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Review

Introduction

First described by Paul Ehrlich in 1878 (Ehrlich 1878), 
mast cells have been viewed, for the most part, as effectors 
of allergy, particularly in the early and acute phases of aller-
gic reactions. Early research on these cells relied on mor-
phological features (Fig. 1) to identify their distribution in 
physiological and pathological states. The functional impli-
cations of Ehrlich’s initial view of mast cells, as metachro-
matic, granulated cells implicated in the nutrition of the 
surrounding tissue evolved gradually. In 1937, Holmgren 
and Willander (1937) first observed that tissues that dis-
played a great number of “Ehrlichschen Mastzellen” (mast 
cells) were enriched in heparin. The following 15 years wit-
nessed the establishment of a relationship between mast 
cells, histamine, and anaphylaxis, which was supported by 
the discovery that histamine was present in mast cells (Riley 
and West 1952) and released, along with heparin, during 
anaphylactic shock (Rocha e Silva 1947).

Prausnitz and Kustner (1921) demonstrated years earlier 
that the immediate hypersensitivity skin reaction could be 
transferred from a responsive person to a nonresponsive 
one, indicating that allergic reactions were due to the pres-
ence of a “reaginic” substance in the blood. It was not until 
1967 that Ishizaka and Ishizaka identified the “reaginic” 
antibody as being γE antibodies, subsequently recognized 
as IgE. Later, it was observed that IgE was capable of medi-
ating the release of histamine and another “slow reacting 
substance” from sensitized tissue mast cells (Ishizaka et al. 
1970). These discoveries paved the way for mast cells to 
become famous for their role in Type I hypersensitivity 
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Summary 
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been 
only in the past two decades that mast cells have gained recognition for their involvement in other physiological and 
pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between 
the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the 
local microenvironment and have a marked influence on their ability to specifically recognize and respond to various 
stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first 
responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of 
other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate 
and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction 
has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune 
diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions 
with regards to their regulation, phenotype and role. (J Histochem Cytochem 62:698–738, 2014)
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reactions. These reactions, best known as IgE-mediated 
allergic reactions, are induced when multivalent antigens 
crosslink antigen-specific IgE bound to high-affinity IgE 
receptors (FcεRI) on the mast cell surface, thereby aggre-
gating FcεRI and promoting the immediate release of mast 
cell mediators and the successive adverse events most com-
monly associated with allergy; i.e., increased vascular per-
meability, smooth muscle contraction, and mucus secretion 
(Metzger 1992; Kinet 1999; Siraganian 2003).

Advances in understanding the process of mast cell acti-
vation and the effects their mediators have on the immune 
system revealed the complexity and multiphasic nature of 
allergic reactions. In addition to the acute immediate events, 
the allergic process includes later phases marked by leuko-
cyte infiltration and the initiation of an acquired immune 
response, followed by a chronic phase that includes persis-
tent inflammation, tissue remodeling, and fibrosis (Rao and 
Brown, 2008). A role for mast cells in these various phases 
thus gained increased importance (Grimbaldeston et al. 
2006; Brown et al. 2008).

The unraveling of mast cell functions, in addition to their 
established and extensively studied role in IgE-mediated 
reactions, has been the focus of mast cell research in the 
past decades. Nevertheless, the identification of mast cell 
functions has progressed slowly due to difficulties in 
accessing these cells in vivo and the obstacles encountered 
when obtaining them both by enzymatic dispersion of tis-
sues or by culture of mast cell progenitors isolated from the 
bone marrow, peripheral or umbilical cord blood. The cul-
ture of mast cell progenitors yields a small number of mast 
cells and is often expensive and time consuming, and results 

in variable phenotypes as a consequence of culture condi-
tions (Moon et al. 2010).

The use of mast cell lines has greatly facilitated the char-
acterization of various aspects of mast cell function. 
However, as transformed cells, they present limitations and 
the results obtained through their use must be interpreted 
cautiously when extrapolating to mast cell functions in 
vivo. Mouse strains that are deficient in mast cells due to 
mutations in the Kit or Stem Cell Factor (SCF) gene  
(KitW/W-v, KitW-sh, and Sl/Sld) have served as valuable tools 
for defining and inferring mast cell functions in vivo 
(Kitamura et al. 1978; Russell 1979; Grimbaldeston et al. 
2005). However, these mice bear several other abnormali-
ties resulting from Kit’s role in other cells, which include 
erythrocytes, neutrophils and melanocytes, as well as other 
cell lineages. The engraftment of bone marrow or bone mar-
row-derived mast cells (BMMCs) in these deficient strains 
has helped to shed light on mast cell origin and to reliably 
establish connections between mast cell functions in vivo 
and their involvement in several diseases (Kitamura et al. 
1977; Kitamura et al. 1978; Grimbaldeston et al. 2005; 
Galli and Tsai 2008; Jamur and Oliver 2011).

The generation of alternative mast cell-deficient mouse 
strains that were not dependent on Kit mutations was 
recently reported (Dudeck et al. 2011; Feyerabend et al. 
2011; Lilla et al. 2011; Otsuka et al. 2011). One is the result 
of the targeted insertion of Cre-recombinase into the mast 
cell carboxipeptidase A3 locus. This resulted in a complete 
absence of mast cells without any effects on other immune 
cells except a small reduction in basophil numbers 
(Feyerabend et al. 2011). The other three mouse models for 

Figure 1. (A) Mast cells (arrows) are seen aligned along the wall of a blood vessel (V) and in the mesentery window. Toluidine blue. 
Bar = 25µm. (B) Mature peritoneal mast cell is replete with electron dense secretory granules. N, nucleus; SG, secretory granule. 
Transmission electron microscopy. Bar = 1 µm.
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mast cell deficiency were concurrently reported: Dudeck et 
al. reported the development of Mcpt5-Cre mouse models 
with an inducible or constitutive deficiency in connective 
tissue type mast cells, also without any effect on other 
immune cells (Dudeck et al. 2011); Otsuka et al. generated 
the Mas-TRECK transgenic mice in which both mast cells 
and basophils are conditionally depleted by diphtheria toxin 
treatment (Otsuka et al. 2011); and Lilla et al. reported the 
generation of C57BL/6-Cpa3-Cre;Mcl-1fl/fl mice, which are 
severely deficient in mast cells and basophils (Lilla et al. 
2011). These new mouse models for mast cell deficiency 
will certainly contribute to and expand upon the current 
knowledge of mast cell function both in physiological and 
pathological conditions. 

Today, mast cells are considered to be multifunctional 
immune cells implicated in several health and disease states. 
It is increasingly evident that mast cell maturation, pheno-
type, and function are a direct consequence of the local 
microenvironment and have a marked influence on their 
ability to specifically recognize and respond to various 
stimuli through the release of an array of biologically active 
mediators (Galli et al. 2011). The extensive tissue distribu-
tion and versatility of mast cells endow them with the 
potential to not only act as first responders in harmful situ-
ations but also to react to environmental changes by com-
municating with a variety of other cells implicated in 
physiological and immunological responses. In addition to 
their involvement in physiological processes such as tissue 
repair, wound healing, and angiogenesis, mast cells are 
increasingly becoming accepted as having a crucial role in 
innate and adaptive immunity, including immune 
tolerance.

The capacity of mast cells to promptly interact with the 
microenvironment and respond through the release of an 
array of biologically active mediators is a delicate balance 
where the inadequate regulation of mast cell functions can 
result in devastating effects to the organism. Hence, mast 
cells have been implicated in the pathogenesis of several 
chronic allergic/inflammatory disorders, autoimmune dis-
eases, and cancers (Rao and Brown 2008). The contributions 
of mast cells in these disease states are the object of continu-
ous assessment. This review focuses on these and other 
newly acknowledged functional aspects of this ancient cell. 
Phenotypic plasticity, regulation, and functional outcome in 
both normal and pathological conditions will be discussed.

Origin

Phylogenetic studies point to the appearance of a possible 
primitive counterpart of vertebrate mast cells in Ciona intesti-
nalis, a 550-million-year-old urochordate regarded as ances-
tor of both cephalochordates and vertebrates. This primitive 
mast cell-like cell contains metachromatic, electron-dense 
granules and resembles connective tissue mast cells, and is 

also able to release histamine and prostaglandins upon activa-
tion. Accordingly, mast cells could have evolved long before 
the development of an adaptive immune response (Stevens 
and Adachi 2007).

Although mammalian mast cells were first described 
more than a century ago, their origin remained controversial 
for several decades. Due to their association with connec-
tive tissue, it was initially assumed that mast cells were 
derived from undifferentiated mesenchymal cells (Combs 
1966). Lymphocytes, multipotent progenitors, and myeloid 
cells have also been suggested as mast cell precursors (Yong 
1997; Chen et al. 2005; Arinobu et al. 2009; Franco et al. 
2010). Owing to morphological and physiological similari-
ties, basophils were also pointed to being mast cell precur-
sors, and a bi-potent, committed progenitor for both cells 
was identified in the mouse spleen (Zucker-Franklin 1980; 
Arinobu et al. 2005).

The hematopoietic origin of adult mast cells was estab-
lished by the pioneering work of Kitamura et al. in 1977. 
When the bone marrow from beige mice (C57Bl BgJ/ BgJ) 
was transplanted into irradiated wild type C57Bl mice, tis-
sue mast cells with large abnormal granules from the beige 
mouse bone marrow appeared in the tissue of the recipient 
mice. This finding, which suggested that mast cells derive 
from bone marrow precursor cells, was reinforced when the 
mast cell population in deficient mice (W/WV) could be 
reconstituted by bone marrow from wild type mice 
(Kitamura et al. 1978). The hematopoietic origin of human 
mast cells was also confirmed after allogeneic bone marrow 
transplantation in a leukemic patient, where 198 days after 
the transplant, mast cells isolated from the recipients’ bone 
marrow displayed the donor’s genotype (Födinger et al. 
1994).

The existence of a mast cell committed precursor 
(MCcp) has been described in mouse bone marrow. Using 
sequential immunomagnetic isolation with two mast cell-
specific antibodies (mAb AA4 and mAb BGD6), Jamur 
and colleagues (Jamur et al. 2005) isolated and character-
ized a MCcp from the bone marrow of adult Balb/c mice 
(Fig. 2). This precursor cell was CD34+CD13+c-Kit+FcεRI-, 
and contained mRNA for the α and β subunits of FcεRI as 
well as for the mast cell-specific proteases mMCP-5, 
mMCP-7, and mouse carboxypeptidase A (CPA). 
Moreover, the MCcp gave rise only to mast cells in vitro 
and were able to reconstitute mast cells in lethally irradi-
ated mice. Chen et al. (2005) also identified a putative 
MCcp in the bone marrow of C57BL/6 mice, which was 
Lin-, Sca-1-, c-Kit+, Ly6c-, FcεRIα-, CD27-, β7+, and T1/
ST2+, and gave rise only to mast cells in culture. These 
cells were able to reconstitute mast cells in KitW-sh/ KitW-sh 
mice. The authors also proposed the existence of a com-
mon precursor for mast cells and other myeloid cells 
within the multipotent progenitor population in the bone 
marrow (Chen et al. 2005).
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The embryonic origin of mast cells has also been a matter 
of great debate. Earlier, indirect studies indicated the liver 
and yolk sac as sites of embryonic mast cell origin but the 
lack of specific markers made it difficult to distinguish 
between mast cell precursors and pluripotent stem cells 
(Kitamura et al. 1979; Sonoda et al. 1983; Palis et al. 1999; 
Medvinsky et al. 2011). Using previously characterized, 
direct immunological methods, Guiraldelli et al. have 
recently described, for the first time, the aorta-gonad-meso-
nephros (AGM) region as the site of origin of rat embryonic 
mast cells (Jamur et al. 2005; Guiraldelli et al. 2013). The 
AGM is a region of embryonic mesoderm that develops 
from the para-aortic splanchnopleura mesoderm in chick, 
mouse and human embryos. During mouse development, the 
AGM is the site where definitive hematopoiesis initiates 
between E10.5 and E12 (Müller et al. 1994; Medvinsky and 
Dzierzak 1996; de Bruijn et al. 2000; Cumano et al. 2001; 
Dzierzak and Speck 2008). Therefore, the MCcps found in 
the AGM at E11.5 appeared concurrently with the initiation 
of definitive hematopoiesis in mouse embryos (Guiraldelli 
et al. 2013). These embryonic MCcps were very similar to 
the adult MCcps previously described and gave rise only to 
mast cells in vitro (Jamur et al. 2005; Guiraldelli et al. 2013).

Distribution

Mast cells have a widespread tissue distribution and are 
found predominantly at the interface between the host and 

the external environment (Fig. 1a) at places of potential 
entry of pathogens or contact with harmful substances, such 
as skin, respiratory mucosa, and gastrointestinal tract 
(Ehrlich, 1878; Metcalfe et al. 1997; Galli et al. 2005b; 
Jamur, 2005; Metcalfe and Boyce, 2006). Mast cells popu-
late connective tissue, particularly in sub-epithelial regions 
and in the connective tissue surrounding blood vessels, 
nerves, smooth muscle cells, mucus glands, and hair folli-
cles (Galli et al. 2005a). The far-reaching distribution of the 
mast cell population relies on mechanisms of constitutive 
homing, enhanced recruitment, survival, and local matura-
tion of mast cell progenitors. Unlike other cells of hemato-
poietic origin, which differentiate and mature in the bone 
marrow before being released to the blood stream, mast cells 
migrate as immature progenitor cells through the blood 
stream to peripheral tissues where they complete their matu-
ration (Kitamura et al. 1985; Kitamura et al. 1993; Huff et al. 
1995; Hallgren and Gurish 2007). Studies using peripheral 
resident progenitor cells from the thymus and lymph nodes 
of rodents and the connective tissue sheath of mouse fibrissa 
hair follicles showed that progenitor mast cells are present in 
peripheral tissues and are able to differentiate and mature in 
vitro (Ginsburg 1963; Ginsburg and Sachs 1963; Ginsburg 
and Lagunoff 1967; Ishizaka et al. 1976; Ishizaka et al. 1977; 
Ito et al. 2010). Limiting dilution and colony-forming assays 
provided evidence that colony-forming mast cells reside in 
the bone marrow, spleen, peripheral blood, mesenteric 
lymph nodes, and in the gastrointestinal mucosa (Crapper 
and Schrader 1983; Guy-Grand et al. 1984; Kasugai et al. 
1995). Resident mast cells are long-lived cells that can sur-
vive for up to 12 weeks in the skin of Wistar rats (Kiernan 
1979). Under specific conditions, mature mast cells are able 
to proliferate after appropriate stimuli (Kitamura 1989; Galli 
et al. 2005b; Ryan et al. 2007). In rodents, the recruitment of 
mast cell progenitors from the bone marrow as well as the 
proliferation of recently recruited progenitors are responsi-
ble for repopulation of the peritoneal cavity after mast cell 
depletion by distilled water injection (Kanakura et al. 1988a; 
Jamur et al. 2010). Nakano et al. (1985) observed that recon-
stitution of the mast cell-deficient WBB6F1-WWv mice with 
bone marrow cells from congenic WBB6F1-+/+ causes an 
increase in MCps in the peritoneal cavity and that these pro-
genitors differentiate into morphologically identifiable mast 
cells. The intraperitoneal injection of bone marrow-cultured 
mast cells before reconstitution significantly inhibited 
recruitment to and differentiation of MCps in the peritoneal 
cavity (Waki et al. 1990).

Only mast cell progenitor cells, not MCcps, were found 
in the blood stream and were responsible for populating 
peripheral tissues (Jamur et al. 2010). The mechanisms for 
homing or recruitment of progenitor mast cells to peripheral 
tissues during physiological and inflammatory states are not 
fully elucidated. The difficulties encountered in studying 

Figure 2. A committed mast cell precursor (AA4-/BGD6+) 
from bone marrow of an adult Balb/c mouse bound to a magnetic 
bead conjugated to mAb BGD6. B, magnetic bead; N, nucleus. 
Transmission electron microscopy. Bar = 1 µm.
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this process lie with the low number of mast cell progenitors 
in the bone marrow or recruited to peripheral tissues as well 
as in the difficulty in identifying these cells. Also, the sur-
face expression of chemoattractant receptors and adhesion 
molecules, which directly affect migration to target tissues, 
varies considerably according to maturation stage, target tis-
sue, and cytokines and growth factors encountered in the 
microenvironment (Collington et al. 2011). Nevertheless, 
several studies from the past decade highlight the impor-
tance of some integrins, adhesion molecules, chemokines 
and their receptors, as well as cytokines and growth factors 
as important players in directed migration of mast cells to 
specific locations under normal and pathological circum-
stances (reviewed in Collington et al. 2011).

Mast cell progenitor migration seems to be controlled in 
a tissue-specific manner. Major progress has been achieved 
in clarifying mast cell progenitor migration to the small 
intestine and lungs. Mast cell progenitors are found in high 
numbers in the small intestine. The maintenance of mast 
cell numbers in the intestine occurs through constitutive 
homing that is contingent on the binding of α4β7 integrin, 
expressed on mast cells, with their corresponding adhesion 
molecules mucosal addressin cell adhesion molecule-1 
(MAdCAM-1) or vascular cell adhesion molecule-1 
(VCAM-1) on the endothelium (Gurish et al. 2001; Gurish 
and Boyce 2006). The enhanced recruitment of mast cells to 
the intestinal mucosa during T. spiralis infection was also 
dependent on the β7 integrin subunit expressed on mast cell 
progenitors (Artis et al. 2000; Pennock and Grencis 2004). 
Furthermore, CXC chemokine receptor 2 (CXCR2), 
expressed on mast cell progenitors, has been implicated in 
the directed migration of mast cells to the small intestine 
(Abonia et al. 2005).

Under physiological conditions, the lung does not have a 
significant number of mast cell progenitors, but their num-
bers increase considerably during chronic allergen-induced 
pulmonary inflammation when mast cell progenitors are 
actively recruited to the site of inflammation (Ikeda et al. 
2003). This recruitment occurs through the interaction 
between α4β7 and α4β1 integrins expressed on mast cell 
progenitors with VCAM-1 and CXCR2 present on the endo-
thelium. An amplification loop, regulated by CXCR2, can 
cause increased expression of VCAM-1 on the endothelium, 
which results in an increased integrin-mediated recruitment 
to the lung (Abonia et al. 2006; Hallgren et al. 2007). 
Additionally, it has been demonstrated that the chemokine 
(C-C motif) receptor 2 (CCR2)/chemokine (C-C motif) 
ligand 2 (CCL2) axis is active during recruitment of mast 
cell progenitors to inflamed lungs (Collington et al. 2010).

The involvement of integrins in the targeting of mast cells 
to the peritoneal cavity has also been described. Mac-1, a β2 
integrin important for leukocyte migration, has been shown 
to be required for maintenance of mast cell levels in the peri-
toneal cavity, peritoneal wall, and certain regions of the skin. 

Mast cell recruitment to the peritoneal cavity in response to 
rat recombinant (rr)IL-3 was significantly inhibited by a 
prior intraperitoneal injection of antibodies against the inte-
grin subunits α4 and β7 (de Cássia Campos et al. 2014).The 
αIIbβ3 integrin has a role in the adhesion of BMMCs to dif-
ferent substrates and influences the homing of mast cell pro-
genitors to the peritoneal cavity (Rosenkranz et al. 1998; 
Berlanga et al. 2005).

Because mast cells express several chemokine receptors, 
they are chemotactically responsive to various chemokines. 
In vitro studies have shown that mouse unstimulated 
BMMCs were chemoattracted to the chemokines monocyte 
chemotactic protein-1 (MCP-1 or CCL2) and Regulated 
upon Activation, Normal T Cell Expressed and Secreted 
(RANTES, also known as CCL5). In contrast, antigen-stim-
ulated BMMCs migrated in response to MCP-1, RANTES, 
macrophage inflammatory protein-1alpha (MIP-1α or 
CCL3), and platelet factor-4 (PF4 or CXCL4) (Taub et al. 
1995). Subcutaneous injection of RANTES induced an 
increase in the number of metachromatic mast cells in the 
dermis and the spleen of Wistar rats (de Cássia Campos et 
al. 2014). Although, mast cells express several chemokine 
receptors and many chemokines have been shown to be 
chemoattractants for mast cells in vitro, no mast cell-spe-
cific chemokine has been described (Taub et al. 1995; 
Collington et al. 2011).

Mature mast cells and their released mediators were also 
believed to promote increased recruitment of progenitors to 
an inflammatory site, thus contributing to mast cell hyper-
plasia as is often seen in the airways of allergic patients. In 
patients with severe asthma, chymase-positive mast cells 
were increased in small airway regions and correlated posi-
tively with lung function (Balzar et al. 2005). The lipid 
mediator leukotriene B4 (LTB4) was shown to be important 
in the recruitment of mast cell progenitors to inflamed tis-
sues and the subcutaneous injection of LTB4 induced an 
increase in the number of metachromatic mast cells in both 
the dermis and the spleen of Wistar rats (Weller et al. 2005; 
de Cássia Campos et al. 2014). In addition, Transforming 
Growth Factor-β (TGF-β), also released by mast cells, was 
shown to be a potent chemoattractant for mast cells in vitro 
(Gruber et al. 1994; Olsson et al. 2000; Lindstedt et al. 
2001; Olsson et al. 2001).

Given the importance of the widespread distribution and 
recruitment of mast cells, the elucidation of the mechanisms 
that tightly regulate organ-specific targeting of mast cell 
progenitors remains a crucial goal.

Development and Maturation

Maturing mast cells can be divided into three distinct stages 
based on their size and number of granules. Using the mast 
cell-specific antibody mAb AA4, which recognizes two 
derivatives of the ganglioside GD1b, it was shown that 
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connective tissue-type mast cells can be identified in all 
stages of maturation in rat bone marrow (Jamur et al. 2001). 
This study also demonstrated that mast cell maturation in 
rat bone marrow was similar to that previously seen in the 
peritoneal cavity (Jamur et al. 1986; Mendonca et al. 1986).

Much of the current knowledge on the factors affecting 
mast cell development and maturation has been gained by 
the culture of mouse BMMCs in vitro in the presence of 
growth factors. Initial studies used several types of condi-
tioned media that contained unidentified growth factors that 
supported mast cell growth and development (Hasthorpe 
1980; Nabel et al. 1981; Nagao et al. 1981; Razin et al. 
1981; Schrader 1981; Tertian et al. 1981). Interleukin-3 (IL-
3) was found to be one of the factors in the conditioned 
media that was responsible for mast cell survival, develop-
ment, and maturation (Ihle et al. 1981; Lee et al. 1982; Ihle 
et al. 1983; Razin et al. 1984; Metcalf 1986). In addition, 
IL-3 favors the development of a mucosal mast cell pheno-
type in vitro (Nakahata et al. 1986). Although critical for the 
development of murine BBMCs in vitro, IL-3 is not essen-
tial for mast cell development in vivo. IL-3-deficient mice 
are not deficient in mast cells, but the development of mast 
cell hyperplasia in response to nematode infection is 
impaired (Lantz et al. 1998). The culture of murine bone 
marrow cells with IL-3 alone for 1 week yielded mast cells 
that expressed transcripts for FcεRI subunits, bound IgE, 
but had few, if any, granules. With time in culture, this pop-
ulation increased progressively in parallel with the expres-
sion of FcεRI and its transcripts (Thompson et al. 1990). In 
humans, IL-3 does not affect mast cell differentiation of 
bone marrow CD34+ progenitors (Shimizu et al. 2008). 
Nonetheless, IL-3 is valuable in growing human mast cells 
from cord blood progenitors, as these mast cells are known 
to express the IL-3 receptor during all developmental stages 
(Dahl et al. 2004).

SCF, the ligand for the CD117/c-Kit receptor, is essential 
for mast cell survival and development in vitro. SCF alone 
is able to support the development of mast cells from mouse 
bone marrow (Gurish et al. 1992). The culture of mouse 
bone marrow enriched for hematopoietic progenitors with 
SCF in combination with IL-3 resulted in the surface 
expression of FcεRI on mast cells and the initiation of 
secretory granule formation after 3 days of culture (Lantz 
and Huff 1995). In vivo, mouse strains bearing mutations in 
the genes for the c-Kit receptor (KitW/W-v and KitW-sh) or its 
ligand SCF (Sl/Sld), which are deficient in mast cells, cor-
roborate the significance of SCF for mast cell survival and 
development (Huang et al. 1990; Kitamura 2000; 
Grimbaldeston et al. 2005). It has been shown in primates 
that SCF injection causes a reversible expansion of mast 
cells at many sites (Galli et al. 1993a). Research on SCF 
demonstrated that it promotes mast cell adhesion, migra-
tion, proliferation and survival (Irani et al. 1992; Iemura et 
al. 1994; Okayama and Kawakami 2006). Gain-of-function 

mutations of c-Kit, which lead to the constitutive activation 
of the c-Kit receptor, are associated with mastocytosis, a 
neoplastic disorder characterized by mast cell expansion 
and accumulation in humans (Orfao et al. 2007).

Phenotypic Heterogeneity and Regulation

Other growth factors and cytokines also influence mast cell 
development and maturation and consequently contribute to 
the mast cell phenotype. Thus, it is the microenvironment 
encountered by mast cells that ultimately determines their 
mature phenotype (Jamur and Oliver 2011). Accordingly, 
mast cells exhibit a high degree of heterogeneity and plas-
ticity, as a direct consequence of their widespread location 
and the mediators or the pathogens with which they inter-
act. Changes in phenotype can take place during virtually 
all stages of mast cell existence. Different subsets of mature 
mast cells have been described on the basis of their location 
and functional, structural, and biochemical characteristics. 
Two subtypes of mature mast cells have been described in 
rodents: mucosal mast cells (MMCs) and connective tissue 
mast cells (CTMCs) (Enerbäck 1966a; 1966b). In mouse, 
MMCs reside in the mucosal epithelium of the lung and 
gastrointestinal tract, and their protease content is charac-
terized by the chymases mouse Mast Cell Proteases, 
mMCP-1 and mMCP-2, which are bound to chondroitin 
sulfate chains of serglycin proteoglycans, whereas CTMCs 
are found in the intestinal submucosa, peritoneum, and skin 
and contain the chymase mMCP-4, the tryptases mMCP-5 
and mMCP-6, and carboxypeptidase A (mCPA) bound to 
heparin chains of serglycin proteoglycans (Yurt et al. 1977; 
Enerbäck et al. 1986; Metcalfe et al. 1997; Welle 1997; 
Miller and Pemberton 2002; Pejler et al. 2010). MMCs and 
CTMCs also differ in their ability to secret histamine and 
lipid mediators. Upon activation, MMCs release small 
amounts of histamine and large quantities of cysteinyl leu-
kotrienes, whereas CTMCs release higher levels of hista-
mine and prostaglandin D2 (Heavey et al. 1988). 
Additionally, athymic nude mice are devoid of MMCs; 
hence, these cells were designated as T-cell-dependent mast 
cells (Ruitenberg and Elgersma 1976). It is important to 
note that the mouse protease phenotypes described above 
can vary considerably among mast cells found in different 
tissues, in different locations of the same tissue, in the same 
tissue of different animal strains and also in inflamed tis-
sues (Stevens et al. 1994; Gurish et al. 1995; Friend et al. 
1996; Xing et al. 2011).

Mature human mast cells were similarly divided in two 
large subsets based on their protease content. The mast cell 
tryptase/chymase (MC

TC
) subset of cells store tryptases, 

chymases, and carboxypeptidases in their granules, whereas 
MC

T
 contain only tryptases (Irani et al. 1986; Schwartz 

2006; Pejler et al. 2010). In human mast cells, serglycin 
proteoglycans contain both heparin and chondroitin sulfate 
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in a 2:1 ratio (Metcalfe et al. 1979; Thompson et al. 1988). 
MC

T
 prevail in the intestinal and pulmonary mucosa, near T 

cells, whereas MC
TC

 are found in the skin and lymph nodes, 
in addition to the lung and the gut submucosa (Goldstein et 
al. 1987; Irani et al. 1987). A third phenotype of mast cells 
expressing tryptase and carboxipeptidase A3, but not chy-
mase, was recently described in the airway epithelium in 
asthmatic subjects and esophageal samples of patients with 
eosinophilic esophagitis (Abonia et al. 2010; Dougherty et 
al. 2010). Human mast cells also differ with respect to the 
expression of the receptor C5aR for the complement C5a. 
Mature MC

TC
 from skin and lung, but not in mature MC

T
 

from lung, express C5aR (Oskeritzian et al. 2005).
Mast cell phenotypic heterogeneity, reflected in their 

extensive range of sensitivity to activation, and the varia-
tions in stored and released mediators, underlies the array of 
responses mast cells are able to generate (Metcalfe et al. 
1997; Galli et al. 2005b). During the lifetime of a mast cell, 
numerous factors can alter its phenotype and a combination 
of these changes can determine mast cell homeostatic or 
pathophysiological responses (Moon et al. 2010). Mature 
mast cells can quickly alter their staining characteristics as 
a result of changes in proteoglycan expression both in vitro 
and in vivo (Razin et al. 1982; Sonoda et al. 1984; Nakano 
et al. 1985; Levi-Schaffer et al. 1986; Sonoda et al. 1986; 
Otsu et al. 1987; Kanakura et al. 1988b). Trans-differentiation 
between mucosal and connective tissue phenotypes has also 
been demonstrated (Kitamura 1989). Mouse mast cells are 
able to reversibly alter not only their serglycin proteogly-
cans but also their protease profile in vivo (Friend et al. 
1998). The mast cell phenotypic profile can be shaped by 
the cytokine and growth factor milieu they encounter (Table 
1). In rodents, Granulocyte Macrophage Colony-Stimulating 
Factor (GM-CSF) and IL-3 induce histidine decarboxilase 
synthesis, which in turn leads to an increased histamine pro-
duction (Schneider et al. 1987). IL-4 acts in concert with 
IL-3 to promote mast cell growth and survival (Tsuji et al. 
1990; Rennick et al. 1995). IL-4 also inhibits the expression 
of CD117 and FcεRI in mouse BMMCs (Ryan et al. 1998; 
Mirmonsef et al. 1999). On the other hand, IL-4 treatment 
of human cultured mast cells enhances cell maturation and 
survival, promotes the expression of FcεRI and chymase in 
MC

T
, and downregulates CD117 expression (Sillaber et al. 

1991; Yanagida et al. 1995; Toru et al. 1996; Toru et al. 
1998). In mouse BMMCs, IL-4 in combination with SCF 
induces differentiation of CTMCs (Karimi et al. 1999). The 
addition of IL-4 to SCF-treated, isolated human intestinal 
mast cells promotes mast cell proliferation and alters the 
pro-inflammatory profile of cytokines through the induc-
tion of Th2 cytokines (IL-3, IL-5, and IL-13) and the down-
regulation of IL-6 (Lorentz and Bischoff 2001). Using a 
mouse model of allergy, Oettgen et al. (Burton et al. 2013) 
have also established that IL-4 signaling is required for the 
mast cell expansion observed in the gastrointestinal mucosa 

in response to allergen ingestion. IL-9 is another important 
growth factor both for mice and human mast cells (Hültner 
and Moeller 1990; Godfraind et al. 1998; Matsuzawa et al. 
2003). Mice that overexpress this cytokine display increased 
infiltration of CTMCs and MMCs into the gut, trachea, and 
kidney (Godfraind et al. 1998). In rodent mast cells, IL-10 
exposure inhibits the expression of FcεRI, IL-6, and CD117 
(Marshall et al. 1996; Mirmonsef et al. 1999; Gillespie et al. 
2004; Kennedy Norton et al. 2008) but induces the expres-
sion of mMCP-1, a serine protease preferentially expressed 
in mucosal mast cells of Trichinella spiralis-infected mice 
(Ghildyal et al. 1992b). rIL-10 can induce the expression of 
mMCP-2 in connective tissue-type BMMCs, whereas rIL-3 
attenuates rIL-10-induced expression of this gene in vitro 
(Ghildyal et al. 1992a). IL-10 in combination with SCF was 
also shown to increase mast cell proliferation both in vivo 
and in vitro (Thompson-Snipes et al. 1991; Rennick et al. 
1995; Kennedy Norton et al. 2008). The combination of 
IL-3, IL-4 and IL-10 leads to apoptosis of mouse peritoneal 
mast cells and BMMCs (Yeatman et al. 2000). IL-6 pro-
motes mast cell growth and survival in the presence of SCF 
(Galli 1990; Yanagida et al. 1995; Saito et al. 1996; Ochi et 
al. 1999; Gyotoku et al. 2001). However, IL-6 negatively 
modulates SCF development of cord blood-derived (CD34+) 
human mast cells (Kinoshita et al. 1999). Moreover, IL-6 
has been shown to support the development of splenic mast 
cells, protect mast cells from IL-4-induced apoptosis, and 
increase chymase and histamine expression in cord blood-
derived human mast cells (Hu et al. 1997; Kinoshita et al. 
1999; Oskeritzian et al. 1999). The addition of IL-33 to cul-
tures of CD34+ human mast cell progenitors induced the 
earlier expression of tryptase whereas rIL-33 addition to 
mBMMCs increased tryptase expression both at the mRNA 
and protein levels (Allakhverdi et al. 2007a; Kaieda et al. 
2010). IL-13, IL-15, and IL-16 all induce mast cell prolif-
eration when combined with other cytokines (Masuda et al. 
2000; Masuda et al. 2001; Qi et al. 2002; Kaur et al. 2006; 
Hu et al. 2007). TGF-β induces the expression of the αE 
integrin subunit and mast cell proteases mMCP-1, -6, and -7 
in BMMCs (Miller et al. 1999; Wright et al. 2002; Funaba 
et al. 2005; Funaba et al. 2006). Other molecules involved 
in mast cell maturation include Nerve Growth Factor (NGF) 
and Neurotrophin-3 (NT-3). NGF increases the number of 
IL-3-derived BMMCs and induces a CTMC phenotype 
marked by increased histamine content and the expression 
of heparin (Matsuda et al. 1991). NGF also prevents apop-
tosis of murine peritoneal mast cells (Kawamoto et al. 
1995). NT-3 promotes maturation of fetal mouse skin mast 
cells and human intestinal mast cells (Metz et al. 2004; 
Lorentz et al. 2007). The factors and phenotypic conse-
quences affecting mast cells presented above are only a 
summary of the research published in this area.

In addition to changes affecting the microenvironment, 
mast cell phenotype is also dictated by animal species and 
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genetic background (Galli et al. 2011). The relevance of 
most of the in vitro findings on the influence of cytokines 
and growth factors on mast cell phenotype has yet to be 

confirmed in vivo. However, it is evident that mast cell het-
erogeneity in peripheral tissues encompasses a far more 
diverse and dynamic profile than the two mast cell subsets 

Table 1. Mast Cell Phenotypic Regulation.

Cytokines/Growth Factors Mast Cell Type/Origin Induced Mast Cell Phenotype References

GM-CSF, IL-3 Isolated mouse BMMC 
progenitors

↑ Histamine production (Schneider et al. 1987)

IL-4+IL-3 CTMCs purified from 
mouse peritoneal MCs

↑ Growth and survival (Tsuji et al. 1990)

IL-4, IL-10 Mouse mesenteric lymph 
node derived MCs

↑ SCF dependent mast cell 
growth and differentiation /  
↑ Histamine production

(Rennick et al. 1995)

IL-4 Mouse BMMCs ↓ Expression of CD117 and 
FcεRI

(Ryan et al. 1998; Mirmonsef  
et al. 1999)

IL-4 Human cultured MCs ↑ Maturation, survival and 
expression of chymase and 
FcεRI / ↓ Expression of CD117

(Sillaber et al. 1991; Yanagida 
et al. 1995; Toru et al. 1996; 
Toru et al. 1998)

IL4+SCF Mouse BMMCs ↑ Connective tissue phenotype (Karimi et al. 1999)
IL4+SCF Intestinal human MCs ↑ Proliferation and Th2 cytokine 

production (IL-3, IL-5, and IL-
13) / ↓ IL-6

(Lorentz and Bischoff 2001)

IL-9 Mouse BMMCs, Human 
CD34(+) cord blood- and 
peripheral blood-derived 
MCs

↑ Proliferation and 
responsiveness to activation

(Hültner and Moeller 1990; 
Matsuzawa et al. 2003)

IL-9 Mouse CTMCs and MMCs ↑ Intraepithelial infiltration of 
CTMCs and MMCs in the gut, 
trachea, and kidneys

(Godfraind et al. 1998)

IL-10 Mouse BMMCs, rat 
peritoneal MCs, and 
human skin-derived MCs

↓ Expression of CD117, IL-6, 
and FcεRI / ↑ Expression of 
mMCP1 and mMCP2 / ↑ SCF 
dependent proliferation

(Thompson-Snipes et al. 1991; 
Ghildyal et al. 1992a; Ghildyal 
et al. 1992b; Rennick et al. 
1995; Marshall et al. 1996; 
Gillespie et al. 2004; Kennedy 
Norton et al. 2008)

IL-3+IL-4+IL-10 Mouse peritoneal and 
BMMCs

↑ Apoptosis (Yeatman et al. 2000)

IL-6+SCF Human cultured MCs, 
mouse BMMCs

↑ Growth and survival (Yanagida et al. 1995; Saito  
et al. 1996; Ochi et al. 1999; 
Gyotoku et al. 2001)

IL-6 Human CD34(+) cord 
blood derived MCs

↓ SCF-dependent development 
/ ↑ Expression of chymase and 
histamine production

(Kinoshita et al. 1999)

IL-33 Human peripheral blood- 
or cord blood-derived 
CD34(+) progenitor cells 
and mouse BMMCs

Earlier expression of tryptase / ↑ 
Expression of mMCP-6

(Allakhverdi et al. 2007a; Kaieda 
et al. 2010)

TGF-β Mouse BMMCs ↑ Expression of αE integrin 
subunit, MCP-1, MCP-6, and 
MCP-7

(Miller et al. 1999; Wright  
et al. 2002; Funaba et al. 2005; 
Funaba et al. 2006)

NGF Mouse BMMCs and 
peritoneal MCs

↑ Maturation, histamine content 
and heparin expression /  
↓ Apoptosis

(Matsuda et al. 1991; 
Kawamoto et al. 1995)

NT-3 Fetal mouse skin MCs and 
human intestinal MCs

↑ Maturation (Metz et al. 2004; Lorentz et al. 
2007)

Abbreviations: BMMC, bone marrow mast cell; CTMC, connective tissue mast cell; GM-CSF, granulocyte macrophage colony-stimulating factor; IL, 
interleukin; MCs, mast cells; MMC, mucosal mast cell; mMCP, mouse mast cell protease; NGF, nerve growth factor; NT-3, neurotrophin-3; SCF, stem 
cell factor; TGF-β, transforming growth factor-β.
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traditionally cited; for instance, both tracheal constitutive 
CTMCs and induced MMCs from sensitized mice analyzed 
by immunohistochemistry presented with all six mast cell 
proteases (Xing et al. 2011).

Mast Cell Mediators

Mast cell functions reflect their ability to secrete a diverse 
array of biologically active compounds (Table 2). Mast cell 
activation culminates with the release of a wide range of 
inflammatory mediators (Metcalfe et al. 1997). Activation 
can lead to release of three distinct classes of mediators: 
preformed mediators, which are stored in mast cell cyto-
plasmic granules; neoformed or lipid mediators, which are 
derived from membrane lipids; and neosynthesized media-
tors, which are produced following transcriptional activa-
tion and whose regulation depends on the type of stimuli 
and receptor involved (Galli and Lantz 1999).

Preformed mediators. Mast cells store an extensive variety 
of preformed mediators in their secretory granules. Ehrlich 
first described mast cells as granular connective tissue cells 
and emphasized the presence of a yet unknown substance 
bound to granular storages in the protoplasm, which reacted 
with basic aniline dyes giving a typical metacromasia 
(Ehrlich 1878). It is now known that the metachromatic 
properties of mast cells are due to the interaction of basic 
(cationic) dyes with acidic (anionic) residues on highly sul-
fated glycosaminoglycan (GAG) chains (heparin and/or 
chondroitin sulfate) attached to the proteoglycan serglycin, 
the major constituent of mast cell granules (Jorpes 1935; 
Holmgren 1937; Ranson and Gallagher 1992; Abrink et al. 
2004). Serglycin is a proteoglycan expressed in hematopoi-
etic cells and endothelial cells. Its core protein consists of 
153 amino acids with 24 serine-glycine repeats between 
amino acids 89 and 137 (Pejler et al. 2009). The main func-
tion of serglycin is to regulate storage of several compounds 
present in hematopoietic cells. Negatively charged GAG 
chains concentrate proteases, histamine, and other posi-
tively charged molecules within the granule (Melo et al. 
2011).

Histamine is the best known biogenic amine and was one 
of the first functionally active mast cell mediators to be 
described (Rocha e Silva, 1947; Riley and West 1952). 
Histamine synthesis occurs through decarboxylation of his-
tidine by the enzyme histidine decarboxylase, which is 
expressed in increasing amounts during mast cell matura-
tion (Rothschild and Schayer 1959; Ringvall et al. 2008). 
Among the various effects of histamine are vasodilation, 
bronchoconstriction, increased capillary permeability, and 
smooth muscle contraction, all of which are commonly 
associated with allergic and inflammatory reactions 
(Lundequist and Pejler 2011). Research using knockout ani-
mals for the histidine decarboxylase (HDC) gene also 

described a role for histamine in various pathological con-
ditions such as autoimmune diseases, anaphylaxis, and ath-
erosclerosis (Makabe-Kobayashi et al. 2002; Sasaguri et al. 
2005; Musio et al. 2006; Ohtsu 2008). More importantly, it 
was recently shown that histamine is implicated in the regu-
lation of dendritic cell (DC) functions (Simon et al. 2011). 
Serotonin is another biogenic amine present in rodent mast 
cell granules (Benditt et al. 1955). The presence of sero-
tonin in human mast cells was demonstrated in human 
peripheral blood, where its levels are elevated in patients 
with mastocytosis (Kushnir-Sukhov et al. 2007).

Although bovine mast cells are known to contain dopa-
mine (Edvinsson et al. 1977), it has been only recently that 
the storage of dopamine in rodent mast cells has been con-
firmed (Freeman et al. 2001; Rönnberg et al. 2011).

Mast cell granules exhibit several similarities to lyso-
somes, among which are low pH and the presence of several 
lysosomal enzymes. β-hexosaminidase is the best charac-
terized of these enzymes and is ubiquitous to all mast cell 
subtypes in all species. Quantification of the released 
β-hexosaminidase activity is often used as a measure of 
mast cell degranulation (Lundequist and Pejler 2011). In 
addition, viable mast cells were found to store and secrete 
enzymatically active caspase-3 (García-Faroldi et al. 2013).

Mast cell proteases are stored within mast cell granules 
as active enzymes and constitute approximately 25% of 
mast cell protein content (Schwartz and Bradford 1986; 
Schwartz et al. 1987; Huang et al. 2000). Chymases, trypt-
ases, and carboxypeptidase A are exclusively expressed by 
mast cells. They have been implicated in several pathologi-
cal states including arthritis, allergic airway inflammation, 
tumor angiogenesis, innate immune defense, glomerulone-
phritis, and abdominal aortic aneurism formation (McNeil 
et al. 2008; Shin et al. 2008; Sun et al. 2009; Waern et al. 
2009; Scandiuzzi et al. 2010; Souza-Junior et al. 2011). 
Chymases can contribute to ECM remodeling both directly, 
through cleavage of fibronectin and non-helical collagens, 
and indirectly, through activation of matrix metalloprotein-
ases (MMPs), which are also released upon mast cell acti-
vation (Fang et al. 1996; Tchougounova et al. 2005; 
Caughey 2007). Mast cell proteases have also been shown 
to play a modulatory role in the course of allergic reactions. 
β-Tryptase acts to limit allergic inflammation through the 
cleavage of IgE after being released by activated mast cells 
(Rauter et al. 2008).

The ability of mast cells to store cytokines within their 
granules was first demonstrated for tumor necrosis factor-
alpha (TNF-α) (Gordon and Galli 1990). Currently, several 
studies suggest that numerous cytokines and growth factors 
are stored in mast cell granules along with other preformed 
mediators (Grützkau et al. 1997; Sayed et al. 2008; 
Lundequist and Pejler 2011).

Recently, in addition to the well-known mast cell pre-
formed mediators, several other preformed mediators have 
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been described (Table 2). These mediators exhibit distinct 
functions in diverse circumstances where mast cells are 
involved. It is important to keep in mind that the specific 
profile of preformed mediators varies considerably accord-
ing to the species, subtype, and surrounding microenviron-
ment where mast cells are found.

Mast cell granule contents are released through degranu-
lation, which involves fusion of membrane granules with 
the plasma membrane and extrusion of membrane-free 
granule content into the external environment. Mast cells 
are unique among hematopoietic cells in that they are able 
to re-granulate and remain functional after degranulation 

Table 2. Mast Cell Mediators.

MEDIATORS REFERENCES

PREFORMED (Lundequist and Pejler 2011)

Biogenic Amines
 

Histamine, Serotonin (5-HT),
Dopamine, Polyamines

(Ohtsu 2008; Kanerva et al. 2009; García-Faroldi 
et al. 2010; Rönnberg et al. 2011) 

Lysosomal Enzymes
 
 

β-hexosaminidase, β-glucuronidase,
β-D-galactosidase, Arylsulphatase A,
Cathepsins C, B, L, D, and E

(Schwartz and Austen 1980; Schwartz et al. 1981; 
Dragonetti et al. 2000; Wolters et al. 2000; 
Henningsson et al. 2005)  

Proteases
 
 

Chymase, Tryptase,
Carboxypeptidase A, Cathepsin G,
Granzyme B, Matrix metalloproteinases, and 

Renin

(Parikh et al. 2003; Silver et al. 2004; Reid et al. 
2007; Maxová et al. 2010; Pejler et al. 2010; 
Trivedi and Caughey 2010; Caughey 2011)  

Other Enzymes Kinogenases, Heparanase, Angiogenin and Active 
Caspase-3

(Bashkin et al. 1990; Kulka et al. 2009; Lilla et al. 
2009; García-Faroldi et al. 2013)

Proteoglycans Serglycin (Heparin and Chondroitin sulphate) (Yurt et al. 1977; Metcalfe et al. 1979; Enerbäck 
et al. 1985; Thompson et al. 1988; Abrink et 
al. 2004; Pejler et al. 2009; Melo et al. 2011; 
Rönnberg and Pejler 2012)

Cytokines TNF-α, IL-4, IL-15 (Beil et al. 1994; Horsmanheimo et al. 1994; Gibbs 
et al. 1997; Orinska et al. 2007)

Chemokines RANTES (CCL5), eotaxin (CCL11), IL-8 
(CXCL8), MCP-1 (CCL2), MCP-3 (CCL7), 
MCP-4

(Gibbs et al. 2001; Collington et al. 2010; 
Collington et al. 2011)

Growth Factors TGF-β, bFGF-2, VEGF, NGF, SCF (Gordon and Galli 1990; Leon et al. 1994; 
Boesiger et al. 1998; Grützkau et al. 1998; Qu 
et al. 1998; Dvorak et al. 2001; Lindstedt et al. 
2001; Allakhverdi et al. 2007a)

Peptides
 

Corticotropin-Releasing Hormone, Endorphin, 
Endothelin-1,

LL-37/Cathelicidin, Substance P, Vasoactive 
Intestinal Peptide

(DiAugustine et al. 1980; Ehrenreich et al. 1992; 
Gulubova and Vodenicharov 2001; Di Nardo 
et al. 2003; Kempuraj et al. 2004; Hültner and 
Ehrenreich, 2005; Di Nardo et al. 2008; Pongor 
et al. 2011) 

Others Eosinophil Major Basic Protein (MBP) (Butterfield et al. 1990)
NEOFORMED (Boyce 2005)
Phospolipid Metabolites Prostaglandin D2, E2, Leukotrienes B4, C4, and 

Platelet Activating Factor
(Boyce 2007)

NEOSYNTHESIZED
Cytokines IL-33, IL-10, IL-12, IL-17, IL-5, IL-13, IL-1, IL-2, 

IL-3, IL-4, IL-6, IL-8, IL-9, IL-16, Type I and Type 
II IFN, TNF-α, MIP-2β

(Gordon and Galli 1990; Rubinchik et al. 1995; 
Williams and Coleman 1995; Rumsaeng et al. 
1997; Ackermann et al. 1999; Masuda  
et al. 2000; Supajatura et al. 2001; Masuda et al. 
2002; Okayama et al. 2003; Gessner et al. 2005; 
Kohno et al. 2005; Nakano et al. 2007; Nigrovic 
et al. 2007; Stassen et al. 2007; Buckland 2010; 
Dietrich et al. 2010; Hsu et al. 2010; Oldford  
et al. 2010; Lin et al. 2011; Nam et al. 2011)

Growth Factors SCF, GM-CSF, β-FGF, NGF, PDGF, TGF-β, VEGF  (Wodnar-Filipowicz et al. 1989; Leon et al. 1994; 
Reed et al. 1995; Grützkau et al. 1998; Zhang  
et al. 1998; Aceves et al. 2010; van Steensel  
et al. 2012)

Reactive Oxygen Species Nitric Oxide (Swindle and Metcalfe 2007; Endo et al. 2011)
Others Complement Factor C3 and C5 (Fukuoka et al. 2013)

Abbreviations: FGF, fibroblast growth factor; GM-CSF, granulocyte macrophage colony-stimulating factor; IL, interleukin; MCP, monocyte chemotactic protein; NGF, nerve 
growth factor; PDGF, platelet-derived growth factor; RANTES, regulated upon activation, normal T vell expressed and secreted; SCF, stem cell factor; TGF-β, transforming 
growth factor-β; TNF-α, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor; MIP-2β, macrophage inflammatory protein-1alpha;
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(Dvorak et al. 1987; Jamur and Vugman 1988; Xiang et al. 
2001). Degranulation can be accomplished by numerous 
mechanisms described later in this review.

Neoformed mediators. Increased levels of intracellular cal-
cium and mitogen-activated protein kinase (MAPK) phos-
phorylation in activated mast cells leads to the rapid 
production and release of neoformed mediators, known as 
eicosanoids. Eicosanoids are produced through the catalytic 
conversion of arachidonic acid, which is released through 
the enzymatic action of phospholipase A2 (PLA2) on mem-
brane phospholipids (Clark et al. 1991; Berenbaum et al. 
2003). Arachidonic acid is converted into the intermediary 
molecule prostaglandin H2 (PGH2) by the action of cyclo-
oxygenases (COX). Mast cells express both the constitutive 
(COX-1) and inducible (COX-2) forms of this enzyme 
(Murakami et al. 1994). PGH2 is the bioactive precursor of 
all prostaglandins and conversion to PGD2, the most impor-
tant prostaglandin in mast cells, is dependent on the enzyme 
PGD2 synthase (Peters et al. 1984; Urade et al. 1990). Syn-
thesized PGD2 is released through a prostaglandin trans-
porter protein (Lu et al. 1996) and acts through the specific 
G protein-coupled receptors (GPCRs), PD1 and PD2s (Boie 
et al. 1995; Hirai et al. 2001). Prostaglandins contribute to 
increased vascular permeability, leukocyte recruitment, 
mucus production, and nerve cell activation (Galli et al. 
2005a; Weller et al. 2007).

Leukotriene production in mast cells requires the revers-
ible translocation of the enzyme 5-lipoxygenase (5-LO) to 
the perinuclear region (Malaviya and Jakschik 1993). 5-LO 
and the five lipoxygenase activator protein (FLAP) sequen-
tially convert arachidonic acid into the unstable intermedi-
aries 5-Hydroperoxyeicosatetranoic acid (5-HpETE) and 
leukotriene A4 (LTA4) (Dixon et al. 1990). LTA4 is subse-
quently converted to leukotriene B4 (LTB4) by the LTA4 
hydrolase (Evans et al. 1985) or undergoes conjugation to 
reduced glutathione to form leukotriene C4 (LTC4) by 
LTC4 synthase (LTC4S), which is the precursor for all cys-
teinyl leukotrienes (cysLT) (Lam et al. 1994). LTC4, the 
most relevant leukotriene in mast cells, is released through 
an energy-dependent export mechanism involving the mul-
tidrug resistance protein, MRP-1 (Peters et al. 1984; Leier 
et al. 1994). Similar to PGD2, cysLTs also bind and activate 
two GPCRs, CysLT1 and CysLT2g. LTB4 is secreted in 
small quantities by activated mast cells and has an impor-
tant role in the recruitment of neutrophils, eosinophils, and 
effector T lymphocytes (Goodarzi et al. 2003; Carlos et al. 
2011). Leukotrienes function locally on the vascular endo-
thelium by promoting rolling and recruitment of neutrophils 
and eosinophils, which contribute to host defense against 
bacterial infections (Malaviya and Abraham 2000; Carlos et 
al. 2011). In general, mast cell-released eicosanoids partici-
pate in the regulation of vascular permeability, smooth mus-
cle contraction, the recruitment of immune effector cells, 

and they alter the patterns of antigen presentation (Boyce 
2005).

Neosynthesized mediators. Neosynthesized mediators are 
synthesized after transcriptional activation as the result of 
mast cell activation. Their regulation depends on the type of 
stimuli as well as the specific receptor involved in the acti-
vation. These mediators include cytokines and chemokines, 
which are released hours after activation. Mast cells synthe-
size and release both proinflammatory and anti-inflamma-
tory cytokines. Anti-inflammatory cytokines comprise 
TGF-β and IL-10. Proinflammatory cytokines include cyto-
kines associated with type 2 T-helper cell (Th2) responses 
such as IL-4, IL-5, IL-6, and IL-1 and cytokines associated 
with Th1 responses including interferon-gamma (IFN-γ), 
IL-2, IL-3, IL-12, IL-18, and TNF-α. The chemokines 
CCL5 and CXCL8 are also synthesized by mast cells and 
recruit immune cells to sites of infection (Marshall, 2004). 
Other chemokines produced by murine mast cells are MIP-
1α (CCL3), MIP-1β (CCL4), and MCP-1 (CCL2) which 
help to perpetuate inflammation (Burd et al. 1989).

Mast Cell Activation

Mast cells may be activated by several distinct stimuli act-
ing on numerous receptors on the mast cell surface. The 
range and nature of mast cell responses to different stimuli 
can be influenced by intrinsic and microenvironmental fac-
tors that affect the expression or functionality of surface 
receptors and/or signaling molecules that contribute to these 
responses (Galli et al. 2005b; Metcalfe et al. 2009).

The most studied method of mast cell activation is the 
allergic reaction, an adaptive immune response mediated by 
the high affinity IgE receptor on the mast cell surface (Galli 
et al. 2005a). Currently, the innate immune regulation of 
mast cell activation has become center stage. As an innate 
immune cell, mast cells are equipped for early and rapid 
sensing of invading microorganisms such as bacteria, para-
sites, fungi, and viruses. These pathogens display conserved 
molecular structures called pathogen-associated molecular 
patterns (PAMPs), which are recognized by pattern recogni-
tion receptors (PRRs), such as Toll-like receptors (TLRs), 
on the mast cell surface. The direct interaction between spe-
cific PAMPs and PRRs induces mast cell activation and 
selective mediator release (Marshall 2004). In addition, 
mast cells can be activated by several other stimuli such as 
neuropeptides, cytokines, growth factors, toxins, basic 
compounds, complement, immune complexes, certain 
drugs, as well as physical stimuli (Tkaczyk et al. 2004a; 
Gilfillan et al. 2009). Certain lectins are able to activate 
mast cells and promote mediator release, largely through 
crosslinking IgE or FcεRI on the mast cell surface 
(Wyczolkowska et al. 1992; Moreno et al. 2003; de Almeida 
Buranello et al. 2010).



New Insights into Mast Cell Function 709

Recent research has showed that receptors for numerous 
ligands, including adenosine, C3A, immune complexes, 
chemokines, cytokines, PAMPs, sphingosine-1-phosphate 
(S1P), and SCF, are involved in mast cell activation. These 
receptors are able to potentiate FcεRI-mediated activation 
or to directly stimulate mediator release in an FcεRI-
independent manner. The modulation of the signaling path-
ways mediated by these receptors accounts for the fact that 
different stimuli can lead to diverse combinations of media-
tors being released through the differential induction of 
degranulation, eicosanoid and cytokine production and 
release (Gilfillan and Tkaczyk 2006). Although, the early 
events of the signaling cascades initiated by these receptors 
are different, they converge downstream in order to provide 
the necessary signals for mediator release (Gilfillan and 
Tkaczyk 2006).

FcεRΙ-mediated mast cell activation. Allergy is the most rec-
ognized consequence of mast cell inflammatory mediator 
release. Type I allergic reactions are the hallmark of these 
cells and are mediated through FcεRI, which is highly 
expressed on the mast cell surface and positively regulated 
by increased IgE concentrations (Yamaguchi et al. 1997; 
Kawakami and Galli 2002). FcεRI belongs to the immuno-
globulin receptor superfamily and is expressed as a hetero-
tetramer formed by the subunits αβγ

2;
. The α subunit possess 

an extracellular domain that binds to the Fc portion of IgE, 
whereas the β and γ subunits carry immunoreceptor tyro-
sine-based activation motifs (ITAMs) on their cytoplasmic 
portions. FcεRI-mediated activation is the most studied and 
best characterized pathway for mast cell activation (Galli et 
al. 2005a). The activation process is contingent on antigen-
specific IgE, produced by B lymphocytes after antigen pre-
sentation and IL-4 stimulation (Kinet 1999). Binding of 
multivalent antigens recognized by IgE, previously bound 
to FcεRI on the mast cell surface, promotes receptor cross-
linking and translocation into lipid rafts followed by a cas-
cade of intracellular signaling events (Metzger 1992; 
Kovárová et al. 2001; Siraganian 2003). FcεRI signaling 
relies on Lyn-dependent phosphorylation of ITAMs on the 
cytoplasmic portion of the β and γ receptor subunits. The 
protein kinase Syk is recruited to the phosphorylated ITAMs 
where it becomes activated and autophosphorylated (Zhang 
et al. 2000; de Castro et al. 2010). Subsequently, Syk phos-
phorylates adaptor proteins, such as linker of activation of T 
cells (LAT) and non-T cell activation linker (NTAL), which 
serve as platforms for various other signaling molecules. 
LAT-dependent activation of phospholipase C (PLC) pro-
duces inositol triphosphate (IP

3
) and diacylglycerol (DAG), 

which in turn cause intracellular calcium influx and protein 
kinase C (PKC) activation. NTAL activation leads to phos-
phatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activa-
tion, which also contributes to calcium mobilization 
(Gilfillan and Tkaczyk 2006). In summary, this signaling 

cascade comprises four major cellular events, namely pro-
tein phosphorylation, lipid metabolism and phosphoryla-
tion, intracellular calcium mobilization, and transcription 
factor activation (Benhamou and Siraganian 1992; Choi et 
al. 1996; Liou et al. 2005; Tkaczyk et al. 2006). The final 
events of this signaling cascade culminate in degranulation, 
lipid mediator production, and cytokine production (Ozawa 
et al. 1993; Razin et al. 1994; Gilfillan 1997; Metcalfe et al. 
1997; Ali et al. 2004; Cho et al. 2004). In the later stages of 
mast cell activation, serine and threonine kinases belonging 
to the PKC and MAPK families play a predominant role. 
The calcium signaling promoted by PLCγ and PI3K is 
essential for several signaling events including activation of 
phospholipase D (PLD), PLA2, calcium-dependent PKC 
isoforms and for the regulation of the nuclear factor of acti-
vated T cells (NFAT) transcription factor through calcium 
binding proteins such as calmodulin and calcineurin 
(Kumada et al. 1995; Ishimoto et al. 1996; Cho et al. 2004).

The calcium-dependent PKC isoforms β and ε regulate 
the production of the transcription factors Fos and Jun and 
the consequent cytokine production (Razin et al. 1994). The 
MAPKs extracellular signal-regulated kinases (ERK1, 2, 
and 5), p38, and c-Jun N-terminal kinase (JNK) act to regu-
late the phosphorylation of specific transcription factors 
and therefore are important for the production of cytokines 
and chemokines by activated mast cells. Moreover, ERK1/2 
regulates PLA2 activation and eicosanoid production upon 
FcεRI crosslinking (Siraganian 2003). Transcriptional regu-
lation by specific transcription factors in response to FcεRI 
activation is contingent on MAPKs, PKC, PI3K, and ele-
vated calcium levels (Ishizuka et al. 1999; Hundley et al. 
2004; Qiao et al. 2006). Transcription factors, such as 
nuclear factor-kappa B (NFκB), NFAT, activating transcrip-
tion factor 2 (ATF-2), and components of the activating pro-
tein-1 (AP-1) (Fos and Jun) bind to multiple binding sites in 
the promoter regions of cytokine genes to regulate their 
expression (Pelletier et al. 1998; Marquardt and Walker 
2000; Shaulian and Karin, 2002; Lorentz et al. 2003).

Pathogen-mediated mast cell activation. The initial recogni-
tion of microorganisms is mediated by a series of PRRs 
such as TLRs, nod-like receptors (NLRs), and retinoic acid-
inducible gene 1 (RIG-1)-like receptors (RLRs), expressed 
on various immune cells, including mast cells. These recep-
tors are part of a family of cytosolic and membrane recep-
tors that collectively recognize danger signals and PAMPs. 
Mast cells express the TLRs 1-7 and 9, and the stimulation 
of specific receptors by different pathogens induces differ-
ent mast cell responses.

TLR stimulation promotes the association of the adaptor 
proteins myeloid differentiation primary response gene (88) 
(MyD88) and MyD88 adaptor-like/Toll interleukin-1 recep-
tor (MAL/TIRAP). MyD88 recruits a complex formed by 
interleukin-1 receptor-associated kinases (IRAKs) and TNF 
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receptor-associated factor 6 (TRAF6), which is dissociated 
to form a new complex with TGF-β-activated kinase 1 
(TAK1) and TAK1 binding protein (TAB). TRAF6 acti-
vates TAK1 and, together with TAB, activate the IΚB 
kinase (IΚK) complex, thereby promoting NFκB nuclear 
translocation and cytokine transcription (Cook et al. 2004). 
TLR signaling also includes MyD88-independent pathways 
that rely on the adaptor molecules TIR-domain-containing 
adapter-inducing interferon-β (TRIF) and TLR adaptor 
molecule (TRAM) (Basu and Fenton 2004; Cook et al. 
2004). MyD88-dependent and -independent signaling path-
ways culminate in similar signaling cascades that promote 
the activation of PI3K, MAPKs, and transcription factors.

TLR4 stimulation by lipopolysaccharide (LPS) pro-
motes cytokine production without induction of degranula-
tion. On the other hand, TLR2 stimulation by peptidoglycan 
induces both degranulation and cytokine production by 
mast cells (Supajatura et al. 2002). Double-stranded RNA 
(dsRNA) stimulates TLR3 on the mast cell surface and 
induces the production of antiviral cytokines such as TNF-α 
and IFN-β, without mast cell degranulation (Orinska et al. 
2005). Mast cells also express cytoplasmic RLRs such as 
RIG-I, protein kinase RNA-activated (PKR), and mela-
noma differentiation-associated gene 5 (MDA-5), which 
recognize viral and synthetic dsRNA and evoke mast cell 
activation and antiviral cytokine and chemokine production 
without degranulation (Fukuda et al. 2013; Graham et al. 
2013).

Complementary receptors. The mast cell microenvironment 
includes a multitude of factors that can modify mast cell 
activation. Mast cells express a variety of receptors that, if 
activated, can alter the production and release of mediators 
(Gilfillan and Tkaczyk 2006; Kuehn and Gilfillan 2007).

Mast cells can be positively or negatively regulated by 
IgG multimeric receptors (FcγR) (Tkaczyk et al. 2004b). 
These receptors enable mast cells to participate in humoral 
defense but also endow mast cells with the capacity to act in 
antibody-induced pathologies (Nigrovic and Lee 2005). 
The FcγRI IgG receptor belongs to the same immunoglobu-
lin receptor superfamily as FcεRI. FcγRI and FcγRIII IgG 
receptors share a common ITAM-containing γ subunit 
with FcεRI; hence they can be activated in a similar fashion 
and exhibit similar signaling pathways (Daëron et al. 1992; 
Falanga et al. 2012). FcγRI is not constitutively expressed 
in human and rodent mast cells, but small concentrations of 
IFN-γ induce mast cell expression of FcγRI in human mast 
cells (Okayama et al. 2000). Aggregation of IgG1 bound to 
FcγRI induces a similar pattern of mediator release as FcεRI 
activation (Okayama et al. 2000; Okayama et al. 2001a).

The low affinity IgG receptors FcγRIIb and FcγRIII are 
also present on the mast cell surface (Okayama et al. 2001b). 
FcγRIII is predominantly expressed in mast cells of the 
serosal type and its expression in IL-3-derived BMMCs, 

which display a mucosal phenotype, can be induced by SCF 
(Katz and Lobell 1995). Crosslinking of FcγRIII by IgG 
immune complexes induces mast cell degranulation and the 
subsequent generation of several lipid mediators (Katz et al. 
1990; Katz et al. 1992). In contrast to FcγRI and FcγRIII, 
which activate mast cells in a similar way as FcεRI, FcγRIIB 
receptors, as well as mast cell function-associated antigen 
(MAFA), myeloid-associated immunoglobulin-like recep-
tor I and II (MAIR), paired immunoglobulin-like receptor B 
(PIRB), sialic acid binding Ig-like lectin 8 (siglec-8), 
CD200R, CD300a, and CD300f receptors, are expressed by 
mast cells and, when ligated or coligated with FcεRI, they 
exert an inhibitory action (Uehara et al. 2001; Abramson et 
al. 2002; Yotsumoto et al. 2003; Cherwinski et al. 2005; 
Alvarez-Errico et al. 2007; Daëron et al. 2008; Bochner 
2009). These receptors are monomeric transmembrane pro-
teins that contain one IgG or lectin C in their extracellular 
portion and, with the exception of CD200R, they bear one 
or more immunoreceptor tyrosine-based inhibitory motifs 
(ITIMs) in their cytosolic domains (Daëron et al. 2008; 
Karra et al. 2009). FcγRIIB is unique among Fc receptors in 
that it is the only one to exhibit an inhibitory action. 
Aggregation of ITIM-containing receptors is not sufficient 
to promote ITIM phosphorylation. Co-aggregation with 
ITAM-containing receptors is necessary for the activation 
of Src kinases. Activation of the Src kinases leads to phos-
phorylation of ITAMs, which in turn will phosphorylate the 
inhibitory ITIM (Malbec et al. 1998). ITIM phosphoryla-
tion allows for the recruitment of cytosolic phosphatases 
with Src2 homology domains (SH2), such as SHIP1 and 
SHIP2. These phosphatases dephosphorylate tyrosine resi-
dues that are necessary for the binding of signaling kinases, 
hence suppressing signaling and mediator release (Shik and 
Munitz 2010). Inhibitory receptors have been given 
increased attention because they are potential therapeutic 
targets for diseases involving excessive mast cell activation 
(Daëron 1995; Ott and Cambier 2000; Malbec and Daëron 
2007; Guiraldelli et al. 2008).

The c-Kit receptor (CD117), the receptor for SCF, is cru-
cial for mast cell survival, differentiation, and maturation. 
Unlike FcεRI, c-Kit is composed of a single transmembrane 
protein and has intrinsic kinase activity (Linnekin 1999). 
c-Kit receptor dimerization, caused by SCF, induces the auto-
phosphorylation of various tyrosine residues in the cytoplas-
mic tail of c-Kit, which, in turn, induces the recruitment of 
cytosolic adaptor proteins, kinases, and signaling enzymes. 
The subsequent activation of these enzymes, along with janus 
kinase-signal transducer and activator of transcription (JAK-
STAT) and RAS-RAF-MAPK pathways, leads to growth, 
differentiation, survival, chemotaxis, and mast cell cytokine 
production. There are only few reports indicating that SCF 
binding to c-Kit induces mast cell degranulation (Coleman  
et al. 1993; Galli et al. 1993b). Nonetheless, SCF binding to 
c-Kit can potentiate antigen-induced mast cell degranulation 
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and cytokine production (Hill et al. 1996; Hundley et al. 
2004; Tkaczyk et al. 2004a). This effect indicates an integra-
tion of the signaling pathways initiated by both receptors 
(Bischoff and Dahinden, 1992; Iwaki et al. 2005; Gilfillan 
and Tkaczyk 2006).

Mast cells also express receptors for several components of 
the complement system, for instance complement receptors 
(CRs) CR3, CR4 and CR5. In vitro studies showed that the 
products of the complement system, C3a and C5a, activate 
mast cells and also induce chemotactic activity (Nilsson et al. 
1996). C3aR is a member of GPCR family and, when activated, 
induces degranulation and production of cytokines such as 
MCP-1 (CCL2) and RANTES (CCL5) in the human mast cell 
line, LAD2 (Venkatesha et al. 2005). In a manner to similar 
other GPCRs, such as adenosine 3, sphingosine 1 phosphate-2 
(S1P

2
), C-C Chemokine Receptor type 1 (CCR1), corticotro-

pin-releasing hormone receptor (CRHR), and the beta-adreno-
ceptor, complement receptors are able to modulate the basal 
and antigen-mediated mediator release (Tkaczyk et al. 2006).

Physiological Functions of Mast Cells

Mast cells have an immunomodulatory as well as a physio-
logical function in the epithelium, endothelium, and nervous 
system. Their ubiquitous distribution places mast cells in a 
privileged position to act not only as guardians of the immune 
system, but to also participate in many biological processes 
and in the maintenance of homeostasis (Weller et al. 2011).

Homeostasis and Tissue Repair

Mast cells are considered crucial for the maintenance of tis-
sue function and integrity (Maurer et al. 2003). Many mast 
cell mediators including NGF, platelet-derived growth fac-
tor (PDGF), vascular endothelial growth factor (VEGF), 
and fibroblast growth factor-2 (FGF-2 or bFGF), as well as 
histamine and tryptase, induce epithelial cell and fibroblast 
proliferation (Abe et al. 2000). Furthermore, mast cells are 
involved in all steps of tissue repair, from the initial inflam-
matory reaction to extracellular matrix (ECM) remodeling 
(Noli and Miolo 2001). Upon injury, skin mast cells act at 
the very beginning to regulate primary hemostasis to seal 
the injured surface. Through the release of platelet activat-
ing factor (PAF), leukotrienes, and the cytokines IL-1 and 
IL-8, mast cells contribute to platelet activation and aggre-
gation as well as extravascular deposition of fibrin (Mekori 
and Galli 1990; Kauhanen et al. 1998). Conversely, mast 
cells also secrete heparin, tryptase and t-plasminogen acti-
vator (tPA) thereby regulating fibrinolytic mechanisms pro-
viding the appropriate perfusion and nutrition necessary for 
repair (Huang et al. 1997; Gottwald et al. 1998; Thomas et 
al. 1998). As the inflammation proceeds, mast cells promote 
the recruitment of circulating leukocytes, which contribute 
to microbial clearance and debris removal (Rock et al. 

1990; Kanwar and Kubes 1994). In the proliferation phase, 
mast cell mediators stimulate growth, migration and prolif-
eration of endothelial cells, fibroblasts and keratinocytes 
thereby contributing to angiogenesis, collagen deposition, 
granulation tissue formation, epithelialization, and wound 
contraction (Levi-Schaffer and Kupietzky 1990; Katayama 
et al. 1992; Meininger and Zetter 1992; Moulin et al. 1998). 
The release of vasoactive amines, tryptase, IL-4, and NGF 
contribute to the regeneration of damaged nerve fibers 
(Matsuda et al. 1998; Schäffer et al. 1998). Proteolytic 
mediators released during mast cell degranulation influence 
not only the deposition of temporary connective matrix but 
also coordinate its replacement by a definitive connective 
tissue (Nishikori et al. 1998). In the late phases of repair, 
mast cell cytokines (IL-1, IL-4, and IL-6) and growth fac-
tors (FGF and TGF) influence the phenotype of activated 
fibroblasts inducing the appearance of myofibroblasts, 
which are important for contraction and wound healing 
(Hebda et al. 1993; Moulin 1995; Moulin et al. 1998).

Mast cells are also important in preserving the homeo-
stasis of tissues and organs, which is characterized by con-
tinuous growth and remodeling, such as in hair follicles and 
bones. The mast cell mediators histamine, TNF, and sub-
stance P participate in tissue remodeling and help regulate 
the hair follicle growth cycle; mast cell-deficient mice have 
defects in this process (Maurer et al. 1995). Histamine pro-
motes the recruitment and differentiation of osteoclast pre-
cursors during the initial stages of bone resorption (Lesclous 
et al. 2004; Fouilloux et al. 2006; Lesclous et al. 2006). 
Mast cell tryptase can specifically activate the protease-
activated receptor-2 (PAR-2), which inhibits osteoclast dif-
ferentiation (Smith et al. 2004). Similar to histamine, it is 
believed that IL-1, TGF-β, IL-6, and PDGF influence osteo-
clast recruitment and development, which in turn contribute 
to bone remodeling. Osteopontin (OPN), also released by 
mast cells, functions in the balance and maintenance of 
mineralization, thus contributing to the control of bone 
metabolism (Chiappetta and Gruber 2006; Bulfone-Paus 
and Paus 2008). OPN was found to stimulate degranulation 
and migration of mast cells in vitro and OPN (-/-) mice dis-
played reduced IgE-mediated passive cutaneous anaphy-
laxis (Nagasaka et al. 2008).

Nervous System

The distribution of mast cells around nerve endings in vari-
ous tissues including skin, intestinal mucosa, lung, and the 
central nervous system has been described since Ehrlich. 
This mast cell localization and, more importantly, the medi-
ators released by both mast cells and neurons collaborate in 
the establishment of a neuroimmune interaction between 
these cells. It has been shown that communication between 
mast cells and neurons can occur through synaptic-like 
structures sustained by adhesion molecules such as 
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N-cadherin or synaptic cell adhesion molecule (SynCAM) 
(Suzuki et al. 2004; Furuno et al. 2005). Mast cell-derived 
serotonin contributes to neurogenesis and to the behavioral 
and physiological function of the hippocampus (Nautiyal et 
al. 2012). Mast cell proteases, such as tryptase, signal 
nerves through PARs; PAR2 activation has been implicated 
in increased intestinal permeability and visceral hypersensi-
tivity in rodents (Déry et al. 1998; Vergnolle et al. 2001; 
Coelho et al. 2002; Cenac et al. 2003). On the other hand, 
mast cells can be activated by substance P and endothelin-1 
(ET-1) (Ogawa et al. 1999; Suzuki et al. 1999). Mast cell 
activation by ET-1, which is an endogenous peptide of con-
siderable toxicity, causes mast cell degranulation with a 
consequent release of the mast cell-specific proteases such 
as chymases and CPA, which promote ET-1 degradation 
thus limiting its toxicity (Maurer et al. 2003; Galli and Tsai 
2008). Mast cell-neuron interactions also contribute to the 
maintenance of intestinal homeostasis by regulating ion 
transport, vascular permeability, secretory activity of mucus 
producing cells, and gastrointestinal motility (Van Nassauw 
et al. 2007).

Angiogenesis

Angiogenesis is a dynamic process characterized by the 
development and growth of blood vessels from pre-existing 
vessels. Angiogenesis occurs during physiological pro-
cesses such as embryonic development and corpus luteum 
formation, as well as in pathological circumstances such as 
tumorigenesis and chronic inflammation. The angiogenic 
process depends on the action of several molecules includ-
ing angiogenic factors, ECM proteins, adhesion molecules 
and their receptors, and proteolytic enzymes (Ribatti and 
Crivellato, 2012). Several factors, including VEGF, FGF, 
TGF-β, PDGF, IL-8, and angiopoietin 1, are known to stim-
ulate angiogenesis (Sawatsubashi et al. 2000; Talreja et al. 
2004). The proximity of mast cells to blood vessels in tis-
sues associated with angiogenesis has long suggested a 
relationship between mast cells and angiogenesis. Moreover, 
the role of mast cells in this process is most certainly related 
to the release of a large spectrum of angiogenic mediators, 
which include angiopoietin-1, FGF-2, VEGF, IL-8, TGF-β, 
TNF-α, histamine, heparin, tryptase and chymase, among 
others (Crivellato et al. 2004). These mast cell mediators 
can act at various stages of angiogenesis including degrada-
tion of the ECM, migration and proliferation of endothelial 
cells, formation and distribution of new vessels, synthesis 
of ECM and pericyte mobilization (D’Amore and Thompson 
1987; Juczewska and Chyczewski 1997). It has been shown 
that during the initiation of angiogenesis, mast cell tryptase 
promotes ECM degradation through the activation of 
MMPs and plasminogen activator (Stack and Johnson 
1994). In vitro and in vivo studies have shown that mMCP-4 
has a role in the processing of pro-MMP-9 and pro-MMP-2 

into their active forms (MMP-2 and MMP-9), both of which 
are released in parallel with mMCP4 and have a role in 
ECM remodeling and angiogenesis (Fang et al. 1996; Fang 
et al. 1997; Baram et al. 2001; Tchougounova et al. 2005). 
Other mast cell granule contents, such as cathepsin G, elas-
tase, and collagenase, also contribute to the degradation of 
ECM components (Stack and Johnson 1994). In addition, 
VEGF, FGF-2, and the combination of tryptase and heparin 
induces migration and proliferation of vascular endothelial 
cells (Azizkhan et al. 1980; Montesano et al. 1983; Bikfalvi 
et al. 1991; Blair et al. 1997; Jośko and Mazurek 2004). 
Histamine and heparin have also been shown to stimulate 
the proliferation of vascular endothelial cells and to induce 
the formation of new blood vessels in a rat mesenteric win-
dow assay (Sörbo et al. 1994). Tryptase was able to promote 
vascular tube formation in vitro in a chorioallantoic mem-
brane (CAM) assay (Ribatti et al. 1987; Blair et al. 1997). 
Additionally, in vitro studies have shown that the angio-
genic factors VEGF, PDGF, and FGF-2 are chemotactic for 
mast cells (Gruber et al. 1995). Although most angiogenic 
mediators released are not exclusive to mast cells, the role 
of mast cell-specific proteases (chymases and tryptases) in 
angiogenesis has gained increased prominence. In particu-
lar, data indicate that mast cells are a significant source of 
angiogenic and tissue remodeling factors in the tumor envi-
ronment. Mast cells constitute a major inflammatory cell 
population with a critical role in the regulation of inflamma-
tion and immune response which will be further discussed.

Innate Immunity

Similar to DCs, mast cells are among the first cells of the 
immune system to interact with antigens, toxins, and patho-
gens. In addition to their strategic distribution, mast cells 
express on their surface various receptors that are able to 
detect potentially harmful signals and enable the cells to 
respond rapidly and appropriately through the release of 
pre-stored and neo-synthesized mediators. Mast cells can 
recognize pathogens through different mechanisms includ-
ing direct binding of pathogens or their components to 
PAMP receptors on the mast cell surface, binding of anti-
body or complement-coated bacteria to complement or 
immunoglobulin receptors, or recognition of endogenous 
peptides produced by infected or injured cells (Hofmann 
and Abraham 2009). The pattern of expression of these 
receptors varies considerably among different mast cell 
subtypes. TLRs (1-7 and 9), NLRs, RLRs, and receptors for 
complement are accountable for most mast cell innate 
responses (Marshall 2004; Metz et al. 2008; Fukuda et al. 
2013; Graham et al. 2013). Activation of these receptors by 
pathogens leads to the release of inflammatory mediators, 
which contribute to the containment and clearance of the 
infection, and also support adaptive immune responses 
when necessary. The pattern of mediator release through 
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TLRs depends on the ligand and the receptor to which it 
binds (Leal-Berumen et al. 1994; Dvorak 2005). TLR-2 rec-
ognizes peptidoglycans from gram-positive bacteria, gram-
negative bacteria, and mycobacteria, with subsequent 
promotion of cytokine production and degranulation. On 
the other hand, TLR-4 binds LPS from gram-negative bac-
teria, lipid A, fibrinogen, and Mycobacterium tuberculosis, 
with consequential cytokine production without induction 
of degranulation (Supajatura et al. 2002; Varadaradjalou et 
al. 2003).

In models of bacterial infection, it is currently accepted 
that bacterial clearance is aided by the recruitment of 
immune cells to sites of infection. This process is facili-
tated by the tissue location of mast cells, their pathogen 
recognition ability, and release of mediators that contrib-
ute to increased vascular permeability and chemoattrac-
tion of innate immune cells, such as: (1) eosinophils by 
CC-chemokine ligand 11 (CCL11, or eotaxin), (2) natural 
killer (NK) cells by CXCL8, or IL-8, and (3) neutrophils 
by CXCL1/CXCL2, TNF-α, LTB4, LTC4, and MCP-6 
(Gordon and Galli 1990; Huang et al. 1998; Biedermann et 
al. 2000; Malaviya and Abraham 2000; Marshall 2004; 
Burke et al. 2008; Sutherland et al. 2008; De Filippo et al. 
2013). Mast cell activation by LPS from gram-negative 
bacteria through TLR-4 results in the production of the 
proinflammatory cytokines TNF-α, IL-1β, and IL-6, as 
well as anti-inflammatory IL-13, without eliciting degran-
ulation. In a model of Cecal Ligation and Puncture (CLP)-
induced acute septic peritonitis, this mast cell inflammatory 
response led to the initiation of a protective immune 
response by rapid infiltration of neutrophils into the peri-
toneal cavity which resulted in bacterial clearance 
(Supajatura et al. 2001). It was recently shown that mast 
cell signaling through TLR-2 increases IL-4 production 
and is critical for the effective control of replication and 
killing of pulmonary Francisella tularensis (Rodriguez et 
al. 2011; Rodriguez et al. 2012). Mast cell products also 
include antibacterial peptides such as cathelicidins, defen-
sinas, and psidins, which have direct bactericidal effects 
upon degranulation and support bacterial clearance (Féger 
et al. 2002; Di Nardo et al. 2003; Wei et al. 2005; Campagna 
et al. 2007). In addition, mast cells can phagocytose bacte-
ria and produce reactive oxygen species, which aid bacte-
rial killing after phagocytosis (Malaviya et al. 1994). 
Recent studies have shown that activated mast cells also 
have antimicrobial functions through the production of 
structures called mast cell extracellular traps (MCETs), 
formed by DNA, histones, and granular proteins such as 
tryptase and cathelicidin LL-37 (von Köckritz-Blickwede 
et al. 2008). The release of mast cell proteases during 
degranulation also helps limit the toxicity of endogenous 
peptides and poisonous venoms of reptiles and arthropods 
by degrading these products (Maurer et al. 2004; Metz et 
al. 2006; Schneider et al. 2007; Piliponsky et al. 2008; 
Akahoshi et al. 2011).

The role of mast cells in viral infections is less well char-
acterized. Mast cells can be infected by several viruses 
including HIV, dengue virus, cytomegalovirus, adenovi-
ruses, and Influenza A virus (IAV). Mast cell activation by 
viral products induces the production of a characteristic pat-
tern of cytokines and chemokines that includes IL-1β, IL-6, 
CCL3, CCL4, CCL5, and CCL8 (Marshall et al. 2003; 
Dawicki and Marshall 2007; Burke et al. 2008). The ability 
of mast cells to promote recruitment of CD8+ T lympho-
cytes to the site of infection and to produce IFN-1 during 
viral challenge indicates that viral recognition by mast cells 
incites cellular responses directed towards viral clearance 
(Kulka et al. 2004; Orinska et al. 2005). An increased viral 
burden within the draining lymph nodes was observed in 
dengue virus-infected mast cell-deficient mice and this 
increase was shown to be due to deficient NK and NK T cell 
recruitment to the site of infection (St John et al. 2011). 
Another in vivo study showed a protective role for mast 
cells using a mouse model of skin viral infection, where 
vaccinia virus infection caused mast cell degranulation, 
which in turn led to antimicrobial peptide discharge and 
virus inactivation (Wang et al. 2012). Aoki et al. (2013) 
found that intradermal injection with herpes simplex virus 2 
(HSV-2) into MC-deficient KitW/Wv mice led to increased 
clinical severity and mortality with elevated virus titers in 
HSV-infected skins. This outcome was reversed by intra-
dermal reconstitution with BMMCs from wild-type, but not 
TNF−/− or IL-6−/−, mice, indicating a protective role for 
these cytokines in HSV-induced mortality. In addition to a 
role in viral clearance and immune surveillance, recent 
work from several groups has also suggested a detrimental 
role for mast cells in viral infections. For instance, HIV has 
been shown to infect human mast cell progenitors, which 
can mature and develop as long-lived viral reservoirs dur-
ing latent infection (Sundstrom et al. 2007). Moreover, 
Graham et al. (2013) observed that mast cells contributed to 
the establishment of IAV-induced inflammatory response 
and lung damage.

In parasitic infections, the production and release of 
growth factors (IL-3, SCF, and IL-9) by mast cells were 
shown to be responsible for the commonly observed mast 
cell hyperplasia (Newlands et al. 1995; Faulkner et al. 1998; 
Lantz et al. 1998). Mast cell mediator release during para-
sitic infection promotes immune cell recruitment and regu-
lation of gastrointestinal permeability. Moreover, the 
microenvironment generated in response to mast cell medi-
ators produces favorable conditions for the expulsion of the 
parasite and containment of a chronic infection (Knight et 
al. 2000; Gurish et al. 2004; Abraham and St John 2010). It 
was recently reported that mast cell degranulation regulates 
tissue-derived cytokines IL-25, IL-33, and thymic stromal 
lymphopoietin (TSLP) in the early stages of helminthic 
infection (Hepworth et al. 2012). These cytokines, produced 
mainly by epithelial and endothelial cells, have been 
reported to be critical for optimal Th2 responses and worm 
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expulsion in helminth infections (Owyang et al. 2006; 
Allakhverdi et al. 2007b; Humphreys et al. 2008; Taylor et 
al. 2009). Hepworth et al. (2012) reported that innate IgE-
independent regulation of tissue-derived cytokines was 
important for the appropriate development of an adaptive 
Th-2 response and the expansion of innate Th-2 cytokine-
producing cells during helminthic infections.

Adaptive Immunity

Dendritic cells (DCs) are specialized antigen-presenting 
cells (APCs) and are indispensable for the induction of adap-
tive immune responses (Lambrecht et al. 2000; Vermaelen et 
al. 2001). Recent in vitro studies have shown that mast cells 
are also capable of processing and presenting antigens via 
MHCI and MHCII complexes (Malaviya et al. 1996; Poncet 
et al. 1999; Stelekati et al. 2009). Moreover, mast cells and 
their mediators also directly modulate activation and migra-
tion of DCs to lymph nodes (Reuter et al. 2010). Activation 
through TLR7 leads to the release of IL-1β and TNF, which 
promote migration of DCs from the skin to local lymph 
nodes and induce cytotoxic responses by T lymphocytes 
(Suto et al. 2006; Heib et al. 2007). Histamine, PGE

2
, and 

PGD
2
 modulate DCs to develop Th

2
 responses (McIlroy  

et al. 2006; Theiner et al. 2006). During exocytosis, mast 
cells release exosomes, vesicles of heterogeneous size and 
shape derived from the lumen of multivesicular bodies and 
the plasma membrane (Harding et al. 1983; Raposo et al. 
1997; Shefler et al. 2011). These mast cell-derived exosomes 
contain co-stimulatory molecules and antigens that promote 
functional and phenotypical maturation of DCs (Skokos et 
al. 2003). Moreover, mast cells can directly activate T lym-
phocytes through the release of TNF (Nakae et al. 2005; 
Nakae et al. 2006). In addition to promoting the initiation 
and development of adaptive immune responses, mast cells 
also act to limit the duration and magnitude of immune 
responses and are capable of suppressing immune responses 
through the release of anti-inflammatory cytokines such as 
IL-10 and TGF-β (Hart et al. 1998; Hart et al. 2002; 
Grimbaldeston et al. 2007; Rao and Brown 2008).

Immune Tolerance

The concept that mast cells function in the mediation of tol-
erance is relatively new. This view was based on the obser-
vation that mast cells were required to maintain immune 
tolerance (Lu et al. 2006). Further studies, most with skin 
mast cells, have demonstrated that, through their array of 
mediators, surface molecules, and co-stimulatory mole-
cules, mast cells are able to modulate immune response 
both by contact-dependent and -independent mechanisms 
(de Vries and Noelle 2010). Mast cells are required for 
immune tolerance in allografts, and mast cell degranulation 
breaks this tolerance to established allografts (de Vries et al. 

2009). Mast cell-secreted cytokines, in particular the neo-
synthesized cytokines IL-10 and TGF-β, are recognized for 
their immune-suppressive effects. Mast cell IL-10 secretion 
can reduce the duration and magnitude of immune 
responses. IL-10 and TGF-β downregulate the expression 
of FcεRI-limiting IgE-mediated degranulation (Gillespie  
et al. 2004; Gomez et al. 2005; Kennedy Norton et al. 2008). 
Mast cell-derived IL-10 promotes the containment and res-
olution of skin reactions caused by chronic UVB irradiation 
or contact dermatitis by limiting leukocyte infiltration, 
inflammation, epidermal hyperplasia, necrosis, and ulcer-
ation (Grimbaldeston et al. 2007). Moreover, interrupting 
the migration of mast cells to draining lymph nodes after 
UV damage abolishes the UV-induced immune suppression 
(Byrne et al. 2008). Along with other innate immune cells, 
mast cells are recruited by MIP-1α in the early stages of 
inflammation and binding of MIP-1α to the CCR1 receptor 
on the mast cell surface promotes the production of IL-6, 
TNF-α, and TGF-β (Fifadara et al. 2009). TGF-β, in addi-
tion to IL-2, is crucial for the development of DC-induced 
antigen-specific regulatory T cells (Treg) (Davidson et al. 
2007; Luo et al. 2007). The Treg is CD4+, CD25+and Fox3P+, 
develops in the thymus, and is crucial for self-tolerance. Treg 
cells suppress the proliferation of effector T cells through 
direct contact or release of anti-inflammatory cytokines 
such as TGF-β and IL-10, or other molecules like PGE2 
(Zheng et al. 2004; Mahic et al. 2006). Interaction of Treg 
with mast cells is essential for Treg-dependent peripheral tol-
erance in skin allografts. Mast cells play an important role 
in peripheral tolerance in a manner that is dependent on 
CD4+, CD25+, Fox3P+ Treg in skin and heart transplants (Lu 
et al. 2006). Using a model of hapten-induced atopic derma-
titis (AD), Hershko et al. (2011) showed that mast cell-
derived IL-2 is necessary to support an adequate ratio of 
activated-to-regulatory T cells at the site of inflammation 
during the chronic phase of disease. Moreover, OX40L 
(CD252)-expressing mast cells interact directly with OX40-
expressing Treg. This interaction inhibits mast cell degranu-
lation and calcium mobilization without affecting cytokine 
secretion, thus reducing the amplitude of immediate hyper-
sensitivity responses (Gri et al. 2008; Piconese et al. 2009; 
Frossi et al. 2011).

Mast cell proteases also contribute to immune tolerance 
in that they reduce antigenicity and leukocyte recruitment 
through cleavage of antigens, toxic peptides, cytokines, and 
chemotactic factors (Mellon et al. 2002; Pang et al. 2006; 
Rauter et al. 2006; Thakurdas et al. 2007; Rauter et al. 2008; 
Waern et al. 2009). Even though histamine is generally 
viewed as a proinflammatory mediator, its binding to hista-
mine receptor 2 (H2R) mediates immune suppression as 
seen in mast cell-dependent, H2R-dependent immune sup-
pression in response to UVB radiation (McGlade et al. 
2007). In addition, there was a gradual loss of H2R expres-
sion on mast cells in lupus-like lesions (Furukawa et al. 
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2009). The lipid mediator PGE2 also seems to have a role in 
immune suppression. Jet fuel immune suppression was 
impaired upon deletion of PGE2 from mast cells (Furukawa 
et al. 2009). Moreover, PGE2 induces IL-10 production in 
DCs and appears to inhibit DC maturation. These indirect 
effects can be blocked by cyclooxygenase (COX)-2 inhibi-
tors and NSAIDs (non-steroidal anti-inflammatory drugs), 
which inhibit the synthesis of prostaglandins (Harizi and 
Gualde 2006; Sinha et al. 2007; Sá-Nunes et al. 2007; Lee 
et al. 2009).

The Pathological Role of Mast Cells

The same characteristics that enable mast cells to interact 
with the microenvironment and promptly release an array 
of mediators places this cell in a delicate position when the 
inadequate regulation of their functions can have serious 
consequences to the organism (Rao and Brown 2008).

Allergy

Allergies arise when components of the immune system, 
particularly mast cells, respond in an inappropriate manner 
to innocuous antigens. Mast cells are recognized as the main 
effector cell responsible for IgE-mediated allergic reactions. 
Sensitization is the primary immune response in which aller-
gens are recognized, processed, and presented by APCs to 
naive T lymphocytes that recognize the allergen as foreign 
and differentiate into Th2 lymphocytes. Th2 lymphocytes 
produce cytokines that then induce antigen-specific IgE pro-
duction by B lymphocytes. Mast cells also have the capacity 
to process and present antigens through MHCI and MHCII 
complexes. Therefore, mast cells themselves have a role in 
sensitization. Furthermore, there is evidence that they coor-
dinate and direct Th2 responses toward innocuous antigens 
(Eisenbarth et al. 2002; Nigo et al. 2006).

Initial studies on the relationship between mast cells and 
allergic reactions, including asthma, have focused on the acute 
phase of these reactions. FcεRI activation by a polyvalent 
allergen that is recognized by the receptor-bound IgE, leads to 
an immediate hypersensitivity reaction characterized by the 
instantaneous release of pre-formed and neoformed mast cell 
mediators. These mediators are responsible for allergic symp-
toms such as erythema, edema, increased vascular permeabil-
ity, smooth muscle contraction, and augmented mucus 
secretion (Hofmann and Abraham 2009). The immediate 
release of histamine, PGD

2
, and LTC

4
 contributes to the symp-

toms of asthma, causing bronchoconstriction, mucus secretion, 
and respiratory mucosal edema. However, allergic reactions 
are complex and multiphasic. In addition to the immediate 
acute phase, there is also a late phase. In the later phases, pro-
inflammatory cytokines released by mast cells are responsible 
for the recruitment of inflammatory cells such as eosinophils, 
basophils, and T cells to the site of inflammation and also 

contribute to the development of the chronic phase (Bradding 
1999; Hofmann and Abraham 2009). The late phase is charac-
terized by leukocyte infiltration at the site of inflammation and 
the initiation of an acquired immune response. This is followed 
by a chronic phase associated with persistent inflammation, 
tissue remodeling and fibrosis. These phases are observed in 
several allergic disorders including asthma, allergic rhinitis 
and atopic dermatitis, among others (Williams and Galli 2000; 
Grimbaldeston et al. 2006; Brown et al. 2008).

Crohn’s Disease

Crohn’s disease is a chronic inflammatory intestinal dis-
ease, with the involvement of immune cells. However, there 
is no confirmation of an autoimmune etiology. This condi-
tion can affect any part of the gastrointestinal tract and 
causes diverse symptoms. Histologically, a perivascular 
distribution of lymphocytic infiltrates and the presence of 
occasional granulomas can be observed (Whithead 1980). 
Stricture and fibrosis of gut, often resulting in partial or 
complete obstruction, is a common finding in Crohn’s dis-
ease. In Crohn’s disease, the mast cells are redistributed and 
found in the muscle layers of the stricture, which has led to 
the suggestion that mast cells and their mediators may play 
a role in stricture formation (Dvorak et al. 1980a; Dvorak et al. 
1980b; Gelbmann et al. 1999). There is also evidence of 
increased expression of IL-16 in Crohn’s disease. This cyto-
kine can be produced and released by mast cells, indicating 
a possible association between mast cell activation and 
CD4+ T lymphocyte recruitment during the inflammatory 
response. Moreover, mast cells are located near blood ves-
sels and mast cell-released IL-16 can recruit circulating 
lymphocytes from the blood stream (Middel et al. 2001).

Autoimmune Diseases

When the immune system fails to recognize self from non-
self molecules, self-reactive lymphocytes can be activated 
by innate immune cells and mount an autoimmune response. 
It is widely accepted that mast cells can promote increased 
inflammation in several disease states. In accord with this 
view, mast cells are able to stimulate the priming of autore-
active T cells and recruit immune cells to the site of inflam-
mation. The inflammatory environment favored by mast 
cells can induce T cell activation. In this context, mast cells 
can act in concert with T cells to cause tissue damage 
(Christy and Brown 2007).

There are several examples of mast cell association with 
autoimmune diseases including: Type I diabetes, Guillain-
Barré syndrome, bollous pemphigoid, Sjogren syndrome, 
chronic idiopathic urticaria and experimental vasculitis 
(Wintroub et al. 1978; Yamamoto et al. 1995; Dines and 
Powell 1997; Geoffrey et al. 2006; Ishii et al. 2009; Saini  
et al. 2009). Much of the interest on the role of mast cells in 
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the initiation and propagation of autoimmune diseases 
comes from studies on multiple sclerosis (MS) and its 
experimental model, allergic encephalitis (EAE) (Steinman 
2001; Nigrovic and Lee 2007).

MS is a chronic inflammatory disease of the nervous 
system of unknown etiology, characterized by a deteriora-
tion of the blood-brain barrier, with consequent mononu-
clear cell infiltration into the white matter and eventual 
demyelination of axons. EAE depends on inflammatory 
CD4+ Th17 cells, B cells, and antibodies produced by these 
cells (Weaver et al. 2006). Many studies suggest a positive 
correlation of mast cell numbers and distribution with the 
development of MS or EAE (Orr 1988; Brenner et al. 1994; 
Ibrahim et al. 1996; Dines and Powell 1997; Brown et al. 
2002). The observation of increased degranulation and the 
presence of tryptase in the cerebrospinal fluid provides evi-
dence for an increase in mast cell activation during the 
course of the disease (Brenner et al. 1994; Rozniecki et al. 
1995). Drugs known to stabilize mast cells, such as sodium 
cromoglycate, seem to relieve the severity of EAEs 
(Seeldrayers et al. 1989). Mast cell function in this context 
appears to be dependent on the surface binding of IgGs, 
because disease progression relies on the expression of 
FcγR by mast cells (Brown et al. 2002). KitW/W-v and KitW-sh 
were reported to be more resistant than wild type mice to 
the myelin oligodendrocyte glycoprotein (MOG) peptide-
induced EAE (Secor et al. 2000).

Another autoimmune disease involving mast cells is 
rheumatoid arthritis, a chronic inflammatory disease of the 
joints. The cause of this disease may be associated with the 
enzyme glucose-6-phosphate isomerase (GPI) (Matsumoto 
et al. 1999; Zhang et al. 2011). A widely used model for 
rheumatoid arthritis is the K/BxN mouse. These mice 
express both the T cell receptor transgene KRN and the 
MHCII molecule A(g7). They produce auto-antibodies rec-
ognizing GPI and also develop a severe inflammatory 
arthritis. Serum from these mice causes a similar arthritis in 
a wide range of mouse strains. The antibodies form aggre-
gates with GPI leading to the deposition of immune com-
plexes on the surface of the articular cavity. These complexes 
initiate a signaling cascade that involves neutrophils as well 
as mast cells. The complement pathway, FcRs, and cyto-
kines such as IL-1 and TNF are all involved (Ravetch and 
Bolland 2001; Ji et al. 2002b; Ji et al. 2002a; Hueber et al. 
2010). Notably, FcγRIII activation by immune complexes 
has been implicated as an important event for the develop-
ment of RA in this model (Corr and Crain 2002; Ji et al. 
2002b; Nigrovic et al. 2007). KitW/W-v mice deficient in 
mast cells are resistant to autoimmune inflammatory arthri-
tis induced by injection of sera from K/BxN mice and the 
mast cell reconstitution of these animals restores their sen-
sitivity. However, mast cell-reconstituted KitW-sh mice are 
still susceptible to arthritis induced by sera from K/BxN 
mice (Lee et al. 2002a; Zhou et al. 2007).

Mast cells accumulate in the synovial tissues and fluids 
of patients with rheumatoid arthritis and produce inflamma-
tory mediators. In fact, mast cell degranulation in the articu-
lar cavity is one of the first events observed after antibody 
administration (Lee et al. 2002a). Results using this model 
also show that activation of mast cells through the IgG 
immune complex receptor FcγRIII can precipitate the initi-
ation of inflammation within the joint through the produc-
tion and release of IL-1 (Nigrovic et al. 2007). In addition, 
mast cell-derived TNF-α, can induce fibroblasts to produce 
SCF, which increases the recruitment of mast cells and cre-
ates an amplification loop (Woolley and Tetlow 2000; 
Benoist and Mathis 2002).

Despite mounting evidence of the involvement of mast 
cells in these autoimmune disease models, Feyerabend et al. 
(2011), using the mouse strain Cpa3Cre/+, which is deficient 
exclusively in mast cells, found no evidence for an active 
role of mast cells both in the K/BxN serum transfer model 
of RA and the EAE model of MS. In fact, the precise contri-
bution of mast cells to the pathophysiology of autoimmune 
diseases remains a matter of great debate (reviewed in 
Brown and Hatfield 2012).

Mastocytosis

Mastocytosis are disorders characterized by the clonal accu-
mulation of mast cells and their products in organs such as 
skin, gastrointestinal tract, bone marrow, liver, spleen, and 
lymph nodes (Horny et al. 2008). They are usually caused by 
activating mutations of the c-Kit receptor (Metcalfe 2008; 
Deho’ and Monticelli 2010). Mastocytosis presents many 
variants, which display a range of symptoms and prognoses. 
The two main variants are cutaneous mastocytosis (CM) and 
systemic mastocytosis (SM), which are based on disease dis-
tribution and clinical manifestation. Clinical manifestations 
of this pathology include pruritus, flushing, nausea, vomit-
ing, diarrhea, and vascular instability (Metcalfe 2008). CM 
is most common in children and presents in three forms: (i) 
urticaria pigmentosa or maculopapular mastocytosis; (ii) 
diffuse cutaneous mastocytosis, and (iii) mastocytomas. SM 
is characterized by the involvement of at least one extracuta-
neous organ, even in the absence of skin lesions. There are 
many variants of SM, including indolent systemic mastocy-
tosis, bone marrow mastocytosis, mastocytic leukemia, and 
mastocytic sarcoma (WHO 2008). A diagnosis of mastocy-
tosis is based on histological confirmation of mast cell accu-
mulation, whereas classification of systemic mastocytosis is 
contingent on the correlation between clinical and labora-
tory evaluations (Valent et al. 2001). Mast cell metachro-
matic granules can be observed with Giemsa and toluidine 
blue staining. However, tissue processing can diminish mast 
cell granule staining, which is typically less prominent in 
abnormal neoplastic mast cells. Due to these difficulties 
immunophenotypic studies become a more suitable choice 
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in the diagnosis of mastocytosis (Li 2001). Neoplastic mast 
cells express CD33, CD43, CD68, CD117 and tryptase, of 
which tryptase is the only marker exclusive to mast cells 
(Valent et al. 1992; Yang et al. 2000; Miettinen and Lasota 
2005; Chiu and Orazi 2012). Moreover, neoplastic mast 
cells usually express CD2 and/or CD25, which are not 
expressed in normal mast cells (Jordan et al. 2001; Escribano 
et al. 2002; Sotlar et al. 2004; Krokowski et al. 2005).

The prognosis depends on the type of mastocytosis. 
Although childhood and adult-onset mastocytosis are both 
associated with activating mutations, the course of the dis-
ease is very different. Children often present a skin-limited 
disease that regresses with age, whereas adults generally 
present with persistent multi-organ involvement that is 
often accompanied by a second non-mast cell hematologic 
neoplasm (Pardanani 2012).

Cardiovascular Disease

Increasing evidence implicates cardiac mast cells in coronary 
disease. Cardiac mast cells participate in the development of 
atherosclerosis, coronary inflammation, and cardiac ischemia 
(Patella et al. 1995). These types of mast cells are more evi-
dent in the adventitial tunic of coronary arteries during spasm 
(Forman et al. 1985) and accumulate in the angular region of 
atherosclerotic plaques (Kaartinen et al. 1994; Constantinides 
1995). In the heart, chymase is the main source of the con-
verting enzyme that produces the coronary constrictor angio-
tensin II (Jenne and Tschopp 1991). Both chymase and 
tryptase released by mast cells induce proteolytic changes in 
high-density lipoprotein (HDL) particles, which interfere 
with cholesterol efflux by macrophages leading to the forma-
tion of foam cells that constitute the atheroma (Lindstedt et 
al. 1996; Lee et al. 2002b; Lee et al. 2003).

Cancer

The tumor microenvironment is comprised of fibroblasts, 
myofibroblasts, ECM, existing and newly formed blood 
vessels, and inflammatory cells. The relationship between 
mast cells, inflammation, and cancer is contradictory and 
consists of both promotion of and protection against tumor 
progression. Mast cell accumulation is typically observed 
around rodent and human tumors. This accumulation is 
associated with a poor prognosis in various cancers and 
suggests an involvement of mast cells in tumor progression 
(Takanami et al. 2000; Conti et al. 2007). However, the 
opposite has been observed in some breast cancers (Dabiri 
et al. 2004). Mast cells are recruited by tumor-derived fac-
tors. One of these factors, SCF, induces mast cell infiltration 
and activation, with the consequential release of inflamma-
tory mediators that participate in tissue remodeling and 
immune suppression (Huang et al. 2008). The role of mast 
cells in cancer promotion includes immunosuppression, the 

release of pro-angiogenic and mitogenic factors, and degra-
dation of the ECM (Ch’ng et al. 2006). Tumor histamine 
content correlates positively with mast cell numbers in 
breast carcinomas (Bowrey et al. 2000). Histamine can 
simultaneously stimulate tumor proliferation through its 
interaction with histamine H1 receptors and suppress the 
immune system through H2 receptors, thus contributing to 
carcinogenesis (Conti et al. 2007). Mast cell modulation of 
the immune response through the release of histamine, 
IL-10, and TNF-α, contributes to tumor growth. In colorec-
tal carcinoma, mast cells may counteract the anti-inflamma-
tory function of regulatory T cells, and mast cell-mediated 
immunosuppression may contribute to the development of 
basal cell carcinoma (Hart et al. 2001; Blatner et al. 2010). 
It is believed that mast cells participate in tumorigenesis 
through the release of pro-angiogenic factors such as hepa-
ranase, angiopoetin-1, TNF, FGF-2, VEGF, and IL-18 in 
addition to mast cell-specific proteases that assist in ECM 
degradation and subsequent tumor invasion (Ribatti et al. 
2001; Maltby et al. 2009). Stimulation of angiogenesis is 
probably the most important function of mast cells in the 
promotion of tumor growth (Dyduch et al. 2012). VEGF, 
FGF-2, TGF-β, TNF-α, and IL-18 are all potent pro-angio-
genic factors. A role for mast cell-specific proteases has 
also been proposed (Muramatsu et al. 2000b; Muramatsu et 
al. 2000a; Tóth-Jakatics et al. 2000; Norrby,2002; Feoktistov 
et al. 2003; Yoshii et al. 2005). It has recently been observed 
that mast cells, through the action of their specific prote-
ases, are involved in the initial phases of tumor growth and 
also in modulating vascular growth in the later stages of 
tumor progression (de Souza et al. 2012). Mast cells also 
secrete proteases such as MMP-2 and MMP-9, which digest 
ECM and, together with heparin, stimulate heparin-binding 
pro-angiogenic factors in the tumor microenvironment, thus 
influencing tumor progression and metastasis (Coussens  
et al. 1999; Baram et al. 2001; Norrby 2002). In mast cell-
deficient mice, tumor induction was accompanied by 
reduced angiogenesis and metastatic capacity (Ribatti et al. 
2001).

The anti-neoplastic effects of mast cells include inhibi-
tion of cell growth, an augmented inflammatory anti-tumor 
reaction, induction of apoptosis, and decreased cell mobil-
ity (Dyduch et al. 2012). TNF-α, IL-1, and IL-6 were 
reported to suppress melanoma growth, and prostacyclin, 
which is produced by endothelial cells in response to hista-
mine, is a potent anti-metastatic factor (Dyduch et al. 2012). 
IL-6 production and release in response to TLR-2 activation 
was shown to inhibit tumor growth both in vivo and in vitro 
(Oldford et al. 2010). Furthermore, eosinophil recruitment 
and survival, promoted by mast cell tryptase and IL-5, 
respectively, leads to tumor regression (Maltby et al. 2009).

The clinical relevance of the mast cell/tumor relation-
ship remains to be discovered. Nonetheless, mast cells have 
been shown to be involved in tumor progression and 
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neoangiogenesis in several cancer types (Takanami et al. 
2000; Benítez-Bribiesca et al. 2001; Grimbaldeston et al. 
2004; Ribatti et al. 2005; Yoshii et al. 2005; Ch’ng et al. 
2006; Diaconu et al. 2007; Nonomura et al. 2007; 
Fleischmann et al. 2009; Carlini et al. 2010; Johansson et al. 

2010; Ribatti et al. 2010).
In conclusion, mast cells are ancient cells whose ances-

tor is a urochordate mast cell-like cell 550-million years 
old. Although mammalian mast cells were first described 
more than a century ago, their detailed functions still remain 
to be elucidated. Today, mast cells are considered to be mul-
tifunctional immune cells implicated in several physiologi-
cal and disease states. As a consequence of their widespread 
location and the mediators or the pathogens they interact 
with, mast cells exhibit a high degree of heterogeneity and 
plasticity. It is increasingly evident that mast cell matura-
tion, phenotype, and function are dictated by the local 
microenvironment which has a significant influence on 
ability of mast cells to recognize and respond to stimuli.

The widespread tissue distribution of mast cells and their 
versatility allow them to respond to harmful situations as a 
first-response and respond to environmental changes 
through the interactions with other cells implicated in phys-
iological and immunological responses. Their ubiquitous 
distribution places mast cells in a privileged position to act 
not only as guardians of the immune system, but to also 
participate in many biological processes and in the mainte-
nance of homeostasis. Mast cells have both immunomodu-
latory as well as physiological functions. It is currently 
acknowledged that mast cells modulate innate and adaptive 
immune responses, both directly and indirectly, through 
communication with other immune cells. Moreover, mast 
cells are able to modulate immune responses through their 
array of mediators, surface molecules, and co- 
stimulatory molecules.

During the lifetime of a mast cell, numerous factors can 
alter its phenotype and a combination of these changes can 
determine mast cell homeostatic or pathophysiological 
responses. Those features that provide mast cells with the 
ability to interact with the microenvironment are the same 
ones that, when inadequately regulated, can have serious 
consequences to the organism. Mast cell contributions for 
many disease states are thus the focus of continuous 
assessment.
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