR1339
Russia	LAM	ERR133
Russia	Beijing	ERR067
Russia	lineage4	ERR1338
Russia	Beijing	ERR14
Russia	Beijing	ERR13
Russia	Beijing	ERR1
Russia	Beijing	ERR1
Russia	Beijing	ERR1
Russia	Beijing	ERR22
Russia	Ural	ERR22
Russia	Ural	ERR13
Russia	Beijing	ERR228
Russia	Beijing	ERR13723
Russia	Beijing	ERR234
Russia	lineage 4	ERR06
Russia	Haarlem	ERR229
Russia	Beijing	ERR0677
Russia	Beijing	ERR067
Russia	LAM	ERR13
Russia	Beijing	ERR14
Russia	Beijing	ERR13

忍

か

Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86
Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet 2014 Mar;46(3)279-8 Casali et. al. Nat Genet 2014 Mar;46(3)279-8 Casali et al. Nat Genet $2014 \mathrm{Mar} 46(3) \cdot 279-8$ Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et al Nat Genet 2014 Mar 46 (3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar,46(3):279-86 Casali et. al. Nat Genet 2014 Mar; $46(3) \cdot 279-8$ Casali et. al. Nat Genet 2014 Mar; $46(3)$)279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et al Nat Genet 2014 Mar:46(3):279-8 Casali et al. Nat Genet 2014 Mar-46(3):279-86 Casali et. al. Nat Genet. 2014 Mar -46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar,46(3).279-86 Casali et al. Nat Genet 2014 Mar; 46 (3) 279 - 8 Casali et Nat Genet 2014 Mar:46(3):279-8 Casali et. al. Nat Genet 2014 Mar:46(3):279-8 Casali et. al. Nat Genet. 2014 Mar -46(3) $\cdot 279-86$ Casali et al. Nat Genet 2014 Mar -46(3):279-86 Casali et. al. Nat Genet. 2014 Mar -46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar,46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casal et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casall et. al. Nat Genet. 2014 Mar,46(3):279-86 Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et al. Nat Genet $2014 \mathrm{Mar} 46(3) \cdot 279-8$ Casali et al. Nat Genet 2014 Ma; 4 (3) 279 Casali et. al. Nat Genet 2014 Mar:46(3):279-86 Casali et al Nat Genet. $2014 \mathrm{Mar} \cdot 46(3) \cdot 279-86$ Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et. al. Nat Genet. 2014 Mar -46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar,46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar,46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86

Russia	Beijing	ERR06758
Russia	Beijing	ERR22992
Russia	lineage4	ERR108
Russia	Beijing	ERR10
Russia	Beijing	ERR14
Russia	Beijing	ERR13
Russia	Beijing	ERR06
Russia	Ural	ERR2
Russia	Beijing	ERR2
Russia	Ural	ERR1
Russia	Beijing	ERR2
Russia	Beijing	ERR1
Russia	Ural	ERR1
Russia	Beijing	ERR22
Russia	Beijing	ERRO6
Russia	Beijing	ERR1
Russia	Haarlem	ERR1372
Russia	Beijing	ERR1
Russia	Beijing	ERR1
Russia	lineage4	ERR
Russia	LAM	ERR23
Russia	Beijing	ERR
Russia	Beijing	ERR1
Russia	Beijing	ERR2
Russia	Beijing	ERR13
Russia	Beijing	ERR1
Russia	Beijing	ERR234
ssia	lineage4	ERR2
Russia	Beijing	ERR1085
ssia	Haarlem	ERR
Russia	lineage 4	ERR06772
ussia	Beijing	ERR
Russia	Beijing	ERR13
ussia	Beijing	ERR
Russia	Beijing	ERR13
asia	Beijing	
Russia	LAM	ERR13
	lineage 4	ERR2
Russia	Beijing	ERR
ssia	Haarlem	ERR2
Russia	Beijing	ERR
Russia	lineage 4	
Russia	Beijing	ERR
Russia	LAM	ERR13
Russia	Beijing	ERROG
Russia	Beijing	ERR2
Russia	lineage 4	ERR2
Russia	Beijing	ERR
Russia	Beijing	ERR13
Russia	lineage 4	ERR
Russia	Beijing	ER
Russia	Beijing	ERR
Russia	Beijing	ER
Russia	LAM	ERR
Russia	Beijing	ER
Russia	Ural	ERR
Russia	Beijing	ERR108
ssia	LAM	ERR2
ussia	lineage 4	ER
ssia	Beijing	ERRO
ussia	Beijing	ERR228
Russia	Beijing	
Russia		ERR132
Russia	Beijing	ERR1
Russia	Haarlem	ER
Russia	Beijing	ERR132
Russia	Beijing	ERR2
Russia	lineage 4	ERR06
Russia	Beijing	ERR10
Russia	Haarlem	ERR06
Russia	lineage4	ERR13
Russia	Ural	ERR13
Russia	Ural	ERRO6
Russia	Beijing	ERR1
Russia	Beijing	ERR2
Russia	Beijing	ERR
Russia	Beijing	ERro
Russia	Beijing	ERR13
Russia	Beijing	ERR13
Russia	lineage4	ERR22
Russia	Ural	ERR13
Russia	Beijing	ERR0677
Russia	LAM	ERR1372
Russia	Ural	ERR13396
Russia	Beijing	ERR1586
Russia	Beijing	ERR1372
Russia	LAM	ERR108
Russia	Beijing	ERR
Russia	Beijing	ERR
Russia	Beijing	ERR
Russia	Beijing	ERR1
Russia	Haarlem	ERR2
Russia	Beijing	ERR2
Russia	Beijing	ERR13
Russia	lineage4	ERRO6
Russia	Beijing	ERR22
Russia	Beijing	ERR14
Russia	Ural	ERR2
Russia	Beijing	ERR13
Russia	Haarlem	ERR2
Russia	Beijing	ERR13
Russia	Beijing	ERR22
Russia	Beijing	ERR0677
Russia	Beijing	ERrob
Russia	Beijing	ERrob
Russia	Beijing	ERR1
Russia	Beijing	ERR13
Russia	Beijing	ERR
Russia	Ural	ERR1
Russia	Ural	ERR2
Russia	Beijing	ERR1
Russia	Beijing Beiing	

忍
恸 Beijing
Beijing ERR067587 ERR229921
ERR108460 ERR108460
ERR108452 ERR144571 ERR067590 ERR23462 ERR234646 ERR13398 ERR229939 ERR133970 ERR137256 ERR133907 234687 R137277 RR133831 RR234637 228057 RR067697 RR108493
RR133899
RR234574 R06763 ERR137258 RR108488 ERR117470 RR158569 R23455 234608 R133856
R234619 R229937 RRO67711 R229973 R10842 ERR22998 RR108442
RR067718 ERRR228062
ERR137246
ERR137271 RR137271 R133883 229964 ERR10843 ERR133909 R133823 RR144573
ERR234573 RR144594 RR133806
RR133896
R228063 RR133834 ERR137209 ERR158616 ERR10844 RR10844 R144566 229975 ERR067640 ERR144626 ERR228058 RR137278 RR06774
RR067692 ERR067578 ERR133886 ERR229961 ERR133858
ERR229986 ERR067713

Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86
 Casali et．al．Nat Genet． 2014 Mar；46（3）：：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86
Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86
Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；；46（3）：279－86
Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86
Casali et．al．Nat Genet 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；；46（3）：279－86
Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－86 Casali et al Nat Genet $2014 \mathrm{Mar} \cdot 46$（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar，46（3）：279－86 Casali et．al．Nat Genet 2014 Mar；46（3）279－8 Casali et．al．Nat Genet 2014 Mar；46（3）279 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar 46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet 2014 Mar；46（3） 279 Casali et．al．Nat Genet 2014 Mar；46（3）279－8 Casali et al Nat Genet 2014 Mar； 4 （3）：279－8 Casali et al Nat Genet 2014 Mar：46（3）：279－8 Casali et al Nat Genet 2014 Mar；46（3）：279－86 Casali et al．Nat Genet 2014 Mar －46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar 46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar，46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casall et．al．Nat Genet． 2014 Mar，46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－86 Casali et al．Nat Genet $2014 \mathrm{Mar} 46(3) \cdot 279-8$ Casali et al Nat Genet 2014 Ma；46（3）：279－86 Casali et al Nat Genet 2014 Mar；46（3）：279－86 Casali et al．Nat Genet 2014 Mar 46（3）：279－86 Casali et．al．Nat Genet， 2014 Mar －46（3）$\cdot 279-86$ Casali et．al．Nat Genet 2014 Mar －46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－8 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casall et．al．Nat Genet． 2014 Mar，46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar；46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar，46（3）：279－86 Casali et．al．Nat Genet． 2014 Mar：46（3）：279－86

Russia	Ural	ERR229988
Russia	Beijing	ERR133973
Russia	Beijing	ERR108513
Russia	Beijing	ERR228019
Russia	lineage 4	ERR133835
Russia	Beijing	ERR144567
Russia	Beijing	ERR144570
Russia	Ural	ERR229953
Russia	Ural	ERR067733
Russia	Lam	ERR133912
Russia	Ural	ERR133911
Russia	Beijing	ERR158589
Russia	Beijing	ERR229968
Russia	Beijing	ERR133946
Russia	Beijing	ERR067671
Russia	S－type	ERR228067
Russia	Haarlem	ERR108444
Russia	lineage 4	ERR067678
Russia	Beijing	ERR067647
Russia	Beijing	ERR229966
Russia	lineage4	ERR144613
Russia	Ural	ERR137270
Russia	lineage 4	ERR234699
Russia	Ural	ERR144555
Russia	Beijing	ERR227981
Russia	Beijing	ERR108510
Russia	Haarlem	ERR133878
Russia	Ural	ERR229981
Russia	LAM	ERR158595
Russia	Beijing	ERR234668
Russia	Beijing	ERR228013
Russia	Beijing	ERR108492
Russia	LAM	ERR108451
Russia	Beijing	ERR067663
Russia	lineage 4	ERR133905
Russia	Beijing	ERR133951
Russia	Beijing	ERR158592
Russia	Beijing	ERR158570
Russia	Beijing	ERR158587
Russia	Ural	ERR067636
Russia	Beijing	ERR144619
Russia	Haarlem	ERR228008
Russia	Beijing	ERR144611
Russia	Beijing	ERR234581
Russia	Haarlem	ERR133822
Russia	Beijing	ERR144563
Russia	Ural	ERR067606
Russia	lineage 4	ERR228045
Russia	Beijing	ERR067600
Russia	Beijing	ERR067672
Russia	Beijing	ERR229923
Russia	Beijing	ERR228032
Russia	Ural	ERR108456
Russia	Beijing	ERR229994
Russia	Ural	ERR230002
Russia	Beijing	ERR158611
Russia	Haarlem	ERR108480
Russia	LAM	ERR067683
Russia	Beijing	ERR108495
Russia	Beijing	ERR234657
Russia	Beijing	ERR234589
Russia	LAM	ERR228031
Russia	Haarlem	ERR228053
Russia	Beijing	ERR06774
Russia	Beijing	ERR067604
Russia	LAM	ERR133872
Russia	Beijing	ERR144595
Russia	Beijing	ERR108433
Russia	Beijing	ERR234640
Russia	Ural	ERR067609
Russia	Beijing	ERR133914
Russia	Beijing	ERR108455
Russia	Beijing	ERR234565
Russia	LAM	ERR067727
Russia	LAM	ERR067664
Russia	Beijing	ERR108421
Russia	Beijing	ERR067581
Russia	Beijing	ERR133891
Russia	lineage 4	ERR133803
Russia	Ural	ERR144605
Russia	Beijing	ERR227979
Russia	Ural	ERR228001
Russia	Beijing	ERR228046
Russia	Ural	ERR133952
Russia	Beijing	ERR108490
Russia	Beijing	ERR137254
Russia	lineage 4	ERR133881
Russia	Beijing	ERR117464
Russia	LAM	ERR133977
Russia	Beijing	ERR108502
Russia	Beijing	ERR137221
Russia	Beijing	ERR229946
Russia	Haarlem	ERR137266
Russia	LAM	ERR144627
Russia	Beijing	ERR158590
Russia	Beijing	ERR234617
Russia	Haarlem	ERR234631
Russia	Beijijg	ERR228004
Russia	Beijing	ERR067610
Russia	Beijing	ERR067704
Russia	Beijing	ERR133814
Russia	Beijing	ERR067576
Russia	Beijing	ERR228012
Russia	Beijing	ERR234569
Russia	Beijing	ERR133982
Russia	Beijing	ERR234623
Russia	Beijing	ERR234593
Russia	Beijing	ERR228002
Russia	Beijing	ERR234663
Russia	Beijing	ERR230010
Russia	Beijing	ERR133932
Russia	Beijing	ERR067637
Russia	LAM	ERR234689
Russia	Beijing	ERR133955
Russia	Beijing Beijing	ERR067696

 \square いつか刀二ひいいい 0

403-11

Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3)::279-86 Casali et. al. Ne Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Gentet 2014 Mar;46(3):279-8 Casali et. al. Nat Genet 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3)::279-8 Casali et. al. Nat Genet. 2014 Mar; $46(3) \cdot 279-86$ Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et al Nat Genet. $2014 \mathrm{Mar} \cdot 46$ (3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casal et. al. Nat Genet. 2014 Mar;46(3):279-86 Casall et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Na Genet. 2014 Mar;46(3):279-8 Casali et. Casali et. al. Nat Genet 2014 Mar,46(3) 279 Casali et. al. Nat Genet 2014 Mar 46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3)::279-86
Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. N Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3)::279-86 Casali et. al. Nat Genet. 2014 Mar:46(3):279-8 Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8
Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casal et. a. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali it Naret 2014 Mar;46(3):279-86 Casali et. Ne Get. 2014 Ma, $46(3): 279$ Casali et. al. Nat Genet 2014 Mar.46(3):279-8 Casali et al Nat Genet 2014 Mar ; $46(3) \cdot 2798$ Casali et al Nat Genet 2014 Mar:46(3):279-86 Casali et. al. Nat Genet 2014 Mar -46(3):279-86 Casali et. al. Nat Genet. 2014 Mar:46(3):279-86 Casali et. al Nat Genet. 2014 Mar:46(3):279-86 Casali et. al. Nat Genet. 2014 Mar 46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali et. al. Nat Genet. 2014 Mar;46(3):279-86 Casal et. al. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Casali. a. Nat Genet. 2014 Mar;46(3):279-86 Casali et. al. Nat Genet. 2014 Mar;46(3):279-8 Serbia

πn

Serbia	Haarlem	ERR2041771
Serbia	Beijing	ERR2200148
Serbia	Tur	ERR2041688
Serbia	Haarlem	ERR2041773
Serbia	Tur	ERR2041780
Serbia	Haarlem	ERR2041740 ER
Serbia	lineage 4	ERR2041696
Serbia	Tur	ERR2041734
Serbia	Tur	ERR2041686 ER
Serbia	Tur	ERR2041709
Serbia	Tur	ERR2041786
Serbia	Tur	ERR2041746
Serbia	S－type	ERR2041727
Serbia	Haarlem	ERR2041788
Serbia	Tur	ERR2041753
Serbia	Beijing	ERR2041783
Serbia	lineage 4	ERR2041782
Serbia	lineage4	ERR2041758
Serbia	Beijing	ERR2041744
Serbia	Beijing	ERR2041742
Serbia	Beijing	ERR2041705 ER
Serbia	lineage4	ERR2041794
Serbia	lineage4	ERR2041792 ER
Serbia	Tur	ERR2041683
Serbia	lineage4	ERR2041721
Serbia	Beijing	ERR2041760
Serbia	Haarlem	ERR2041767
Serbia	Tur	ERR2041689
Serbia	lineage4	ERR2041770
Serbia	Tur	ERR2041756
Serbia	Haarlem	ERR2041804
Serbia	Tur	ERR2041764
Serbia	lineage 4	ERR2041752
Serbia	Tur	ERR2041723
Serbia	Ural	ERR2041805
Serbia	Haarlem	ERR2041761
Serbia	Haarlem	ERR2041803
Serbia	S－type	ERR2200092
Serbia	lineage 4	ERR2041684
Serbia	lineage 4	ERR2041713 ER
Serbia	lineage 4	ERR2041732
Serbia	Haarlem	ERR2041733
Serbia	Beijing	ERR2041694 ER
Serbia	Tur	ERR2041766
Serbia	Tur	ERR2041777
Serbia	S－type	ERR2041775
Serbia	lineage 4	ERR2041707 ER
Serbia	Tur	ERR2041718
Serbia	Tur	ERR2041736
Serbia	Tur	ERR2041762
Serbia	Beijing	ERR2041685
Serbia	Haarlem	ERR2041776
Serbia	Haarlem	ERR2041757
Serbia	Tur	ERR2041795
Serbia	lineage 4	ERR2041730
Serbia	s－type	ERR2041747
Serbia	Haarlem	ERR2041719
Serbia	S－type	ERR2041774
Serbia	Tur	ERR2041739
Serbia	Tur	ERR2041789
Serbia	Tur	ERR2041729
Serbia	Beijing	ERR2041715 ER
Serbia	Tur	ERR2041749
Serbia	lineage 4	ERR2041701 ER
Serbia	Tur	ERR2041699 ER
Serbia	Tur	ERR2041737 ER
Serbia	Haarlem	ERR2041765
Serbia	S－type	ERR2041745
Serbia	lineage 4	ERR2041735
Serbia	Tur	ERR2199914
Serbia	Haarlem	ERR2041692 ER
Serbia	lineage 4	ERR2041769
Serbia	Beijing	ERR2041799 ER
Serbia	lineage 4	ERR2041710 ER
Serbia	Tur	ERR2041731
Serbia	Tur	ERR2041790 ER
Serbia	Beijing	ERR2041768
Serbia	Haarlem	ERR2041750
Serbia	Beijing	ERR2041772
Serbia	Beijing	ERR2041690 ER
Serbia	Tur	ERR2041759
Serbia	Tur	ERR2041797 ER
Serbia	Haarlem	ERR2041751
Serbia	Beijing	ERR2041787
Serbia	lineage 4	ERR2041801 ER
Serbia	Tur	ERR2041712
Serbia	Beijing	ERR2041703 ER
Serbia	Tur	ERR2041717
Serbia	S－type	ERR2200070
Serbia	Beijing	ERR2041720
Serbia	Beijing	ERR2041781
Serbia	Tur	ERR2041796
Serbia	Ural	ERR2041682
Serbia	Tur	ERR2200093
Serbia	lineage4	ERR2041722
Serbia	Tur	ERR2041698
Serbia	Tur	ERR2041754
Serbia	s－type	ERR2041784
Serbia	Tur	ERR2041763
Serbia	Beijing	ERR2041743
Serbia	Tur	ERR2041748
Serbia	Haarlem	ERR2041724
Serbia	Haarlem	ERR2041728
Serbia	lineage 4	ERR2041755
South Af	S－type	
South Af	Bejijng	
South Af	LAM	
South Af	Delhi	
South Af	Beijing	
South Af	Lam	
South Af	lam	
South Af	Beijing	
South Af	Beijing	
South Af South Af	$\begin{aligned} & \text { a S-type } \\ & \text { a EAI } \end{aligned}$	

$か \backsim \infty 刃 ぃ$ $刀 \subset$

TRL0112292＿S17 CE01514835＿S29
PK00709697＿S19 DH00744330＿S26 TRL0065060＿S29 BQ00030439＿S1 CE01632288＿S29 TG00622723＿S13 ED00890639＿S25 CG01628784＿S23 CE01835353＿S27 JG00244947＿S31 PK00561581＿S9 BTo0031974＿S 18 TRL0116598＿S7 CG01461742＿S26 KK00081902＿S20 DH00730366＿S3 CD00831328＿S31 BN00045759＿S27 DH00680834＿S14 DF006808334＿S14 TRL0084676＿S26 TRLOO84676＿S26 RF01298610＿S12 BE01109226＿S13 TRL0113054＿S22 BNO0045790＿S27 BF01344980＿S16
BNOOO45778＿S6 TRL0115821＿S8 TRL0117023＿S17 DH00540274＿S14 PF00076589＿S28 CE01896645＿S29 BT00030681＿S18 TRL0115398＿S12 DG00497215＿S8 FD00249184＿S14 RO0210395 S25 TRLO105195＿S13 TRL0105195＿S13
TRLOO40091＿S29 BQ000025088＿S25 BQ00025088＿S25 BK00078535＿S15 BE01194801＿S10
B0050484＿S7 CD00879967＿S14 TRLO114585＿S23
TRLOO83443＿S9 TRLO115921＿S9 DH00743574＿S5 BE01452991＿S29 TRLO113325＿S4 BF01304848＿S20 BK00085627＿S24 DH00593014＿S29 TRL0114239＿S21 EB00175368＿S6 ED00880062＿S20 TRL0083502＿S35 DG00589680＿S7 TRL0112979＿S20 CEO1521393＿S1 CE0152139075＿S1 CE018928572＿S2 FB00459103＿S16 GE00660292＿S5 E100656767＿S8 BT00031431＿S7 TRLO115159＿S15 RR00089488＿S21 DG00538620＿S17 JA00176841＿S1 BF01381823＿S11 D00248236＿S10 KF00065920＿S19 BT00030319＿S5 BH00962940＿S21 TRLO114134＿S8 PNOO175023 S13 PN00175023＿S13 BK00096329＿S23 RNOOO47410 S18 EB00168504＿S17 BF01076000＿S23 BF01076000＿S23
TRL0095895＿S18 TRLO113019＿S9 DD00550189＿S2 TRL0113198＿S2 PS00307966＿S11 PS00313772＿S12 PSOO326134＿S9 CE01894895＿S3 TRL0113616＿S14 TRL0081287＿S36 BD00615651＿S4 BF01457868＿S14 BNOOO41952＿S22

South Africa South Africa
South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Arrica South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa

South Africa Beijin South Africa Beijiin South Africa Beijing
South Africa lineage South Africa lineage
South Africa Beijing South Africa Beijing
South Africa lineage4 South Africa lineage South Africa Beijing
South Africa lineage South Africa Beijing
South Africa LAM South Africa LAM
South Africa Beijing South Africa Beijing South Africa LAM
South Africa EAI South Africa EAI
South Africa S－type South Africa X －type
South Africa LAM South Africa Haarlem
South Africa LAM South Africa LAM
South Africa Haarlem South Africa Haarle
South Africa Beijing South Africa Delhi South Africa lineage South Africa LAM South Africa lineage4
South Africa Beijing
South Africa Harlem South Africa Haarlem
South Africa Beijing South Africa EAI South Africa LAM South Africa Beijijng South Africa Beijing South Africa lineage
South Africa LAM South Africa LAM South Africa S －type
South Africa Beiiing South Africa Beijing
South Africa LAM South Africa LAM
South Africa LAM South Africa Beijing South Africa Delhi
South Africa lineage South Africa Dell
South Africa EAI South Africa lineage South Africa Haarlem South Africa lineage
South Africa S－type South Africa S－type South Africa S －ty
South Africa LAM South Africa Beijing
South Africa LAM South Africa Beijing South Africa Beijing
South Africa LAM South Africa S－type South Africa lineage4
South Africa Beijing South Africa Beijing South Africa Haarlem
South Africa lineage4 South Africa Haarlem South Africa S－type
South Africa LAM South Africa LAM South Africa Beijing South Africa Delhi South Africa LAM South Africa Beijing South Africa Beijing
South Africa lineage South Africa LAM
South Africa LAM South Africa LAM
South Africa LAM South Africa X－type South Africa LAM South Africa Haarlem South Africa Delhi South Africa Beijing
South Africa lineage4 South Africa X －type South Africa S－type
South Africa LAM South Africa LAM South Africa Haarlem
South Africa X－type South Africa Beijing South Africa lineage4 South Africa X－type South Africa Beijing South Africa Beijing
South Africa
S－type South Africa lineage South Africa lineage4 South Africa lineage South Africa S－type South Africa LAM South Africa Haarlem South Africa Beijing South Africa Beijing South Africa lineage4 South Africa Beijing South Africa Beijing South Africa Beijing South Africa Beijing South Africa lineage4
South Africa S－tyge South Africa LAM

 \square

いいいいいいい

DG00537228＿S9 BF01332263＿S25
BNOOO41405 S21 BN00041405＿S21 CEO1938363＿S31 CE01938363＿S31 BF01338219＿S2 R00093395＿S 17 BF01092541＿S25 CD00934516＿S20 El00603951＿S24 DG00676352＿S17 TRL0044786＿S19 JG00304736＿S2 TRLO115004＿S6 TRLO113493＿S10 TRL0116865＿S11 TRLOO91844＿S5 BTOOO31455＿S8 DH00686932＿S3 CG006643555＿S13 RD00095112＿S10 Eloo608897＿S32 BQ000025411＿S6 DG000654485＿S7 FD00222433＿S28 DH00695092＿S11 P100148593＿S32 TRLOO41018＿S17 CD00809239＿S32 BF01127258＿S30 CE01929749＿S11 BRO0096737＿S28 BD00574429＿S3 BF01457882＿S22 BF01491838＿S3 BNOOO40337＿S32 QF00450839＿S14 CG01570427＿S22 GH00373068 S23 BF01330892＿S26 BF01227089＿S16 TRL0038616＿S12 TRL0038616＿S12
TRL0113427＿S13 BF01353408＿S31 TRLO114845＿S3 BF01491999＿S23 FF01498045＿S22 CD00958113＿S26 CE01825547＿S19 BF01355993＿S32 CD00862479＿S16 TRL0073196＿S25 BQ000030105＿S31 DH00741625＿S10 BT00028734＿S4 D00927883＿S7 BT00033633＿S21
TRL0022765 S16 E01707414＿S3 TRL0088085＿S26 TRL0088085＿S26 GH00383070＿S2 EDOOO927899＿S1 BF01491881＿S14 BT01491881＿S14 TRL0113347＿S 12 PO00232748＿S14 вноо935270＿S22 CG01283125＿S32 BT00030782＿S26 DG00674781＿S19 DH00563988＿S26 BF01462180＿S24 TRLO115510＿S14 CH00382796＿S10 BF01165217＿S2 TRL0115399＿S7 KK00088622＿S21 TRL0115885＿S21 BK00092214＿S19 BF01182050＿S12 OIOO115044＿S8 BD00535343＿S TRL0115627＿S17 JG00407001＿S7 TRL0117027＿S18 TE01336541＿S20 ED00865824＿S23 TRL0116938＿S15 DG00574978＿S20 DH00748222＿S23 El00656774＿S9 BT00026108＿S4 PM00232791＿S2 GH00391555＿S28 TRL0115207＿S18 TRL0101901＿S6 TRL0113512＿S7
RB00104514 S10 PIOO170885＿S5

South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa

South Africa lineage South Africa LAM
South Africa LAM South Africa LAM
South Africa LAM South Africa LAM
South Africa LAM South Africa LAM
South Africa Beijing South Africa Beljing South Africa Beijing South Africa Beiting
South Africa S －type South Africa Beijing
South Africa LAM South Africa lineage4 South Africa Haarlem
South Africa S－type South Africa S －type
South Africa X－type South Africa X－typ
South Africa EAI South Africa Beijing
South Africa Beijing South Africa EAI South Africa Delhi South Africa Beijing South Africa Beljing
South Africa Beijing South Africa LAM South Africa Haarlem South Africa S－type
South Africa Delhi South Africa X－type South Africa X－type
South Africa Beijing
South Africa Haarlem South Africa S－type South Africa LAM
South Africa LAM South Africa Beijing
South Africa S－type South Africa S－type
South Africa Beijing South Africa Beijing South Africa Beijing
South Africa Beijing South Africa Haarlem
South Africa Haarlem South Africa Haarlem
South Africa Beijing South Africa X －type South Africa Beijing South Africa LAM South Africa LaM Beijing South Africa Beijing
South Africa Haarlem South Africa Haarlem South Africa LAM South Africa S－type
South Africa LAM South Africa Beijing South Africa X－type
South Africa Beijing South Africa S －type South Africa LAM South Africa X－type
South Africa LAM South Africa Beijing South Africa Beijing
South Africa X －type South Africa Beijing
South Africa Beijing South Africa Beijing South Africa Beiling
South Africa Haarlem South Africa Beijing South Africa Beijing
South Africa Beijing South Africa LAM South Africa LAM South Africa Beijing
South Africa S－type South Africa LAM South Africa X－type
South Africa Beiijing South Africa EAI South Africa X－type
South Africa LAM South Africa lineage4 South Africa Beijing
South Africa LAM South Africa X－typ South Africa LAM
South Africa Beijing South Africa lineage South Africa Beijing South Africa Beijing South Africa Beijing
South Africa LAM South Africa LAM South Africa Beijing South Africa Beijing South Africa S－type
South Africa Beijing South Africa Beijing South Africa Haarlem South Africa Beijing
South Africa South Africa X－type
South Africa lineage South Africa S－type South Africa lineage South Africa LAM South Africa EAI South Africa Haarlem
South Africa LAM South Africa X－type South Africa X－type South Africa EAI

CE01554674＿S11 TRLO113615＿S13 DHOOL99289＿S31 JG00423359＿S8 CE01607859＿S23 BF01457863＿S17 TRLOO38641＿S31 El00664009＿S15 ED00778346＿S30 TRL0112305＿S21 TRL0114478＿S1 TRL0090177＿S27 GH00318902＿S11 BE01203367＿S13 BTO0030402＿S31 ED00922760＿S24
FB00459122＿S20 CE01831847＿S28 EA00622581＿S5 TRL0074347＿S14
CD00719929 S23 TRL0116137 S16 BF01140560＿S19 CE011717296＿S22 PS00263922＿S4 PS00263922＿S4 EB00181559＿S10 H00698631＿S3 ко00054059＿S28 BQ00032365＿S10 PK00524261＿S29 BK00089243＿S26 TRL0115767＿S13 BF01298771＿S19 EB00198388＿S29 TRL0085876＿S27 TRL0111034＿S3 ED00926802＿S31 EF0022637922＿S30 EFOO237922＿S30 RLOO90962＿S8 KF01338209 S28 BR00085359＿S19 El00670575＿S16 EE01141175＿s8 BE01141175＿S8
CD00810261＿S27 KD000958940＿S13 TRL0115684＿S19 PK00537387＿S12 BE01210845＿S24 FD00214542＿S18 TRL0113640＿S43 TRL0115584＿S2 BN00046706＿S8 BNoOO34754＿S19 TRL0116131＿S3 TRL0071026＿S23 TRLO115152 S14 BR00093393 S5 ER000190563＿S32 EB00190563＿S32 TRLO113018＿S23 El00660934＿S19 EIOO660934＿S19 EF01303317＿S12 E100668681＿S5 DH00686929＿S26 BQ00025312＿S26 BQ00025777＿S9 CE01671817＿S27 DH00683997＿S6 CE01938197＿S27 JA00127310＿S1 CD00804167＿S25 ED00788365＿S22 BT00028429＿S12 TRLO113491＿S9 BQ000031148＿S31 BT00031968＿S17 OB00115404＿S32 CE01835349＿S28 BT00030879 S21 UHOO163533＿S8 BK00091788＿S23 F00065486＿S4 BF01140550＿S32
CH00427792＿s8 DG00561785＿S15 CD00741689＿S25 DH00742746＿S18 BK00092681＿S23 TRL0116379＿S22 DH00724524＿S23 BF01183602＿S13 CG01343657＿S3 CE01907646＿S23 CE01925232＿S11

South Africa South Africa
South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Arrica South Africa
South Africa South Africa
South Afric

South Africa LAM South Africa LAM
South Africa LA South Africa LAM
South Africa Beijing South Africa Beijing
South Africa lineage South Africa lifrea LAM South Africa LAM
South Africa Haarlem South Africa Beijing South Africa LAM South Africa Beljing
South Africa Haarlem
South Africa EAI South Africa EAI South Africa Haarlem
South Africa Beijing South Africa LAM South Africa Haarlem
South Africa Beijing South Africa Beiji
South Africa Delh South Africa S－type
South Africa Beijing South Africa Beijijng South Africa Haarlem
South Africa Beijing South Africa Beijing
South Africa Beijing South Africa LAM South Africa LAM South Africa LaM
South Africa Beijing
South Africa Beijing South Africa Beijing
South Africa Beijing South Africa Beijing lineage4 South Africa EAI South Africa X－type
South Africa X －type South Africa lineage4 South Africa Beijing
South Africa X －type South Africa Beijing South Africa Beijing
South Africa LAM South Africa LAM South Africa lineage4
South Africa Haarlem South Africa LAM South Africa LAM
South Africa LAM South Africa Beijing South Africa Beijing South Africa Beiling
South Africa LAM South Africa LAM South Africa LAM
South Africa S－type
South Africa LAM South Africa LAM
South Africa Haarlem South Africa Delhi South Africa LAM
South Africa LAM South Africa LAM
South Africa LAM South Africa lineage4
South Africa lineage4 South Africa S－type South Africa LAM South Africa Haarlem
South Africa Delhi South Africa LAM South Africa S －type
South Africa Beijing South Africa Beijing South Africa Beiling South Africa Beijing South Africa Haarlem South Africa S－type South Africa LAM South Africa S－type
South Africa X －type South Africa LAM South Africa Beijing South Africa S－type South Africa LAM South Africa Beijing
South Africa LAM South Africa Beijing South Africa S－type South Africa x－type
South Africa Beijing South Africa Delhi South Africa Haarlem
South Africa Beijing South Africa LAM South Africa Beijing
South Africa Beijing South Africa S－type South Africa LAM
South Africa LAM South Africa Beijing South Africa Beijing
South Africa Beijing
South Africa Beijing South Africa Beijing
South Africa lineage4 South Africa Beijing South Africa S－type South Africa Beijing South Africa Delhi South Africa M．bovis
South Africa LAM South Africa LAM South Africa Beijing South Africa Beijing South Africa Beijing South Africa lineage4
South Africa S－type South Africa Beijing South Africa S－type
South Africa Beijing

\qquad

BF01381806_S25	South Africa
00072668_S28	South Africa
00910298_S12	uth
0068006_S18	South Africa
0095668_S13	South
01462160_S23	South
0671944_S17	uth
BF01375035_S30	South
-0115518_S23	South Africa
BF01298605_S30	Sou
TRL0114976_55	South Africa
E100681448_S18	South Africa
BE01391328_S19	South Africa
FD00218610_S27	South Africa
-0115007_S10	South Africa
DH00720643_S16	South Africa
BT00030753_S10	Sout
TRL0037975_S12	
CG01442001_S4	Sou
01114045_S28	South Africa
Jc00272056_S3	South
TRL0113344_S3	South Africa
СH00423116_S13	South Africa
TRLL0997309_S23	
BH00962935_S12	South
BD00638311_S6	South Afric
вH00962938_S13	South
EF00224395_S27	South
CD00729150_S30	South
GH00378509_S15	South
0133088_S14	South
EF00237909_S14	South
0572527_S11	South
PS00308033_S27	South
00088315_S17	South Africa
BF01443928_S15	South
BK00089244_S27	South
BR00093737_S29	South
DG00633179_S12	South
DH00654552_S21	South
BK00092579_S3	South
PH00104960_S28	Sou
TRL0114647_S13	South
TRL0115824_S12	Sout
DG00577274_S21	South Africa
EF00248786_S5	Sou
E100657490_S10	South Africa
TRLOO90790_S26	Sout
TRLO115051_S20	South
TRLO115164_S16	South
BR00088842_S24	South Africa
CE01938379_S1	Sout
TH00083947_S19	South Africa
BD00678571_S1	Sou
BK00082889_S23	South Africa
BF01445536_S20	Sou
DG00603671_S24	Sout
TRLO114671_S15	Sout
BR00069990_S23	South Africa
TRL0113629_S18	South
01355969_S29	South Africa
00083986_S22	South
BF01492002_S17	South
0063385_S5	South A
El00649150_S31	South Africa
00222552_S26	South A
01780342_S22	South Africa
00031496_59	South
L0079859_S29	South Africa
CE01925225_S30	South
TRLO114500_S22	South Africa
PO00214147_S2	South
Jc00276287_S3	South Africa
TRL0114650_S1	South
DG00574983_S11	South Africa
L0114820_S18	South
CD00833444_S16	South Africa
BF01306090_S21	South
BF01330871_S25	South Africa
СН00420625_S32	South
ED00795304_S20	South Africa
PM00152727_S26	South
CE01938341_S25	South Africa
TRL0113519_S20	South
EN00017245_S19	South
BD00703465_S6	South Af
${ }^{\text {BFO01344988_S15 }}$	South A
DH00593002_S28	South A
TRLL091794_S8	South A
TRL0115183_S17	South
EF00227866_S23	South Africa
CD00962085_S15	South Africa
DH00752822_S27	South Afric
El00718954_S	South Africa
TRL0112980_S21	South Afric
BQ00025556_S7	South Africa
TRL0086437_S6	South Afric
TRL0116230_S6	South Africa
вНо0984850_58	South Africa
BQ00029615_S20	South Africa
TRL0074450_S32	South Africa
CG01334682_S2	South Afric
TRL0022086_S15	South Afric
ED00874424_S22	South Africa
TRL0115412_S22	South Afric
TRL0057671_S18	South Africa
uנ00125495_S24	South Africa
BT00026048_S12	South Afric
вк00092684_S23	South Af
CE01825534_S2	South Afric
BE01210097_S15	South Afric
DH00659004_S17	South Africa
TRL0085451_S24	South Africa
TRLO115652_S40	South Africa
JA00214410_S4	

BK00082371＿S21 TRL0114825＿S19 TRL0115400＿S 13 TRL0114583＿S12 BR00077729＿S24 EF00234899＿S31 TRL0115469＿S6 G00815045＿S6 TRL0115095＿S12 BK00078859＿S16 BF01506399＿S20 BK00082596＿S22 BF01375032＿S27 BNOOO34572＿S2 ND00124877＿S3 BE01369677＿S11 TT00031958＿S15 TRL0101440＿S5 CH00435709＿S12 RL0115487＿S9 NF00130189＿S31 TRLOO69553＿S22 BT00033626＿S19 TRL0113465＿S6 TRLO113465＿S6 EG01595930＿S6 GHOO377594＿S8 F00237066＿S21 EF00266177＿S19 CE01705388＿S30 TRLO023983＿S1 FB00478424＿S22 BR00088729＿S20 CD00793787＿S24 DA00230689＿S12 TRL0113326＿S2 BF01498044＿S30 BD00717578＿S19 BK00090322＿S27
TRL0113579 S16 TRL0113476＿S5 BT00031569 S11 TRL0115027＿S9 BF01430245＿S13 DH00713165＿S6 BNOOO34198＿S21 TRL0115418＿S17 H00571957＿S27 L00048658＿S9 ONOOO35801＿S6 CE01896637＿S15 TRLO117085＿S13 PE00291237＿S30 BE01454196＿S32 TRL0110907＿S30 DG00529724＿S18 CE01634476＿S1
CG01433802＿S32 K00092406＿S1 CE01825542＿S10 TRL0114836＿S8 El00661002＿S11 TRL0114666＿S11 KG00082202＿S6 BE01453084＿S18 BE01453084＿S18 RL0107371＿S31 QE00093878＿S13 TRL0115006＿S7 BQ00024961＿S9 QF00383820＿S1 BF01522217＿S16 BF01497981＿S12 CE01678834＿S30 C00061697＿S7 BF01175381＿S6 то0027013＿S3 BE01468444＿S32 EB000198607＿S8 CH00388401＿S12 TRLO113061＿S24 EB00160449 S28 B00160449＿S28 TRL0078924＿S15 PD00160471＿S10 FB00525549＿S16 ED00795230＿S19 F01475106＿S3 D00128975＿S5
D00868728＿S21 CE01476125＿S3 BF01310182＿S29 BF01099205＿S27 FD00221831＿S1 OS00120406＿S3 BQ00028721＿S5 BNO0045763＿S11 BF01445461＿S20 CE01400812＿S28

South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa
South Africa South Afric South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa

South Africa Beijing South Africa Haarlem South Africa Beijing South Africa Haarlem
South Africa Beijing South Africa Beijing
South Africa Beijing South Africa Beifing South Africa X －type
South Africa LAM South Africa Haarlem South Africa X－type
South Africa X －type South Africa X －type South Africa lineage
South Africa Beijing South Africa lineage4
South Africa Beijing South Africa Bejing
South Africa lineage South Africa Beijing
South Africa LAM South Africa Beijing South Africa Beijijng
South Africa LAM South Africa Beijing South Africa LAM South Africa lineage South Africa South Africa LAM South Africa X－type
South Africa LAM South Africa Beijing
South Africa LAM South Africa Beijing South Africa LAM
South Africa LAM South Africa LAM South Africa Haarlem
South Africa Haarlem South Africa Beijing South Africa S－type
South Africa Beijing South Africa lineage South Africa Tur South Africa lineage
South Africa Beijing South Africa LAM South Africa LAM South Africa LAM South Africa S－type South Africa S －type
South Africa Beijing South Africa LAM South Africa X－type
South Africa Beiiing South Africa Beijing
South Africa LAM South Africa EAI South Africa Beijing
South Africa S －type South Africa S－type South Africa Beijing
South Africa EAI South Africa EAI
South Africa LAM South Africa Beijing South Africa lineage4
South Africa lineage4 South Africa Beijing South Africa Beijing
South Africa Beijing South Africa Beijing
South Africa Beijing South Africa Beijing South Africa Beijing
South Africa LAM South Africa Beiii South Africa Beijing South Africa Beijing
South Africa X－type South Africa LAM South Africa LAM South Africa LAM South Africa Haarlem
South Africa lineage4 South Africa LAM South Africa X－type
South Africa Haarlem South Africa Beijing South Africa Beijing South Africa S－type
South Africa S－type South Africa S－type South Africa LAM
South Africa Beijing South Africa Beijing
South Africa LAM South Africa LAM South Africa Beijing South Africa LAM South Africa Beijing South Africa S －type South Africa Beijing South Africa LAM South Africa Beijing South Africa Beijing South Africa Delh South Africa Delh South Africa Haarlem South Africa lineage4 South Africa Beijin South Africa Delh South Africa Haarlem
South Africa lineage4 South Africa lineage South Africa Beijing South Africa Beijin
South Africa LAM

πn
刀ァ刀刀い

CD00789586＿S20 GHOO382137＿S24
COOO361136 S9 CH00361136＿S9
GH00353950 S29 GH00353950＿S29 BR00088636＿S3 BF01428659＿S30 TRL0115096＿S13 DA00307287＿S20 DA00304536＿S14 BE01478470＿S22 DH00649810＿S10 BT00026180＿S25 TRLO114774＿S16 BK00092078＿S32 TRL0115669＿S18 FD00247663＿S28 BQ000027337＿S11
DH00618155＿S28 TRL0114962＿S4 BT00031791＿S14 DG00561814＿S22 DH00741562 S9 BF01421069 S15 CE01772649＿S13 CE01772649＿S13 BNOOOS4640＿S29 BD00703460＿S15 BF01330971＿S12 PL00097805＿S26 CH00387331＿S11 BK00081000＿S18 BD00678576＿S22 PO00209791＿S11 TRL0060765＿S13 DH00634083＿S30 PS00217691＿S10 TRL0115383＿S15
BT00029097 S19 DH00680833＿S20 BF01202447＿S12 TRL0114616＿S24
GH00363341＿S30 H00341127 58 TRLO114833＿S12 QE00098167＿S8 CHOOOM20650＿S30 JG00406968＿S6 BN000037979＿S5 RLO115868＿S7 TRL0103669＿S13 BF01355975＿S30 BQ00030933＿S4 TRL0116109＿S14 BH00794082＿S26 BT00033627＿S20 BR00096736＿S27 TRL0065056＿S25 E100666607＿S29 BQ00027771＿S12 DA00306193＿S14 FF01274561＿S17 BD00629308＿S32 TRL0066006 S26 DH00605289＿S27 BF01355978＿S31 BF01355978＿S231 BNOOO45767＿S7 GH00373073＿S9 BF01175378＿S5 RT00029901＿S26 DH00625221＿S26 GD0009732021＿SS DG00618197＿S25 TRL0112877＿S20 GHOO389342＿S1 CG01554911＿S5 BK00088728＿S25 GHOO350830＿S17 BF01483411＿S2 TRL0114792＿S4 TRL0114792＿S4 3H00824877＿S8 F00280850＿S29 TRL0113671 S18 CG01279230＿S31 CG01279230＿S31 TRLO116115＿S15 BK00093448＿S32 TRL0114658＿S14 BF01310203＿S13 BF01318054＿S23 TRLO115030＿S10 BE01207626＿S14 TRLO115633＿S3 BF01216702＿S16 GH00389343＿S18 DG00530312＿S20 BD00490075＿S5 TRL0116726＿S16 DH00634109＿S16 TRLO113098＿S23

South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa

South Africa S－type South Africa lineage
South Africa LAM South Africa LAM South Africa S－type South Africa Beiji
South Africa LAM South Africa S－type South Africa S－type
South Africa X －type
South Africa
S－type South Africa Beijijn South Africa Beijing
South Africa lineage South Africa lineage
South Africa Beiing South Africa X－type South Africa Beijing South Africa S－type
South Africa Beijing South Africa Beijing
South Africa lineage4
South Africa South Africa S－type South Africa Haarlem
South Africa Beijing South Africa S－type South Africa LAM South Africa lineage South Africa LAM South Africa Beijing South Africa Delhi
South Africa Haarle South Africa Haarle Beijing South Africa LAM South Africa X －type
South Africa LAM South Africa lineage4 South Africa Beijing
South Africa Beiijng South Africa Beijing
South Africa LAM South Africa Haarlem
South Africa S－type South Africa S－type
South Africa Beijing South Africa Beijing
South Africa LAM South Africa Beijing South Africa Haarlem
South Africa Beijing South Africa lineage
South Africa Beijing South Africa lineage South Africa LAM South Africa Beiling
South Africa X －type South Africa LAM South Africa X－type
South Africa Beijing South Africa X－type
South Africa Beiijing South Africa Beijing
South Africa Beijing South Africa LAM South Africa X－type
South Africa LAM South Africa EAI South Africa S－type
South Africa lineage4 South Africa X －type South Africa LAM South Africa Beijing South Africa Beijing
South Africa Beiiing South Africa Beijing
South Africa Beijing South Africa LAM South Africa X－type South Africa LAM South Africa Haarlem
South Africa LAM South Africa LAM
South Africa Beijing
South Africa LAM South Africa LAM
South Africa Haarlem South Africa S－type
South Africa Beijing South Africa Beiling
South Africa S －type South Africa lineage4
South Africa Beiiing South Africa Beijing South Africa LAM South Africa Beijing
South Africa LAM South Africa LAM South Africa LAM
South Afria South Africa LAM
South Africa S －type South Africa Beijing South Africa Beijing
South Africa X －type South Africa Beijing South Africa Beijing
South Africa lineage South Africa LAM South Africa LAM South Africa LAM
South Africa LAM South Africa LAM
South Africa LAM South Africa Beijing
South Africa lineage4 South Africa S－type South Africa LAM South Africa LAM South Africa Beijing
South Africa lineage4 South Africa lineage
South Africa LAM South Africa lineage4 South Africa lineage South Africa Beijing South Africa lineage
South Africa LAM South Africa LAM South Africa S－type

$\backsim n$
\square
いいいいいいいの

s
s
s
s
s
s

BD00703455＿S16 PE00190349＿S18
TRLOO56535＿S30 TRL0112827＿S19 BE01487154＿S24 BE01100694＿S7 BE01141152＿S9 E01371373＿S21 DG00611914＿S7 BNO0040586＿S18 BF01330879＿S10 RF00127752＿S27 TRL0109157＿S20 JG00224441＿S4 DH00625230＿S28
TRL0113005 S21 BH00794084＿S5 CE01538627＿S9 E100664567＿S21 BE01284388＿S18 BF01178152 S11 BF01178152＿S11 K000001135＿S5 PK00685617＿S23 TRLOLO513138＿S19 CG01388002＿S15 RL0115197＿S15 BR00093908＿S21 D00110569＿S17 PP00150885＿S15 TRL0116187＿S19 DG00593793＿S15 ED00958949＿S30 BR00072530＿S18 BR00079236＿S18 BH00815106＿S7
BT00028780＿S21 TRLO0028780＿S21 RL0083468＿S23 EF00273309＿S5 TRLOO285353＿S811 ED00957471＿S19 DH00649794＿S9 BF01506396＿S17 BF0131381848＿S13 TRL0116880＿S12 TRL0114479＿S10 D00212241＿S26 BR00093118＿S28 BF01386435＿S10 TRLO031160＿S6 TRLO114667＿S2 TRL0113095＿S10 BF01175387＿S7 BF01522222＿S19 EN00013592＿S25 TRL0108114＿S4 K00651442＿S30 TRLO114829 S6 BH00936808＿S8 TRLOO99205＿S15 BNOOO42248＿S28 BNOOO42228＿＿S28 BF01321448＿S14
TRLO113487 S15 BE01203293＿S12 TRL0115283＿S19 TRLO116593＿S24 BE01457107＿S22 TRLO114821＿S5 TRL0117008＿S16 TRL0115846＿S10 TRL0103300＿S15 BT00031965＿S16 BR00093905＿S11 TRL0115018＿S8
TRL0090417 S19 TRLOO23642＿S1 DG00518772＿S15 BF01236695＿S29 TRL0086755 S25 JA00225792＿S1 JA00225792＿S1 EB00188206＿S4 BF01330972＿S27 TRLO113496＿S6 BQ000026414＿S10 CD0093761＿S21 BF01407000＿S1 El00662151＿S13 TRL0115368＿S21 DH00742250＿S25 BF01199882＿S15 BF01481932＿S24 TRL0115039＿S11 BE01194858＿S11 CE01786354＿S3 DG00683532＿S26

South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa South Africa
South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa South Africa
South Africa

South Africa Beijing South Africa LAM
South Africa Haarlem South Africa Haarle
South Africa LAM South Africa LAM South Africa LAM
South Africa Beijing South Africa LAM South Africa Beijing South Africa Beijing
South Africa lineage South Africa Delhi South Africa Beijijng South Africa Beijing
South Africa LAM South Africa Beijing South Africa lineage
South Africa LAM South Africa LAM
South Africa S－type South Africa lineage4
South Africa S－type South Africa S－typ
South Africa LAM South Africa LAM South Africa S－type South Africa S－type South Africa LAM South Africa EAI South Africa EAl
South Africa Beijing
South Africa LAM South Africa LAM
South Africa Beijing South Africa S－type
South Africa lineage South Africa LAM South Africa lineage
South Africa LAM South Africa lineage4
South Africa Beijing South Africa Beijing
South Africa LAM South Africa Beijing South Africa EAI South Africa Haarlem
South Africa S－type South Africa lineage
South Africa LAM South Africa Beijing South Africa lineage4
South Africa Haarlem South Africa S－type South Africa LAM South Africa X－type South Africa EAI South Africa EAl
South Africa Beijing
South Africa LAM South Africa LAM
South Africa EAI South Africa X－type South Africa lineage South Africa Haarlem South Africa Haarlem
South Africa lineage4 South Africa Beijing South Africa S－type
South Africa S－type South Africa S－type
South Africa LAM South Africa LAM South Africa LAM
South Africa LAM South Africa Beijing South Africa Beijing South Africa Beijing South Africa LAM South Africa LAM
South Africa Beijing South Africa LAM South Africa Beijing South Africa Haarlem
South Africa Beijing South Africa Beijing
South Africa S－type South Africa LAM South Africa Haarlem
South Africa Beijing South Africa Beijing South Africa X－type South Africa Beijing South Africa LAM South Africa Haarlem
South Africa Beijing South Africa X－type South Africa LAM South Africa S－type South Africa X－type South Africa lineage South Africa LAM South Africa Beijin South Africa Beijing South Africa lineage South Africa X－type South Africa lineage South Africa LAM South Africa Beijing
South Africa Beiiing South Africa Beijing South Africa S－type South Africa X－type South Africa lineage
South Africa LAM South Africa LAM
South Africa Haarlem South Africa Beijing South Africa S－type South Africa lineage South Africa Delhi
 \square

Swaziland S －type
Swaziland $\begin{array}{ll}\text { Swaziland } & \text { LAM } \\ \text { Swaziland } & \text { Beijing } \\ \text { Swaziland } & \text { S－type } \\ \text { Swaziland } & \text { EAl }\end{array}$ Swaziland S－1 Swazaziland X－ $\begin{array}{ll}\text { Swaziland } & \text { X－type } \\ \text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } & \text { EAI }\end{array}$ Swaziland EAI
Swaziland LAM Swaziland LAM $\begin{array}{ll}\text { Swaziland } & \mathrm{X} \text {－type } \\ \text { Swaziland } & \text { S－type }\end{array}$ Swaziland EAI $\begin{array}{ll}\text { Swaziland } & \text { X－type } \\ \text { Swaziland } & \text { LAM }\end{array}$ Swaziland LAM $\begin{array}{ll}\text { Swaziland } & \text { S－type } \\ \text { Swaziland } & \text { Haarlem }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { S－type } \\ \text { Swaziland } & \text { lineage }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { lineage } \\ \text { Swaziland } & \text { Delhi }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { S－type }\end{array}$

ERR552491 ERR551231
ERR551650 ERR551650
ERR552572 ERR ERR2199956 ERR2200074 ERR2200067 ERR552789 ERR2199994
ERR2199979 ERR551194 ERR ERR2199774 ER ERR2200064
ERR552221 ERR498238
ERR2199995 ERR2199995
ERR552763 ERR2200040
ERR553357 ERR2199758 ER ERR2200002
ERR552010 ERR55275 $\begin{array}{lll}\text { Swaziland } & \text { S－type } & \text { ERR552083 } \\ \text { Swaziland } & \text { Beiijng } & \text { ERR551979 }\end{array}$ $\begin{array}{lll}\text { Swaziland } & \text { Beijing } \\ \text { Swaziland } & \text { Haarlem } & \end{array}$ $\begin{array}{lll}\text { Swaziland } & \text { H－type } & \text { ERR2199936 } \\ \text { ERR552764 ER }\end{array}$ $\begin{array}{lll}\text { Swaziland } & \text { LAM } & \text { ERR252764 ERR } \\ \text { Swaziland } & \text { X－type } & \text { ERR2199753 ER } \\ & \text { SRR }\end{array}$ $\begin{array}{lll}\text { Swaziland } & \text { X－type } & \text { ERR2199750 ER } \\ \text { Swaziland } & \text { X－type } & \text { ERR552074 ERR } \\ \text { Swaziland } & \text { S－type } & \text { ERR552612 }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { S－type } \\ \text { Swaziland } & \text { LAM }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } \\ \text { LAM }\end{array}$ Swaziland Haarlem ERR553350 ERR2199975 ERR2200008
ERR2199996 ERR552115 Swaziland S －type $\begin{array}{ll}\text { Swaziland } & \text { X－type } \\ \text { Swaziland } & \text { lineage }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } & \text { lineage4 }\end{array}$ ERR55199766 ER
ERR ERR2200006 $\begin{array}{ll}\text { Swaziland } & \mathrm{x} \text {－type } \\ \text { Swaziland } & \text { Haarlem }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { S－type }\end{array}$ ERR2200065 ERR2199992
ERR552821 ERR
ERR550959 ERR550959 Swaziland S －type ERR2199970 $\begin{array}{ll}\text { Swaziland } & \text { LAM } \\ \text { Swaziland } & \text { X－type }\end{array}$ Swaziland lineage 4 $\begin{array}{ll}\text { Swaziland } & S \text {－type } \\ \text { Swaziland } & S \text {－type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { S－type } \\ \text { Swaziland } & \text { S－type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { S－type } \\ \text { Swaziland } & \text { LAM }\end{array}$ Swaziland Be
Swaziland $\begin{array}{ll}\text { Swaziland } & \text { EAI } \\ \text { Swaziland } & \text { X－type }\end{array}$ Swaziland LAM Swaziland EAI
Swaziland LAM Swaziland LA
Swaziland EA $\begin{array}{ll}\text { Swaziland } & \text { S－type } \\ \text { Swaziland } & \text { Beijing }\end{array}$ Swaziland EA $\begin{array}{ll}\text { Swaziland } & \text { XA－type } \\ \text { Swaziland } & \text { Stype }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { S－type } \\ \text { Swaziland } & \text { X－type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { LAM } \\ \text { Swaziland } & \text { X－type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { X－type } \\ \text { Swaziland } & \text { Haarlem }\end{array}$ $\begin{array}{lll}\text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { LAM }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { LAM } \\ \text { Swaziland } & \text { S－type }\end{array}$ Swaziland S－typ

Swaziland LAM | Swaziland | LAM |
| :--- | :--- |
| Swaziand | Stype |
| Swaziland | X－type | $\begin{array}{ll}\text { Swaziland } & x \text {－type } \\ \text { Swaziland } & \text { Beijing }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Beijijng } \\ \text { Swaziland } & \text { Beijing }\end{array}$ $\begin{array}{ll}\text { Swaziland } \\ \text { Swaziland } & \text { EAI } \\ \end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { LAM } \\ \text { Swaziland } & \text { Beiiing }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Beijing } \\ \text { Swaziland } \\ \end{array}$ Swaziland Beijing $\begin{array}{ll}\text { Swazziland } & \text { Setype } \\ \text { Swaziland }\end{array}$ Swaziland lineage4 Swaziland LAM $\begin{array}{ll}\text { Swaziland } & \text { X－type } \\ \text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { SRR }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Stype } \\ \text { Swaziland } & \text { S－type }\end{array}$ Swaziland X－type Swaziland $\quad X$－typ

Swaziland Swaziland lineage 4 Swaziland lineage
Swaziland
X－type $\begin{array}{ll}\text { Swaziland } & \text { x－typ } \\ \text { Swaziland } \\ \text { LAM }\end{array}$ Swaziland LAM $\begin{array}{ll}\text { Swaziland } & \text { LAM } \\ \text { Swaziland } & \text { Beijing }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Beijing } \\ \text { Swaziland } & X \text {－type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \begin{array}{l}\text { x－type } \\ \text { Swaziland } \\ \\ \text { Beijing }\end{array}\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Beijing } \\ \text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { lineage }\end{array}$ Swaziland lin
Swaziland Swaziland Beijing $\begin{array}{ll}\text { Swaziland } & \mathrm{X} \text {－type } \\ \text { Swaziland } & \mathrm{X} \text {－type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { LAM }\end{array}$ Swaziland X－type Swaziland S－type Swaziland Beijing Swaziland Swaziland S－ Swaziland EAI Swaziland
Swaziland
$\begin{array}{ll}\text { Swaziland } & X \text {－type } \\ \text { Swaziland } & X \text {－type }\end{array}$
0

刀二ォ

Swaziland x Swaziland Swaziland Haarlem Swaziland X-type
 Swaziland Beijing ERR2199938
ERR2200014 $\begin{array}{ll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & \text { Haarlem }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { Beijing }\end{array}$ Swaziland lineage4 Swaziland EA Swaziland L $\begin{array}{ll}\text { Swaziland } & \text { x-type } \\ \text { Swaziland } & \text { x-type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { lineage } 4\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { X-type } \\ \text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { Beijing }\end{array}$ Swaziland LAM Swaziland Beijing $\begin{array}{ll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & \text { S-type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & X \text {-type }\end{array}$ Swaziland Beijing Swaziland
Swaziland Swaziland
Swaziland Swaziland Swaziland
Swaziland EAL
Swaziland LAM Swaziland
Swaziland Beij
Swaziland $\begin{array}{ll}\text { Swaziland } & \text { EAI } \\ \text { Swaziland } & \text { Haarlem }\end{array}$ Swaziland S-type $\begin{array}{ll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & \text { Beijing }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { Beijijn } \\ \text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } & \text { X-type }\end{array}$
 $\begin{array}{lll}\text { Swaziland } & \text { X-type } & \text { ERR219993 } \\ \text { Swaziland } & \text { LAM }\end{array}$ Swaziland LAM
Swaziland EAL $\begin{array}{ll} & \\ \text { Swaziland } & \text { EAl } \\ \text { Swaziland }\end{array}$ Swaziland lineage
Swaziland EAI $\begin{array}{ll}\text { Swaziland } & \text { EA } \\ \text { Swaziland } \\ \text { X- }\end{array}$ $\begin{array}{lll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & \text { LAM }\end{array}$ Swaziland LAM
Swaziland
S-typ $\begin{array}{ll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & \text { lineage4 }\end{array}$
Swaziland
Swaziland Swaziland
Swaziland
Swaziland $\begin{array}{ll}\text { Swaziland } & \text { Delhi } \\ \text { Swaziland } & \text { Beijin } \\ \text { Swaziland } & \text { X-type }\end{array}$ $\begin{array}{ll}\text { Swaziland } & \text { X-type } \\ \text { Swaziland } & \text { X-type } \\ \text { Swaziland } & \text { LAM }\end{array}$ Swaziland LAM Swaziland
Swaziland Swaziland Swaziland LAM
LAM
S-type
lineage $\begin{array}{ll}\text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } & \text { lineage4 }\end{array}$ Swaziland lin
Swaziland EAI
Swaziland B
$\begin{array}{ll}\text { Swaziland } & \text { EAI } \\ \text { Swaziland } & \text { lineage4 }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { Beijing } \\ \text { Swaziland } & \text { S-type }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & \text { s-type }\end{array}$
Swaziland
Swaziland S-
$\begin{array}{ll}\text { Swaziland } & \text { EAI } \\ \text { Swaziland } & \mathrm{S} \text {-ty }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } & \text { Beijing }\end{array}$
$\begin{array}{lll}\text { Swaziland } & \text { Beijing } & \text { ERR619080 } \\ \text { Swaziland } & \text { S-type } & \text { ERR551014 }\end{array}$
$\begin{array}{lll} & & \\ \text { Swaziland } & \text { S-type } & \text { ERR551014 } \\ \text { Swaziland } & \text { lineage4 } & \text { ERR2200045 }\end{array}$
$\begin{array}{lll}\text { Swaziland } & \text { lineage4 } & \text { ERR2200045 } \\ \text { Swaziland } & \text { lineage4 } & \text { ERR552273 }\end{array}$
Swaziland lineage 4
Swaziland LAM
Swaziland S-type
$\begin{array}{ll}\text { Swaziland } & \text { Beijing } \\ \text { Swaziland } & \text { lineage4 }\end{array}$
Swaziland S-type
Swaziland EAL
$\begin{array}{ll} & \\ \text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } & \text { Beijing }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { LAM } \\ \text { Swaziland } & \text { Beijing }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { Beijing } \\ \text { Swaziland } & \text { Haarlem }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { S-type }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { S-type } \\ \text { Swaziland } & \text { lineage4 }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } & \text { S-type }\end{array}$
Swaziland
Swaziland
EAI
$\begin{array}{ll}\text { Swaziland } & \text { lineage4 } \\ \text { Swaziland } & \text { Beijing }\end{array}$
Swaziland Be
$\begin{array}{ll}\text { Swaziland } & \text { EAI } \\ \text { Swaziland } & \text { X-type }\end{array}$
$\begin{array}{ll}\text { Swaziland } & X \text {-type } \\ \text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { lineage4 }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \text { Haarlem } \\ \text { Swaziland } & \text { lineage4 } \\ \text { Stype }\end{array}$
$\begin{array}{ll}\text { Swaziland } & \mathrm{S} \text {-type } \\ & \end{array}$
Swaziland X-type
Swaziland Haarlem
$\begin{array}{ll}\text { Swaziland } & \text { EAI } \\ \text { Swazrlem } \\ \text { Swailand } & \text { X-type }\end{array}$ Swaziland
Swaziland LAM

o

いいc

3－09	MSF
5069－09	MSF
5558－09	MSF
6087－09	MSF
8784－09	MSF
7172－09	MSF
4272－09	MSF
10294－09	MSF
6256 －09	MSF
4712－09	MSF
6268－09	MSF
6267 －09	MSF
5539－09	MSF
5544 －99	MSF
6269－09	MSF
1213－10	MSF
$7171-09$	MSF
5118－09	MSF
626509	MSF
$4270-09$	MSF
5080－09	MSF
5772－09	MSF
8581－09	MSF
$4289-09$	MSF
4725－09	MSF
8781－09	MSF
10116－09	MSF
$4275-09$ $4328-09$	MSF
4328－09	MSF
$4703-09$ $6249-09$	MSF
6249－09	MSF
$6263-09$ $8304-09$	MSF
8304－09	MSF
10442－09	MSF
8576－09	MSF
5276－09	MSF
$4735-09$	MSF
4300－09	MSF
$4343-09$	MSF
WмВ430／43－12700	Thailand via University of Singapore
WMB476／46－10698	Thailand via University of Singapore
WMB261／DS－20512	Thailand via University of Singapore
WMB422／42－19187	Thailand via University of Singapore
WMB322／DS－15901	Thailand via University of Singapore
WMB238／DS－08775	Thailand via University of Singapore
WBB284／DS－31231	Thailand via University of Singapore
WMB321／DS－15862	Thailand via University of Singapore
WMB464／CSF－3542	Thailand via University of Singapore
WMB388／DS－30902	Thailand via University of Singapore
WBB280／DS－29147	Thailand via University of Singapore
WMB300／DS－13819	Thailand via University of Singapore
WMB296／DS－33048	Thailand via University of Singapore
WBB264／DS－17092	Thailand via University of Singapore
WMB382／DS－25482	Thailand via University of Singapore
WMB366／DS－23415	Thailand via University of Singapore
WMB454／CSF－3382	Thailand via University of Singapore
WMB287／DS－30777	Thailand via University of Singapore
WMB447／CSF－2894	Thailand via University of Singapore
WMB370／DS－24060	Thailand via University of Singapore
WMB340／DS－19383	Thailand via University of Singapore
WMB292／DS－32101	Thailand via University of Singapore
WMB423／43－01910	Thailand via University of Singapore
WMB417／DS－20257	Thailand via University of Singapore
WBB260／DS－16780	Thailand via University of Singapore
WMB282／DS－29788	Thailand via University of Singapore
WMB229／DS－16496	Thailand via University of Singapore
WMB409／DS－15367	Thailand via University of Singapore
WMB315／DS－14459	Thailand via University of Singapore
WMB295／DS－32505	Thailand via University of Singapore
WMB361／DS－21625	Thailand via University of Singapore
WMB222／DS－06765	Thailand via University of Singapore
WMB446／CSF－2498	Thailand via University of Singapore
WMB482／48－10231	Thailand via University of Singapore
WMB342／DS－20136	Thailand via University of Singapore
WMB247／DS－11861	Thailand via University of Singapore
WBB261／DS－16825	Thailand via University of Singapore
WMB367／DS－23522	Thailand via University of Singapore
WMB375／DS－24447	Thailand via University of Singapore
WMB224／DS－13006	Thailand via University of Singapore
WMB400／DS－12158	Thailand via University of Singapore
WMB470／CSF－3681	Thailand via University of Singapore
WMB407／DS－15177	Thailand via University of Singapore
WMB479／CSF－3922	Thailand via University of Singapore
WMB269／DS－21261	Thailand via University of Singapore
WMB318／DS－15492	Thailand via University of Singapore
WMB297／DS－33051	Thailand via University of Singapore
WMB439／46－18357	Thailand via University of Singapore
WMB289／DS－31524	Thailand via University of Singapore
WMB279／DS－28473	Thailand via University of Singapore
WMB272／DS－24901	Thailand via University of Singapore
WMB254／DS－18227	Thailand via University of Singapore
WMB316／DS－14460	Thailand via University of Singapore
WMB472／CSF－3718	Thailand via University of Singapore
WMB244／DS－15773	Thailand via University of Singapore
WMB405／DS－14607	Thailand via University of Singapore
WMB267／DS－21129	Thailand via University of Singapore
WMB415／DS－19997	Thailand via University of Singapore
WMB346／DS－20225	Thailand via University of Singapore
WMB291／DS－31852	Thailand via University of Singapore
WMB355／DS－20915	Thailand via University of Singapore
WMB274／DS－25520	Thailand via University of Singapore
WMB386／DS－25946	Thailand via University of Singapore
WMB259／DS－19810	Thailand via University of Singapore
WMB357／DS－21031	Thailand via University of Singapore
WBB259／DS－16220	Thailand via University of Singapore
WMB418／DS－20316	Thailand via University of Singapore
WMB276／DS－26452	Thailand via University of Singapore
WMB260／DS－20000	Thailand via University of Singapore
WMB377／DS－24593	Thailand via University of Singapore
WMB275／DS－26102	Thailand via University of Singapore
WMB414／DS－19861	Thailand via University of Singapore
WMB332／DS－19168	Thailand via University of Singapore
WMB480／48－10563	Thailand via University of Singapore
WMB389／DS－30951 WMB271／DS－21363	Thailand via University of Singapore Thailand via University of Singapore

Swaziland	LAM	ERR2200088
iland	x－type	ERR219
aziland	EAI	255
waziland	x－type	ERR
aziland	linea	ERR55
waziand	lineage	ERR220003
，azila	x－type	R21
waziand	S－type	ERR2
aziland	x－type	ERR22000
waziand	x－type	ERR552518
waziland	Haarl	ERR2200080
aziland	x－ty	ERR552993 ER
Swaziland	linea	ERR2200032
aziland	x－type	ERR2200033
Swaziland	Haarlem	ERR553216
aziland	Haarlen	ERR2199811
Swaziland	x－type	ERR553264
aziland	s－ty	
Swaziland	Beijing	ERR552743
aziland	Beijing	RR21
waziland	S－type	ERR55
waziland	x－ty	ERR550734
waziland	lineag	ERR552463
waziland	LAM	ERR552352
waziland	s－type	ERR5
waziland	S－ty	ERR552070
aziland	s－type	ERR2199749
waziland	Lam	ERR2199937
waziland	EAI	ERR2199949
waziland	Bejijn	ERRS
aziland	Haarle	ERR2200076
aziland	Haar	ERR2
waziland	Beijin	ERR553
waziland	linea	ERR2199768 ER
waziland	S－type	ERR552484
waziland	S－type	ERR553282
aziland	Lam	ERR2200023
aziland	Lam	ERR2199982
aziland	Eal	ERR2199946
waziland	LAM	ERR2199952
iland	Be	SAMN072364
ailand	Beijing	SAMn
Thailand		SMNN07236285
ailand	Beijing	SAMN07236440
iland		SAMN07360950
ailand	Beijing	SAMN072
and		SAMN07236538
ailand	Beijing	SAMN07236343
Thailand		SAMN0723647
Thailand	Beijing	SAMN07236406
ailand	Bei	SAMNO223
iland	Beijing	SAMN0723632
nd	Beiji	MNO23
iland	Beijing	SAMNO2
and	Beijing	Mno
iland	Beijing	SAMNO
and	Beijing	amn
iland	Beijing	SAMNO
Thailand	Beijing	SAMNo
iland	Beijing	SAMNO
land	Beijing	SAMNO
iland	Beiji	SAMN07236314
land	EAI	SAMNOT
iland	Beijing	SAMN07236435
land	Beijing	SAMN07
iland	Beijin	SAMN072363
nd	Beijing	SAMN07236255
iland	Beijing	SAMN07236427
iland		SAMN0723
iland	Beijing	SAMN0723637
land	Beijing	MN07236
iland	Beijing	SAMN072362
land	Beijing	SAMN072
iland	Beijin	SAMN07236
ailand	EAI	SAMN07236362
Thailand	Beijing	SAMN072362
ailand	Beijing	SAMN0723
ailand	Beijing	SAMN072363
ailand	Beijin	SAMN07236393
ailand	EAI	SAMN07236250
ailand	Beijin	SAMN0723641
Thailand	Beijing	SAMN07236482
Thailand	Beijing	SAMN07236425
Thailand	EAI	SAMN07236489
Thailand	Beijing	SAMN07236293
Thailand	Beijing	SAMN07236340
Thailand	Beijing	SAMN07236319
Thailand	EAI	SAMN07236457
Thailand	Beijing	SAMN07236311
Thailand	Beijing	SAMN07360949
Thailand	Beijing	SAMN07236296
Thailand	Beijing	SAMN07236278
Thailand	Beijing	SAMN07236338
Thailand	EAI	SAMN07236484
Thailand	Beijing	SAMN07236268
Thailand	Beijing	SAMN07236423
Thailand	Beijing	SAMN07236291
Thailand	EAI	SAMN07236433
Thailand	Beijing	SAMN07236365
Thailand	Beijing	SAMN07236313
Thailand	Beijing	SAMN07236374
Thailand	Beijing	SAMN07236297
Thailand	Beijing	SAMN07236404
Thailand	EAI	SAMN07236283
Thailand	Beijing	SAMN07236376
Thailand	Beijing	SAMN07236515
Thailand	Beijing	SAMN07236436
Thailand	Bejijing	SAMN07236299
Thailan	Ural	SAMN07236284
Thailand	EAI	SAMN07236395
Thailand	Beijing	SAMN07236298
Thailand	Beijing	SAMN07236432
Thailand	EAI	SAMN07236352
Thailand	Beijing	SAMN07236490
Thailand	Beijing	SAMN07236

 ざきのひいいいいいの

14.060975 13.061115
15.061338 15.061338
16.061850 16.0618501
16.0618346 16.0618346
16.0604301 14.0600715 14.0600760
13.0609451 12.0613656
13.0609878 4.0600791 13.0613207 15.0601116 15.0611664 15.0611664
13.0613552
160618518 16.0618518
12.0615228 12.0615228
15.0607160 16.0604639

14.0609326 | 14.0609326 |
| :--- |
| 16.0610438 | 10.0604992

14.0602981 14.0600232 14.0660232
14.0600968 14.0600968
13.0608572 13.0608572

15.0607529 | 15.0607529 |
| :--- |
| 16.0601859 | 15.0601192

12.0610875 | 14.0609245 |
| :--- | 14.0600418

14.0602059 14.0602059
15.0607338
12.0612788 12.0612788 14.0609529
12.0615219 12.0615219 12.0615219
13.0601211
14.0600472 14.0600472
15.0606095 15.0606095
12.0616381 16.0601830
15.0607931 4.0609481 16.0617386
12.0614867 12.0614867
15.0601455 15.0601455
13.0613205 13.0615665 13.0615665
15.0601460

16.0607992 | 16.0607992 |
| :--- |
| 15.0601431 | 15.0601591

13.0610508 16.0618344
14.0603958 14.0600834 16.0617147 14.0600072 15.0600271
12.0927474 12.0927474 16.0607369
13.0606625 13.0607323
12.0615645 13.0607994
15.0607082 15.0601419 3.0613313
6.0617570 16.0617570
14.0600890 14.0600890

15.0607837 | 15.0607837 |
| :--- |
| 14.0600822 | 14.0600646

13.0608692
14.0606710 14.0606710
16.0618566 16.0600854
13.0610479 15.0607157
15.0613496 15.0613496 16.0608290 16.0607011
15.0608047 16.0607011
15.0608047
130613183 13.0613183
14.0609667 13.0605682
15.0607921 14.0609303 15.0601461 09.0600421
16.0605013 16.0605013
13.0605720 13.0605720

13.0607499 | 16.0607499 |
| :--- |
| 1600 | 16.0601660

13.0607383 16.0605385
14.0600211

16.0601329 | 15.0601329 |
| :--- |
| 15.0601933 | 16.0601171

15.0607835 13.0613046 15.0602904 16.0613084 16.0607442 | 16.0607442 |
| :--- |
| 14.0607804 | 14.0607804

14.0600406
12.0926048 12.0926048
14.0608109 14.0608109
13.0609268 13.0609268
14.0600309 14.0600309
15.0614506

Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birn Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Rirmingham Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham

兰 Delhi
EAI
Ine

$\stackrel{0}{\stackrel{0}{屯}}$

응․
M．bovis
LAM
Delhi
S－type
Delhi
Delhi
号荌要

Delhi
lineage4
Haarlem
LAM
交发要
EAI

14.0609535
14.0616219 14.0616219 13.0610730
14.0600785 14.0600785
13.0601569 13.0601569
15.0601160
120617575 12.0617575 15.0601366
13.0601220
16.0601062 16.0601062
13.0612972 14.0613174 16.0618455 15.0606741 15.0607149 15.06071995
16069 14.06099143
11.0607157 11.0607157
15.0607585 15.0667585
15.0607970 14.0600957
15.0607425 4.0600764
1.0615356 11.0615356
15.0601319 15.0661319
13.0602972 13.0602972
12.0605695 12.0605695
14.0600033
16.0612916 16.0612916

13.0604696 | 13.0604696 |
| :--- |
| 13.060490 | 13.0601238

16.0607686 15.0605015
14.0600960 14.0600960
15.0607455 16.0618040
15.0600444 15.0600444
13.0617132 13.0617132
13.0608460 13.0608460
16.0607365 12.0610888
11.0602455 11.0602455
15.0607142 12.0608700
15.0613438 15.0613438
16.0607094 16.0607094
11.0607052 11.0607052
16.0604287 16.0604287
13.0603078 13.0603078

13.0601264 | 13.0601264 |
| :--- |
| 16.0607435 |
| 15.0601123 | 15.0601123

12.0611838 14.0600012 10.0610060
13.0609259 16.0601691
12.0614965 16.0614965
16.0610120 13.0616591
12.0614822 13.0616591
12.0614862 12.0614862
13.0608229 15.0607878
15.0601300 16.0618493
13.0613286
136060251 13.0602851
16.0601286 15.0602702
14.0609266 14.0609266
15.0601932 15.0601932
14.0600498 14.0600498
15.0607706 15.0607706
13.0605100 13.0605100
12.0611851
13.0601405 13.0601405
12.0612895 $\begin{array}{r}16.0661508 \\ \hline 1.066320\end{array}$ 12.0604987 12.0612947
13.0611313 13.0611313 13.0608428
13.06058 13.0600598
14.0609884 14.0609884 14.0610087

13.0604511 | 14.06095396 |
| :--- |
| 16.0617099 | 16.0617099

16.0607320 14.0600878
14.0600929 14.0613230
15.0615980 15.0615980
13.0613166 13.0613166
14.0609779 14.0609779
13.0600253 13.0600253
14.0600478
14.0616114 14.0616114
14.0600198 14.060016098 15.0607364
15.0607080 13.0609008
15.0601715 15.0601715
16.0618585 16.0618585

16.0609811 16.0609811 15.0607452 | 15.0607452 |
| :--- |
| 16.0601607 |
| 16.0607742 | 16.0607742

13.0613530 13.0613530
14.0614114 14.0614114
13.0604545 13.0604545
16.0601474 16.0601474
16.0601417

当

13.0613390 13.0607681 13.0613283
16.0601708 16.0601708
13.0613363 13.0613363
15.0607091 15.0607091
15.0601039 12.0616150 15.0607977 14.0600483
16.0601858 16.0601807 13.0610501 16.0607971 15.0601947 15.0601947
16.0607623
150607361 15.0607361
16.0609590 16.0609590
13.0612199 15.0603457
16.0618594 16.0618594
12.0610033
15.0607293 15.0607293
15.0605004 15.0665004
15.0601085 15.0661085
16.0601242 16.0601242
13.0611286 13.0611286
14.0610078 14.0610078
15.0613003 15.0601424
13.0608404 15.0601507 16.0601983 16.0609809
14.0601636 14.0601636 13.0607686
15.0613464 15.0613464
11.0612674 11.0612674
15.060163 11.0612674
15.0601763
16.0600783 16.0600783
12.0616403 12.0601848
12.0615274 12.0615274
15.0608004 16.0609115
15.0601214 15.0601214
14.0600541 15.0601846 15.0601846
16.0601846 16.0601846
15.0613408 15.0613408
13.0608231 13.0608231
13.0603885
16.0606170 16.0606170
13.0613359 13.0606487 16.0607966 16.0617111 14.0600512 15.0601496 16.0601346
15.0601479 16.0601346
15.0601479
12.0611175 15.0601499
12.0611175
14.0604248 14.0604248 14.0609922
12.0614472 12.0617719
12.0610293 12.0610293
15.0610529 15.0610529
14.0616050 14.0616050
15.0601082 15.0601082
14.0600946 14.0600946
13.0601227 13.0601227
15.0601639 15.0601639

12.0605653 | 12.0605653 |
| :--- |
| 14.0600570 | 13.0607982

12.0612856 15.0667898 16.0604675
15.0607266
12.0614645 12.0614645 14.0600897 15.0613289 13.0609341
15.0607972 15.0607972
16.0602006 16.0602006
12.0927508 12.00613326
17.0601042 17.0601042
13.0610650 13.0610650
15.0607489
13.0613585 13.0613585
14.0609988 14.0609988
13.0613516 16.0607631 16.0607631
15.0611200 15.0611200
12.0613012 12.0613012
14.0600128 14.0600128
14.0614275 13.0611326

16.0609437 13.0613281 15.0601925 13.0607693 13.0606204 13.0602828 | 15.0601041 |
| :--- |
| 150601485 | 16.0601485 15.0604886

13.0606212 13.0606212
15.0601346 15.0607280
16.6618131 16.0618131
12.0611336

当
EAI

${ }^{13.0601533}$	Birmingham
09.0600086	Birmingham
15.0600714	Birmingham
15.0601595	Birmingham
16.0618275	Birmingham
11.0601764	Birmingham
12.0616916	Birmingham
16.0617033	Birmingham
16.0617332	Birmingham
15.0601563	Birmingham
13.0616964	Birmingham
16.0607174	Birmingham
14.0600005	Birmingham
15.0607691	Birmingham
12.0613649	Birmingham
13.0600087	Birmingham
15.0601291	Birmingham
16.0618320	Birmingham
13.0605637	Birmingham
13.0607992	Birmingham
15.0615243	Birmingham
16.0618609	Birmingham
14.0602707	Birmingham
12.0610286	Birmingham
15.0601757	Birmingham
15.0607824	Birmingham
15.0613448	Birmingham
15.0607797	Birmingham
14.0600220	Birmingham
12.0614857	Birmingham
16.0601541	Birmingham
14.0616096	Birmingham
14.0604994	Birmingham
13.0606726	Birmingham
15.0601638	Birmingham
14.0609476	Birmingham
15.0601883	Birmingham
16.0602436	Birmingham
15.0601417	Birmingham
12.0615290	Birmingham
13.0609012	Birmingham
14.0611676	Birmingham
15.0607528	Birmingham
13.0602088	Birmingham
13.0605704	Birmingham
15.0607978	Birmingham
14.0609856	Birmingham
${ }^{13.0611717}$	Birmingham
15.0609023	Birmingham
14.0604679	Birmingham
13.0602060	Birmingham
16.0601281	Birmingham
14.0609152	Birmingham
15.0607823	Birmingham
16.0607377	Birmingham
17.0601020	Birmingham
14.0600283	Birmingham
16.0607455	Birmingham
16.0601958	Birmingham
12.0616562	Birmingham
14.0600251	Birmingham
16.0618201	Birmingham
16.0601074	Birmingham
15.0613009	Birmingham
15.0607719	Birmingham
14.0600384	Birmingham
12.0612484	Birmingham
15.0611635	Birmingham
14.0600647	Birmingham
16.0617167	Birmingham
14.0616099	Birmingham
12.0613641	Birmingham
13.0601212	Birmingham
16.0602460	Birmingham
12.0927475	Birmingham
14.0607894	Birmingham
12.0604645	Birmingham
11.0612559	Birmingham
15.0609310	Birmingham
13.0604894	Birmingham
13.0609877	Birmingham
12.0611203	Birmingham
13.0609263	Birmingham
14.0600049	Birmingham
16.0605810	Birmingham
13.0617617	Birmingham
16.0618395	Birmingham
16.0601028	Birmingham
13.0612210	Birmingham
16.0607895	Birmingham
14.0616160	Birmingham
15.0607213	Birmingham
16.0618520	Birmingham
15.0609411	Birmingham
14.0609450	Birmingham
13.0600307	Birmingham
15.0601415	Birmingham
14.0615356	Birmingham
13.0613507	Birmingham
16.0601570	Birmingham
14.0616195	Birmingham
16.0601837	Birmingham
14.0613841	Birmingham
13.0609459	Birmingham
15.0613064	Birmingham
16.0603813	Birmingham
14.0600200	Birmingham
15.0613472	Birmingham
15.0612112	Birmingham
13.0605186	Birmingham
11.0612877	Birmingham
15.0601413	Birmingham
15.0607666	Birmingham
14.0609144	Birmingham
$\begin{aligned} & 15.0600566 \\ & 13.0601980 \end{aligned}$	$\underbrace{}_{\substack{\text { Birmingham } \\ \text { Birmingham }}}$

 いいいいいいいい
12.0617576 13.0603862
12.0608757 12.0608757
13.0607993 13.0607993
16.0601943 16.0601943
15.0613403 15.0613403
16.0602000 14.0660442
16.0607907 6.0607907
6.0601994 14.0616025 14.0616025
14.0612457
14.06953 14.0609953 16.0601580 14.0611632 14.0611632
15.0607621 13.0608405
15.0601486 12.0617565
14.0600447 14.0600447
15.0603289 14.0600911
16.0618311 13.0611341 14.0613857 14.0613857
14.0600265 14.0600265
14.0613898 14.0613898

14.0600716 | 14.0600716 |
| :--- |
| 16.0617565 |
| 1.0609248 | 13.0609248

15.0601614 13.0606635
13.0610747 13.0607916
13.0613127 16.0618401 15.0601306 16.0613389
12.0611891 12.0611891
16.0617385 16.0617385 15.0613554
15.0607651 15.0607651
14.0609943 13.0613593
16.0601258 16.0601258
12.0615000
14.0615443 14.0615443
16.0607379 16.0607379
12.0616928 12.0616928
16.0618160 16.0618160
15.0601466 15.0601466

12.0617714 | 12.0617714 |
| :--- |
| 15.0601658 | 15.0602905

16.0618376 16.0602771 | 13.0602841 |
| :--- |
| 16.0601331 |
| 130618224 | 13.0618224 12.0611350

13.0605248 13.0605248 14.0609485
16.0617110 14.0609485
16.0617110
150613447 15.0613447 16.0607591
14.0600390 14.0600505
16.0601588 14.0616179
14.0609805 14.0609805
11.0605441 11.0665441
15.0607544 15.0607544
14.0607524 14.0667524
13.0605182 13.0605182
12.0610867 16.0607561
15.0611196 15.0611196
15.0607500

15.0601487 | 12.0927149 |
| :--- | 15.0604059

16.0603746 15.0607130 15.0607737 16.0618601 16.0618601
16.0618354 15.0615809
13.0604363 13.0604363
14.0602202 16.0618545
17.0601106 16.0607074
16.0618240 16.0607861 16.0607861
14.0609501 14.0669501
14.0609343 14.0609343
11.0604389 11.0604389
16.0607177 16.0607177
16.0618151
13.0607957 13.0607957
16.0617625 11.0603912
14.0600308 13.0613142 13.0608457
12.0610841 15.0607530 13.0607978 13.0603877 15.0607673 14.0609799
15.0602409 15.0602409 9 16.0601528
09.0600447 09.0600447
12.0615271 12.0615271
16.0617398

Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham
Birmingam Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham

㐍要高 $\begin{array}{lll}\text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { lineage4 } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { lineage4 } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { lineage4 } & \mathrm{S} & \mathrm{S} \\ \text { EAI } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { Beijing } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { lineage4 } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { X－type } & \mathrm{S} & \mathrm{S} \\ \text { Cameroon } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{S} & \mathrm{S} \\ \text { Delhi } & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a}\end{array}$
 \vdots

n

いい

16.0601750 13.0610930 13.0610930
15.0607794 15.0607794
15.0613049 15.0613049
14.0612496

16.0607380 | 14.0612496 |
| :--- |
| 16.0607380 | 12.0611992

16.0607611 14.0609320 | 15.0601515 |
| :--- |
| 15.0606997 | 14.0600155 15.0607805 13.0604890 16.0601189

15.0607874 15.0601189
15.0607874
15 15.0602613
13.0600608 13.0600608

12.0615291 | 12.0615291 |
| :--- |
| 12.0610314 | 16.0667367

17.0600112 15.0607083
16.0605632 16.0605632
13.0603151 13.0603151
15.0607438 15.0607438
12.0611591 12.0611591
15.0607503 15.0607503
15.0607074 15.0607074
15.0607353
16.0611790 16.0611790
14.0600986 16.0607989 16.0601515
13.0600255 16.0601606 13.0612462 13.0600572
15.0613389 15.0613389
15.0613333 15.0613389
15.0613333
14.0603754 14.0603754
13.0602587 13.0602587
15.0610391 16.0618387
16.0607888 16.0607888
13.0604513
150601391 15.0601391
16.0601418 16.0601418
16.0601487 16.0661487
15.0613462 15.0613462
16.0601668 16.0601668
13.0615676
16060791 13.0615676
16.0607991

15.0601490 | 15.0601490 |
| :--- |
| 16.0601751 |
| 14.0609961 | 14.0609961

14.0600713 14.0609079 14.0600341 14.0600980
15.060178 15.0601178 16.0606071
09.0600851 09.0600851 14.0600348
15.0601747 14.0609148 14.0617134
13.0615873 11.0607519
16.0601077 16.0601077
15.0603414 15.0603414
16.0618186 16.0618186
15.0614167 15.0614167
15.0603042 15.0603042
17.0601150 17.0601150
16.0607577
12.0603488 12.0603488
15.0601464

15.0601087 | 15.0601087 |
| :--- |
| 12.0611245 |
| 13 | 13.0610998

15.0609599 12.0615222 16.0604350 16.0604350
15.0601902 14.0601902
14.0617333 16.0601433 16.0606072
16.0601738 14.0600320
14.0610986 14.0610986
12.0611854 4.0603920
6.0608817 16.0608817
16.0601203 16.0601203
15.0607721 15.0607721 15.0609621
16.0609467 16.0609467
16.0607021 13.0603086
13.0605666 13.0605666
13.0604549 14.0606539
13.0607143 13.0615934 14.0609500
15.0607031 15.0607031

15.0611576 15.0611576 13.0612178 14.0610315 | 14.0610315 |
| :--- |
| 15.0601806 | 14.0608099

15.0613555 15.0613555
16.0608342 13.0613460
16.0617188
 Birmingham
Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
$\stackrel{y}{3}$

16.06186 16.0618611
15.0607053
12.0608996 12.0608996
16.0603633 16.0603633
13.0609851 13.0609851
12.0612506 14.0600029 14.0600698 16.0618429
15.0601367 4.0610446 15.0600510 12.0927854 13.0611009
15.5611920 13.0611009
150620 15.0601914
12.0927024 12.0611788
13.0613521 16.0618193
16.0601070 16.0601070
15.0601745 6.0617146
3.0609429 13.0609429
14.0615561 14.0615561
14.0600604 14.0600604
10.0607622 10.0607622
15.0607700 15.0607700
13.0613502
1.0601003 11.0601003

16.0607382 | 13.0616419 |
| :--- |
| | 12.0614543

13.0607977
12.0613614 12.0613614 13.0602840
15.607504 15.0607504
15.0601363 15.0601363 15.0601363
15.0613217
15.0607497 15.0607497 15.0601033
15.0601889 13.0606701

14.0603858 | 14.0603858 |
| :--- |
| 16.0601327 | 16.0601974

14.0609455 14.0609455
16.0601980 16.0601980
15.0607326 15.0607326
12.0617313 12.0617313

15.0601032 | 15.0601032 |
| :--- |
| 12.0612555 | 12.0612555

16.0618624
15.0607238 15.0607238
17.0601226 16.0617291
15.0609387 15.0609387
13.0603097 16.0607046 13.0606213 15.0613043 15.0607494
15.0613336 15.0613336
14.0601935 13.0665770 16.0607519
13.0612115 12.0611454
13.0610491 13.0610491
16.0607017 14.0600521 14.0600521
14.0600537 14.0600537
15.0604342 15.0604342
15.0613195
14.0609004 14.0609004
16.0603017
16.0601439 16.06616622
14.0616168 15.0607865 16.0601538
14.0600807 12.060082525
12.061425 14.0614425
15.0608520 14.0614425
15.0608520
11.0602681 11.0602681
110612547 11.0612547 14.0609114
16.0601250 16.0601250
12.0616631 16.0601658
12.0614963 12.0614963
14.0609008 14.0609008
11.0615660 11.0615660
16.0601304 16.0601304
15.0602532 14.0600783 14.0600783
14.0600803
12.0927480 12.0927480
14.0612233 15.0607106 12.0616918 15.0601824 13.0608728
16.0607212 16.0607212 16.0618385 12.0613605 12.0613605
14.0600933
150600918 15.0600918 16.0601766
15.0607741 15.0607741
12.0610882 14.0600597
16.0607152

Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
$\stackrel{y}{3}$

lineage
S－type
lineage
․․

LAM
LAM
Delhi
lineage
Haarlem
lineage
돟․ ．
lineage

Haarle
Delhi

言号妾
㐍

EA
lineage
Delhi
lineage

듷룰
등ㄴ $\sum_{S} \sum_{S}$
EAI
Delhi
Delhi
Delhi
Haarlem
lineage4
lineage4
lineage
S－type
Delhi
West Africar
Delhi
Delhi
Delhi
M．bovis
LAM
${ }_{\text {LAM }}$
Beijing
S －type
Delhi
交
\qquad いいいいい $n n$
$n u$

Beijing
12.0617268 12.0617268
16.0601539 13.0667677
120614228 12.0614228
15.0607206 15.0607206
16.0607018
14.0609875 14.0607018

14.0609875 | 14.0600744 |
| :--- |
| 13.0602029 | 12.0612885

14.0613590 16.0613590
16.0607084 16.0617013 16.0602610 16.0607106
150607094 15.0607094
15.0607510 15.0607510
15.0601438
15.0607728 15.0667728
15.0601081 15.0607637
13.0607533 16.0601360
16.0618428 16.0618428
11.0611836 11.0611836
14.0604728 14.0604728
16.0607032 16.0607032
13.0612472 13.0612472

16.0601296 | 16.0601296 |
| :--- |
| 09.0606605 |
| 4.0611289 | 14.0611289

15.0607736 13.0609452
15.0600734 16.0601420
150601494 15.0601494 14.0609453
16.0607885 16.0607885
14.0609700 14.0609700

13.0612473 | 14.0609700 |
| :--- |
| 13.0612473 | 14.0600536 14.0609271

15.0605804 09．0605673
13.0613499 13.0613499
13.0609551
15.0613199 15.0613199
16.0601724 16.0601724
13.0613557 13.0613557
15.0601771 15.0601771
12.0616397 12.0616397
15.0601968 15.0601968
13.0603128
15.0614445 15.0614445
14.0609914 15.0601105 13.0612211
14.0609034

15.0616130 15.0616130 16.0601359 16.0618181 14.0609319 | 14.0609319 |
| :--- |
| 15.0613345 | 14.0600985

14.0600542 14.0600542
16.0618437 14.0600464

13.0612213 | 15.06607922 |
| :--- | 14.0609431

16.0601516 16.0661516
12.0605218 12.0605218

12.0605641 | 12.0605641 |
| :--- |
| 15.0610739 | 15.0602483

16.0603791 12.0603791
14.06179206 14.0660996 12.0616797
17.0601075 14.0601075
14.600470 12.0611896 14.0600971 14.0600971
14.0604054
150613220 15.0613220 13.0611016
13.0611315 12.0603731

15.0601738 | 13.06013029 |
| :--- | 14.0609404

11.0608172 11.0608172
14.0600092 14.0610922 14.0610922
13.0613329 13.0613329
13.068410 13.0608410
12.0611602
15.0613108 15.0613108
15.0601629 15.0601629
16.0607974 16.0600456
15.0611953 16.0607323 15.0601627
13.0607668 13.0607668
16.0607800 16.0607800
12.0611205 12.0611205
16.0601582 16.0601582
16.0600499 16.0600499
10.0612076 10.0612076
14.0609429 13.0608437
16.6617651 16.0617651
15.0601753

Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birming Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham
Birmingam Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
$\stackrel{C}{~}$ 듯 듯 \qquad X－type
Dehi
Haarl Haarlem
Beijing Besting Africar
Went
Delhi
EAI

14.0610278	Birmingham
15.0607746	Birmingham
16.0618588	Birmingham
13.0612961	Birmingham
14.0600223	Birmingham
15.0607638	Birmingham
15.0607876	Birmingham
15.0607936	Birmingham
15.0611869	Birmingham
16.0607867	Birmingham
14.0600724	Birmingham
14.0609941	Birmingham
14.0609917	Birmingham
16.0601226	Birmingham
14.0609968	Birmingham
15.0613152	Birmingham
12.0613629	Birmingham
14.0609757	Birmingham
16.0601396	Birmingham
13.0604721	Birmingham
13.0609245	Birmingham
12.0611827	Birmingham
12.0615253	Birmingham
12.0601797	Birmingham
16.0617966	Birmingham
13.0604198	Birmingham
14.0600680	Birmingham
16.0601041	Birmingham
12.0600898	Birmingham
15.0607475	Birmingham
14.0600950	Birmingham
13.0602072	Birmingham
14.0616077	Birmingham
15.0600950	Birmingham
12.0604332	Birmingham
14.0609733	Birmingham
12.0614540	Birmingham
16.0618502	Birmingham
17.0601213	Birmingham
16.0607705	Birmingham
15.0601459	Birmingham
13.0604519	Birmingham
13.0602086	Birmingham
12.0616110	Birmingham
13.0613004	Birmingham
12.0610801	Birmingham
15.0607193	Birmingham
15.0613490	Birmingham
17.0601155	Birmingham
15.0601929	Birmingham
14.0614648	Birmingham
14.0600528	Birmingham
15.0613069	Birmingham
14.0609026	Birmingham
16.0618614	Birmingham
13.0609002	Birmingham
12.0612489	Birmingham
16.0601680	Birmingham
15.0613461	Birmingham
14.0609601	Birmingham
15.0607614	Birmingham
14.0600310	Birmingham
13.0607129	Birmingham
13.0612192	Birmingham
15.0601141	Birmingham
14.0600694	Birmingham
16.0618187	Birmingham
12.0616534	Birmingham
14.0609466	Birmingham
11.0613616	Birmingham
15.0613233	Birmingham
14.0614226	Birmingham
16.0613983	Birmingham
16.0601316	Birmingham
14.0600058	Birmingham
15.0607658	Birmingham
12.0614237	Birmingham
13.0603145	Birmingham
14.0600805	Birmingham
12.0617738	Birmingham
16.0607248	Birmingham
15.0607226	Birmingham
16.0601579	Birmingham
15.0601780	Birmingham
15.0607192	Birmingham
15.0607767	Birmingham
12.0611852	Birmingham
15.0602907	Birmingham
16.0607441	Birmingham
16.0601276 16.0604314	Birmingham
16.0604314 14.0616035	Birmingham
14.0616035	Birmingham
12.0611277	Birmingham
16.0617205	Birmingham
14.0609940	Birmingham
16.0607890	Birmingham
13.0604070	Birmingham
16.0612679	Birmingham
16.0601681	Birmingham
15.0607381	Birmingham
14.0600396	Birmingham
14.0610839	Birmingham
15.0613188	Birmingham
14.0603568	Birmingham
15.0607016	Birmingham
14.0609388	Birmingham
14.0600482	Birmingham
15.0611364	Birmingham
16.0601260	Birmingham
14.0600609	Birmingham
15.0601875	Birmingham
15.0607891	Birmingham
15.0601628	Birmingham
13.0606480	Birmingham
$\begin{aligned} & 15.0604813 \\ & 16.0600545 \end{aligned}$	Birmingham Birmingham

$\stackrel{y}{3}$
 lineage
LAM
X－type
Tur Tur
EAI
West

Delhi
Delhi
lineag
lineage4
Delhi
Beijing
Bejing
Uganda
Delhi
lineage4
lineage4
$\stackrel{0}{\circ}$
듣음

Deneage4
lineage4
lineag
LAM
X－type
X－typ
LAM
Tur
Tur
lineage4
Beiiing
Beijin
Delhi
Delhi
Delhi
lineage
Delhi
Delni
lineage4
Beijing
S －type
lineage
lineage
EAI
Delhi
lineage4
lineage4
Haarlem
Haarlem
Delhi
Camer
Delhi
言㐫岦
Delhi
Delhi
lineage
$\stackrel{\text { 으․ }}{\text { 들 }}$
$\stackrel{\text { co }}{\text { a }}$
Delhi
Delhi
Delhi
M．bovis
M．bovis
Delhi
Deihi
Beijing
EAI
lineage 4
Delhi
Cameroo
Beijing
Delhi

Delhi
lineage

Haarlem
LAM
Delhi
lineage
x－type
linea

Haarlem
M．orygis
M．oryg
LAM
lineage
M．orygis
Delhi
邓

要
EAI
Delhi
Delhi
Delhi
Delhi

13.060771 16.060119 12.061420
15.060187 15.0601871
13.0602075 13.0602075
16.0601046 14.0601046
14.060097 14.0600970
13.0607959
150607778 15.0607778 4.0600566
4.0600788 14.0609149 16.0604778 15.0601597 13.0604889 16.0607766
15.0607140 15.0607140
17.0601058 17.0601058
15.0607298 16.0601922
14.0600259 15.0613282
15.0606897 15.0606887
14.0600802 14.0600802
11.0604393 11.0604393
13.0610746 13.0610746
13.0611884 13.0611884
15.0601833 15.0601833
14.0600692
09 09.0602214
15.0607446 13.0666481 16.060079570
14.0606979 16.0607570
14.0606979
16.0611103 16.0611103 13.0605713 12.0615273 12.0615273
13.0600614
13.0613605 13.0600614
13.0613605
15.0601457 15.0601457
13.0609970 12.0615237
17.0601028 17.0601028
12.0610321
14.0609538 14.0609538
14.0609546 14.0609546
11.0614819 14.0609727 14.0609727
13.0604065 13.0604065
14.0609402 14.0609402
13.0611312 13.0611312
16.0601463

14.0616130 | 14.0616130 |
| :--- |
| 14.0614975 | 12.0613586

13.0610905 13.0610905
14.0600022
14.0616019 14.0616019 16.0601118
09.0600120 16.06600120
09.06120
12.0617129 12.0617129
12.0612858 12.0612858 12.0612858
16.0617216
15.0611783 15.0611783
09.0604962 09.0604962
15.0614226 15.0601694
12.0608968 12.0608968
14.0609027
15.0607678 15.0607678
15.0607388 15.0607388
15.0613052 15.0613052
14.0604927 14.0604927
16.0601967 16.0601967
14.0613979
13.0611291 13.0611291
15.0607409 13.0612513
14.0609903 16.0618469 13.0603425 14.0609854 12.0927646 13.0611316 15.0607745
13.0613458 13.0613458
15.0601542 15.0613506 13.0609498
15.0601607
15.0601876 15.0601876
15.0615367 16.0603276
15.0607254 15.0607254
14.0600273 14.0600273
16.0618329 13.0618329
13.0609069 13.0609069
10.0605084
16.0601224 16.0601224
15.0607511
10.0611022 13.0601556 14.0601590014
14.060976 14.0609976
16.0604915 16.0604915 11.0611394 13.0605101 16.0607436 13.0606112
14.0609261 14.0609261
15.0601450 15.0601450
14.0609534 14.0600675
16.0618092

Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham

Birmingham | Birmingham |
| :--- |
| Birmingham | Birmingham

Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham Birmingham
Birmingham
兰

16.0618082 13.0610489
14.0600801 14.0600801
12.0601948 12.0601948
16.0607004 16.0607004
12.0611810
13 13.0611810
13.06467 14.0600796 13.0609467 14.0600789 13.0607148 11.0610105 13.0602613
16.0605229 7620040
7620018
7620018
7627124
7627124
7627400 7627400
7626694 7626571
7627900 7627900 7628147
7626930 7626930
7626833 7626833
7628121 7628121
7620062 7620062
7628143
762665 7628143
762675
7626725 7626725
7627574
762655 7626555
7620149 7626433
7627886 7627886
7620009 7620009
7627572
7627226 7627226
7626487 7626487 7627636
7627434 7626752
7626878 7627116
7626713 H124740138 H141600041 H101920168 H101920160031 H121260031 H1250000072 $H 1253920162$
H142040333 H142040333
H123360011 H120580018
H101620117 H102500147 H135000214 H103180114 H124040080 H114980032
H134640235 $H 134640235$
H102780066 $H 102780066$
$H 131820987$ H1418000023 H144680079
H121320026
$H 101880206$ H101880206 H112140033
H131680029 H131680029
H133140029 H133140029
H114280002 H114280002
H122480042
$H 110340018$ H1103840018 H110340018
H133180021
H15160021 H114920015 H102740017
H124080087 H102540112 H140820208 H105080006 H112980114 H140640110
H105240002 H105240002
$H 114600114$ H114600114 H111860011
H121040031 H121040031
H114440480 H140800280
$H 122800024$ H122800024
H140820241 H 140820241
H 132140021 H143080030 H102080138 H102080138
H123300022 H123300022 H 130140043
H 121160050 H 121160050
H 110580062 H130660134 H 111720040
H 131080024 H131080024
H140640101
$H 142440027$ H142440027 H131520071 H114780024 H111380011 H121380012 H103060020 H110560102
H120460024 H120460024
H121640036 H121640036 H121340004
Birmingham
Birmingham 7627736

Birmingham
Birmingham 27736 Lee
 등 London
 응흥 London
London
London 5
응
9 London
London London 옹 듣 듣 듣 등 응 London
London
London
London London
London
London 듣 듬 등 등 듣 등 등 읃 흥 듬 들 들 $\stackrel{\circ}{5}$ 듬흥 읃 읃 듣 듣 듣 ${ }_{5}^{\circ} \mathrm{O}$ London Londo London $\stackrel{\text { 듣 읃 융 }}{9}$ 듣 흗 $\stackrel{\circ}{\circ} \mathrm{O}$ 응 릉 릉 London London London London
London
London
 ondon管

듳

\square
H120640698 $H 133300002$
$H 112580012$ H112580012
H102260124 H 102260124
H111900036
H131020017 H1310200017
H120840023 H120840023
H114840036 H114840036
H114360011 H101920694
H140260305 H114700009 H132540044 H104020004 H123460050 H112880076 H113020004 $H 123460044$
$H 122020037$ H 122020037
H 102640056 H 114400013
H 114740004 H144400047
H111540004 H112860025 H1228860049 H122860049
$H 105160152$ $H 125160152$
H131780007 H131780007
H140300080 H1440000191 H124160071
H110200006 H133020037 H131320020
H110720021 H123660058 H122100024 H132560017 H124720152 H144800311
H104480049 H104480049
H130600165 H104500470 H144720288 H143120831
$H 141860035$ H141860035
H130260030 H104840010 H122660008 H1326660008 H130560193
H131460076 H131460076
H103540353 H112980113
H122280029
H112700034 H 112700034
H 104560351 H130380145 H114920016 H125180095 H132100029 H133600015 H112760022 H101460141 H102040119 H 144060098
H 114240009 H 122280030
H 112260025 $H 112260025$
$H 150240214$ H1302502426 H131740058 H141220064 H133260002 H133260002
$H 115120020$ H 115120020
H 131440121 H131440121
H123660062
H134340142 H 134340142
H 111880072 $H 122780021$
$H 143880210$ H143880210
$H 122020014$ H133700018 H134460397 H111060034 H1130620152 H134060565 H115180008
$H 142680039$ H142680039
H133460009 H121400003 H102060503 H120320024 H1033880436
H141480065 H101480093 H101320216 H 101320216
H 142640017 H142640017 H150140251
H133740011 H121460028
H142180021 H142180021
H140120166 H110380009
$H 111100025$ H111100025
H130140042 H132340027 H112260020 H145180186 H143340168 H141960036 H122240093 H102800104 H131140031 H150280022
H113760006

S2

Gene coordinates based on NC_000962.2, with 100 nucleotide positions upstream of each gene read as well
Mutations characterised as 'S' in Walker et albut as 'R' by another source, were characterised as 'R'.
Insertions and deletions characterise in Walker et al were re-computed from that data for this study
to ensure that the same version of Cortex was used for both data sets. These indels may therefore
differ a little from those published in Walker et al.

Drug
thambutol
Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol
Ethambutol Ethambutol Ethambutol
Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol

Ethambutol Ethambutol Ethambutol
Ethambutol
Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol Ethambutol
Ethambutol Ethambutol EthambutolEthambutolEthambutolthambutolEthambutolEthambutolEthambutolEthambutolEthambutolEthambutolEthambutolEthambutolEthambutolEthambutolthambutolEthambutolthambutolEthambutolEthambutolthambutolEthambutolthambutolthambutolEthambutolEthambutolEthambutEthambutolthambutolEthambutolEthambutol

Mutation Details of insertion/deletion	Cha
embA_2723_indel embA_2723_2724_ins_GGG	S
embA_A1015T	S
embA_A1016S	S
embA_A109T	S
embA_A201T	S
embA_A255V	S
embA_A312V	S
embA_A331P	S
embA_A428V	S
embA_A438V	S
embA_A460T	S
embA_A545P	S
embA_A576T	S
embA_A586T	S
embA_A734T	S
embA_A852S	S
embA_A852V	S
embA_C-12T	R
embA_C-15G	S
embA_C-16G	R
embA_C-16T	R
embA_C-59A	S
embA_C-73T	S
embA_C335W	S
embA_D1053G	S
embA_D176A	S
embA_D678N	S
embA_D761G	S
embA_D784N	S
embA_D865N	S
embA_E7K	S
embA_E951D	S
embA_G-17A	S
embA_G-43C	S
embA_G1085S	S
embA_G154S	S
embA_G157C	S
embA_G21R	S
embA_G352S	S
embA_G596S	S
embA_G884D	S
embA_H665R	S
embA_H665Y	S
embA_H673R	S
embA_I191V	S
embA_1595v	S
embA_K166N	S
embA_K773N	S
embA_L1008P	S
embA_L215M	S
embA_L215P	S
embA_L233M	S
embA_L263F	S
embA_L263P	S
embA_L314P	S
embA_L373P	S
embA_L659F	S
embA_M697V	S
embA_N54S	S
embA_P1094S	S
embA_P327H	S
embA_P327L	S
embA_P35Q	S
embA_P689L	S
embA_P75L	S
embA_P860L	S
embA_P901L	S
embA_Q1004P	S
embA_Q57E	S
embA_R683L	S
embA_S1017A	S
embA_S20A	S
embA_S20P	S
embA_S49R	S
embA_S49T	S

Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23

Ethambutol	embA_S77P	S
Ethambutol	embA_T113R	S
Ethambutol	embA_T1611	S
Ethambutol	embA_T238N	S
Ethambutol	embA_T238S	S
Ethambutol	embA_T308A	S
Ethambutol	embA_T3631	S
Ethambutol	embA_T478A	S
Ethambutol	embA_T56P	S
Ethambutol	embA_T591A	S
Ethambutol	embA_T591P	S
Ethambutol	embA_T7281	S
Ethambutol	embA_T983A	S
Ethambutol	embA_V1078M	S
Ethambutol	embA_V31A	S
Ethambutol	embA_V391ı	S
Ethambutol	embA_V414M	S
Ethambutol	embA_V698A	S
Ethambutol	embA_V6981	S
Ethambutol	embA_V9111	S
Ethambutol	embA_W1050G	S
Ethambutol	embA_W306R	S
Ethambutol	embA_Y296H	S
Ethambutol	embA_Y307H	S
Ethambutol	embB_2943_indel embB_2943_2945_del_GCA	S
Ethambutol	embB_A221T	S
Ethambutol	embB_A259V	S
Ethambutol	embB_A386E	S
Ethambutol	embB_A388V	S
Ethambutol	embB_A438T	S
Ethambutol	embB_A454T	S
Ethambutol	embB_A510T	S
Ethambutol	embB_A547S	S
Ethambutol	embB_A680T	S
Ethambutol	embB_A683V	S
Ethambutol	embB_A693T	S
Ethambutol	embB_A701T	S
Ethambutol	embB_A840P	S
Ethambutol	embB_A861T	S
Ethambutol	embB_A913V	S
Ethambutol	embB_A950V	S
Ethambutol	embB_C-2T	S
Ethambutol	embB_C361S	S
Ethambutol	embB_D1024N	S
Ethambutol	embB_D1056E	S
Ethambutol	embB_D311A	S
Ethambutol	embB_D328H	S
Ethambutol	embB_D328Y	R
Ethambutol	embB_D354A	R
Ethambutol	embB_D354G	S
Ethambutol	embB_D78E	S
Ethambutol	embB_D78G	S
Ethambutol	embB_D869H	S
Ethambutol	embB_D86N	S
Ethambutol	embB_D870N	S
Ethambutol	embB_E504D	S
Ethambutol	embB_E9510	S
Ethambutol	embB_F1012L	S
Ethambutol	embB_F161L	S
Ethambutol	embB_F285L	S
Ethambutol	embB_F628S	S
Ethambutol	embB_F676S	S
Ethambutol	embB_G-29A	S
Ethambutol	embB_G-50A	S
Ethambutol	embB_G-6A	S
Ethambutol	embB_G-90A	S
Ethambutol	embB_G100s	S
Ethambutol	embB_G1097S	S
Ethambutol	embB_G246R	S
Ethambutol	embB_G263R	S
Ethambutol	embB_G305C	S
Ethambutol	embB_G37S	S
Ethambutol	embB_G406A	R
Ethambutol	embB_G406D	R
Ethambutol	embB_G406S	R
Ethambutol	embB_G603R	S
Ethambutol	embB_G62R	S
Ethambutol	embB_G665R	S
Ethambutol	embB_G694S	S
Ethambutol	embB_G748E	S
Ethambutol	embB_G836R	S

Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23

Ethambutol	embB_H1002R	s
Ethambutol	embB_H342N	S
Ethambutol	embB_11006M	S
Ethambutol	embB_116L	S
Ethambutol	embB_K107R	S
Ethambutol	embB_K820T	S
Ethambutol	embB_K882T	S
Ethambutol	embB_L10371	S
Ethambutol	embB_L2531	s
Ethambutol	embB_L348P	S
Ethambutol	embB_L370R	S
Ethambutol	embB_L638F	S
Ethambutol	embB_L686P	S
Ethambutol	embB_L971M	S
Ethambutol	embB_M1049	S
Ethambutol	embB_M306\|	R
Ethambutol	embB_M306L	S
Ethambutol	embB_M306V	R
Ethambutol	embB_M3401	S
Ethambutol	embB_M350T	S
Ethambutol	embB_M462L	S
Ethambutol	embB_M462T	S
Ethambutol	embB_M5571	S
Ethambutol	embB_M911	S
Ethambutol	embB_N1004T	S
Ethambutol	embB_N1033k	R
Ethambutol	embB_N13S	S
Ethambutol	embB_N400s	S
Ethambutol	embB_N657D	S
Ethambutol	embB_P103T	S
Ethambutol	embB_P375S	S
Ethambutol	embB_P430L	S
Ethambutol	embB_P655Q	S
Ethambutol	embB_P731L	S
Ethambutol	embB_P776L	S
Ethambutol	embB_P93L	S
Ethambutol	embB_Q445R	S
Ethambutol	embB_Q497K	R
Ethambutol	embB_Q497P	S
Ethambutol	embB_Q497R	R
Ethambutol	embB_Q51P	S
Ethambutol	embB_Q853P	S
Ethambutol	embB_R1059P	S
Ethambutol	embB_R147C	S
Ethambutol	embB_R14Q	S
Ethambutol	embB_R182C	S
Ethambutol	embB_R620C	S
Ethambutol	embB_R7T	S
Ethambutol	embB_R930H	S
Ethambutol	embB_S1054P	S
Ethambutol	embB_S119N	S
Ethambutol	embB_S203L	S
Ethambutol	embB_S317F	S
Ethambutol	embB_S344R	S
Ethambutol	embB_S422P	S
Ethambutol	embB_S658N	S
Ethambutol	embB_S658R	S
Ethambutol	embB_S823R	S
Ethambutol	embB_T1069P	s
Ethambutol	embB_T1082A	S
Ethambutol	embB_T2081	s
Ethambutol	embB_T341A	S
Ethambutol	embB_T3411	s
Ethambutol	embB_T341N	S
Ethambutol	embB_T498N	S
Ethambutol	embB_T546A	S
Ethambutol	embB_T797M	S
Ethambutol	embB_V10481	S
Ethambutol	embB_V1071F	S
Ethambutol	embB_V131M	S
Ethambutol	embB_V135M	S
Ethambutol	embB_V188A	S
Ethambutol	embB_V230A	S
Ethambutol	embB_V2311	S
Ethambutol	embB_V283M	S
Ethambutol	embB_V566M	S
Ethambutol	embB_V602A	S
Ethambutol	embB_V6021	S
Ethambutol	emb__V6681	S
Ethambutol	embB_V67L	S
Ethambutol	embB_W273L	S

Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23

Ethambutol	embB_W332R	S
Ethambutol	embC_A1046S	S
Ethambutol	embC_A1073T	S
Ethambutol	embC_A116T	S
Ethambutol	embC_A232V	S
Ethambutol	embC_A307T	S
Ethambutol	embC_A33T	S
Ethambutol	embC_A46V	S
Ethambutol	embC_A597T	S
Ethambutol	embC_A611T	S
Ethambutol	embC_A711T	S
Ethambutol	embC_A774S	S
Ethambutol	embB: Any amino acid substitution at codon 306	R
Ethambutol	embC_A887T	S
Ethambutol	embC_A925T	S
Ethambutol	embC_A940S	S
Ethambutol	embC_C-100T	S
Ethambutol	embC_C-27T	S
Ethambutol	embC_C355F	S
Ethambutol	embC_C411R	S
Ethambutol	embC_D252H	S
Ethambutol	embC_D329n	S
Ethambutol	embC_D490G	S
Ethambutol	embC_D775N	s
Ethambutol	embC_D948N	S
Ethambutol	embC_F286L	S
Ethambutol	embC_F67V	S
Ethambutol	embC_F9821	S
Ethambutol	embC_G-66A	S
Ethambutol	embC_G101A	S
Ethambutol	embC_G237A	S
Ethambutol	embC_G383D	S
Ethambutol	embC_G764V	S
Ethambutol	embC_G817D	S
Ethambutol	embC_G831R	S
Ethambutol	embC_6857S	S
Ethambutol	embC_G909E	S
Ethambutol	embC_H369R	S
Ethambutol	embC_H910N	S
Ethambutol	embC_128V	S
Ethambutol	embC_1459V	S
Ethambutol	embC_1497M	S
Ethambutol	embC_1573T	s
Ethambutol	embC_1936V	S
Ethambutol	embC_K511N	S
Ethambutol	embC_K656N	S
Ethambutol	embC_L236P	S
Ethambutol	embC_L240P	S
Ethambutol	embC_L434F	S
Ethambutol	embC_L460R	S
Ethambutol	embC_M1040T	5
Ethambutol	embC_M234L	S
Ethambutol	embC_M727V	S
Ethambutol	embC_N127S	S
Ethambutol	embC_N176K	S
Ethambutol	embC_P1065L	S
Ethambutol	embC_P210s	S
Ethambutol	embC_P486T	S
Ethambutol	embC_P558R	s
Ethambutol	embC_P732A	S
Ethambutol	embC_P791T	S
Ethambutol	embC_P861L	S
Ethambutol	embC_Q1061H	S
Ethambutol	embC_Q491H	S
Ethambutol	embC_Q54H	S
Ethambutol	embc_Q730H	S
Ethambutol	embC_Q742H	S
Ethambutol	embC_R221C	S
Ethambutol	embC_R695W	S
Ethambutol	embC_R738W	S
Ethambutol	embC_R877W	S
Ethambutol	embC_R927H	S
Ethambutol	embC_R9H	S
Ethambutol	embC_S18F	S
Ethambutol	embC_S213N	S
Ethambutol	embC_S225R	S
Ethambutol	embC_T1044M	S
Ethambutol	embC_T1044P	S
Ethambutol	embC_T1079A	S
Ethambutol	embC_T712A	S
Ethambutol	embC_T786A	s

Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 WHO endorsed line probe assays
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23

Ethambutol
Ethambutol
Ethambutol
Ethambutol Ethambutol Isoniazid Isoniazid
Isoniazid ahpC_C-57T
Isoniazid ahpC_C-72T
Isoniazid ahpC_C-79T
Isoniazid ahpC_C-81T
Isoniazid ahpC_D182G
Isoniazid ahpC_E160K
Isoniazid ahpC_G-48A
Isoniazid ahpC_G-88A
Isoniazid ahpC_G45S
Isoniazid ahpC_K192N
Isoniazid ahpC_L191F
Isoniazid ahpC_P44R
Isoniazid ahpC_P62H
Isoniazid ahpC_T105M
Isoniazid ahpC_V158F
Isoniazid ahpC_Y34C
Isoniazid ahpC: All synonymous mutations
Isoniazid fabG1_A215T
Isoniazid fabG1_C-15T
Isoniazid fabG1_E7K
Isoniazid fabG1_G-17T
Isoniazid fabG1_G-47C
Isoniazid fabG1_G-77A
Isoniazid fabG1_L203L
Isoniazid fabG1_N24S
Isoniazid fabG1_P81A
Isoniazid fabG1_S126N
Isoniazid fabG1_T-8C
Isoniazid fabG1_T4|
Isoniazid fabG1: All synonymous mutations other than L203L
Isoniazid inhA_A-14G
Isoniazid inhA_C-40T
Isoniazid inhA_C-67T
Isoniazid inhA_G141R
Isoniazid inhA_G183R
Isoniazid inhA_I194T
Isoniazid inhA_121T
Isoniazid inhA I228V
Isoniazid inhA_S94A
soniazid inhA: All synonymous mutations
Isoniazid katG_1286_indel katG_1286_1288_del_CGC
Isoniazid katG_1339_indel katG_1339_1350_del_CACGACCTCGTC
Isoniazid katG_1365_indel katG_1365_1365_del_T
Isoniazid katG_1804_indel katG_1804_1810_del_AACCCGT
Isoniazid katG_1900_indel katG_1900_1901_ins_C
soniazid katG_21_indel katG_21_22_ins_T
Isoniazid katG_371_indel katG_371_371_del_G
Isoniazid katG_A-35G
Isoniazid katG_A109V
Isoniazid fabG1_C-15T
Isoniazid katG_A162V
Isoniazid katG_A16V
Isoniazid katG_A281T
soniazid katG_A480S
Isoniazid katG_A532P
Isoniazid katG_A551S
Isoniazid katG A591T
Isoniazid katG_A606T
Isoniazid katG_A614E
Isoniazid katG_C-79T
Isoniazid katG_C-85T
Isoniazid fabG1: Any nucleotide mutation at positions $-16,-15$ and -8 in the operator region
Isoniazid katG_D142G
Isoniazid
katG_D194N

Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 WHO endorsed line probe assays
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23

Isoniazid	katG_D215E
Isoniazid	katG_D406G
Isoniazid	katG_D511N
Isoniazid	katG_E340D
Isoniazid	katG_E522K
Isoniazid	katG_E523D
Isoniazid	katG_G-76A
Isoniazid	katG_G-89A
Isoniazid	katG_G121S
Isoniazid	katG_G123R
Isoniazid	katG_G124A
Isoniazid	katG_G124D
Isoniazid	katG_G125D
Isoniazid	katG_G182R
Isoniazid	katG_G237A
Isoniazid	katG_G285V
Isoniazid	katG_G297V
Isoniazid	katG_G534R
Isoniazid	katG_K433T
Isoniazid	katG_K537E
Isoniazid	katG_K557N
Isoniazid	katG_L141F
Isoniazid	katG_L159P
Isoniazid	katG_L205R
Isoniazid	katG_L398R
Isoniazid	katG_L598R
Isoniazid	katG_L6960
Isoniazid	katG_L704S
Isoniazid	katG_M2571
Isoniazid	katG_M609T
Isoniazid	katG_N323S
Isoniazid	katG_N562H
Isoniazid	katG_P232R
Isoniazid	katG_P432T
Isoniazid	katG_P510A
Isoniazid	katG_P6S
Isoniazid	katG_Q295A
Isoniazid	katG_Q36P
Isoniazid	katG_Q525k
Isoniazid	katG_Q525S
Isoniazid	katG_Q88E
Isoniazid	katG_R104Q
Isoniazid	katG_R519H
Isoniazid	katG_S446N
Isoniazid	katG_S481L
Isoniazid	katG_S527L
Isoniazid	katG_S700P
Isoniazid	katG_T-13C
Isoniazid	katG_T12A
Isoniazid	katG_T180K
Isoniazid	katG_T308A
Isoniazid	katG_T394A
Isoniazid	katG_T4751
Isoniazid	katG_T625A
Isoniazid	katG_T6671
Isoniazid	katG_T77R
Isoniazid	katG_V23L
Isoniazid	katG_V2601
Isoniazid	katG_V4451
Isoniazid	katG_V469L
Isoniazid	katG_V473L
Isoniazid	katG_V471
Isoniazid	katG_V5071
Isoniazid	katG_V633A
Isoniazid	katG_S315ı
Isoniazid	katG_S315N
Isoniazid	katG_S315T
Isoniazid	katG_V68G
Isoniazid	katG_V739M
Isoniazid	katG_W191G
Isoniazid	katG_W191R
Isoniazid	katG_W300C
Isoniazid	katG_W328L
Isoniazid	katG_W505Stop
Isoniazid	katG_W90R
Isoniazid	katG: All synonymous mutations
Pyrazinamide	pncA_-1526_indel pncA_-1526_561+4428_del_GCGTTGGGGTGTCTTGACCTGTCGTCCR
Pyrazinamide	pncA_-3_indel pncA_-3_-2_ins_C
Pyrazinamide	pncA_-745_indel pncA_-745_492_del_TGCGCTGGTCGGGTTTCGGCGCCACCCATGCCR
Pyrazinamide	pncA_*187Stop
Pyrazinamide	pncA_145_indel pncA_145_155_del_GACTTCCACAT

Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23

Pyrazinamide
Isoniazid
Isoniazid
Pyrazinamide
pncA_185_indel pncA_185_186_ins_A R
pncA_189_indel pncA_189_200_del_CTATTCCTCGTC S
pncA_192_indel pncA_192_193_ins_A
pncA_231_indel pncA_231_231_del_C
pncA_306_indel pncA_306_309_del_GTAC
pncA_338_indel pncA_338_346_del_GCACGCCAC S
pncA_386_indel pncA_386_389_del_ATGT R
pncA_395_indel pncA_395_527_del_GTATTGCCACCGATCATTGTGTGCGCCAGACG(S
pncA_416_indel pncA_416_416_del_T
pncA_456_indel pncA_456_457_ins_C
pncA_463_indel pncA_463_464_ins_G
pncA_47_indel pncA_47_48_ins_G
pncA_470_indel pncA_470_471_ins_A
pncA_48_indel pncA_48_74_del_TGGCTCGCTGGCGGTAACCGGTGGCGC
pncA_517_indel pncA_517_518_ins_G
katG: Any amino acid substitution at codon 315
katG: Any frame shift insertion or deletion
pncA_553_indel pncA_553_561+3_del_AGCTCCTGATGG
pncA_A102P
pncA_A134D
pncA_A143V
pncA_A146T
pncA_A79T
pncA_C-19T
pncA_C138R
pncA_D129N
pncA_D136N
pncA_D53E
pncA_D63A
pncA_E37V
pncA_F81V
pncA_G-33A
pncA_G17s
pncA_G78C
pncA_G97R
pncA_H137R
pncA_H82D
pncA_K48E
pncA_L159V
pncA_A-11G
pncA_L182S
pncA_L27P
pncA_A134V
pncA_L35R
pncA_M11
pncA_A171E
pncA_A3E
pncA_A46V
pncA_P54Q
pncA_P69S
pncA_P77L
pncA_C138Y
pncA_C14R
pncA_C72R
pncA_Q10Stop
pncA_D12A
pncA_D12G
pncA_D12N pncA_Q141Stop
pncA_D49G
pncA_D49n pncA_R121Q pncA_S104G pncA_D63G
pncA_D8E pncA_D8G pncA_D8N pncA_S18P pncA_F58L pncA_S321 pncA_F94L pncA_F94S pncA_S65P pncA_G108R pncA_G132A pncA_G132D pncA_G132S pncA_G162D pncA_G17D pncA_S66L

Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 WHO endorsed line probe assays
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23

Pyrazinamide	pncA_G24D	R
Pyrazinamide	pncA_T-60G	S
Pyrazinamide	pncA_G97C	R
Pyrazinamide	pncA_G97d	R
Pyrazinamide	pncA_T114M	S
Pyrazinamide	pncA_G97S	R
Pyrazinamide	pncA_H137P	R
Pyrazinamide	pncA_T114P	R
Pyrazinamide	pncA_H51Q	R
Pyrazinamide	pncA_H51R	R
Pyrazinamide	pncA_H57D	R
Pyrazinamide	pncA_H57P	R
Pyrazinamide	pncA_H57R	R
Pyrazinamide	pncA_H57Y	R
Pyrazinamide	pncA_H71D	R
Pyrazinamide	pncA_H71Q	R
Pyrazinamide	pncA_H71R	R
Pyrazinamide	pncA_H71Y	R
Pyrazinamide	pncA_T1681	S
Pyrazinamide	pncA_H82R	R
Pyrazinamide	pncA_133T	R
Pyrazinamide	pncA_16T	R
Pyrazinamide	pncA_T168S	S
Pyrazinamide	pncA_K96E	R
Pyrazinamide	pncA_K96N	R
Pyrazinamide	pncA_K96R	R
Pyrazinamide	pncA_K96T	R
Pyrazinamide	pncA_L116P	R
Pyrazinamide	pncA_L116R	R
Pyrazinamide	pncA_L120P	R
Pyrazinamide	pncA_L151S	R
Pyrazinamide	pncA_L159P	R
Pyrazinamide	pncA_T47A	R
Pyrazinamide	pncA_L172P	R
Pyrazinamide	pncA_T471	S
Pyrazinamide	pncA_L19P	R
Pyrazinamide	pncA_T87M	S
Pyrazinamide	pncA_V163G	S
Pyrazinamide	pncA_L4S	R
Pyrazinamide	pncA_L85P	R
Pyrazinamide	pncA_L85R	R
Pyrazinamide	pncA_M1751	R
Pyrazinamide	pncA_M175T	R
Pyrazinamide	pncA_M175V	R
Pyrazinamide	pncA_V183L	S
Pyrazinamide	pncA_P54L	R
Pyrazinamide	pncA_V21G	R
Pyrazinamide	pncA_P54S	R
Pyrazinamide	pncA_P62L	R
Pyrazinamide	pncA_P62Q	R
Pyrazinamide	pncA_V45A	S
Pyrazinamide	pncA_V7L	R
Pyrazinamide	pncA_Q10P	R
Pyrazinamide	pncA_Q10R	R
Pyrazinamide	pncA_Y64D	S
Pyrazinamide	pncA_Q141P	R
Pyrazinamide	pncA_Y99Stop	R
Rifampicin	rpoB_1278_indel rpoB_1278_1286_del_CACCAGCCA	R
Pyrazinamide	pncA_R123P	R
Rifampicin	rpoB_1292_indel rpoB_1292_1293_ins_CCA	R
Pyrazinamide	pncA_S104R	R
Rifampicin	rpoB_1295_indel rpoB_1295_1303_del_AATTCATGG	R
Rifampicin	rpoB_1296_indel rpoB_1296_1297_ins_TTC	R
Pyrazinamide	pncA_S59P	R
Rifampicin	rpoB_1299_indel rpoB_1299_1304_del_CATGGA	R
Rifampicin	rpoB_1328_indel rpoB_1328_1337_delTGACCCACAAinsGGCCCCA	R
Pyrazinamide	pncA_S66P	R
Pyrazinamide	pncA_S67P	R
Pyrazinamide	pncA_T-12C	R
Rifampicin	rpoB_2546_indel rpoB_2546_2547_ins_CGAGGA	S
Pyrazinamide	pncA_T-7C	R
Rifampicin	rpoB_A-53G	S
Rifampicin	rpoB_A334D	S
Pyrazinamide	pncA_T135N	R
Pyrazinamide	pncA_T135P	R
Pyrazinamide	pncA_T142A	R
Pyrazinamide	pncA_T142K	R
Pyrazinamide	pncA_T142M	R
Pyrazinamide	pncA_T160P	R
Rifampicin	rpoB_A544V	S
Pyrazinamide	pncA_T168P	R

ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review

Rifampicin	rpoB_A69P
Rifampicin	rpoB_A857T
Rifampicin	rpoB_A998V
Pyrazinamide	pncA_T76P
Rifampicin	rpoB_C-62T
Pyrazinamide	pncA_V125F
Pyrazinamide	pncA_V125G
Pyrazinamide	pncA_V128G
Pyrazinamide	pncA_V139A
Pyrazinamide	pncA_V139G
Pyrazinamide	pncA_V139L
Pyrazinamide	pncA_V155G
Rifampicin	rpoB_C-73T
Pyrazinamide	pncA_V180F
Pyrazinamide	pncA_V180G
Rifampicin	rpoB_D270E
Rifampicin	rpoB_D362H
Rifampicin	rpoB_D3G
Pyrazinamide	pncA_V7G
Rifampicin	rpoB_D515Y
Pyrazinamide	pncA_W68C
Pyrazinamide	pncA_W68G
Pyrazinamide	pncA_W68R
Pyrazinamide	pncA_Y103H
Pyrazinamide	pncA_Y34D
Rifampicin	rpoB_D53N
Rifampicin	rpoB_D545A
Rifampicin	rpoB_D634G
Pyrazinamide	pncA: Any frame shift insertion or deletion
Rifampicin	rpoB_D851G
Rifampicin	rpoB_E1169A
Rifampicin	rpoB_E132D
Rifampicin	rpoB_E563D
Rifampicin	rpoB_E639G
Rifampicin	rpoB_E639Q
Rifampicin	rpoB_E66K
Rifampicin	rpoB_E825G
Rifampicin	rpoB_G-96A
Rifampicin	rpoB_G28R
Rifampicin	rpoB_G890D
Rifampicin	rpoB_G981D
Rifampicin	rpoB_H343Q
Rifampicin	rpoB_H674Q
Rifampicin	rpoB_K944E
Rifampicin	rpoB_L314V
Rifampicin	rpoB_L316V
Rifampicin	rpob_L443F
Rifampicin	rpoB_L80V
Rifampicin	rpoB_L893R
Rifampicin	rpoB_M121\|
Rifampicin	rpoB_M153T
Rifampicin	rpoB_M390T
Rifampicin	rpoB_M4341
Rifampicin	rpoB_N24D
Rifampicin	rpoB_P30S
Rifampicin	rpoB_P358L
Rifampicin	rpoB_P454L
Rifampicin	rpob_P682T
Rifampicin	rpoB_P834L
Rifampicin	rpoB_P89L
Rifampicin	rpoB_R511L
Rifampicin	rpoB_R661Q
Rifampicin	rpoB_S1124A
Rifampicin	rpoB_S195R
Rifampicin	rpoB_S21F
Rifampicin	rpoB_S388L
Rifampicin	rpoB_T-6C
Rifampicin	rpoB_T3501
Rifampicin	rpoB_T526S
Rifampicin	rpoB_T676P
Rifampicin	rpoB_V109\|
Rifampicin	rpoB_V1117L
Rifampicin	rpoB_V1129A
Rifampicin	rpoB_V1131
Rifampicin	rpoB_V170F
Rifampicin	rpoB_V179A
Rifampicin	rpoB_V359A
Rifampicin	rpoB_V695L
Rifampicin	rpoB_V77M
Ethambutol	embA_M153T
Rifampicin	rpoB: All synonymous mutations

Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23
ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 ReSeqTB systematic review
Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 Walker TM et. al., Lancet Infect Dis. 2015 Jun 23

Ethambutol
Ethambutol
Ethambutol
thambutol
Ethambutol
Ethambutol
Ethambutol
Pyrazinamide
Ethambutol
Ethambutol
Ethambutol
thambutol
Ethambutol
Ethambutol
thambutol
Ethambutol
Ethambutol
thambutol
soniazid
Isoniazid
soniazid
Rifampicin
Rifampicin
Pyrazinamide
embA_P913S
embB: All synonymous mutations
embA_S49R
embA: All synonymous mutations
embA_T608N
embC: All synonymous mutations
embA_V206M
pncA: All synonymous mutations
embB_E378A
embB_K561R
embB_Q139H
embB_S565G
embC_N394D
embC_R567H
embC_R738Q
embC_T270I
embC_V104M
embC_V981L
inhA_P107S
inhA_V78A
katG_R463L
rpoB_C-61T
rpoB: Any amino acid substitution or insertion/deletion from codon 425 to codon 45 pncA_E37Stop pncA_E91Stop pncA_F106S pncA_F106Y pncA_F13I pncA_F13V pncA_F13Y pncA_F50F pncA_F581 pncA_F58S pncA_F81S pncA_F94C
pncA_F94F pncA_G101Stop
pncA_G101E pncA_G105D pncA_G105R
pncA_G105V pncA_G108Stop pncA_G108E
pncA_G124S pncA_G132C pncA_G132R
pncA_G132V pncA_G150G pncA_G162A pncA_G162V pncA_G16G pncA_G16R pncA_G16V pncA_G17C pncA_G23V pncA_G24V pncA_G55C pncA_G75V pncA_G78D pncA_G78V pncA_H137D pncA_H42N pncA_H42Q pncA_H43P pncA_H43Q pncA_H51D pncA_H51L pncA_H51N pncA_H51Y pncA_H57L pncA_H57N pncA_H57Q pncA_H71H pncA_H71L pncA_H71N pncA_H82L pncA_I133F pncA_I133N pncA_I31F pncA_I31N pncA_131T

S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 S (Phylogenetic SN Walker TM et. al., Lancet Infect Dis. 2015 Jun 23 WHO endorsed line probe assays / Xpert MTB/RIF Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19

Pyrazinamide

Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19

Pyrazinamide	pncA_S88Stop	R
Pyrazinamide	pncA_S88T	R
Pyrazinamide	pncA_T114A	R
Pyrazinamide	pncA_T114T	R
Pyrazinamide	pncA_T1351	R
Pyrazinamide	pncA_T135S	R
Pyrazinamide	pncA_A152V	R
Pyrazinamide	pncA_T142R	R
Pyrazinamide	pncA_T142T	R
Pyrazinamide	pncA_T153N	R
Pyrazinamide	pncA_T160K	R
Pyrazinamide	pncA_T160R	R
Pyrazinamide	pncA_T177T	R
Pyrazinamide	pncA_T221	R
Pyrazinamide	pncA_T47s	R
Pyrazinamide	pncA_T761	R
Pyrazinamide	pncA_T76S	R
Pyrazinamide	pncA_A161P	R
Pyrazinamide	pncA_V109L	R
Pyrazinamide	pncA_V125A	R
Pyrazinamide	pncA_V125D	R
Pyrazinamide	pncA_V125V	R
Pyrazinamide	pncA_V128A	R
Pyrazinamide	pncA_V128D	R
Pyrazinamide	pncA_V130e	R
Pyrazinamide	pncA_V131D	R
Pyrazinamide	pncA_V131F	R
Pyrazinamide	pncA_V1311	R
Pyrazinamide	pncA_A165D	R
Pyrazinamide	pncA_V139E	R
Pyrazinamide	pncA_V139M	R
Pyrazinamide	pncA_V147A	R
Pyrazinamide	pncA_V155E	R
Pyrazinamide	pncA_V155M	R
Pyrazinamide	pncA_V163E	R
Pyrazinamide	pncA_V180D	R
Pyrazinamide	pncA_V183D	R
Pyrazinamide	pncA_V183V	R
Pyrazinamide	pncA_V21A	R
Pyrazinamide	pncA_A170s	R
Pyrazinamide	pncA_V21E	R
Pyrazinamide	pncA_V44D	R
Pyrazinamide	pncA_V7A	R
Pyrazinamide	pncA_V7D	R
Pyrazinamide	pncA_V7F	R
Pyrazinamide	pncA_V93E	R
Pyrazinamide	pncA_V93L	R
Pyrazinamide	pncA_W119Stop	R
Pyrazinamide	pncA_W119G	R
Pyrazinamide	pncA_W119L	R
Pyrazinamide	pncA_A170V	R
Pyrazinamide	pncA_W119R	R
Pyrazinamide	pncA_W68Stop	R
Pyrazinamide	pncA_W68L	R
Pyrazinamide	pncA_Y103Stop	R
Pyrazinamide	pncA_Y34Y	R
Pyrazinamide	pncA_Y41Stop	R
Pyrazinamide	pncA_Y41H	R
Pyrazinamide	pncA_Y41Y	R
Pyrazinamide	pncA_Y64Stop	R
Pyrazinamide	pncA_Y95Stop	R
Pyrazinamide	pncA_A171A	R
Rifampicin	rpoB_1300_ins	R
Rifampicin	rpoB_1306_ins	R
Rifampicin	rpoB_1309_del	R
Pyrazinamide	pncA_A171T	R
Pyrazinamide	pncA_A26V	R
Pyrazinamide	pncA_A28S	R
Pyrazinamide	pncA_A30P	R
Pyrazinamide	pncA_A30S	R
Pyrazinamide	pncA_A30V	R
Pyrazinamide	pncA_A36D	R
Pyrazinamide	pncA_A36S	R
Pyrazinamide	pncA_A38A	R
Pyrazinamide	pncA_A38G	R
Pyrazinamide	pncA_A38S	R
Pyrazinamide	pncA_A3A	R
Pyrazinamide	pncA_A46A	R
Pyrazinamide	pncA_A46E	R
Rifampicin	rpoB_D435A	R
Rifampicin	rpoB_D435F	R

Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review ReSeqTB systematic review

Rifampicin	rpoB_D435G	R
Rifampicin	rpoB_D435N	R
Rifampicin	rpoB_D435V	R
Rifampicin	rpoB_D435Y	R
Pyrazinamide	pncA_A46P	R
Pyrazinamide	pncA_A79A	R
Pyrazinamide	pncA_A79p	R
Rifampicin	rpoB_D545E	R
Pyrazinamide	pncA_A89V	R
Pyrazinamide	pncA_A92E	R
Pyrazinamide	pncA_C138Stop	R
Pyrazinamide	pncA_C138F	R
Pyrazinamide	pncA_C138G	R
Pyrazinamide	pncA_C138S	R
Pyrazinamide	pncA_C14Stop	R
Pyrazinamide	pncA_C14W	R
Pyrazinamide	pncA_C14Y	R
Pyrazinamide	pncA_C184R	R
Pyrazinamide	pncA_C72Stop	R
Pyrazinamide	pncA_C72F	R
Pyrazinamide	pncA_C72W	R
Pyrazinamide	pncA_C72Y	R
Rifampicin	rpoB_H445C	R
Rifampicin	rpoB_H445D	R
Rifampicin	rpob_H445F	R
Rifampicin	rpoB_H445G	R
Rifampicin	rpoB_H445L	R
Rifampicin	rpoB_H445N	R
Rifampicin	rpoB_H445P	R
Rifampicin	rpoB_H445R	R
Rifampicin	rpoB_H445Y	R
Pyrazinamide	pncA_D110E	R
Rifampicin	rpoB_1491F	R
Pyrazinamide	pncA_D110H	R
Pyrazinamide	pncA_D110N	R
Pyrazinamide	pncA_D129E	R
Rifampicin	rpoB_L430P	R
Pyrazinamide	pncA_D12E	R
Rifampicin	rpoB_L452P	R
Pyrazinamide	pncA_D12H	R
Pyrazinamide	pncA_D12Y	R
Pyrazinamide	pncA_D136H	R
Pyrazinamide	pncA_D136V	R
Pyrazinamide	pncA_D136Y	R
Pyrazinamide	pncA_D145E	R
Pyrazinamide	pncA_D158G	R
Pyrazinamide	pncA_D166V	R
Pyrazinamide	pncA_D49E	R
Pyrazinamide	pncA_D49H	R
Pyrazinamide	pncA_D49V	R
Pyrazinamide	pncA_D49Y	R
Pyrazinamide	pncA_D56D	R
Rifampicin	rpob_Q432K	R
Rifampicin	rpoB_Q432L	R
Rifampicin	rpob_Q432P	R
Pyrazinamide	pncA_D63E	R
Pyrazinamide	pncA_D63H	R
Pyrazinamide	pncA_D63Y	R
Pyrazinamide	pncA_D80H	R
Pyrazinamide	pncA_D86V	R
Pyrazinamide	pncA_D8A	R
Rifampicin	rpob_S431T	R
Rifampicin	rpoB_S441L	R
Rifampicin	rpoB_S4410	R
Rifampicin	rpoB_S450F	R
Rifampicin	rpob_S450L	R
Rifampicin	rpoB_S4500	R
Rifampicin	rpoB_S450W	R
Rifampicin	rpoB_S450Y	R
Pyrazinamide	pncA_D8H	R
Pyrazinamide	pncA_D8V	R
Pyrazinamide	pncA_D8Y	R
Pyrazinamide	pncA_E107E	R
Pyrazinamide	pncA_E111Stop	R
Pyrazinamide	pncA_E127Stop	R
Pyrazinamide	pncA_E127D	R
Pyrazinamide	pncA_E144Stop	R
Pyrazinamide	pncA_E15Stop	R
Pyrazinamide	pncA_E173Stop	R
Pyrazinamide	pncA_E173G	R
Pyrazinamide	pncA_E174G	R

ReSeqTB systematic review
ReSeqTB systematic review ReSeqTB systematic review ReSeqTB systematic review
Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19
Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review
Yadon et. al., Nature Communications 2017 Sep 19
Yadon et. al., Nature Communications 2017 Sep 19
Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review
Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review
Yadon et. al., Nature Communications 2017 Sep 19
Yadon et. al., Nature Communications 2017 Sep 19
Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review
Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review
Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review
ReSeqTB systematic review
ReSeqTB systematic review
Yadon et. al., Nature Communications 2017 Sep 19 ReSeqTB systematic review Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19

Pyrazinamide	pncA_E174K	R
Pyrazinamide	pncA_E181Stop	R

Yadon et. al., Nature Communications 2017 Sep 19
Yadon et. al., Nature Communications 2017 Sep 19 Yadon et. al., Nature Communications 2017 Sep 19

-SSS				-RSS				-RRS				-SRS			
Prevalence of isoniazid resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of isoniazid resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of isoniazid resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of isoniazid resistance	Sensitivity	Specificity	Negative Predictive Value
1	92.9	99.6	99.9	1	95.6	92.4	100.0	1	99.3	50.0	100.0	1	85.7	100.0	99.9
2	92.9	99.6	99.9	2	95.6	92.4	99.9	2	99.3	50.0	100.0	2	85.7	100.0	99.7
3	92.9	99.6	99.8	3	95.6	92.4	99.9	3	99.3	50.0	100.0	3	85.7	100.0	99.6
4	92.9	99.6	99.7	4	95.6	92.4	99.8	4	99.3	50.0	99.9	4	85.7	100.0	99.4
5	92.9	99.6	99.6	5	95.6	92.4	99.8	5	99.3	50.0	99.9	5	85.7	100.0	99.3
6	92.9	99.6	99.5	6	95.6	92.4	99.7	6	99.3	50.0	99.9	6	85.7	100.0	99.1
7	92.9	99.6	99.5	7	95.6	92.4	99.6	7	99.3	50.0	99.9	7	85.7	100.0	98.9
8	92.9	99.6	99.4	8	95.6	92.4	99.6	8	99.3	50.0	99.9	8	85.7	100.0	98.8
9	92.9	99.6	99.3	9	95.6	92.4	99.5	9	99.3	50.0	99.9	9	85.7	100.0	98.6
10	92.9	99.6	99.2	10	95.6	92.4	99.5	10	99.3	50.0	99.8	10	85.7	100.0	98.4
11	92.9	99.6	99.1	11	95.6	92.4	99.4	11	99.3	50.0	99.8	11	85.7	100.0	98.3
12	92.9	99.6	99.0	12	95.6	92.4	99.4	12	99.3	50.0	99.8	12	85.7	100.0	98.1
13	92.9	99.6	98.9	13	95.6	92.4	99.3	13	99.3	50.0	99.8	13	85.7	100.0	97.9
14	92.9	99.6	98.8	14	95.6	92.4	99.2	14	99.3	50.0	99.8	14	85.7	100.0	97.7
15	92.9	99.6	98.8	15	95.6	92.4	99.2	15	99.3	50.0	99.8	15	85.7	100.0	97.5
16	92.9	99.6	98.7	16	95.6	92.4	99.1	16	99.3	50.0	99.7	16	85.7	100.0	97.4
17	92.9	99.6	98.6	17	95.6	92.4	99.0	17	99.3	50.0	99.7	17	85.7	100.0	97.2
18	92.9	99.6	98.5	18	95.6	92.4	99.0	18	99.3	50.0	99.7	18	85.7	100.0	97.0
19	92.9	99.6	98.3	19	95.6	92.4	98.9	19	99.3	50.0	99.7	19	85.7	100.0	96.8
20	92.9	99.6	98.2	20	95.6	92.4	98.8	20	99.3	50.0	99.6	20	85.7	100.0	96.6
21	92.9	99.6	98.1	21	95.6	92.4	98.8	21	99.3	50.0	99.6	21	85.7	100.0	96.3
22	92.9	99.6	98.0	22	95.6	92.4	98.7	22	99.3	50.0	99.6	22	85.7	100.0	96.1
23	92.9	99.6	97.9	23	95.6	92.4	98.6	23	99.3	50.0	99.6	23	85.7	100.0	95.9
24	92.9	99.6	97.8	24	95.6	92.4	98.5	24	99.3	50.0	99.6	24	85.7	100.0	95.7
25	92.9	99.6	97.7	25	95.6	92.4	98.4	25	99.3	50.0	99.5	25	85.7	100.0	95.5
26	92.9	99.6	97.5	26	95.6	92.4	98.4	26	99.3	50.0	99.5	26	85.7	100.0	95.2
27	92.9	99.6	97.4	27	95.6	92.4	98.3	27	99.3	50.0	99.5	27	85.7	100.0	95.0
28	92.9	99.6	97.3	28	95.6	92.4	98.2	28	99.3	50.0	99.5	28	85.7	100.0	94.7
29	92.9	99.6	97.2	29	95.6	92.4	98.1	29	99.3	50.0	99.4	29	85.7	100.0	94.5
30	92.9	99.6	97.0	30	95.6	92.4	98.0	30	99.3	50.0	99.4	30	85.7	100.0	94.2
31	92.9	99.6	96.9	31	95.6	92.4	97.9	31	99.3	50.0	99.4	31	85.7	100.0	94.0
32	92.9	99.6	96.7	32	95.6	92.4	97.8	32	99.3	50.0	99.3	32	85.7	100.0	93.7
33	92.9	99.6	96.6	33	95.6	92.4	97.7	33	99.3	50.0	99.3	33	85.7	100.0	93.4
34	92.9	99.6	96.4	34	95.6	92.4	97.6	34	99.3	50.0	99.3	34	85.7	100.0	93.1
35	92.9	99.6	96.3	35	95.6	92.4	97.5	35	99.3	50.0	99.2	35	85.7	100.0	92.9
36	92.9	99.6	96.1	36	95.6	92.4	97.4	36	99.3	50.0	99.2	36	85.7	100.0	92.6
37	92.9	99.6	96.0	37	95.6	92.4	97.3	37	99.3	50.0	99.2	37	85.7	100.0	92.3
38	92.9	99.6	95.8	38	95.6	92.4	97.2	38	99.3	50.0	99.1	38	85.7	100.0	91.9
39	92.9	99.6	95.6	39	95.6	92.4	97.1	39	99.3	50.0	99.1	39	85.7	100.0	91.6
40	92.9	99.6	95.4	40	95.6	92.4	96.9	40	99.3	50.0	99.1	40	85.7	100.0	91.3
41	92.9	99.6	95.3	41	95.6	92.4	96.8	41	99.3	50.0	99.0	41	85.7	100.0	91.0
42	92.9	99.6	95.1	42	95.6	92.4	96.7	42	99.3	50.0	99.0	42	85.7	100.0	90.6
43	92.9	99.6	94.9	43	95.6	92.4	96.6	43	99.3	50.0	99.0	43	85.7	100.0	90.3
44	92.9	99.6	94.7	44	95.6	92.4	96.4	44	99.3	50.0	98.9	44	85.7	100.0	89.9
45	92.9	99.6	94.5	45	95.6	92.4	96.3	45	99.3	50.0	98.9	45	85.7	100.0	89.5
46	92.9	99.6	94.3	46	95.6	92.4	96.1	46	99.3	50.0	98.8	46	85.7	100.0	89.2
47	92.9	99.6	94.0	47	95.6	92.4	96.0	47	99.3	50.0	98.8	47	85.7	100.0	88.8
48	92.9	99.6	93.8	48	95.6	92.4	95.8	48	99.3	50.0	98.7	48	85.7	100.0	88.3
49	92.9	99.6	93.6	49	95.6	92.4	95.6	49	99.3	50.0	98.7	49	85.7	100.0	87.9
50	92.9	99.6	93.3	50	95.6	92.4	95.5	50	99.3	50.0	98.6	50	85.7	100.0	87.5
51	92.9	99.6	93.1	51	95.6	92.4	95.3	51	99.3	50.0	98.6	51	85.7	100.0	87.1
52	92.9	99.6	92.8	52	95.6	92.4	95.1	52	99.3	50.0	98.5	52	85.7	100.0	86.6
53	92.9	99.6	92.5	53	95.6	92.4	94.9	53	99.3	50.0	98.4	53	85.7	100.0	86.1
54	92.9	99.6	92.2	54	95.6	92.4	94.7	54	99.3	50.0	98.4	54	85.7	100.0	85.6
55	92.9	99.6	92.0	55	95.6	92.4	94.5	55	99.3	50.0	98.3	55	85.7	100.0	85.1
56	92.9	99.6	91.7	56	95.6	92.4	94.3	56	99.3	50.0	98.2	56	85.7	100.0	84.6
57	92.9	99.6	91.3	57	95.6	92.4	94.1	57	99.3	50.0	98.2	57	85.7	100.0	84.1
58	92.9	99.6	91.0	58	95.6	92.4	93.9	58	99.3	50.0	98.1	58	85.7	100.0	83.5
59	92.9	99.6	90.7	59	95.6	92.4	93.6	59	99.3	50.0	98.0	59	85.7	100.0	82.9
60	92.9	99.6	90.3	60	95.6	92.4	93.4	60	99.3	50.0	97.9	60	85.7	100.0	82.4
61	92.9	99.6	89.9	61	95.6	92.4	93.1	61	99.3	50.0	97.8	61	85.7	100.0	81.7
62	92.9	99.6	89.5	62	95.6	92.4	92.8	62	99.3	50.0	97.8	62	85.7	100.0	81.1
63	92.9	99.6	89.1	63	95.6	92.4	92.5	63	99.3	50.0	97.7	63	85.7	100.0	80.4
64	92.9	99.6	88.7	64	95.6	92.4	92.2	64	99.3	50.0	97.6	64	85.7	100.0	79.7
65	92.9	99.6	88.3	65	95.6	92.4	91.9	65	99.3	50.0	97.5	65	85.7	100.0	79.0
66	92.9	99.6	87.8	66	95.6	92.4	91.6	66	99.3	50.0	97.3	66	85.7	100.0	78.3
67	92.9	99.6	87.3	67	95.6	92.4	91.2	67	99.3	50.0	97.2	67	85.7	100.0	77.5
68	92.9	99.6	86.8	68	95.6	92.4	90.9	68	99.3	50.0	97.1	68	85.7	100.0	76.7
69	92.9	99.6	86.3	69	95.6	92.4	90.5	69	99.3	50.0	97.0	69	85.7	100.0	75.9
70	92.9	99.6	85.7	70	95.6	92.4	90.1	70	99.3	50.0	96.8	70	85.7	100.0	75.0
71	92.9	99.6	85.1	71	95.6	92.4	89.6	71	99.3	50.0	96.7	71	85.7	100.0	74.1
72	92.9	99.6	84.5	72	95.6	92.4	89.1	72	99.3	50.0	96.5	72	85.7	100.0	73.1
73	92.9	99.6	83.8	73	95.6	92.4	88.7	73	99.3	50.0	96.3	73	85.7	100.0	72.1
74	92.9	99.6	83.1	74	95.6	92.4	88.1	74	99.3	50.0	96.2	74	85.7	100.0	71.1
75	92.9	99.6	82.3	75	95.6	92.4	87.6	75	99.3	50.0	96.0	75	85.7	100.0	70.0
76	92.9	99.6	81.5	76	95.6	92.4	87.0	76	99.3	50.0	95.7	76	85.7	100.0	68.9
77	92.9	99.6	80.7	77	95.6	92.4	86.3	77	99.3	50.0	95.5	77	85.7	100.0	67.6
78	92.9	99.6	79.8	78	95.6	92.4	85.6	78	99.3	50.0	95.3	78	85.7	100.0	66.4
79	92.9	99.6	78.8	79	95.6	92.4	84.9	79	99.3	50.0	95.0	79	85.7	100.0	65.0
80	92.9	99.6	77.7	80	95.6	92.4	84.1	80	99.3	50.0	94.7	80	85.7	100.0	63.6
81	92.9	99.6	76.6	81	95.6	92.4	83.2	81	99.3	50.0	94.3	81	85.7	100.0	62.1
82	92.9	99.6	75.4	82	95.6	92.4	82.3	82	99.3	50.0	94.0	82	85.7	100.0	60.6
83	92.9	99.6	74.1	83	95.6	92.4	81.2	83	99.3	50.0	93.6	83	85.7	100.0	58.9
84	92.9	99.6	72.7	84	95.6	92.4	80.1	84	99.3	50.0	93.1	84	85.7	100.0	57.1
85	92.9	99.6	71.1	85	95.6	92.4	78.8	85	99.3	50.0	92.6	85	85.7	100.0	55.3
86	92.9	99.6	69.5	86	95.6	92.4	77.5	86	99.3	50.0	92.1	86	85.7	100.0	53.3
87	92.9	99.6	67.6	87	95.6	92.4	75.9	87	99.3	50.0	91.4	87	85.7	100.0	51.1
88	92.9	99.6	65.6	88	95.6	92.4	74.2	88	99.3	50.0	90.7	88	85.7	100.0	48.8
89	92.9	99.6	63.3	89	95.6	92.4	72.3	89	99.3	50.0	89.8	89	85.7	100.0	46.4
90	92.9	99.6	60.8	90	95.6	92.4	70.1	90	99.3	50.0	88.8	90	\% 7	100.0	3.8

91	92.9	99.6	58.0	91	95.692 .4	67.6	91	99.3	50.0	87.6	91	85.7100 .0	40.9
92	92.9	99.6	54.8	92	95.692 .4	64.7	92	99.3	50.0	86.1	92	85.7100 .0	37.8
93	92.9	99.6	51.3	93	95.692 .4	61.4	93	99.3	50.0	84.3	93	85.7100 .0	34.5
94	92.9	99.6	47.1	94	95.6 92.4	57.4	94	99.3	50.0	82.0	94	85.7100 .0	30.9
95	92.9	99.6	42.4	95	$95.6 \quad 92.4$	52.6	95	99.3	50.0	78.9	95	85.7100 .0	26.9
96	92.9	99.6	36.8	96	95.692 .4	46.8	96	99.3	50.0	74.8	96	85.7100 .0	22.6
97	92.9	99.6	30.2	97	95.692 .4	39.5	97	99.3	50.0	68.8	97	85.7100 .0	17.8
98	92.9	99.6	22.2	98	95.692 .4	30.1	98	99.3	50.0	59.2	98	85.7100 .0	12.5
99	92.9	99.6	12.4	99	95.692 .4	17.6	99	99.3	50.0	41.8	99	85.7100 .0	6.6
100	92.9	99.6	0.0	100	$95.6 \quad 92.4$	0.0	100	99.3	50.0	0.0	100	85.7100 .0	0.0
-SSR				-RRR			-RSR				-SRR		
		Specificity		Prevalence	Sensitivity Specificity	Negative Predictive Value	Prevalence of isoniazid resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of isoniazid resistance	Sensitivity Specificity	Negative Predictive Value
of isoniazid resistance	Sensitivity		Predictive Value	of isoniazid resistance									
,	96.0	100.0	100.0	1	$99.5 \mathrm{n} / \mathrm{a}$	n / a	1	98.6	100.0	100.0	resistance	$100.0 \mathrm{n} / \mathrm{a}$	n/a
2	96.0	100.0	99.9	2	$99.5 \mathrm{n} / \mathrm{a}$	n/a	2	98.6	100.0	100.0	2	100.0 n/a	n/a
3	96.0	100.0	99.9	3	$99.5 \mathrm{n} / \mathrm{a}$	n/a		98.6	100.0	100.0	3	$100.0 \mathrm{n} / \mathrm{a}$	
4	96.0	100.0	99.8	4	$99.5 \mathrm{n} / \mathrm{a}$	n/a	3 4	98.698.6	100.0	99.9	4		n/a
5	96.0	100.0	99.8	5	$99.5 \mathrm{n} / \mathrm{a}$	n/a	5		100.0	99.9	$100.0 \mathrm{n} / \mathrm{a}$		
6	96.0	100.0	99.7	6	$99.5 \mathrm{n} / \mathrm{a}$	n/a	6	98.6	100.0	99.9	6	$100.0 \mathrm{n} / \mathrm{a}$	n/a
7	96.0	100.0	99.7	7	$99.5 \mathrm{n} / \mathrm{a}$	n/a	7	98.6	100.0	99.9 9.9	7	$100.0 \mathrm{n} / \mathrm{a}$	n/a
8	96.0	100.0	99.7	8	$99.5 \mathrm{n} / \mathrm{a}$	n/a	8	98.6	100.0		8	$100.0 \mathrm{n} / \mathrm{a}$	n/a
9	96.0	100.0	99.6	9	$99.5 \mathrm{n} / \mathrm{a}$ $99.5 \mathrm{n} / \mathrm{a}$	n/a	910	98.6	100.0100.0	$\begin{aligned} & 99.9 \\ & 99.9 \end{aligned}$	9	$100.0 \mathrm{n} / \mathrm{a}$	n/a
10	96.0	100.0	99.6	10		n/a		98.6		99.9 99.8	10	$100.0 \mathrm{n} / \mathrm{a}$	n/a
11	96.0	100.0	99.5	11	$99.5 \mathrm{n} / \mathrm{a}$ $99.5 \mathrm{n} / \mathrm{a}$		10 11	98.6	100.0 100.0	99.8	${ }^{11}$	$100.0 \mathrm{n} / \mathrm{a}$	n/a
12	96.0	100.0	99.5	12	$99.5 \mathrm{n} / \mathrm{a}$	$\begin{aligned} & \text { n/a } \\ & \text { n/a } \end{aligned}$	11 12	98.6	100.0	99.8	12	$12.100 .0 \mathrm{n} / \mathrm{a}$	n/a
13	96.0	100.0	99.4	13	$99.5 \mathrm{n} / \mathrm{a}$	n/a	12 13 14	-98.6	100.0	99.8	13	$100.0 \mathrm{n} / \mathrm{a}$$100.0 \mathrm{n} / \mathrm{a}$	n/a
14	96.0	100.0	99.4	14	$99.5 \mathrm{n} / \mathrm{a}$	n/a		98.6	100.0	99.8	1415		n/a
15	96.0	100.0	99.3	15	$99.5 \mathrm{n} / \mathrm{a}$$99.5 \mathrm{n} / \mathrm{a}$	n/a	14 15	98.6	100.0	99.8		$100.0 \mathrm{n} / \mathrm{a}$ $100.0 \mathrm{n} / \mathrm{a}$	n / a
16	96.0	100.0	99.2	16		n/a	1617	98.6	100.0	99.7	16	$100.0 \mathrm{n} / \mathrm{a}$	n/a
17	96.0	100.0	99.2	17	$99.5 \mathrm{n} / \mathrm{a}$			98.6	100.0	99.7	17	$100.0 \mathrm{n} / \mathrm{a}$	n/a
18	96.0	100.0	99.1	18	$99.5 \mathrm{n} / \mathrm{a}$	n/a	18	98.6	100.0	99.7	18	$100.0 \mathrm{n} / \mathrm{a}$	n/a
19	96.0	100.0	99.1	19	$99.5 \mathrm{n} / \mathrm{a}$	n/a	19	98.6	100.0	99.7	19	$100.0 \mathrm{n} / \mathrm{a}$	n/a
20	96.0	100.0	99.0	20	$99.5 \mathrm{n} / \mathrm{a}$	n/a	20	98.6	100.0	99.7	20	$100.0 \mathrm{n} / \mathrm{a}$	n/a
21	96.0	100.0	98.9	21	$99.5 \mathrm{n} / \mathrm{a}$	n/a	21	98.6	100.0	99.6	21	$100.0 \mathrm{n} / \mathrm{a}$	n/a
22	96.0	100.0	98.9	22	$99.5 \mathrm{n} / \mathrm{a}$	n/a	22	98.6	100.0	99.6	22	$100.0 \mathrm{n} / \mathrm{a}$	n/a
23	96.0	100.0	98.8	23	$99.5 \mathrm{n} / \mathrm{a}$	n/a	23	98.6	100.0	99.6	23	$100.0 \mathrm{n} / \mathrm{a}$	n/a
24	96.0	100.0	98.8	24	$99.5 \mathrm{n} / \mathrm{a}$	n/a	24	98.6	100.0	99.6	24	$100.0 \mathrm{n} / \mathrm{a}$	n/a
25	96.0	100.0	98.7	25	$99.5 \mathrm{n} / \mathrm{a}$	n/a	25	98.6	100.0	99.5	25	$100.0 \mathrm{n} / \mathrm{a}$	n/a
26	96.0	100.0	98.6	26	$99.5 \mathrm{n} / \mathrm{a}$	n/a	26	98.6	100.0	99.5	26	$100.0 \mathrm{n} / \mathrm{a}$	n/a
27	96.0	100.0	98.5	27	$99.5 \mathrm{n} / \mathrm{a}$	n/a	27	98.6	100.0	99.5	27	$100.0 \mathrm{n} / \mathrm{a}$	n/a
28	96.0	100.0	98.5	28	$99.5 \mathrm{n} / \mathrm{a}$	n/a	28	98.6	100.0	99.5	28	$100.0 \mathrm{n} / \mathrm{a}$	n/a
29	96.0	100.0	98.4	29	$99.5 \mathrm{n} / \mathrm{a}$	n/a	29	98.6	100.0	99.4	29	$100.0 \mathrm{n} / \mathrm{a}$	n/a
30	96.0	100.0	98.3	30	$99.5 \mathrm{n} / \mathrm{a}$	n/a	30	98.6	100.0	99.4	30	$100.0 \mathrm{n} / \mathrm{a}$	n/a
31	96.0	100.0	98.2	31	$99.5 \mathrm{n} / \mathrm{a}$	n/a	31	98.6	100.0	99.4	31	$100.0 \mathrm{n} / \mathrm{a}$	n/a
32	96.0	100.0	98.2	32	$99.5 \mathrm{n} / \mathrm{a}$	n/a	32	98.6	100.0	99.4	32	$100.0 \mathrm{n} / \mathrm{a}$	n/a
33	96.0	100.0	98.1	33	$99.5 \mathrm{n} / \mathrm{a}$	n/a	33	98.6	100.0	99.3	33	$100.0 \mathrm{n} / \mathrm{a}$	n/a
34	96.0	100.0	98.0	34	$99.5 \mathrm{n} / \mathrm{a}$	n/a	34	98.6	100.0	99.3	34	$100.0 \mathrm{n} / \mathrm{a}$	n/a
35	96.0	100.0	97.9	35	$99.5 \mathrm{n} / \mathrm{a}$	n/a	35	98.6	100.0	99.3	35	$100.0 \mathrm{n} / \mathrm{a}$	n/a
36	96.0	100.0	97.8	36	$99.5 \mathrm{n} / \mathrm{a}$	n/a	36	98.6	100.0	99.2	36	$100.0 \mathrm{n} / \mathrm{a}$	n/a
37	96.0	100.0	97.7	37	$99.5 \mathrm{n} / \mathrm{a}$	n/a	37	98.6	100.0	99.2	37	$100.0 \mathrm{n} / \mathrm{a}$	n/a
38	96.0	100.0	97.6	38	$99.5 \mathrm{n} / \mathrm{a}$	n/a	38	98.6	100.0	99.2	38	$100.0 \mathrm{n} / \mathrm{a}$	n/a
39	96.0	100.0	97.5	39	$99.5 \mathrm{n} / \mathrm{a}$	n/a	39	98.6	100.0	99.1	39	$100.0 \mathrm{n} / \mathrm{a}$	n/a
40	96.0	100.0	97.4	40	$99.5 \mathrm{n} / \mathrm{a}$	n/a	40	98.6	100.0	99.1	40	$100.0 \mathrm{n} / \mathrm{a}$	n/a
41	96.0	100.0	97.3	41	$99.5 \mathrm{n} / \mathrm{a}$	n/a	41	98.6	100.0	99.1	41	$100.0 \mathrm{n} / \mathrm{a}$	n/a
42	96.0	100.0	97.2	42	$99.5 \mathrm{n} / \mathrm{a}$	n/a	42	98.6	100.0	99.0	42	$100.0 \mathrm{n} / \mathrm{a}$	n/a
43	96.0	100.0	97.1	43	$99.5 \mathrm{n} / \mathrm{a}$	n/a	43	98.6	100.0	99.0	43	$100.0 \mathrm{n} / \mathrm{a}$	n/a
44	96.0	100.0	97.0	44	$99.5 \mathrm{n} / \mathrm{a}$	n/a	44	98.6	100.0	98.9	44	$100.0 \mathrm{n} / \mathrm{a}$	n/a
45	96.0	100.0	96.8	45	$99.5 \mathrm{n} / \mathrm{a}$	n/a	45	98.6	100.0	98.9	45	$100.0 \mathrm{n} / \mathrm{a}$	n/a
46	96.0	100.0	96.7	46	$99.5 \mathrm{n} / \mathrm{a}$	n/a	46	98.6	100.0	98.9	46	$100.0 \mathrm{n} / \mathrm{a}$	n/a
47	96.0	100.0	96.6	47	$99.5 \mathrm{n} / \mathrm{a}$	n/a	47	98.6	100.0	98.8	47	$100.0 \mathrm{n} / \mathrm{a}$	n/a
48	96.0	100.0	96.4	48	$99.5 \mathrm{n} / \mathrm{a}$	n/a	48	98.6	100.0	98.8	48	$100.0 \mathrm{n} / \mathrm{a}$	n/a
49	96.0	100.0	96.3	49	$99.5 \mathrm{n} / \mathrm{a}$	n/a	49	98.6	100.0	98.7	49	$100.0 \mathrm{n} / \mathrm{a}$	n/a
50	96.0	100.0	96.2	50	$99.5 \mathrm{n} / \mathrm{a}$	n/a	50	98.6	100.0	98.7	50	$100.0 \mathrm{n} / \mathrm{a}$	n/a
51	96.0	100.0	96.0	51	$99.5 \mathrm{n} / \mathrm{a}$	n/a	51	98.6	100.0	98.6	51	$100.0 \mathrm{n} / \mathrm{a}$	n/a
52	96.0	100.0	95.8	52	$99.5 \mathrm{n} / \mathrm{a}$	n/a	52	98.6	100.0	98.5	52	$100.0 \mathrm{n} / \mathrm{a}$	n/a
53	96.0	100.0	95.7	53	$99.5 \mathrm{n} / \mathrm{a}$	n/a	53	98.6	100.0	98.5	53	$100.0 \mathrm{n} / \mathrm{a}$	n/a
54	96.0	100.0	95.5	54	$99.5 \mathrm{n} / \mathrm{a}$	n/a	54	98.6	100.0	98.4	54	$100.0 \mathrm{n} / \mathrm{a}$	n/a
55	96.0	100.0	95.3	55	$99.5 \mathrm{n} / \mathrm{a}$	n/a	55	98.6	100.0	98.4	55	$100.0 \mathrm{n} / \mathrm{a}$	n/a
56	96.0	100.0	95.2	56	$99.5 \mathrm{n} / \mathrm{a}$	n/a	56	98.6	100.0	98.3	56	$100.0 \mathrm{n} / \mathrm{a}$	n/a
57	96.0	100.0	95.0	57	$99.5 \mathrm{n} / \mathrm{a}$	n/a	57	98.6	100.0	98.2	57	$100.0 \mathrm{n} / \mathrm{a}$	n/a
58	96.0	100.0	94.8	58	$99.5 \mathrm{n} / \mathrm{a}$	n/a	58	98.6	100.0	98.2	58	$100.0 \mathrm{n} / \mathrm{a}$	n/a
59	96.0	100.0	94.6	59	$99.5 \mathrm{n} / \mathrm{a}$	n/a	59	98.6	100.0	98.1	59	$100.0 \mathrm{n} / \mathrm{a}$	n/a
60	96.0	100.0	94.3	60	$99.5 \mathrm{n} / \mathrm{a}$	n/a	60	98.6	100.0	98.0	60	$100.0 \mathrm{n} / \mathrm{a}$	n/a
61	96.0	100.0	94.1	61	$99.5 \mathrm{n} / \mathrm{a}$	n/a	61	98.6	100.0	97.9	61	$100.0 \mathrm{n} / \mathrm{a}$	n/a
62	96.0	100.0	93.9	62	$99.5 \mathrm{n} / \mathrm{a}$	n/a	62	98.6	100.0	97.8	62	$100.0 \mathrm{n} / \mathrm{a}$	n/a
63	96.0	100.0	93.6	63	$99.5 \mathrm{n} / \mathrm{a}$	n/a	63	98.6	100.0	97.7	63	$100.0 \mathrm{n} / \mathrm{a}$	n/a
64	96.0	100.0	93.4	64	$99.5 \mathrm{n} / \mathrm{a}$	n/a	64	98.6	100.0	97.6	64	$100.0 \mathrm{n} / \mathrm{a}$	n/a
65	96.0	100.0	93.1	65	$99.5 \mathrm{n} / \mathrm{a}$	n/a	65	98.6	100.0	97.5	65	$100.0 \mathrm{n} / \mathrm{a}$	n/a
66	96.0	100.0	92.8	66	$99.5 \mathrm{n} / \mathrm{a}$	n/a	66	98.6	100.0	97.4	66	$100.0 \mathrm{n} / \mathrm{a}$	n/a
67	96.0	100.0	92.5	67	$99.5 \mathrm{n} / \mathrm{a}$	n/a	67	98.6	100.0	97.3	67	$100.0 \mathrm{n} / \mathrm{a}$	n/a
68	96.0	100.0	92.2	68	$99.5 \mathrm{n} / \mathrm{a}$	n/a	68	98.6	100.0	97.2	68	$100.0 \mathrm{n} / \mathrm{a}$	n/a
69	96.0	100.0	91.8	69	$99.5 \mathrm{n} / \mathrm{a}$	n/a	69	98.6	100.0	97.1	69	$100.0 \mathrm{n} / \mathrm{a}$	n/a
70	96.0	100.0	91.5	70	$99.5 \mathrm{n} / \mathrm{a}$	n/a	70	98.6	100.0	96.9	70	$100.0 \mathrm{n} / \mathrm{a}$	n/a
71	96.0	100.0	91.1	71	$99.5 \mathrm{n} / \mathrm{a}$	n/a	71	98.6	100.0	96.8	71	$100.0 \mathrm{n} / \mathrm{a}$	n/a
72	96.0	100.0	90.7	72	$99.5 \mathrm{n} / \mathrm{a}$	n/a	72	98.6	100.0	96.6	72	$100.0 \mathrm{n} / \mathrm{a}$	n/a
73	96.0	100.0	90.2	73	$99.5 \mathrm{n} / \mathrm{a}$	n/a	73	98.6	100.0	96.4	73	$100.0 \mathrm{n} / \mathrm{a}$	n/a
74	96.0	100.0	89.8	74	$99.5 \mathrm{n} / \mathrm{a}$	n/a	74	98.6	100.0	96.3	74	$100.0 \mathrm{n} / \mathrm{a}$	n/a
75	96.0	100.0	89.3	75	$99.5 \mathrm{n} / \mathrm{a}$	n/a	75	98.6	100.0	96.1	75	$100.0 \mathrm{n} / \mathrm{a}$	n/a
76	96.0	100.0	88.8	76	$99.5 \mathrm{n} / \mathrm{a}$	n/a	76	98.6	100.0	95.9	76	$100.0 \mathrm{n} / \mathrm{a}$	n/a
77	96.0	100.0	88.2	77	$99.5 \mathrm{n} / \mathrm{a}$	n/a	77	98.6	100.0	95.6	77	$100.0 \mathrm{n} / \mathrm{a}$	n/a
78	96.0	100.0	87.6	78	$99.5 \mathrm{n} / \mathrm{a}$	n/a	78	98.6	100.0	95.4	78	$100.0 \mathrm{n} / \mathrm{a}$	n/a
79	96.0	100.0	86.9	79	$99.5 \mathrm{n} / \mathrm{a}$	n/a	79	98.6	100.0	95.1	79	$100.0 \mathrm{n} / \mathrm{a}$	n/a
80	96.0	100.0	86.2	80	$99.5 \mathrm{n} / \mathrm{a}$	n/a	80	98.6	100.0	94.8	80	$100.0 \mathrm{n} / \mathrm{a}$	n/a
81	96.0	100.0	85.4	81	$99.5 \mathrm{n} / \mathrm{a}$	n/a	81	98.6	100.0	94.5	81	$100.0 \mathrm{n} / \mathrm{a}$	n/a
82	96.0	100.0	84.6	82	99.5 n/a	n/a	82	98.6	100.0	94.2	82	$100.0 \mathrm{n} / \mathrm{a}$	n/a

74	100.0	90.0	100.0
75	100.0	90.0	100.0
76	100.0	90.0	100.0
77	100.0	90.0	100.0
78	100.0	90.0	100.0
79	100.0	90.0	100.0
80	100.0	90.0	100.0
81	100.0	90.0	100.0
82	100.0	90.0	100.0
83	100.0	90.0	100.0
84	100.0	90.0	100.0
85	100.0	90.0	100.0
86	100.0	90.0	100.0
87	100.0	90.0	100.0
88	100.0	90.0	100.0
89	100.0	90.0	100.0
90	100.0	90.0	100.0
91	100.0	90.0	100.0
92	100.0	90.0	100.0
93	100.0	90.0	100.0
94	100.0	90.0	100.0
95	100.0	90.0	100.0
96	100.0	90.0	100.0
97	100.0	90.0	100.0
98	100.0	90.0	100.0
99	100.0	90.0	100.0
100	100.0	90.0	\#DIV/0!

74	33.3	100.0	34.5
75	33.3	100.0	33.3
76	33.3	100.0	32.1
77	33.3	100.0	30.9
78	33.3	100.0	29.7
79	33.3	100.0	28.5
80	33.3	100.0	27.3
81	33.3	100.0	26.0
82	33.3	100.0	24.8
83	33.3	100.0	23.5
84	33.3	100.0	22.2
85	33.3	100.0	20.9
86	33.3	100.0	19.6
87	33.3	100.0	18.3
88	33.3	100.0	17.0
89	33.3	100.0	15.6
90	33.3	100.0	14.3
91	33.3	100.0	12.9
92	33.3	100.0	11.5
93	33.3	100.0	10.1
94	33.3	100.0	8.7
95	33.3	100.0	7.3
96	33.3	100.0	5.9
97	33.3	100.0	4.4
98	33.3	100.0	3.0
99	33.3	100.0	1.5
100	33.3	100.0	0.0

[^1]$\begin{array}{ll}\text { n/a } & \text { n/a } \\ \text { n/a } & n / a \\ \text { n/a } & n / a \\ n / a & n / a \\ n / a & n / a \\ n / a & n / a\end{array}$
n / a

	R-SS			R-RS				R-SR				R-RR			
Prevalence of rifampicin resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of rifampicin resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of rifampicin resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of rifampicin resistance	Sensitivity	Specificity	Negative Predictive Value
1	95.9	95.9	100.0	1	98.4	86.2	100.0	1	98.2	74.1	100.0	1	99.7	23.1	100.0
2	95.9	95.9	99.9	2	98.4	86.2	100.0	2	98.2	74.1	100.0	2	99.7	23.1	100.0
3	95.9	95.9	99.9	3	98.4	86.2	99.9	3	98.2	74.1	99.9	3	99.7	23.1	100.0
4	95.9	95.9	99.8	4	98.4	86.2	99.9	4	98.2	74.1	99.9	4	99.7	23.1	99.9
5	95.9	95.9	99.8	5	98.4	86.2	99.9	5	98.2	74.1	99.9	5	99.7	23.1	99.9
6	95.9	95.9	99.7	6	98.4	86.2	99.9	6	98.2	74.1	99.8	6	99.7	23.1	99.9
7	95.9	95.9	99.7	7	98.4	86.2	99.9	7	98.2	74.1	99.8	7	99.7	23.1	99.9
8	95.9	95.9	99.6	8	98.4	86.2	99.8	8	98.2	74.1	99.8	8	99.7	23.1	99.9
9	95.9	95.9	99.6	9	98.4	86.2	99.8	9	98.2	74.1	99.8	9	99.7	23.1	99.9
10	95.9	95.9	99.5	10	98.4	86.2	99.8	10	98.2	74.1	99.7	10	99.7	23.1	99.9
11	95.9	95.9	99.5	11	98.4	86.2	99.8	11	98.2	74.1	99.7	11	99.7	23.1	99.8
12	95.9	95.9	99.4	12	98.4	86.2	99.7	12	98.2	74.1	99.7	12	99.7	23.1	99.8
13	95.9	95.9	99.4	13	98.4	86.2	99.7	13	98.2	74.1	99.6	13	99.7	23.1	99.8
14	95.9	95.9	99.3	14	98.4	86.2	99.7	14	98.2	74.1	99.6	14	99.7	23.1	99.8
15	95.9	95.9	99.2	15	98.4	86.2	99.7	15	98.2	74.1	99.6	15	99.7	23.1	99.8
16	95.9	95.9	99.2	16	98.4	86.2	99.6	16	98.2	74.1	99.5	16	99.7	23.1	99.8
17	95.9	95.9	99.1	17	98.4	86.2	99.6	17	98.2	74.1	99.5	17	99.7	23.1	99.7
18	95.9	95.9	99.1	18	98.4	86.2	99.6	18	98.2	74.1	99.5	18	99.7	23.1	99.7
19	95.9	95.9	99.0	19	98.4	86.2	99.6	19	98.2	74.1	99.4	19	99.7	23.1	99.7
20	95.9	95.9	98.9	20	98.4	86.2	99.5	20	98.2	74.1	99.4	20	99.7	23.1	99.7
21	95.9	95.9	98.9	21	98.4	86.2	99.5	21	98.2	74.1	99.4	21	99.7	23.1	99.7
22	95.9	95.9	98.8	22	98.4	86.2	99.5	22	98.2	74.1	99.3	22	99.7	23.1	99.6
23	95.9	95.9	98.7	23	98.4	86.2	99.4	23	98.2	74.1	99.3	23	99.7	23.1	99.6
24	95.9	95.9	98.7	24	98.4	86.2	99.4	24	98.2	74.1	99.2	24	99.7	23.1	99.6
25	95.9	95.9	98.6	25	98.4	86.2	99.4	25	98.2	74.1	99.2	25	99.7	23.1	99.6
26	95.9	95.9	98.5	26	98.4	86.2	99.3	26	98.2	74.1	99.2	26	99.7	23.1	99.5
27	95.9	95.9	98.4	27	98.4	86.2	99.3	27	98.2	74.1	99.1	27	99.7	23.1	99.5
28	95.9	95.9	98.4	28	98.4	86.2	99.3	28	98.2	74.1	99.1	28	99.7	23.1	99.5
29	95.9	95.9	98.3	29	98.4	86.2	99.2	29	98.2	74.1	99.0	29	99.7	23.1	99.5
30	95.9	95.9	98.2	30	98.4	86.2	99.2	30	98.2	74.1	99.0	30	99.7	23.1	99.4
31	95.9	95.9	98.1	31	98.4	86.2	99.2	31	98.2	74.1	98.9	31	99.7	23.1	99.4
32	95.9	95.9	98.0	32	98.4	86.2	99.1	32	98.2	74.1	98.9	32	99.7	23.1	99.4
33	95.9	95.9	97.9	33	98.4	86.2	99.1	33	98.2	74.1	98.8	33	99.7	23.1	99.4
34	95.9	95.9	97.8	34	98.4	86.2	99.0	34	98.2	74.1	98.8	34	99.7	23.1	99.3
35	95.9	95.9	97.7	35	98.4	86.2	99.0	35	98.2	74.1	98.7	35	99.7	23.1	99.3
36	95.9	95.9	97.6	36	98.4	86.2	99.0	36	98.2	74.1	98.7	36	99.7	23.1	99.3
37	95.9	95.9	97.5	37	98.4	86.2	98.9	37	98.2	74.1	98.6	37	99.7	23.1	99.2
38	95.9	95.9	97.4	38	98.4	86.2	98.9	38	98.2	74.1	98.5	38	99.7	23.1	99.2
39	95.9	95.9	97.3	39	98.4	86.2	98.8	39	98.2	74.1	98.5	39	99.7	23.1	99.2
40	95.9	95.9	97.2	40	98.4	86.2	98.8	40	98.2	74.1	98.4	40	99.7	23.1	99.1
41	95.9	95.9	97.1	41	98.4	86.2	98.7	41	98.2	74.1	98.3	41	99.7	23.1	99.1
42	95.9	95.9	97.0	42	98.4	86.2	98.7	42	98.2	74.1	98.3	42	99.7	23.1	99.1
43	95.9	95.9	96.9	43	98.4	86.2	98.6	43	98.2	74.1	98.2	43	99.7	23.1	99.0
44	95.9	95.9	96.7	44	98.4	86.2	98.5	44	98.2	74.1	98.1	44	99.7	23.1	99.0
45	95.9	95.9	96.6	45	98.4	86.2	98.5	45	98.2	74.1	98.0	45	99.7	23.1	98.9
46	95.9	95.9	96.5	46	98.4	86.2	98.4	46	98.2	74.1	98.0	46	99.7	23.1	98.9
47	95.9	95.9	96.3	47	98.4	86.2	98.4	47	98.2	74.1	97.9	47	99.7	23.1	98.9
48	95.9	95.9	96.2	48	98.4	86.2	98.3	48	98.2	74.1	97.8	48	99.7	23.1	98.8
49	95.9	95.9	96.0	49	98.4	86.2	98.2	49	98.2	74.1	97.7	49	99.7	23.1	98.8
50	95.9	95.9	95.9	50	98.4	86.2	98.2	50	98.2	74.1	97.6	50	99.7	23.1	98.7
51	95.9	95.9	95.7	51	98.4	86.2	98.1	51	98.2	74.1	97.5	51	99.7	23.1	98.7
52	95.9	95.9	95.5	52	98.4	86.2	98.0	52	98.2	74.1	97.4	52	99.7	23.1	98.6
53	95.9	95.9	95.4	53	98.4	86.2	97.9	53	98.2	74.1	97.3	53	99.7	23.1	98.6
54	95.9	95.9	95.2	54	98.4	86.2	97.8	54	98.2	74.1	97.2	54	99.7	23.1	98.5
55	95.9	95.9	95.0	55	98.4	86.2	97.7	55	98.2	74.1	97.1	55	99.7	23.1	98.4
56	95.9	95.9	94.8	56	98.4	86.2	97.7	56	98.2	74.1	97.0	56	99.7	23.1	98.4
57	95.9	95.9	94.6	57	98.4	86.2	97.6	57	98.2	74.1	96.9	57	99.7	23.1	98.3
58	95.9	95.9	94.4	58	98.4	86.2	97.5	58	98.2	74.1	96.8	58	99.7	23.1	98.2
59	95.9	95.9	94.2	59	98.4	86.2	97.4	59	98.2	74.1	96.6	59	99.7	23.1	98.2
60	95.9	95.9	93.9	60	98.4	86.2	97.3	60	98.2	74.1	96.5	60	99.7	23.1	98.1
61	95.9	95.9	93.7	61	98.4	86.2	97.1	61	98.2	74.1	96.3	61	99.7	23.1	98.0
62	95.9	95.9	93.4	62	98.4	86.2	97.0	62	98.2	74.1	96.2	62	99.7	23.1	97.9
63	95.9	95.9	93.2	63	98.4	86.2	96.9	63	98.2	74.1	96.0	63	99.7	23.1	97.8
64	95.9	95.9	92.9	64	98.4	86.2	96.8	64	98.2	74.1	95.9	64	99.7	23.1	97.7

 A
 $\begin{array}{rrrr}65 & 99.7 & 23.1 & 97.6 \\ 66 & 99.7 & 23.1 & 97.5 \\ 67 & 99.7 & 23.1 & 97.4 \\ 68 & 99.7 & 23.1 & 97.3 \\ 69 & 99.7 & 23.1 & 97.2 \\ 70 & 99.7 & 23.1 & 97.1 \\ 71 & 99.7 & 23.1 & 96.9 \\ 72 & 99.7 & 23.1 & 96.8 \\ 73 & 99.7 & 23.1 & 96.6 \\ 74 & 99.7 & 23.1 & 96.4 \\ 75 & 99.7 & 23.1 & 96.2 \\ 76 & 99.7 & 23.1 & 96.0 \\ 77 & 99.7 & 23.1 & 95.8 \\ 78 & 99.7 & 23.1 & 95.6 \\ 79 & 99.7 & 23.1 & 95.3 \\ 80 & 99.7 & 23.1 & 95.1 \\ 81 & 99.7 & 23.1 & 94.8 \\ 82 & 99.7 & 23.1 & 94.4 \\ 83 & 99.7 & 23.1 & 94.0 \\ 84 & 99.7 & 23.1 & 93.6 \\ 85 & 99.7 & 23.1 & 93.1 \\ 86 & 99.7 & 23.1 & 92.6 \\ 87 & 99.7 & 23.1 & 92.0 \\ 88 & 99.7 & 23.1 & 91.3 \\ 89 & 99.7 & 23.1 & 90.5 \\ 90 & 99.7 & 23.1 & 89.5 \\ 91 & 99.7 & 23.1 & 88.4 \\ 92 & 99.7 & 23.1 & 87.0 \\ 93 & 99.7 & 23.1 & 85.3 \\ 94 & 99.7 & 23.1 & 83.1 \\ 95 & 99.7 & 23.1 & 80.2 \\ 96 & 99.7 & 23.1 & 76.2 \\ 97 & 99.7 & 23.1 & 70.4 \\ 98 & 99.7 & 23.1 & 61.1 \\ 99 & 99.7 & 23.1 & 43.7 \\ 100 & 99.7 & 23.1 & 0.0\end{array}$ 1

Prevalence of ethambutol	Sensitivity	Specificity	Negative Predictive Value
1	10.0	99.9	99.1
2	10.0	99.9	98.2
3	10.0	99.9	97.3
4	10.0	99.9	96.4
5	10.0	99.9	95.5
6	10.0	99.9	94.6
7	10.0	99.9	93.7
8	10.0	99.9	92.7
9	10.0	99.9	91.8
10	10.0	99.9	90.9
11	10.0	99.9	90.0
12	10.0	99.9	89.1
13	10.0	99.9	88.1
14	10.0	99.9	87.2
15	10.0	99.9	86.3
16	10.0	99.9	85.4
17	10.0	99.9	84.4
18	10.0	99.9	83.5
19	10.0	99.9	82.6
20	10.0	99.9	81.6
21	10.0	99.9	80.7
22	10.0	99.9	79.7
23	10.0	99.9	78.8
24	10.0	99.9	77.9
25	10.0	99.9	76.9
26	10.0	99.9	76.0
27	10.0	99.9	75.0
28	10.0	99.9	74.1
29	10.0	99.9	73.1
30	10.0	99.9	72.1
31	10.0	99.9	71.2
32	10.0	99.9	70.2
33	10.0	99.9	69.3
34	10.0	99.9	68.3
35	10.0	99.9	67.3
36	10.0	99.9	66.4
37	10.0	99.9	65.4
38	10.0	99.9	64.4
39	10.0	99.9	63.5
40	10.0	99.9	62.5
41	10.0	99.9	61.5
42	10.0	99.9	60.5
43	10.0	99.9	59.5
44	10.0	99.9	58.6
45	10.0	99.9	57.6
46	10.0	99.9	56.6
47	10.0	99.9	55.6
48	10.0	99.9	54.6
49	10.0	99.9	53.6
50	10.0	99.9	52.6
51	10.0	99.9	51.6
52	10.0	99.9	50.6
53	10.0	99.9	49.6
54	10.0	99.9	48.6
55	10.0	99.9	47.6

RR-S			
Prevalence of ethambutol resistance	Sensitivity	Specificity	Negative Predictive Value
1	94.9	54.3	99.9
2	94.9	54.3	99.8
3	94.9	54.3	99.7
4	94.9	54.3	99.6
5	94.9	54.3	99.5
6	94.9	54.3	99.4
7	94.9	54.3	99.3
8	94.9	54.3	99.2
9	94.9	54.3	99.1
10	94.9	54.3	99.0
11	94.9	54.3	98.9
12	94.9	54.3	98.7
13	94.9	54.3	98.6
14	94.9	54.3	98.5
15	94.9	54.3	98.4
16	94.9	54.3	98.3
17	94.9	54.3	98.1
18	94.9	54.3	98.0
19	94.9	54.3	97.9
20	94.9	54.3	97.7
21	94.9	54.3	97.6
22	94.9	54.3	97.4
23	94.9	54.3	97.3
24	94.9	54.3	97.1
25	94.9	54.3	97.0
26	94.9	54.3	96.8
27	94.9	54.3	96.7
28	94.9	54.3	96.5
29	94.9	54.3	96.3
30	94.9	54.3	96.2
31	94.9	54.3	96.0
32	94.9	54.3	95.8
33	94.9	54.3	95.6
34	94.9	54.3	95.4
35	94.9	54.3	95.2
36	94.9	54.3	95.0
37	94.9	54.3	94.8
38	94.9	54.3	94.6
39	94.9	54.3	94.4
40	94.9	54.3	94.1
41	94.9	54.3	93.9
42	94.9	54.3	93.7
43	94.9	54.3	93.4
44	94.9	54.3	93.2
45	94.9	54.3	92.9
46	94.9	54.3	92.6
47	94.9	54.3	92.4
48	94.9	54.3	92.1
49	94.9	54.3	91.8
50	94.9	54.3	91.5
51	94.9	54.3	91.2
52	94.9	54.3	90.8
53	94.9	54.3	90.5
54	94.9	54.3	90.1
55	94.9	54.3	89.8

56	80.8	92.4	79.1
57	80.8	92.4	78.4
58	80.8	92.4	77.7
59	80.8	92.4	76.9
60	80.8	92.4	76.2
61	80.8	92.4	75.4
62	80.8	92.4	74.6
63	80.8	92.4	73.8
64	80.8	92.4	73.0
65	80.8	92.4	72.1
66	80.8	92.4	71.2
67	80.8	92.4	70.3
68	80.8	92.4	69.3
69	80.8	92.4	68.3
70	80.8	92.4	67.3
71	80.8	92.4	66.2
72	80.8	92.4	65.1
73	80.8	92.4	64.0
74	80.8	92.4	62.8
75	80.8	92.4	61.6
76	80.8	92.4	60.3
77	80.8	92.4	58.9
78	80.8	92.4	57.5
79	80.8	92.4	56.1
80	80.8	92.4	54.6
81	80.8	92.4	53.0
82	80.8	92.4	51.3
83	80.8	92.4	49.6
84	80.8	92.4	47.8
85	80.8	92.4	45.9
86	80.8	92.4	43.9
87	80.8	92.4	41.8
88	80.8	92.4	39.6
89	80.8	92.4	37.3
90	80.8	92.4	34.8
91	80.8	92.4	32.2
92	80.8	92.4	29.5
93	80.8	92.4	26.6
94	80.8	92.4	23.5
95	80.8	92.4	20.2
96	80.8	92.4	16.7
97	80.8	92.4	12.9
98	80.8	92.4	8.9
99	80.8	92.4	4.6
100	80.8	92.4	0.0

56	66.7	98.9	70.0
57	66.7	98.9	69.1
58	66.7	98.9	68.2
59	66.7	98.9	67.3
60	66.7	98.9	66.4
61	66.7	98.9	65.5
62	66.7	98.9	64.5
63	66.7	98.9	63.5
64	66.7	98.9	62.5
65	66.7	98.9	61.5
66	66.7	98.9	60.5
67	66.7	98.9	59.4
68	66.7	98.9	58.3
69	66.7	98.9	57.1
70	66.7	98.9	56.0
71	66.7	98.9	54.8
72	66.7	98.9	53.6
73	66.7	98.9	52.3
74	66.7	98.9	51.0
75	66.7	98.9	49.7
76	66.7	98.9	48.4
77	66.7	98.9	47.0
78	66.7	98.9	45.6
79	66.7	98.9	44.1
80	66.7	98.9	42.6
81	66.7	98.9	41.0
82	66.7	98.9	39.5
83	66.7	98.9	37.8
84	66.7	98.9	36.1
85	66.7	98.9	34.4
86	66.7	98.9	32.6
87	66.7	98.9	30.7
88	66.7	98.9	28.8
89	66.7	98.9	26.8
90	66.7	98.9	24.8
91	66.7	98.9	22.7
92	66.7	98.9	20.5
93	66.7	98.9	18.3
94	66.7	98.9	15.9
95	66.7	98.9	13.5
96	66.7	98.9	11.0
97	66.7	98.9	8.4
98	66.7	98.9	5.7
99	66.7	98.9	2.9
100	66.7	98.9	0.0
0			

56	94.9	54.3	89.4
57	94.9	54.3	89.0
58	94.9	54.3	88.6
59	94.9	54.3	88.2
60	94.9	54.3	87.7
61	94.9	54.3	87.3
62	94.9	54.3	86.8
63	94.9	54.3	86.3
64	94.9	54.3	85.8
65	94.9	54.3	85.2
66	94.9	54.3	84.7
67	94.9	54.3	84.1
68	94.9	54.3	83.5
69	94.9	54.3	82.8
70	94.9	54.3	82.1
71	94.9	54.3	81.4
72	94.9	54.3	80.7
73	94.9	54.3	79.9
74	94.9	54.3	79.0
75	94.9	54.3	78.1
76	94.9	54.3	77.2
77	94.9	54.3	76.2
78	94.9	54.3	75.1
79	94.9	54.3	74.0
80	94.9	54.3	72.8
81	94.9	54.3	71.5
82	94.9	54.3	70.2
83	94.9	54.3	68.7
84	94.9	54.3	67.1
85	94.9	54.3	65.4
86	94.9	54.3	63.6
87	94.9	54.3	61.6
88	94.9	54.3	59.4
89	94.9	54.3	57.0
90	94.9	54.3	54.4
91	94.9	54.3	51.5
92	94.9	54.3	48.2
93	94.9	54.3	44.7
94	94.9	54.3	40.6
95	94.9	54.3	36.1
96	94.9	54.3	30.9
97	94.9	54.3	24.9
98	94.9	54.3	18.0
99	94.9	54.3	9.8
100	94.9	54.3	0.0
4			

SR-R

	SS-R			RS-R				SR-R			RR-R			
Prevalence of ethambutol resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of ethambutol resistance	Sensitivity	Specificity	Negative Predictive Value	```Prevalence of ethambutol Sensitivity resistance```	Specificity	Negative Predictive Value	Prevalence of ethambutol resistance	Sensitivity	Specificity	Negative Predictive Value
1	n/a	98.8	n/a	1	85.7	74.1	99.8	$1 \mathrm{n} / \mathrm{a}$	100.0	n/a	1	98.6	25.0	99.9
2	n/a	98.8	n/a	2	85.7	74.1	99.6	$2 \mathrm{n} / \mathrm{a}$	100.0	n/a	2	98.6	25.0	99.9
3	n/a	98.8	n/a	3	85.7	74.1	99.4	$3 \mathrm{n} / \mathrm{a}$	100.0	n/a	3	98.6	25.0	99.8
4	n/a	98.8	n/a	4	85.7	74.1	99.2	$4 \mathrm{n} / \mathrm{a}$	100.0	n/a	4	98.6	25.0	99.8
5	n/a	98.8	n/a	5	85.7	74.1	99.0	$5 \mathrm{n} / \mathrm{a}$	100.0	n/a	5	98.6	25.0	99.7
6	n/a	98.8	n/a	6	85.7	74.1	98.8	$6 \mathrm{n} / \mathrm{a}$	100.0	n/a	6	98.6	25.0	99.6
7	n/a	98.8	n/a	7	85.7	74.1	98.6	$7 \mathrm{n} / \mathrm{a}$	100.0	n/a	7	98.6	25.0	99.6
8	n/a	98.8	n/a	8	85.7	74.1	98.4	$8 \mathrm{n} / \mathrm{a}$	100.0	n/a	8	98.6	25.0	99.5
9	n/a	98.8	n/a	9	85.7	74.1	98.1	$9 \mathrm{n} / \mathrm{a}$	100.0	n/a	9	98.6	25.0	99.4
10	n/a	98.8	n/a	10	85.7	74.1	97.9	$10 \mathrm{n} / \mathrm{a}$	100.0	n/a	10	98.6	25.0	99.4
11	n/a	98.8	n/a	11	85.7	74.1	97.7	$11 \mathrm{n} / \mathrm{a}$	100.0	n/a	11	98.6	25.0	99.3
12	n/a	98.8	n/a	12	85.7	74.1	97.4	$12 \mathrm{n} / \mathrm{a}$	100.0	n/a	12	98.6	25.0	99.2
13	n/a	98.8	n/a	13	85.7	74.1	97.2	$13 \mathrm{n} / \mathrm{a}$	100.0	n/a	13	98.6	25.0	99.2
14	n/a	98.8	n/a	14	85.7	74.1	97.0	$14 \mathrm{n} / \mathrm{a}$	100.0	n/a	14	98.6	25.0	99.1
15	n/a	98.8	n/a	15	85.7	74.1	96.7	$15 \mathrm{n} / \mathrm{a}$	100.0	n/a	15	98.6	25.0	99.0
16	n/a	98.8	n/a	16	85.7	74.1	96.5	$16 \mathrm{n} / \mathrm{a}$	100.0	n/a	16	98.6	25.0	98.9
17	n/a	98.8	n/a	17	85.7	74.1	96.2	$17 \mathrm{n} / \mathrm{a}$	100.0	n/a	17	98.6	25.0	98.9
18	n/a	98.8	n/a	18	85.7	74.1	95.9	$18 \mathrm{n} / \mathrm{a}$	100.0	n/a	18	98.6	25.0	98.8
19	n/a	98.8	n/a	19	85.7	74.1	95.7	19 n/a	100.0	n/a	19	98.6	25.0	98.7
20	n/a	98.8	n/a	20	85.7	74.1	95.4	$20 \mathrm{n} / \mathrm{a}$	100.0	n/a	20	98.6	25.0	98.6
21	n/a	98.8	n/a	21	85.7	74.1	95.1	$21 \mathrm{n} / \mathrm{a}$	100.0	n/a	21	98.6	25.0	98.5
22	n/a	98.8	n/a	22	85.7	74.1	94.8	$22 \mathrm{n} / \mathrm{a}$	100.0	n/a	22	98.6	25.0	98.4
23	n/a	98.8	n/a	23	85.7	74.1	94.6	$23 \mathrm{n} / \mathrm{a}$	100.0	n/a	23	98.6	25.0	98.3
24	n/a	98.8	n/a	24	85.7	74.1	94.3	$24 \mathrm{n} / \mathrm{a}$	100.0	n/a	24	98.6	25.0	98.2
25	n/a	98.8	n/a	25	85.7	74.1	94.0	$25 \mathrm{n} / \mathrm{a}$	100.0	n/a	25	98.6	25.0	98.1
26	n/a	98.8	n/a	26	85.7	74.1	93.7	$26 \mathrm{n} / \mathrm{a}$	100.0	n/a	26	98.6	25.0	98.0
27	n/a	98.8	n/a	27	85.7	74.1	93.3	$27 \mathrm{n} / \mathrm{a}$	100.0	n/a	27	98.6	25.0	97.9
28	n/a	98.8	n/a	28	85.7	74.1	93.0	$28 \mathrm{n} / \mathrm{a}$	100.0	n/a	28	98.6	25.0	97.8
29	n/a	98.8	n/a	29	85.7	74.1	92.7	$29 \mathrm{n} / \mathrm{a}$	100.0	n/a	29	98.6	25.0	97.7
30	n/a	98.8	n/a	30	85.7	74.1	92.4	$30 \mathrm{n} / \mathrm{a}$	100.0	n/a	30	98.6	25.0	97.6
31	n/a	98.8	n/a	31	85.7	74.1	92.0	$31 \mathrm{n} / \mathrm{a}$	100.0	n/a	31	98.6	25.0	97.5
32	n/a	98.8	n/a	32	85.7	74.1	91.7	$32 \mathrm{n} / \mathrm{a}$	100.0	n/a	32	98.6	25.0	97.4
33	n/a	98.8	n/a	33	85.7	74.1	91.3	$33 \mathrm{n} / \mathrm{a}$	100.0	n/a	33	98.6	25.0	97.3
34	n/a	98.8	n/a	34	85.7	74.1	91.0	$34 \mathrm{n} / \mathrm{a}$	100.0	n/a	34	98.6	25.0	97.2
35	n/a	98.8	n/a	35	85.7	74.1	90.6	$35 \mathrm{n} / \mathrm{a}$	100.0	n/a	35	98.6	25.0	97.0
36	n/a	98.8	n/a	36	85.7	74.1	90.2	$36 \mathrm{n} / \mathrm{a}$	100.0	n/a	36	98.6	25.0	96.9
37	n/a	98.8	n/a	37	85.7	74.1	89.8	$37 \mathrm{n} / \mathrm{a}$	100.0	n/a	37	98.6	25.0	96.8
38	n/a	98.8	n/a	38	85.7	74.1	89.4	$38 \mathrm{n} / \mathrm{a}$	100.0	n/a	38	98.6	25.0	96.6
39	n/a	98.8	n/a	39	85.7	74.1	89.0	$39 \mathrm{n} / \mathrm{a}$	100.0	n/a	39	98.6	25.0	96.5
40	n/a	98.8	n/a	40	85.7	74.1	88.6	$40 \mathrm{n} / \mathrm{a}$	100.0	n/a	40	98.6	25.0	96.4
41	n/a	98.8	n/a	41	85.7	74.1	88.2	$41 \mathrm{n} / \mathrm{a}$	100.0	n/a	41	98.6	25.0	96.2
42	n/a	98.8	n/a	42	85.7	74.1	87.7	$42 \mathrm{n} / \mathrm{a}$	100.0	n/a	42	98.6	25.0	96.1
43	n/a	98.8	n/a	43	85.7	74.1	87.3	$43 \mathrm{n} / \mathrm{a}$	100.0	n/a	43	98.6	25.0	95.9
44	n/a	98.8	n/a	44	85.7	74.1	86.8	$44 \mathrm{n} / \mathrm{a}$	100.0	n/a	44	98.6	25.0	95.7
45	n/a	98.8	n/a	45	85.7	74.1	86.4	$45 \mathrm{n} / \mathrm{a}$	100.0	n/a	45	98.6	25.0	95.6
46	n/a	98.8	n/a	46	85.7	74.1	85.9	$46 \mathrm{n} / \mathrm{a}$	100.0	n/a	46	98.6	25.0	95.4

85.7	74.1	85.4
85.7	74.1	84.9
85.7	74.1	84.4
85.7	74.1	83.8
85.7	74.1	83.3
85.7	74.1	82.7
85.7	74.1	82.1
85.7	74.1	81.5
85.7	74.1	80.9
85.7	74.1	80.3
85.7	74.1	79.6
85.7	74.1	79.0
85.7	74.1	78.3
85.7	74.1	77.6
85.7	74.1	76.8
85.7	74.1	76.1
85.7	74.1	75.3
85.7	74.1	74.5
85.7	74.1	73.6
85.7	74.1	72.8
85.7	74.1	71.9
85.7	74.1	70.9
85.7	74.1	70.0
85.7	74.1	69.0
85.7	74.1	67.9
85.7	74.1	66.8
85.7	74.1	65.7
85.7	74.1	64.6
85.7	74.1	63.3
85.7	74.1	62.1
85.7	74.1	60.8
85.7	74.1	59.4
85.7	74.1	58.0
85.7	74.1	56.5
85.7	74.1	54.9
85.7	74.1	53.2
85.7	74.1	51.5
85.7	74.1	49.7
85.7	74.1	47.8
85.7	74.1	45.8
85.7	74.1	43.7
85.7	74.1	41.4
85.7	74.1	39.1
85.7	74.1	36.6
85.7	74.1	33.9
85.7	74.1	31.1
85.7	74.1	28.1
85.7	74.1	24.9
85.7	74.1	21.4
85.7	74.1	17.8
85.7	74.1	13.8
85.7	74.1	9.6
85.7	74.1	5.0
85.7	74.1	0.0

100.0	n/a
100.0	n / a
100.0	n / a
100.0	n/a
100.0	n/a
100.0	n / a
100.0	n / a
100.0	n/a
100.0	n/a
100.0	n/a
100.0	n / a
100.0	n / a
100.0	n / a
100.0	n/a
100.0	n / a
100.0	n/a
100.0	n/a
100.0	n / a
100.0	n/a
100.0	n / a
100.0	n/a
100.0	n/a
100.0	n / a
100.0	n/a
100.0	n/a
100.0	n / a
100.0	n/a
100.0	n / a
100.0	n/a
100.0	n / a
100.0	n/a
100.0	n / a
100.0	n / a
100.0	n/a
100.0	n/a
100.0	n / a
100.0	n/a
100.0	n / a
100.0	n / a
100.0	n/a
100.0	n/a
100.0	n/a

SSS-				RSS-				RRS-				SRS-			
Prevalence of pyrazinamid e resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of pyrazinamid e resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of pyrazinamid e resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of pyrazinamid e resistance	Sensitivity	Specificity	Negative Predictive Value
1	72.5	99.8	99.7	1	61.9	98.9	99.6	1	86.9	88.4	99.9	1	0.0	100.0	99.0
2	72.5	99.8	99.4	2	61.9	98.9	99.2	2	86.9	88.4	99.7	2	0.0	100.0	98.0
3	72.5	99.8	99.2	3	61.9	98.9	98.8	3	86.9	88.4	99.5	3	0.0	100.0	97.0
4	72.5	99.8	98.9	4	61.9	98.9	98.4	4	86.9	88.4	99.4	4	0.0	100.0	96.0
5	72.5	99.8	98.6	5	61.9	98.9	98.0	5	86.9	88.4	99.2	5	0.0	100.0	95.0
6	72.5	99.8	98.3	6	61.9	98.9	97.6	6	86.9	88.4	99.1	6	0.0	100.0	94.0
7	72.5	99.8	98.0	7	61.9	98.9	97.2	7	86.9	88.4	98.9	7	0.0	100.0	93.0
8	72.5	99.8	97.7	8	61.9	98.9	96.8	8	86.9	88.4	98.7	8	0.0	100.0	92.0
9	72.5	99.8	97.4	9	61.9	98.9	96.3	9	86.9	88.4	98.6	9	0.0	100.0	91.0
10	72.5	99.8	97.0	10	61.9	98.9	95.9	10	86.9	88.4	98.4	10	0.0	100.0	90.0
11	72.5	99.8	96.7	11	61.9	98.9	95.5	11	86.9	88.4	98.2	11	0.0	100.0	89.0
12	72.5	99.8	96.4	12	61.9	98.9	95.0	12	86.9	88.4	98.0	12	0.0	100.0	88.0
13	72.5	99.8	96.1	13	61.9	98.9	94.6	13	86.9	88.4	97.8	13	0.0	100.0	87.0
14	72.5	99.8	95.7	14	61.9	98.9	94.1	14	86.9	88.4	97.6	14	0.0	100.0	86.0
15	72.5	99.8	95.4	15	61.9	98.9	93.6	15	86.9	88.4	97.5	15	0.0	100.0	85.0
16	72.5	99.8	95.0	16	61.9	98.9	93.2	16	86.9	88.4	97.3	16	0.0	100.0	84.0
17	72.5	99.8	94.7	17	61.9	98.9	92.7	17	86.9	88.4	97.1	17	0.0	100.0	83.0
18	72.5	99.8	94.3	18	61.9	98.9	92.2	18	86.9	88.4	96.9	18	0.0	100.0	82.0
19	72.5	99.8	93.9	19	61.9	98.9	91.7	19	86.9	88.4	96.6	19	0.0	100.0	81.0
20	72.5	99.8	93.6	20	61.9	98.9	91.2	20	86.9	88.4	96.4	20	0.0	100.0	80.0
21	72.5	99.8	93.2	21	61.9	98.9	90.7	21	86.9	88.4	96.2	21	0.0	100.0	79.0
22	72.5	99.8	92.8	22	61.9	98.9	90.2	22	86.9	88.4	96.0	22	0.0	100.0	78.0
23	72.5	99.8	92.4	23	61.9	98.9	89.7	23	86.9	88.4	95.8	23	0.0	100.0	77.0
24	72.5	99.8	92.0	24	61.9	98.9	89.2	24	86.9	88.4	95.5	24	0.0	100.0	76.0
25	72.5	99.8	91.6	25	61.9	98.9	88.6	25	86.9	88.4	95.3	25	0.0	100.0	75.0
26	72.5	99.8	91.2	26	61.9	98.9	88.1	26	86.9	88.4	95.1	26	0.0	100.0	74.0
27	72.5	99.8	90.8	27	61.9	98.9	87.5	27	86.9	88.4	94.8	27	0.0	100.0	73.0
28	72.5	99.8	90.3	28	61.9	98.9	87.0	28	86.9	88.4	94.6	28	0.0	100.0	72.0
29	72.5	99.8	89.9	29	61.9	98.9	86.4	29	86.9	88.4	94.3	29	0.0	100.0	71.0
30	72.5	99.8	89.5	30	61.9	98.9	85.8	30	86.9	88.4	94.0	30	0.0	100.0	70.0
31	72.5	99.8	89.0	31	61.9	98.9	85.2	31	86.9	88.4	93.8	31	0.0	100.0	69.0
32	72.5	99.8	88.5	32	61.9	98.9	84.6	32	86.9	88.4	93.5	32	0.0	100.0	68.0
33	72.5	99.8	88.1	33	61.9	98.9	84.0	33	86.9	88.4	93.2	33	0.0	100.0	67.0
34	72.5	99.8	87.6	34	61.9	98.9	83.4	34	86.9	88.4	92.9	34	0.0	100.0	66.0
35	72.5	99.8	87.1	35	61.9	98.9	82.8	35	86.9	88.4	92.6	35	0.0	100.0	65.0
36	72.5	99.8	86.6	36	61.9	98.9	82.2	36	86.9	88.4	92.3	36	0.0	100.0	64.0

37	86.9	88.4	92.0
38	86.9	88.4	91.7
39	86.9	88.4	91.4
40	86.9	88.4	91.0
41	86.9	88.4	90.7
42	86.9	88.4	90.3
43	86.9	88.4	90.0
44	86.9	88.4	89.6
45	86.9	88.4	89.2
46	86.9	88.4	88.8
47	86.9	88.4	88.4
48	86.9	88.4	88.0
49	86.9	88.4	87.5
50	86.9	88.4	87.1
51	86.9	88.4	86.6
52	86.9	88.4	86.2
53	86.9	88.4	85.7
54	86.9	88.4	85.2
55	86.9	88.4	84.7
56	86.9	88.4	84.1
57	86.9	88.4	83.6
58	86.9	88.4	83.0
59	86.9	88.4	82.4
60	86.9	88.4	81.8
61	86.9	88.4	81.2
62	86.9	88.4	80.5
63	86.9	88.4	79.9
64	86.9	88.4	79.2
65	86.9	88.4	78.4
66	86.9	88.4	77.7
67	86.9	88.4	76.9
68	86.9	88.4	76.1
69	86.9	88.4	75.2
70	86.9	88.4	74.3
71	86.9	88.4	73.4
72	86.9	88.4	72.4
73	86.9	88.4	71.4
74	86.9	88.4	70.4
75	86.9	88.4	69.2
76	86.9	88.4	68.1
77	86.9	88.4	66.9
78	86.9	88.4	65.6
79	86.9	88.4	64.2
80	86.9	88.4	62.8
81	86.9	88.4	61.3
82	86.9	88.4	59.7
83	86.9	88.4	58.0
84	86.9	88.4	56.3
85	86.9	88.4	54.4
86	86.9	88.4	52.4
87	86.9	88.4	50.2
88	86.9	88.4	47.9
89	86.9	88.4	45.5
90	86.9	88.4	42.9
91	86.9	88.4	40.1
92	86.9	88.4	37.0
93	86.9	88.4	33.7
94	86.9	88.4	30.1
95	86.9	88.4	26.2
96	86.9	88.4	22.0
97	86.9	88.4	17.3
98	86.9	88.4	12.1
99	86.9	88.4	6.4
100	86.9	88.4	0.0

0.0	100.0	63.0
0.0	100.0	62.0
0.0	100.0	61.0
0.0	100.0	60.0
0.0	100.0	59.0
0.0	100.0	58.0
0.0	100.0	57.0
0.0	100.0	56.0
0.0	100.0	55.0
0.0	100.0	54.0
0.0	100.0	53.0
0.0	100.0	52.0
0.0	100.0	51.0
0.0	100.0	50.0
0.0	100.0	49.0
0.0	100.0	48.0
0.0	100.0	47.0
0.0	100.0	46.0
0.0	100.0	45.0
0.0	100.0	44.0
0.0	100.0	43.0
0.0	100.0	42.0
0.0	100.0	41.0
0.0	100.0	40.0
0.0	100.0	39.0
0.0	100.0	38.0
0.0	100.0	37.0
0.0	100.0	36.0
0.0	100.0	35.0
0.0	100.0	34.0
0.0	100.0	33.0
0.0	100.0	32.0
0.0	100.0	31.0
0.0	100.0	30.0
0.0	100.0	29.0
0.0	100.0	28.0
0.0	100.0	27.0
0.0	100.0	26.0
0.0	100.0	25.0
0.0	100.0	100.0

SSR-

RRR-				SRR-			RSR-				SSR-			
Prevalence of pyrazinamid e resistance	Sensitivity	Specificity	Negative Predictive Value	```Prevalence of pyrazinamid Sensitivity e resistance```	Specificity	Negative Predictive Value	Prevalence of pyrazinamid e resistance	Sensitivity	Specificity	Negative Predictive Value	Prevalence of pyrazinamid e resistance	Sensitivity	Specificity	Negative Predictive Value
1	97.3	66.9	100.0	$1 \mathrm{n} / \mathrm{a}$	100.0		1	83.3	100.0	99.8		n / a	100.0	
2	97.3	66.9	99.9	$2 \mathrm{n} / \mathrm{a}$	100.0		2	83.3	100.0	99.7			100.0	
3	97.3	66.9	99.9	$3 \mathrm{n} / \mathrm{a}$	100.0		3	83.3	100.0	99.5		n/a	100.0	n/a
4	97.3	66.9	99.8	$4 \mathrm{n} / \mathrm{a}$	100.0		4	83.3	100.0	99.3			100.0	
5	97.3	66.9	99.8	$5 \mathrm{n} / \mathrm{a}$	100.0		5	83.3	100.0	99.1		n / a	100.0	
6	97.3	66.9	99.7	$6 \mathrm{n} / \mathrm{a}$	100.0		6	83.3	100.0	98.9		n / a	100.0	n/a
7	97.3	66.9	99.7	$7 \mathrm{n} / \mathrm{a}$	100.0		7	83.3	100.0	98.8		n / a	100.0	
8	97.3	66.9	99.6	$8 \mathrm{n} / \mathrm{a}$	100.0		8	83.3	100.0	98.6			100.0	
9	97.3	66.9	99.6	$9 \mathrm{n} / \mathrm{a}$	100.0		9	83.3	100.0	98.4		n/a	100.0	n/a
10	97.3	66.9	99.5	$10 \mathrm{n} / \mathrm{a}$	100.0		10	83.3	100.0	98.2			100.0	
11	97.3	66.9	99.5	$11 \mathrm{n} / \mathrm{a}$	100.0		11	83.3	100.0	98.0			100.0	
12	97.3	66.9	99.4	$12 \mathrm{n} / \mathrm{a}$	100.0		12	83.3	100.0	97.8			100.0	n/a
13	97.3	66.9	99.4	$13 \mathrm{n} / \mathrm{a}$	100.0		13	83.3	100.0	97.6			100.0	
14	97.3	66.9	99.3	$14 \mathrm{n} / \mathrm{a}$	100.0		14	83.3	100.0	97.4			100.0	
15	97.3	66.9	99.3	$15 \mathrm{n} / \mathrm{a}$	100.0		15	83.3	100.0	97.1			100.0	n/a
16	97.3	66.9	99.2	$16 \mathrm{n} / \mathrm{a}$	100.0		16	83.3	100.0	96.9			100.0	
17	97.3	66.9	99.2	$17 \mathrm{n} / \mathrm{a}$	100.0		17	83.3	100.0	96.7			100.0	
18	97.3	66.9	99.1	$18 \mathrm{n} / \mathrm{a}$	100.0		18	83.3	100.0	96.5			100.0	n / a
19	97.3	66.9	99.0	$19 \mathrm{n} / \mathrm{a}$	100.0		19	83.3	100.0	96.2			100.0	
20	97.3	66.9	99.0	$20 \mathrm{n} / \mathrm{a}$	100.0		20	83.3	100.0	96.0			100.0	
21	97.3	66.9	98.9	$21 \mathrm{n} / \mathrm{a}$	100.0		21	83.3	100.0	95.8			100.0	
22	97.3	66.9	98.9	$22 \mathrm{n} / \mathrm{a}$	100.0		22	83.3	100.0	95.5			100.0	
23	97.3	66.9	98.8	$23 \mathrm{n} / \mathrm{a}$	100.0		23	83.3	100.0	95.3			100.0	
24	97.3	66.9	98.7	$24 \mathrm{n} / \mathrm{a}$	100.0	n / a	24	83.3	100.0	95.0			100.0	n/a
25	97.3	66.9	98.7	$25 \mathrm{n} / \mathrm{a}$	100.0		25	83.3	100.0	94.7			100.0	
26	97.3	66.9	98.6	$26 \mathrm{n} / \mathrm{a}$	100.0	n/a	26	83.3	100.0	94.5			100.0	n/a

100.0	94.2
100.0	93.9
100.0	93.6
100.0	93.3
100.0	93.0
100.0	92.7
100.0	92.4
100.0	92.1
100.0	91.8
100.0	91.4
100.0	91.1
100.0	90.7
100.0	90.4
100.0	90.0
100.0	89.6
100.0	89.2
100.0	88.8
100.0	88.4
100.0	88.0
100.0	87.6
100.0	87.1
100.0	86.7
100.0	86.2
100.0	85.7
100.0	85.2
100.0	84.7
100.0	84.2
100.0	83.6
100.0	83.1
100.0	82.5
100.0	81.9
100.0	81.3
100.0	80.7
100.0	80.0
100.0	79.3
100.0	78.6
100.0	77.9
100.0	77.1
100.0	76.4
100.0	75.6
100.0	74.7
100.0	73.8
100.0	72.9
100.0	72.0
100.0	71.0
100.0	70.0
100.0	68.9
100.0	67.8
100.0	66.7
100.0	65.5
100.0	64.2
100.0	62.9
100.0	61.5
100.0	60.0
100.0	58.5
100.0	56.8
100.0	55.1
100.0	53.3
100.0	51.4
100.0	49.4
100.0	47.3
100.0	45.0
100.0	42.6
100.0	40.0
100.0	37.2
100.0	34.3
100.0	31.1
100.0	27.7
100.0	24.0
100.0	20.0
100.0	15.7
100.0	10.9
100.0	5.7
100.0	0.0

$27 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
28 n/a	$100.0 \mathrm{n} / \mathrm{a}$
29 n/a	$100.0 \mathrm{n} / \mathrm{a}$
30 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$31 \mathrm{n} / \mathrm{a}$	100.0 n/a
$32 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$33 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$34 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$35 \mathrm{n} / \mathrm{a}$	100.0 n/a
$36 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$37 \mathrm{n} / \mathrm{a}$	100.0 n/a
$38 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
39 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$40 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$41 \mathrm{n} / \mathrm{a}$	100.0 n/a
$42 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
43 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$44 \mathrm{n} / \mathrm{a}$	100.0 n/a
$45 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$46 \mathrm{n} / \mathrm{a}$	100.0 n/a
$47 \mathrm{n} / \mathrm{a}$	100.0 n/a
$48 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
49 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$50 \mathrm{n} / \mathrm{a}$	100.0 n/a
$51 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$52 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$53 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$54 \mathrm{n} / \mathrm{a}$	100.0 n/a
55 n/a	$100.0 \mathrm{n} / \mathrm{a}$
56 n/a	100.0 n/a
$57 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
58 n/a	$100.0 \mathrm{n} / \mathrm{a}$
59 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$60 \mathrm{n} / \mathrm{a}$	100.0 n/a
$61 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
62 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$63 \mathrm{n} / \mathrm{a}$	100.0 n/a
$64 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
65 n/a	$100.0 \mathrm{n} / \mathrm{a}$
66 n/a	100.0 n/a
$67 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
68 n/a	$100.0 \mathrm{n} / \mathrm{a}$
69 n/a	$100.0 \mathrm{n} / \mathrm{a}$
70 n/a	$100.0 \mathrm{n} / \mathrm{a}$
71 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$72 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$73 \mathrm{n} / \mathrm{a}$	100.0 n/a
74 n/a	$100.0 \mathrm{n} / \mathrm{a}$
75 n/a	100.0 n/a
$76 \mathrm{n} / \mathrm{a}$	100.0 n/a
$77 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
78 n/a	$100.0 \mathrm{n} / \mathrm{a}$
79 n/a	100.0 n/a
$80 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
81 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$82 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$83 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$84 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$85 \mathrm{n} / \mathrm{a}$	100.0 n/a
$86 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
87 n/a	100.0 n/a
$88 \mathrm{n} / \mathrm{a}$	100.0 n/a
89 n/a	100.0 n/a
$90 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$91 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$92 \mathrm{n} / \mathrm{a}$	100.0 n/a
93 n/a	100.0 n/a
$94 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$95 \mathrm{n} / \mathrm{a}$	100.0 n/a
96 n/a	$100.0 \mathrm{n} / \mathrm{a}$
$97 \mathrm{n} / \mathrm{a}$	$100.0 \mathrm{n} / \mathrm{a}$
$98 \mathrm{n} / \mathrm{a}$	100.0 n/a
99 n/a	$100.0 \mathrm{n} / \mathrm{a}$
100 n/a	$100.0 \mathrm{n} / \mathrm{a}$

S5: Drug profile predictions for isolates with complete profiles

All profiles are presented in the following order: Isoniazid, Rifampicin, Ethabutol, Pyrazinamide, with S indicating susceptibility and R indicating resitance.

Result for isolates with full phenotypic drug profiles:

Drug profile predictions for collections from Germany, Italy, the Netherlands and the UK that are unenriched for resistance. Includes isolates with uncharacterised variants relevant to rifampicin, ethambutol or pyrazinamide.

 association present; F=genotypic prediction failed due to missing data around a genomic resistance locus. Sensitivity, specificity, NPV and PPV are calculated including and excluding predictions of pan-susceptibility for isolates containing a 'U' mutation.
solates for which the phenotypes could be re-tested or cross-checked

Source	Labnumber	Drug	Original reported phenotype	Mutation	Phenotype after re-testing	Results of cross-checking source database
University of Sydney	S2	Ethambutol	s	embB_G406D	Not growing	
University of Sydney	S3	Ethambutol	s	embB_M306V	R	
University of Sydney	S7	Ethambutol	s	embB_M306V	R	
University of Sydney	S8	Ethambutol	s	embB_M3061	R	
University of Sydney	S11	Ethambutol	s	embb_M3061, embB_6406S	R	
University of Sydney	S15	Ethambutol	s	embB_M3061	S	
University of Sydney	S20	Ethambutol	s	embB_M306V	Contaminated with Bacillus	
University of Sydney	S23	Ethambutol	s	embB_G406D	Could not be tested	
University of Sydney	530	Ethambutol	s	embB_D354A	R	
University of Sydney	S33	Ethambutol	s	embB_M306V	R	
University of Sydney	S41	Ethambutol	s	embB_G406A	R	
Harvard	NLA000016764	Ethambutol	R			Clerical error - no phenotype was done for Ethambutol
Harvard	NLA000801694	Isoniazid	R			Clerical error - was tested as susceptible
Harvard	NLA000801697	Isoniazid	R			Clerical error - was tested as susceptible
Harvard	NLA000801694	Rifampicin	R			Clerical error - was tested as susceptible
Harvard	NLA000801697	Rifampicin	R			Clerical error - was tested as susceptible
Netherlands	NL491	Ethambutol	R			Clerical error - this was reported as susceptible by MGIT, resistant by MIC plate ($10 \mathrm{mg} / \mathrm{l}$)
Netherlands	NL294	Ethambutol	S	embB_M3061		Susceptible by MGIT, resistant by MIC plate ($10 \mathrm{mg} / \mathrm{l}$)
Netherlands	NL241	Ethambutol	S	embB_M306V		Susceptible by MGIT, resistant by MIC plate ($10 \mathrm{mg} / \mathrm{l}$)
Netherlands	NL294	Pyrazinamide	s	pncA_F58L		Susceptible in MGIT at $100 \mathrm{mh} / \mathrm{I}(\times 3)$ but resistant at $25 \mathrm{mg} / \mathrm{I}(\mathrm{x} 1$) and $50 \mathrm{mg} / \mathrm{l}$ (x1), therefore can be considered intermediate
Peru	14722_6_10	Rifampicin	R		S	
Peru	14722_6_13	Isoniazid	S	fabG1_C-15T	s	
Peru	14722_6_21	Isoniazid	R		S	
Peru	14722_6_36	Rifampicin	s	rpoB_D435F	R	
Peru	14722_6_38	Isoniazid	s	fabG1_C-15T	S	
Peru	14722_6_41	Rifampicin	s	rpoB_D435F	R	
Peru	14722_6_59	Isoniazid	s	fabG1_G-17T	S	
Peru	14722_6_86	Isoniazid	s	fabG1_C-15T	s	
Peru	14892_2_37	Rifampicin	s	rpoB_D435V	R	
Peru	14892_2_59	Isoniazid	s	fabG1_G-17T	s	
Peru	14893_2_23	Isoniazid	s	fabG1_C-15T	s	
Peru	14893_2_45	Isoniazid	s	fabG1_C-15T	s	
Peru	14893_2_48	Isoniazid	s	fabG1_C-15T	s	
Peru	14893_2_52	Isoniazid	S	fabG1_G-17T	S	
Peru	14893_2_64	Isoniazid	R		R	
Peru	15277_3_57	Isoniazid	S	fabG1_C-15T	s	

S9

Performance over whole data set of variants consistent with susceptibility that were present in phenotypically resistant isolates. Variants only shown where they feature as the only variant relevant to a drug in an isolate

Performance over whole data set of resistance variants that were found in susceptible isolates. Variants only counted where they feature as the only resistant-variant relevant to a drug in an isolate

Drug	Variant	Phenotypically resistant Phenotypically susceptible	
Isoniazid	ahpC_C-52T	1	0
Isoniazid	fabG1_S126N	1	5
Isoniazid	inhA_C-40T	1	208
Isoniazid	katG_C-85T	3	63
Isoniazid	katG_T475I	1	10
Ethambutol	embA_G-43C	3	4
Ethambutol	embB_D1024N	5	5
Ethambutol	embB_D328H	2	3
Ethambutol	embB_E504D	2	0
Ethambutol	embB_G-6A	1	26
Ethambutol	embB_H1002R	7	7
Ethambutol	embB_Q497P	2	3
Ethambutol	embB_T1082A	1	18
Ethambutol	embC_A774S	1	29
Pyrazinamide	pncA_D63A		
			0

ug	ariant	Phenotypically reisstant	enotypically susceptible
Isoniazid	fabG1_C-15T	228	21
Isoniazid	fabG1_G-17T	7	3
Isoniazid	fabG1_L203L	55	28
Isoniazid	fabG1_T-8A	7	3
Isoniazid	fabG1_T-8C	4	1
Isoniazid	inhA_121T	1	1
Isoniazid	inhA_S94A	4	3
Isoniazid	katG_1438_indel	0	1
Isoniazid	katG_2005_indel	2	1
Isoniazid	katG_606_indel	0	1
Rifampicin	rpoB_D435A	0	1
Rifampicin	rpoB_D435F	8	2
Rifampicin	rpoB_D435G	2	2
Rifampicin	rpoB_D435V	181	2
Rifampicin	rpoB_D435Y	29	13
Rifampicin	rpoB_D545E	0	3
Rifampicin	rpoB_H445N	9	10
Rifampicin	rpoB_H445R	24	1
Rifampicin	rpoB_H445Y	141	2
Rifampicin	rpoB_1491F	40	7
Rifampicin	rpoB_L430P	12	22
Rifampicin	rpoB_L452M	0	1
Rifampicin	rpoB_L452P	39	9
Rifampicin	rpoB_M4341	1	0
Rifampicin	rpob_Q432P	6	1
Rifampicin	rpoB_S450W	56	1
Rifampicin	rpoB_V359A	0	2
Ethambutol	embA_C-12T	28	24
Ethambutol	embA_C-16G	22	3
Ethambutol	embA_C-16T	12	7
Ethambutol	embB_D328Y	8	2
Ethambutol	embB_D354A	107	93
Ethambutol	embB_G406A	53	21
Ethambutol	embB_G406D	36	38
Ethambutol	embB_G406S	19	3
Ethambutol	embB_M3061	320	130
Ethambutol	embB_M306L	26	10
Ethambutol	embB_M306V	512	98
Ethambutol	embB_Q497K	15	6
Ethambutol	embB_Q497R	122	28
Pyrazinamide	pncA_-30_indel	0	1
Pyrazinamide	pncA_-3_indel	0	3
Pyrazinamide	pncA_-5_indel	7	4
Pyrazinamide	pncA_-79_indel	1	1
Pyrazinamide	pncA_-868_indel	0	1
Pyrazinamide	pncA_189_indel	0	1
Pyrazinamide	pncA_193_indel	2	1
Pyrazinamide	pncA_220_indel	0	1
Pyrazinamide	pncA_256_indel	1	1
Pyrazinamide	pncA_303_indel	0	1
Pyrazinamide	pncA_382_indel	1	1
Pyrazinamide	pncA_386_indel	3	1
Pyrazinamide	pncA_391_indel	19	1
Pyrazinamide	pncA_407_indel	4	1
Pyrazinamide	pncA_408_indel	1	2
Pyrazinamide	pncA_417_indel	3	1
Pyrazinamide	pncA_478_indel	0	1
Pyrazinamide	pncA_501_indel	0	1
Pyrazinamide	pncA_62_indel	0	1
Pyrazinamide	pncA_80_indel	0	1
Pyrazinamide	pncA_A-11G	38	14
Pyrazinamide	pncA_A102P	3	1
Pyrazinamide	pncA_A134V	4	1
Pyrazinamide	pncA_A143D	1	1
Pyrazinamide	pncA_A146T	1	1
Pyrazinamide	pncA_A171E	0	1
Pyrazinamide	pncA_A171T	1	5
Pyrazinamide	pncA_A46V	2	1
Pyrazinamide	pncA_C14R	6	2
Pyrazinamide	pncA_D12A	4	9
Pyrazinamide	pncA_D12E	2	1
Pyrazinamide	pncA_D12G	3	1
Pyrazinamide	pncA_D136N	0	2
Pyrazinamide	pncA_D49G	3	1
Pyrazinamide	pncA_D63G	0	4
Pyrazinamide	pncA_D63H	1	1

Pyrazinamide pncA_D8G	6	1
Pyrazinamide pncA_D8N	2	1
Pyrazinamide pncA_F13V	0	2
Pyrazinamide pncA_F58L	3	3
Pyrazinamide pncA_F81S	0	2
Pyrazinamide pncA_F81V	0	2
Pyrazinamide pncA_F94C	2	1
Pyrazinamide pncA_F94L	2	3
Pyrazinamide pncA_G108R	2	1
Pyrazinamide pncA_G124S	0	1
Pyrazinamide pncA_G132A	4	2
Pyrazinamide pncA_G17D	1	1
Pyrazinamide pncA_G24D	4	1
Pyrazinamide pncA_G78C	0	1
Pyrazinamide pncA_G97D	24	4
Pyrazinamide pncA_H51R	12	1
Pyrazinamide pncA_H57D	70	3
Pyrazinamide pncA_H71R	2	4
Pyrazinamide pncA_H71Y	17	3
Pyrazinamide pncA_I31T	0	1
Pyrazinamide pncA_15T	0	1
Pyrazinamide pncA_K48E	1	1
Pyrazinamide pncA_K48T	6	8
Pyrazinamide pncA_K96Q	0	2
Pyrazinamide pncA_K96R	8	2
Pyrazinamide pncA_L116P	2	1
Pyrazinamide pncA_L151S	8	4
Pyrazinamide pncA_L172P	5	1
Pyrazinamide pncA_L182S	1	3
Pyrazinamide pncA_L19P	3	1
Pyrazinamide pncA_L27P	4	2
Pyrazinamide pncA_L35P	2	4
Pyrazinamide pncA_L4S	20	5
Pyrazinamide pncA_L4W	1	3
Pyrazinamide pncA_L85P	3	1
Pyrazinamide pncA_L85R	5	2
Pyrazinamide pncA_M1751	0	2
Pyrazinamide pncA_M175V	4	2
Pyrazinamide pncA_P54L	19	3
Pyrazinamide pncA_P62S	1	3
Pyrazinamide pncA_P69S	0	1
Pyrazinamide pncA_S104R	3	2
Pyrazinamide pncA_S65P	0	1
Pyrazinamide pncA_S67P	8	1
Pyrazinamide pncA_T1351	0	1
Pyrazinamide pncA_T135P	15	1
Pyrazinamide pncA_T135S	0	1
Pyrazinamide pncA_T142M	3	1
Pyrazinamide pncA_T168S	0	2
Pyrazinamide pncA_T47A	1	3
Pyrazinamide pncA_T471	0	2
Pyrazinamide pncA_V125F	0	2
Pyrazinamide pncA_V128G	9	2
Pyrazinamide pncA_V139A	8	8
Pyrazinamide pncA_V139G	5	1
Pyrazinamide pncA_V139L	2	1
Pyrazinamide pncA_V21A	0	1
Pyrazinamide pncA_V7A	0	1
Pyrazinamide pncA_V7F	2	1
Pyrazinamide pncA_V7G	13	2
Pyrazinamide pncA_V7L	1	1
Pyrazinamide pncA_W119R	2	2
Pyrazinamide pncA_W68G	14	1
Pyrazinamide pncA_W68R	6	1
Pyrazinamide pncA_Y103*	12	2
Pyrazinamide pncA_Y41*	0	1

S10

For each of isoniazid and rifampicin, calculate the expected mislabelling rate based on isolates with mutations (rpoB S45OL or katG S 315 T) but a susceptible phenotype.
for these calculations, the collection from Russia was excluded for isoniazid as the kat G S315T mutaions with a susceptible phenotype had already been excluded at source (in a previous publication).
The isolates inlcuded below inlcude all those that were excluded from the main analysis after being identified as likely mislabelling errors.
Expected:
TTota number of isolates with a susceptible phenotype x number with the mutation and a susceptible phenotype) / (sum of isolates with the mutation) \times ($(1$-prevalence of resistance)/prevalence of resistance)
The ratio of expected to observed errors was then taken as the proportion of discrepant isolates likely to be due to mislabelling

Drug	Source (see S1)	Phenotypes			Where a katG S315T or roob S450L mutation is present		Among the susceptibl e phenotypes		Errors (predicted resis	notypically susceptible)	Ratio (expected / observed)
		Resistant	Susceptible	Prevalence of resistance	Resistant phenotype	Susceptible phenotype	Predicted susceptible	Predicted resistant	Expected errors	Observed errors	
Isoniazid	University of Sydney	42	0	100.00	31	0	0	0		0	
Rifampicin	University of Sydney	38	4	90.48	21	0	4	0	0.00	0	
Isoniazid	Genoscreen (isolates from Belgium)	100	135	42.55	86	0	127	-	0.00	0	
Rifampicin	Genoscreen (isolates from Belgium)	98	137	41.70	74	0	128	1	0.00	1	
Isoniazid	Birmingham	259	3,115	7.68	168	9	2,953	19	13.17	19	
Rifampicin	Birmingham	100	3,295	2.95	58	1	3,088	29	1.69	29	
Isoniazid	British Columbia Centre for Disease Control	189	1,152	14.09	70	0	1,080	19	0.00	19	
Rifampicin	British Columbia Centre for Disease Control	38	1,304	2.83	18	0	1,208	4	0.00	4	
Isoniazid	Hamburg	23	253	8.33	17	2	241	6	2.42	6	
Rifampicin	Hamburg	15	261	5.43	12	0	254	3	0.00	3	
Isoniazid	Italy	130	0	100.00	121	0	0	0		0	
Rifampicin	Italy	128	2	98.46	91	0	2	0	0.00	0	
Isoniazid	Italy_MGITstudy	11	84	11.58	7	0	74	0	0.00	0	
Rifampicin	Italy_MGITstudy	4	91	4.21	2	0	79	0	0.00	0	
Isoniazid	Leeds	3	28	9.68	3	0	25	0	0.00	0	
Rifampicin	Leeds	3	28	9.68	3	0	25	0	0.00	0	
Isoniazid	London	358	21	94.46	312	0	17	0	0.00	0	
Rifampicin	London	350	23	93.83	248	0	20	0	0.00	0	
Isoniazid	Harvard (isolates from the Netherlands)	302	38	88.82	218	1	34	1	1.38	1	
Rifampicin	Harvard (isolates from the Netherlands)	292	47	86.14	171	1	38	8	1.70	8	
Isoniazid	Netherlands	36	484	6.92	33	1	456	2	1.06	2	
Rifampicin	Netherlands	14	514	2.65	13	0	490	2	0.00	2	
Isoniazid	Oxford	6	29	17.14	2	0	23	0	0.00	0	
Rifampicin	Oxford	2	33	5.71	2	0	30	0	0.00	0	
Isoniazid	Pakistan	357	62	85.20	273	3	54	5	3.88	5	
Rifampicin	Pakistan	352	67	84.01	201	1	57	8	1.74	8	
Isoniazid	Peru	85	32	72.65	78	2	18	12	2.13	12	
Rifampicin	Peru	64	53	54.70	40	0	45	4	0.00	4	
Isoniazid	Serbia	107	0	100.00	85	0	0	0	.	0	
Rifampicin	Serbia	107	0	100.00	59	0	0	0	.	0	
Isoniazid	Yang et. al. Lancet Infect Dis. 2017 Mar; 17(3):275-284 (isolates from China)	121	0	100.00	102	0	0	0	.	0	
Rifampicin	Yang et. al. Lancet Infect Dis. 2017 Mar;17(3):275-284 (isolates from China)	121	0	100.00	72	0	0	0		0	
Isoniazid	South Africa	197	701	21.94	110	7	655	13	11.79	13	
Rifampicin	South Africa	337	670	33.47	182	2	629	12	3.66	12	
Isoniazid	Spain	13	51	20.31	7	0	50	0	0.00	0	
Rifampicin	Spain	10	54	15.63	7	0	52	0	0.00	0	
Isoniazid	MSF (isolates from Swaziland)	137	136	50.18	115	0	121	8	0.00	8	
Rifampicin	MSF (isolates from Swaziland)	120	146	45.11	57	0	143	2	0.00	2	
Isoniazid	Thailand	199	58	77.43	157	1	53	1	1.26	1	
Rifampicin	Thailand	196	61	76.26	89	0	56	1	0.00	1	
Isoniazid	Zhang et. al. Nat Genet. 2013 Oct;45(10):1255-60 (isolates from China)	117	44	72.67	65	0	40	0	0.00	0	
Rifampicin	Zhang et. al. Nat Genet. 2013 Oct;45(10):1255-60 (isolate from China)	117	44	72.67	56	0	43	1	0.00	1	
Totals									Expected	Observed	Ratio (\%)
Isoniazid									37.08	86	43.12
Rifampicin									8.80	75	11.73

Isolates from Russia (from Casali et. al. Nat Genet. 2014 Mar;46(3):279-86) were excluded from the calculation as isolates with a katG_S315T mutation and a susceptible phenotype for isoniazid were excluded from the publication from which these isolates were derived.

[^0]:

[^1]: 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100

