SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. Expression pattern of circRNA isoforms produce from SIRT1 host gene. (A) RT-PCRs for the expression of circRNA isoforms produced from SIRT1 host gene in human VSMCs. (B) Cartoon of circ-Sirt1 arises from SIRT1 host gene. (C) RT-PCR product of full-length circ-Sirt1 in rat VSMCs were analyzed and visualized by agarose gel electrophoresis. (D) RT-PCR product were purified and sequenced to confirm circ-Sirt1 junction sequences. (E) Rat circ-Sirt1 sequences. (F) circ-Sirt1 homology analysis in rat and human genome was conducted using Basic Local Alignment Search Tool (BLAST).

Supplementary Figure S2. circ-Sirt1 expression is associated with the inflammatory phenotypic switching of VSMCs. (A) qRT-PCRs for circ-Sirt1 expression in cells from different sources, including HUVECs, HASMCs and RASMCs. (B-D) qRT-PCRs for circ-Sirt1 expression in TNF- α (B), PDGF-BB (C) and ATRA (D) treated VSMCs. (E) qRT-PCRs for circ-Sirt1 expression in exosomes secreted from PDGF-BB treated VSMCs. Data are presented as mean ± SEM. n=4 for all figures. **P*<0.05; ****P*<0.001.

Supplementary Figure S3. Determination the expression of circ-Sirt1. (A) Total RNA isolated from VSMCs infected with Ad-Vector or Ad-circ-Sirt1 treated with RNase R were analyzed by qRT-PCR. The amount of circ-Sirt1 was normalized to the value measured in the mock treatment. (B and C) The expression of circ-Sirt1 increased in Ad-circ-Sirt1-infected VSMCs (B), and decreased in VSMCs treated with si-circ-Sirt1 targeting the back-splice sequence for circ-Sirt1 which unchanged endogenous SIRT1 mRNA expression (C). Data are presented as mean ± SEM. n=4 for all figures. *** P<0.001.

Supplementary Figure S4. The inhibitory effect of circ-Sirt1 on NF- κ B p65 is not affected by double-stranded (ds) RNA-induced innate anti-viral responses. (A) Luciferase assay in HEK293A cells co-transfected with Vector, circ-GFP or circ-Sirt1 and the 6 tandem-repeat NF- κ B element. (B) qRT-PCRs for VCAM-1, ICAM-1 and MCP-1 expression in Vector, circ-GFP or circ-Sirt1-transfected VSMCs. Data are presented as mean ± SEM values. n=6 for A. n=4 for B. * *P*<0.05; ** *P*<0.01; *** *P*<0.001.

Supplementary Figure S5. circ-Sirt1 interacts with NF- κ B p65, but not I κ B α . (A) Overexpressing circ-Sirt1 decreased nuclear translocation of NF- κ B p65 in VSMCs treated with TNF- α for 30 min. Scale bars=50 µm. (B) The probe pulled down high levels of circ-Sirt1 in the Ad-circ-Sirt1-infected VSMCs. (C) The circ-Sirt1 probe pulled down lower levels of circ-Sirt1 in the si-circ-Sirt1-transfected VSMCs than in the control. (D) The expression of circ-Sirt1 in Ad-circ-Sirt1-infected human VSMCs. (E) RIP experiments were performed using NF- κ B p65 antibody in human VSMCs. qRT-PCR for pulled-down circ-Sirt1. (F) RNA pull-down assay for the

interaction of circ-Sirt1 with NF-κB p65 in Ad-Vector or Ad-circ-Sirt1-infected human VSMCs. (G) RNA pull-down assay for the interaction of circ-Sirt1 with IκBα in VSMCs. (H) Western blot for NF-κB signaling-related proteins p-IκBα and IκBα in Ad-vector or Ad-circ-Sirt1-infected VSMCs treated with TNF-α. Data are presented as mean \pm SEM. n=3 for F, G, H. n=4 for the others. * *P*<0.05; ** *P*<0.01; *** *P*<0.001.

Supplementary Figure S6. Blocking oligos and circ-Sirt1 deleted mutants inhibit the interaction of circ-Sirt1 with NF- κ B p65. (A) Binding regions of circ-Sirt1 for NF- κ B p65 and designed blocking oligos. (B) qRT-PCR for the expression of circ-Sirt1 in VSMCs transfected with Ad-Vector, control oligo, Ad-circ-Sirt1, Ad-circ-Sirt1 and block oligo A, Ad-circ-Sirt1 and block oligo B, Ad-circ-Sirt1 and block oligos A and B. (C) qRT-PCR for the expression of circ-Sirt1 bleetion B mutant, circ-Sirt1 Deletion A+B mutant. Data are presented as mean ± SEM. n=4 for B, C. *** *P*<0.001.

Supplementary Figure S7. circ-Sirt1 acts as a sponge binding miR-132/212. (A) The schematic figure showed the potential binding sites of miR-132/212 on circ-Sirt1 transcript. (B) qRT-PCR for the expression of miRNAs in TNF- α treated VSMCs for 12h. (C) RNA *in situ* hybridization for co-localization between miR-212 and circ-Sirt1 in VSMCs. Scale bars=10 µm. (D) The miR-132/212-binding sites in the 3'UTR of SIRT1 mRNA. (E) HEK293A cells were co-transfected LUC-SIRT1 3'UTR with miRNA mimics. (F) qRT-PCR for the expression of circ-Sirt1 in Ad-vector or Ad-circ-Sirt1-infected VSMCs transfected with control oligo, oligo 226, oligo 341, oligo 414 and oligo 226+341+414. (G and H) The decoy oligos inhibited the binding effect of circ-Sirt1 with miR-132/212. Data are presented as mean ± SEM. n=4 for B, F, G, H. n=6 for E. * *P*<0.05; ** *P*<0.01; *** *P*<0.001.

Supplementary Figure S1

circ-Sirt1 sequences

ACAACCTCCTGTTGGCTGATGAGATCATCACTAATGGCTTTCATTCCTGTGAAAGT GATGACGATGACAGAGCATCACACGCAAGCTCTAGTGACTGGACTCCAAGGCCA CGGATAGGTCCATATACTTTTGTTCAGCAACACCTCATGATTGGCACCGATCCTCG AACAATTCTTAAAGATTTATTACCAGAAACAATTCCTCCACCTGAGTTGGATGATAT GACACTGTGGCAGATTGTTATTAATATCCTTTCAGAACCACCAAAGCGGAAAAAAA GAAAAGATATTAATACAATTGAAGATGCTGTGAAGTTACTACAAGAGTGCAAAAAG ATAATAGTTCTGACTGGAGCTGGGGTTTCTGTTTCCTGTGGGATACCTGACTTCA GATCAAGAGATGGTATTTATGCTCGCCTTGCTGTGGACTTCCCGGATCTCCCAGA TCCTCAAGCCATGTTCGATATTGAGTATTTTAGAAAAGACCCAAGACCATTCTTCA AGTTTGCAAAGGAAATATATCCCGGACAGTTCCAGCCATCTCTGTGTCACAAATT CATAGCTTTGTCAGATAAGGAAGGAAAACTACTTCGAAATTATACTCAAAATATAG ATACCTTGGAGCAGGTTGCAGGAATCCAAAGGATCATTCAGTGTCATGGTTCCT TTGCAACAGCATCTTGCCTGATTTGTAAATACAAAGTTGATTGTGAAGCTGTTCG TGGAGATATTTTTAATCAGGTAGTTCCTCGGTGTCCTAGGTGCCCAGCTGATGAG CCACTTGCCATCATGAAGCCAGAGATTGTCTTCTTTGGTGAAAACTTACCAGAAC AGTTTCATAGAGCCATGAAGTATGACAAAGATGAAGTTGACCTCCTCATTGTTATT GGGTCTTCTCTGAAAGTAAGACCAGTAGCACTAATTCCAA

F

	So 1349b	core bits(730	Expect	Identities 860/925(93%)	Gaps 0/925(0%)	Strand Plus/Plus		
Rat	Query	3	AACCTCCTGTT	GGCTGATGAGATCAT	CACTAATGGCTT	ICATTCCTGTGAA	AGTGATGAC	62
Human	Sbjct	486	AACCTTCTGTT	CGGTGATGAAATTAT	CACTAATGGTTT	ICATTCCTGTGAA	AGTGATGAG	545
Rat	Query	63	GATGACAGAGC	ATCACACGCAAGCTC	TAGTGACTGGAC	ICCAAGGCCACGG	ATAGGTCCA	122
Human	Sbjct	546	GAGGATAGAGC	CTCACATGCAAGCTC	CTAGTGACTGGACT	ICCAAGGCCACGG	ATAGGTCCA	605
Rat	Query	123	TATACTTTTGT	TCAGCAACACCTCAT	GATTGGCACCGAT	ICCTCGAACAATT	CTTAAAGAT	182
Human	Sbjct	606	TATACTTTTGT	TCAGCAACATCTTAT	GATTGGCACAGAT	ICCTCGAACAATT	CTTAAAGAT	665
Rat	Query	183	TTATTACCAGA	ААСААТТССТССАСС	TGAGTTGGATGAT	TATGACACTGTGG	CAGATTGTT	242
Human	Sbjct	666	TTATTGCCGGA	AACAATACCTCCACC	TGAGTTGGATGAT	TATGACACTGTGC	CAGATTGTT	725
Rat	Query	243	АТТААТАТССТ	TTCAGAACCACCAAA	GCGGaaaaaaGA	AAAGATATTAAT	ACAATTGAA	302
Human	Sbjct	726	АТТААТАТССТ	TTCAGAACCACCAAA	AAGGAAAAAAAAGA	AAAGATATTAAT	`ACAATTGAA	785
Rat	Query	303	GATGCTGTGAA	GTTACTACAAGAGTG	CAAAAAGATAATA	AGTTCTGACTGGA	.GCTGGGGTT	362
Human	Sbjct	786	GATGCTGTGAA	ATTACTGCAAGAGTG	CAAAAAAAATTATA	AGTTCTAACTGGA	.GCTGGGGTG	845
Rat	Query	363	TCTGTTTCCTG	TGGGATACCTGACTT	CAGATCAAGAGAT	IGGTATTTATGCI	CGCCTTGCT	422
Human	Sbjct	846	TCTGTTTCATG	TGGAATACCTGACTT	CAGGTCAAGGGAT	IGGTATTTATGCI	CGCCTTGCT	905
Rat	Query	423	GTGGACTTCCC	GGATCTCCCAGATCC	CTCAAGCCATGTTC	CGATATTGAGTAT	TTTAGAAAA	482
Human	Sbjct	906	GTAGACTTCCC	AGATCTTCCAGATCC	TCAAGCGATGTT	rgatattgaatat	TTCAGAAAA	965
Rat	Query	483	GACCCAAGACC	ATTCTTCAAGTTTGC	CAAAGGAAATATAT	ICCCGGACAGTTC	CAGCCATCT	542
Human	Sbjct	966	GATCCAAGACC	ATTCTTCAAGTTTGC	CAAAGGAAATATAT	ICCTGGACAATTC	CAGCCATCT	1025
Rat	Query	543	CTGTGTCACAA	ATTCATAGCTTTGTC	CAGATAAGGAAGGA	AAACTACTTCGA	AATTATACT	602
Human	Sbjct	1026	ĊŦĊŦĠŦĊĂĊĂĂ	ATTCATAGCCTTGTC	CAGATAAGGAAGGA	AAACTACTTCGC	AACTATACC	1085
Rat	Query	603	CAAAATATAGA	TACCTTGGAGCAGGT	TGCAGGAATCCA	AGGATCATTCAG	TGTCATGGT	662
Human	Sbjct	1086	ĊĂĠĂĂĊĂŦĂĠĂ	CACGCTGGAACAGGT	TGCGGGAATCCAA	AGGATAATTCAG	TGTCATGGT	1145
Rat	Query	663	TCCTTTGCAAC	AGCATCTTGCCTGAT	TTGTAAATACAA	AGTTGATTGTGAA	GCTGTTCGT	722
Human	Sbjct	1146	TCCTTTGCAAC	AGCATCTTGCCTGAT	ттбтааатасаа	AGTTGACTGTGAA	ĠĊŦĠŦAĊĠA	1205
Rat	Query	723	GGAGATATTTT	TAATCAGGTAGTTCC	TCGGTGTCCTAG	GTGCCCAGCTGAT	GAGCCACTT	782
Human	Sbjct	1206	ĠĠĂĠĂŦĂŦŦŦŦ	TAATCAGGTAGTTCC	CTCGATGTCCTAGO	GTGCCCAGCTGAT	ĠĂAĊĊĠĊŦŦ	1265
Rat	Query	783	GCCATCATGAA	GCCAGAGATTGTCTT	CTTTGGTGAAAAO	CTTACCAGAACAG	TTTCATAGA	842
Human	Sbjct	1266	GCTATCATGAA	ACCAGAGATTGTGTT	TTTTGGTGAAAA	TTACCAGAACAG	TTTCATAGA	1325
Rat	Query	843	GCCATGAAGTA	TGACAAAGATGAAGT	TGACCTCCTCAT	IGTTATTGGGTCT	TCTCTGAAA	902
Human	Sbjct	1326	ĠĊĊĂŦĠĂĂĠŦĂ	TĠĂĊĂĂĂĠĂŦĠĂĂĠŦ	TGACCTCCTCAT	ſĠŦŦĂŦŦĠĠĠŦĊŦ	TĊĊĊŦĊĂĂĂ	1385
Rat	Query	903	GTAAGACCAGT	AGCACTAATTCCAA	927			
Human	Sbjct	1386	ĠŦĂĂĠĂĊĊĂĠŦ	AĠĊĂĊŦĂĂŦŦĊĊĂĂ	1410			

4

Supplementary Figure S4

Α

circ-Sirt1 NF- κ B p65 binding sites

5'-AAGAUGCUGUGAAGUUACUACAAGAG<u>UGCAAA</u> AAGAUAAUAGUUCUGACUGGAGCUGGGGUUUC <u>UGUUUCCUGUGGGGA</u>UACCUGACUUCAGAUCAAG AGA-'3

5'-AGUUGAUUGUGAAGCUGUUCGUGGA<u>GAUAUU</u> <u>JUUAAUCAGGUAGUUCCUCGGUGUCCUAGGUG</u> <u>CCCAGCUGAUGAGC</u>CACUUGCCAUCAUGAAGCC AGAG-3'

NF-kB p65 blocking oligo A.5'-TCCCACAGGAAACAGAAACCCCAGCTCCAGT CAGAACTATTATCTTTTGCA-3' B.5'-GCTCATCAGCTGGGCACCTAGGACACCGAGG

AACTACCTGATTAAAAATATC-3'

Control oligo

5'-TGATTGAACAAGACCATCGTCCAGT-3'

Ad-circ-Sirt1+miR-132

Ad-circ-Sirt1+miR-212

	Non-Atherosclerotic	Atherosclerotic		
Clinical characteristics	group	group	P value	
	(n=14)	(n=11)		
Demographics				
Male sex, no. (%)	9 (64.3 %)	5 (45.5 %)	0.435 [†]	
Age (years)	53±3.72	62.27±1.93	0.053*	
Clinical Parameters				
SBP, mmHg	121.64±1.75	158±5.68	< 0.0001*	
DBP, mmHg	77.21±2.01	94.09±3.75	0.0003*	
Heart rate, beats per minute	80.36±2.30	75.09±2.20	0.118*	
Comorbidities				
Hypertension, no. (%)	0 (0)	11 (100 %)	NA	
Type II diabetes mellitus, no. (%)	3 (21.4 %)	3 (27.3 %)	1 [†]	
Laboratory Findings				
Total cholesterol, mM	3.56±0.18	4.26±0.30	0.047*	
Triglycerides, mM	1.23±0.13	1.74±0.22	0.044*	
Creatinine, µM	69.23±7.80	81.31±6.98	0.273*	

Supplementary Table S1. Clinical characteristics of patients for renal arteries collection

P value is calculated with t-test (*) or Fisher's exact test (†) to compare continuous variables

(presented as mean±SEM) or categorical variables (presented as no. (%)), respectively.

Supplementary Table S2. Clinical characteristics of patients for peripheral blood

coll	ection
COIL	ccuon

Clinical characteristics	Non-coronary stenosis group (n=20)	Coronary stenosis group (n=20)	P value
Demographics			
Male sex, no. (%)	15 (75 %)	14(70 %)	1^{\dagger}
Age (years)	52.6±3.38	61±2.83	0.064*
Clinical Parameters			
SBP, mmHg	127.25±1.99	144.1±4.7	0.003*
DBP, mmHg	77.65±1.67	82.75±1.73	0.041*
Heart rate, beats per minute	80.45±1.91	74.6±1.57	0.023*
degree of stenosis, no. (%)	0 (0)	87.8±1.95	NA
Comorbidities			
Hypertension, no. (%)	5 (25 %)	15 (75 %)	0.004^{\dagger}
Type II diabetes mellitus, no. (%)	1 (5 %)	6 (30 %)	0.091 [†]
Laboratory Findings			
Total cholesterol, mM	4.13±0.21	4.72±0.09	0.016*
Triglycerides, mM	1.20±0.08	1.6±0.17	0.039*

P value is calculated with t-test (*) or Fisher's exact test (†) to compare continuous variables (presented as

mean±SEM) or categorical variables (presented as no. (%)), respectively.

Supplementary Table S3. PCR primer sequence, siRNA sequence, and FISH probe

sequence

Primer sequence		
circ-Sirt1 for rat	Forward	ACTAATTCCAAACAACCTCCTG
	Reverse	AACAATCTGCCACAGTGTCATA
complete circ-Sirt1 for rat	Forward	CTCTGTGTCACAAATTCATAGCTTTG
	Reverse	ATGGCTGGAACTGTCCGGGATATA
GAPDH mRNA for rat	Forward	ATCTTCCAGGAGCGAGATCCC
	Reverse	TGAGCCCTTCCACGATGCCAA
SIRT1 mRNA for rat	Forward	CGCCTTATCCTCTAGTTCCTGTG
	Reverse	TGCCTCTTGATCCCCTCCGTC
circ-Sirt1 for human	Forward	AGAGATTGTGTTTTTTGGTGAA
	Reverse	GAAGGTTATTTGGAATTAGTGC
GAPDH mRNA for human	Forward	ATCTTCCAGGAGCGAGATCCC
	Reverse	TGAGTCCTTCCACGATACCAA
VCAM-1 mRNA for rat	Forward	GGAGTCTGAACCCAAACAAAGG
	Reverse	GCAGTTCCCCGTTCTTTAGCT
ICAM-1 mRNA for rat	Forward	AAGAAGGACTGCTTGGGGAAC
	Reverse	TGGCGGTAATAGGTGTAAATGG
MCP-1 mRNA for rat	Forward	CACGCTTCTGGGCCTGTTGTT
	Reverse	GCCGACTCATTGGGATCATCTTG
VCAM-1 mRNA for human	Forward	GAAAAGTTCTTGTTTGCCGAG
	Reverse	GAAAGGTGCTGTAGATTCCCAT
ICAM-1 mRNA for human	Forward	GATTGTCATCATCACTGTGGTAG
	Reverse	GCCTGTTGTAGTCTGTATTTCTT
MCP-1 mRNA for human	Forward	TCTCTGCCGCCCTTCTGT
	Reverse	CGGAGTTTGGGTTTGCTTGT
siRNA sequence		
Negative control	Forward	UUCUCCGAACGUGUCACGUTT
	Reverse	ACGUGACACGUUCGGAGAATT
siRNA for circ-Sirt1	Forward	UCCAAACAACCUCCUGUUGTT
	Reverse	CAACAGGAGGUUGUUUGGATT
RNA pull down probe		
Oligo biotin		GTAGCACTAATTCCAAACAACCTCCTGTT
		GGC
circ-Sirt1 biotin probe		GCCAACAGGAGGTTGTTTGGAATTAGTG
		CTAC
miR-Con biotin		UUCUCCGAACGUGUCACGUTT

miR-132 biotin		CGACCATGGCTGTAGACTGTTA		
miR-212 biotin		TGGCCGTGACTGGAGACTGTTA		
Fish probe				
circ-Sirt1-Cy3		GCCAACAGGAGGTTGTTTGGAATTAGTG		
		CTAC		
miR-132-Fam		CGACCATGGCTGTAGACTGTTA		
miR-212-Fam		TGGCCGTGACTGGAGACTGTTA		
Chip primer				
NF-kB binding site Forward		GTGGGTCCGTCCGTCTGTC		
	Reverse	GGCTCGCCTCGGTACTTCT		
Primers for plasmid constructs	3			
LUC-SIRT1 mRNA 3'-UTR-F		TTGGATCCATTATTTTTACAGTGAAGACTG		
		TTTTCAGCTCTTTTTAGTCGACTT		
LUC-SIRT1 mRNA 3'-UTR-R		TTGTCGACTAAAAAGAGCTGAAAACAGTC		
		TTCACTGTAAAAATAATGGATCCTT		
LUC-SIRT1 mRNA 3'-UTR-mu	ıt-F	TTGGATCCACAACCTCCTGTTGGCTGCA		
		AAGATCATCACTAATGGCGTCGACTT		
LUC-SIRT1 mRNA 3'-UTR-mu	ıt-R	TTGTCGACGCCATTAGTGATGATCTTTGC		
		AGCCAACAGGAGGTTGTGGATCCTT		
LUC-circ-Sirt1-F		TTGGATCCACAACCTCCTGTTGGCTG		
LUC-circ-Sirt1-R		TTGTCGACTTGGAATTAGTGCTACTGGTC		
pcDNA-circ-Sirt1-F		TTGATATCACAACCTCCTGTTGGCTG		
pcDNA-circ-Sirt1-R		TTCCGCGGTTGGAATTAGTGCTACTGGTC		
pcDNA-circ-GFP-F		TTGATATCGATCCGCCACAACATCGAG		
pcDNA-circ-GFP-R		TTCCGCGGTTACTTGTACAGCTCGTCCAT		
		GC		