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ABSTRACT

ZiFiT (Zinc Finger Targeter) is a simple and intuitive
web-based tool that provides an interface to identify
potential binding sites for engineered zinc finger
proteins (ZFPs) in user-supplied DNA sequences.
In this updated version, ZiFiT identifies potential
sites for ZFPs made by both the modular assembly
and OPEN engineering methods. In addition, ZiFiT
now integrates additional tools and resources
including scoring schemes for modular assembly,
an interface with the Zinc Finger Database (ZiFDB)
of engineered ZFPs, and direct querying of NCBI
BLAST servers for identifying potential off-target
sites within a host genome. Taken together, these
features facilitate design of ZFPs using reagents
made available to the academic research commu-
nity by the Zinc Finger Consortium. ZiFiT is freely
available on the web without registration at
http://bindr.gdcb.iastate.edu/ZiFiT/.

INTRODUCTION

Engineered zinc finger proteins (ZFPs) are important tools
for gene regulation and genome modification because they
can be used to target functional domains to virtually any
desired location in a complex genome (1,2). Zinc finger
nucleases (ZFNs) consist of an engineered ZFP fused to
a non-specific nuclease domain and can be used to create
double-stranded breaks (DSBs) in specific endogenous
genes (3). These DSBs can be exploited to induce highly
efficient insertion or alteration of DNA sequences via
homologous recombination at the targeted locus (4–11).
Alternatively, imperfect repair of a ZFN-induced DSB by

non-homologous end joining can lead to highly efficient
generation of gene-specific knockouts (7,12–17).

Engineered C2H2 ZFPs comprise multiple (usually
three to six) ZF domains joined together by a fixed
amino-acid linker sequence(s), typically TGEKP. Each in-
dividual domain conforms to the zinc-finger motif X2–C–
X2–4–C–X12–H35–H which, when chelated with a zinc ion,
forms a bba fold. This structure presents a stabilized
a-helix (the recognition helix) capable of making base
specific contacts with approximately three bases in the
major groove of double-stranded DNA. Adjacent ZF
domains in a ZFP typically specify adjacent DNA
triplets, establishing specificity for an extended target
site (18).

ZFPs can be engineered to recognize new DNA se-
quences by altering as many as six important residues in
the recognition helix. Because ZFP libraries covering this
sequence space (2018 variants for a three finger protein)
cannot be built or adequately sampled using existing mo-
lecular biology techniques, much effort has been placed on
developing alternative methods for engineering
multi-finger proteins (7,19–29). These methods typically
involve identifying individual zinc-finger domains that rec-
ognize specific DNA triplet ‘subsites’ and then joining
these domains together to create multi-finger proteins.
The two most common ZFP engineering methods,
modular assembly and oligomerized pool engineering
(OPEN), both use variations on this general approach
(2). Modular assembly usually assumes that a single
domain (module) can recognize a specific DNA triplet re-
gardless of the position of the triplet within the target site
or the identities of adjacent neighboring fingers (i.e. it
assumes binding of the ZF module is context-
independent). Appropriate modules are simply joined
together to create a ZFP that should recognize the target
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sequence. Modular assembly is relatively simple to accom-
plish; however, ZFPs generated using this method have
been shown to have a high failure rate in vivo (30–32).
In contrast, OPEN uses customized ‘pools’ of ZF
modules selected to recognize triplets in a specific
sequence context. These pools can be assembled to
create combinatorial libraries (with up to one million
unique solutions for a three-finger protein) from which
the ZFPs best able to bind the chosen target DNA site
are identified. Although OPEN is somewhat more labor
intensive, it is more robust, with a higher success rate than
modular assembly (7).

ZiFiT provides a simple interface for scanning a DNA
sequence to identify potential ZFP and ZFN binding sites.
The updated version (3.2) identifies target sites for
proteins engineered using either OPEN or modular
assembly. ZiFiT 3.2 also provides several new tools to
help researchers evaluate ZFP targets, including validated
scoring schemes for ranking potential target sites, a tool
for querying NCBI BLAST servers for potential off-target
sites, and a seamless interface with the Zinc Finger
Database [ZiFDB, a database of engineered ZFPs (33)].

MATERIALS AND METHODS

Modular assembly

The modular assembly engineering approach employs in-
dividual zinc-finger domains (modules) that have been
pre-characterized (in the middle position of a three-finger
array) to bind a specific DNA triplet subsite. Several
(three to six) of these modules can be arranged and
linked together to generate a ZFP that recognizes an
extended DNA sequence corresponding to the desired
target site. ZiFiT provides support for the three most
commonly used module sets developed by three independ-
ent research groups (21,23,27).

Oligomerized pool engineering

OPEN utilizes pools of zinc-finger domains pre-
characterized to bind a specific DNA triplet subsite in
the first, second or third position of the target site for a
three-finger ZFP (7). Appropriate pools are combined to
generate hundreds of thousands of distinct solutions for a
given 9-bp target DNA sequence. The best solutions are
subsequently identified using a bacterial two-hybrid (B2H)
assay (34). Although this method requires considerable
effort, it reliably generates ZFPs that bind with high
affinity and specificity to their intended target site
(7,9,11,16).

GNN scoring

The GNN score is an empirical estimate of the probability
that a modularly assembled three-finger ZFP will provide
>1.6-fold activation in the B2H assay [proteins that fail to
meet this cutoff have been shown to fail to function in
mammalian cells (30)]. Using probabilities based on evalu-
ation of a set of 168 three-finger ZFPs generated by
modular assembly, ZFPs designed to bind target sites con-
taining 3, 2, 1 and 0 triplets of the form GNN (where N is

any nucleotide) are predicted to have success rates of 59,
29, 12 and 0%, respectively (30).

Affinity scoring

The affinity score is an energy-based parameter that
predicts which modularly assembled three-finger ZFPs
are most likely to function by inferring the contributions
of the individual modules. Scores are calculated by
estimating the relative free energy contributions of indi-
vidual modules from dissociation constants reported for
modules in the middle (F2) position of a three-finger ZFP
(27). These affinity scores have been calibrated to B2H
fold-activation values for modularly assembled ZFPs
tested in vivo. ZFPs with affinity scores less than five are
expected to have adequate affinity to function in the B2H
assay (35). These scores do not directly address specificity
and are available only for ZFPs composed exclusively of
Barbas GNN and TGG modules.

Program input

The ZiFiT 3.2 interface enables customizable searches for
potential ZFP and ZFN-binding sites that can be targeted
using either the modular assembly or OPEN engineering
methods. After selecting ZiFiT from the menu bar, users
select their preferred engineering method (modular
assembly or OPEN) and target type (ZFP or ZFN), e.g.
OPEN – ZFN. In all interfaces, users enter their DNA
query sequence into the Sequence input box near the top
of the page (Figure 1). Sequences can be submitted either
in FASTA format or raw text. Ideally, sequences should
be entered using uppercase characters to denote exons and
lowercase characters to denote introns. Entering informa-
tion in this format can facilitate target selection for certain
experimental applications, such as generation of knockout
mutations via ZFN-induced DSBs within a protein-
encoding region. This function can be disabled by
de-selecting the Exon/Intron Case Sensitivity check box
immediately below the Sequence input box.
The engineering method chosen by the user determines

which sequences can be targeted. For modular assembly,
users can choose one or more of the three available
module sets by selecting the Barbas, ToolGen and
Sangamo check boxes at the top of the page
(21,23,26,27,36). Several studies have generated functional
zinc fingers by combining modules from different sets (21).
For OPEN, users indicate which pools they wish to use by
choosing the corresponding target DNA triplet for each
finger position in a three-finger array. All published
OPEN pools currently available from the Zinc Finger
Consortium are checked by default (7).
Users can specify the number of ZF modules to include

in the Left Array and Right Array using dropdown menus
below the Sequence input box. ZiFiT restricts the number
of modules in concordance with the available reagents.
OPEN reagents and Sangamo modules are specific to
three-finger ZFPs or ZFNs, whereas practitioners of
modular assembly implementing only Barbas and
Toolgen modules may scan for individual target sites for
ZFPs consisting of three to eight fingers, or for dimeric
target sites for ZFNs consisting of three or four fingers for
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each target ‘half-site’. Users should note that although
increasing the number of modules might be expected to
confer enhanced specificity, this is not always the case
because deformation of the DNA upon ZFP binding
may limit the number of ZF domains that bind concur-
rently (37). In addition, because three domains are often
sufficient to bind DNA with high affinity, longer ZFP
arrays may require disrupted linkers between domains to
prevent binding at unintended sub-sequences within the
target site (24).
For ZFN targets, users must also specify the length of

the spacer region between the binding sites for the left and
right ZF arrays using the Spacer dropdown menu imme-
diately below the Sequence input box. An active dimeric
ZFN cleaves within the spacer region and its preferred
length is dependent on the sequence and length of the
amino-acid linker between the ZF and nuclease

domains. Zinc Finger Consortium vectors harbor a
linker that works with spacers of 5 or 6 bp of DNA
(38–40). An additional linker permitting spacers with 6
or 7 bp of DNA has also been identified (40). By default,
ZiFiT scans for ZFN targets with spacers of 5, 6, or 7 bp.
Users can choose to limit the scan to only one or two
spacer lengths.

Advanced search options are accessible by selecting the
Advanced link in the lower right hand corner (this link
then toggles to Basic, which hides the Advanced
options). Advanced options allow users to customize
their scan by adjusting additional constraints. For
example, users can restrict the minimum and maximum
number of GNN, ANN, CNN and TNN triplets for
reported targets. This feature can help users identify the
best sites by restricting searches to more successful
GNN-rich sites (13,30). Additional Advanced options

Figure 1. ZiFiT Input Window. In this example the user has chosen to scan for ZFN sites using OPEN. The sequence has been entered in FASTA
format, with exon sequences in uppercase and intron sequences in lowercase. Published sets of OPEN finger pools available through the Zinc Finger
Consortium are checked by default.
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available for a subset of the input interfaces include: (i)
Ignore Asp overlap: This option is available to users of
modular assembly; it refers to ‘target site overlap’ in
which an Asp in position +2 of the recognition helix
specifies a fourth base (41). This option is useful for
troubleshooting why ZiFiT fails to return an expected
target site; its use during design should be restricted to
advanced users. (ii) Search both strands: Because ZFPs
bind directionally in a 50–30 manner, they can be

engineered to bind either strand of DNA. ZiFiT
searches both strands by default. Additional guidance
for using advanced options is provided on the ZiFiT
Instructions and FAQ pages.

Program output

ZiFiT scans the user-supplied input DNA sequence for
potential ZFP binding or ZFN cleavage sites based on

Figure 2. ZiFiT Output Windows. (A) The Graphic Summary window (top) displays potential ZFN-binding sites (‘hits’) identified in the input
sequence. Exons (denoted by uppercase characters in the input sequence) are displayed as thick red bars and introns as thin red lines. Hits are
represented by short colored bars above the input sequence track; these serve as bookmarks that are linked to individual target sites in the Detailed
Target List. ZFN hits are color-coded based on spacer size (5 bp=Blue; 6 bp=Green; 7 bp=Gold). (B) The Detailed Target List window (bottom)
provides in-depth information about each hit. Hits are presented as double-stranded DNA sequences and labeled according to the FASTA descrip-
tion, spacer size, and index. Each hit can be expanded to reveal a reagent list for generating the corresponding ZFP. Hits can be sorted according to
various criteria as detailed in the text.
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the selected engineering method and any additional
user-defined restrictions. For each user submission,
ZiFiT displays a graphic map of the submitted sequence
with each target site (‘hit’) indicated above the sequence
(Figure 2A). (Users may need to ‘enable pop-ups’ in their
browser for this feature to function properly.) The
submitted sequence is displayed as a red bar at the
bottom of the map. When an Exon/Intron Case-Sensitive
search is performed (see Program Input), exons are repre-
sented by thick red bars and introns by thin red lines. Hits
are represented as short colored bars above the sequence
track, with overlapping hits overflowing vertically into
auxiliary tracks. Each bar is a clickable link to detailed
target information on the main output page. For ZFN
scans, hits are color-coded according to the length of the
spacer.
The main output page opens with a summary of the

search parameters, followed by a dropdown Sort By
menu that can be used to sort individual hits based on
position or score when available (see ‘Materials and
Methods’ section). Because ZFN targets consist of two
ZFP target sites, both of which must be targeted success-
fully, score-based sorting considers the score of the
inferior scoring array site before the better scoring array
target. When users implement an ‘Exon/intron
case-sensitive’ scan for ZFN targets, a Filter intronic
splice sites checkbox is present immediately to the right
of the Sort By menu. Selecting this box will hide ZFN
targets whose spacers occur within (or overlap) an
intron (Figure 2B). In addition to its web-based output,
ZiFiT also provides a text version of the output which
can be downloaded as a .csv file from the top of the
output page.
Each hit is named using the description/comment line of

the submitted FASTA sequence and an index number. If
no sequence name is supplied by the user, this parameter is
set to ‘Unknown’. Names for ZFN targets also include the
spacer length. For example, for a submission with the
FASTA description ‘>ZFN-SAMPLE,’ the third ZFN
target site with a spacer of 7 bp would be labeled
‘ZFN-SAMPLE-SP-7-30. Immediately beneath each hit
name, the double-stranded DNA target sequence is dis-
played, along with its position within the submitted
sequence. Individual triplets within this sequence are high-
lighted with distinct colors denoting the targets of individ-
ual ZF domains. Each highlighted ZFP is linked to
ZiFDB, a database of engineered ZFPs. Clicking these
links automatically queries ZiFDB for available informa-
tion regarding ZFPs tested against the same or similar
target DNA sequences (33). If an expected functional
activity score is available for a given ZFP, the score is
presented on the same line as the target. ZiFiT currently
provides two validated functional scoring schemes for
modular assembly targets (30,35). Scoring schemes for
OPEN targets are under development.
Individual ZF targets can be expanded using the ‘+’ to

the left of the target name. Expanding a target reveals
three types of information. (i) A table describing
reagents that can be used to generate corresponding
ZFPs. Each row in the table describes a reagent (pool or
module) corresponding to a Triplet DNA sequence, which

is color-coded according to its position in the
double-stranded sequence above the table. Entries in the
Reference Number column of the table signify the names of
reagents (either modules or pools) that are currently avail-
able to the academic research community through the
Zinc Finger Consortium. Modules (and other reagents
for performing modular assembly) are available from
the non-profit plasmid distribution service Addgene
(http://www.addgene.org/zfc) (42). OPEN pools are avail-
able by request from the Joung lab (jjoung@partners.org)
and other reagents for practicing OPEN are also avail-
able from Addgene (http://www.addgene.org/zfc). (ii)
Sequences of oligonucleotides that must be synthesized
to create bacterial two-hybrid selection and/or reporter
strains needed to screen or select ZFPs for
DNA-binding activity (34,42). (iii) An Organism
dropdown menu for selecting a host genome and
BLAST button that can be used to scan the selected
host organism genome for exact and similar target
matches. The BLAST button submits search parameters
to NCBI and via a popup directs users to NCBI website
where they can initiate the query by selecting the ‘view
report’ button. This is useful because it is generally desir-
able to avoid targeting sites that occur frequently in a
genome (e.g. sites that fall within repeat regions). When
using BLAST to search for genomic ZFN targets, the
spacer is replaced with N’s to prevent it from positively
influencing a scan. Due to the nature of the algorithm
(and a fixed spacer size in the case of a nuclease), this
query is not guaranteed to identify all similar sites.
ZiFiT output may need to complete loading before
BLAST queries are accessible. ZiFiT is freely available
on the web without registration at http://bindr.gdcb
.iastate.edu/ZiFiT/.

ACKNOWLEDGEMENTS

The authors respectfully acknowledge those who have
shared their results with the zinc finger research
community.

FUNDING

National Institutes of Health [T32CA009216] to J.D.S.;
National Science Foundation Graduate Research
Fellowship [2009080622] to M.L.M.; National Science
Foundation [DBI 0923827, DBI 0501678] to D.F.V.;
National Institutes of Health [R01 GM069906, R01
GM072621, R01 GM088040], the National Science
Foundation [DBI 0923827] and Massachusetts General
Hospital Pathology Service to J.K.J.; National Science
Foundation [DBI 0923827] to D.D. and D.R. Funding
for open access charge: National Science Foundation
[DBI 0923827].

Conflict of interest statement. None declared.

REFERENCES

1. Carroll,D. (2008) Progress and prospects: zinc-finger nucleases as
gene therapy agents. Gene Ther., 15, 1463–1468.

W466 Nucleic Acids Research, 2010, Vol. 38, Web Server issue



2. Cathomen,T. and Joung,J.K. (2008) Zinc-finger nucleases: the
next generation emerges. Mol. Ther., 16, 1200–1207.

3. Kim,Y.G., Cha,J. and Chandrasegaran,S. (1996) Hybrid
restriction enzymes: zinc finger fusions to Fok I cleavage domain.
Proc. Natl Acad. Sci. USA, 93, 1156–1160.

4. Bibikova,M., Beumer,K., Trautman,J.K. and Carroll,D. (2003)
Enhancing gene targeting with designed zinc finger nucleases.
Science, 300, 764.

5. Hockemeyer,D., Soldner,F., Beard,C., Gao,Q., Mitalipova,M.,
DeKelver,R.C., Katibah,G.E., Amora,R., Boydston,E.A.,
Zeitler,B. et al. (2009) Efficient targeting of expressed and silent
genes in human ESCs and iPSCs using zinc-finger nucleases.
Nat. Biotechnol., 27, 851–857.

6. Lombardo,A., Genovese,P., Beausejour,C.M., Colleoni,S.,
Lee,Y.L., Kim,K.A., Ando,D., Urnov,F.D., Galli,C.,
Gregory,P.D. et al. (2007) Gene editing in human stem cells using
zinc finger nucleases and integrase-defective lentiviral vector
delivery. Nat. Biotechnol., 25, 1298–1306.

7. Maeder,M.L., Thibodeau-Beganny,S., Osiak,A., Wright,D.A.,
Anthony,R.M., Eichtinger,M., Jiang,T., Foley,J.E., Winfrey,R.J.,
Townsend,J.A. et al. (2008) Rapid ‘‘open-source’’ engineering of
customized zinc-finger nucleases for highly efficient gene
modification. Mol. Cell, 31, 294–301.

8. Shukla,V.K., Doyon,Y., Miller,J.C., DeKelver,R.C., Moehle,E.A.,
Worden,S.E., Mitchell,J.C., Arnold,N.L., Gopalan,S., Meng,X.
et al. (2009) Precise genome modification in the crop species Zea
mays using zinc-finger nucleases. Nature, 459, 437–441.

9. Townsend,J.A., Wright,D.A., Winfrey,R.J., Fu,F., Maeder,M.L.,
Joung,J.K. and Voytas,D.F. (2009) High-frequency modification
of plant genes using engineered zinc-finger nucleases. Nature, 459,
442–445.

10. Urnov,F.D., Miller,J.C., Lee,Y.L., Beausejour,C.M., Rock,J.M.,
Augustus,S., Jamieson,A.C., Porteus,M.H., Gregory,P.D. and
Holmes,M.C. (2005) Highly efficient endogenous human gene
correction using designed zinc-finger nucleases. Nature, 435,
646–651.

11. Zou,J., Maeder,M.L., Mali,P., Pruett-Miller,S.M., Thibodeau-
Beganny,S., Chou,B.K., Chen,G., Ye,Z., Park,I.H., Daley,G.Q.
et al. (2009) Gene targeting of a disease-related gene in human
induced pluripotent stem and embryonic stem cells. Cell. Stem
Cell., 5, 97–110.

12. Bibikova,M., Golic,M., Golic,K.G. and Carroll,D. (2002)
Targeted chromosomal cleavage and mutagenesis in Drosophila
using zinc-finger nucleases. Genetics, 161, 1169–1175.

13. Perez,E.E., Wang,J., Miller,J.C., Jouvenot,Y., Kim,K.A., Liu,O.,
Wang,N., Lee,G., Bartsevich,V.V., Lee,Y.L. et al. (2008)
Establishment of HIV-1 resistance in CD4+ T cells by genome
editing using zinc-finger nucleases. Nat. Biotechnol., 26, 808–816.

14. Meng,X., Noyes,M.B., Zhu,L.J., Lawson,N.D. and Wolfe,S.A.
(2008) Targeted gene inactivation in zebrafish using engineered
zinc-finger nucleases. Nat. Biotechnol., 26, 695–701.

15. Doyon,Y., McCammon,J.M., Miller,J.C., Faraji,F., Ngo,C.,
Katibah,G.E., Amora,R., Hocking,T.D., Zhang,L., Rebar,E.J.
et al. (2008) Heritable targeted gene disruption in zebrafish using
designed zinc-finger nucleases. Nat. Biotechnol., 26, 702–708.

16. Foley,J.E., Yeh,J.R., Maeder,M.L., Reyon,D., Sander,J.D.,
Peterson,R.T. and Joung,J.K. (2009) Rapid mutation of
endogenous zebrafish genes using zinc finger nucleases made by
Oligomerized Pool ENgineering (OPEN). PLoS ONE, 4, e4348.

17. Lee,H.J., Kim,E. and Kim,J.S. (2010) Targeted chromosomal
deletions in human cells using zinc finger nucleases. Genome Res,
20, 81–89.

18. Pavletich,N.P. and Pabo,C.O. (1991) Zinc finger-DNA
recognition: crystal structure of a Zif268-DNA complex at 2.1A.
Science, 252, 809–817.

19. Carroll,D., Morton,J.J., Beumer,K.J. and Segal,D.J. (2006)
Design, construction and in vitro testing of zinc finger nucleases.
Nat. Protoc., 1, 1329–1341.

20. Hurt,J.A., Thibodeau,S.A., Hirsh,A.S., Pabo,C.O. and Joung,J.K.
(2003) Highly specific zinc finger proteins obtained by directed
domain shuffling and cell-based selection. Proc. Natl Acad. Sci.
USA, 100, 12271–12276.

21. Bae,K.H., Kwon,Y.D., Shin,H.C., Hwang,M.S., Ryu,E.H.,
Park,K.S., Yang,H.Y., Lee,D.K., Lee,Y., Park,J. et al. (2003)

Human zinc fingers as building blocks in the construction of
artificial transcription factors. Nat. Biotechnol., 21, 275–280.

22. Sera,T. and Uranga,C. (2002) Rational design of artificial
zinc-finger proteins using a nondegenerate recognition code table.
Biochemistry, 41, 7074–7081.

23. Liu,Q., Xia,Z., Zhong,X. and Case,C.C. (2002) Validated zinc
finger protein designs for all 16 GNN DNA triplet targets.
J. Biol. Chem., 277, 3850–3856.

24. Moore,M., Klug,A. and Choo,Y. (2001) Improved DNA
binding specificity from polyzinc finger peptides by using
strings of two-finger units. Proc. Natl Acad. Sci. USA, 98,
1437–1441.

25. Isalan,M., Klug,A. and Choo,Y. (2001) A rapid, generally
applicable method to engineer zinc fingers illustrated by targeting
the HIV-1 promoter. Nat. Biotechnol., 19, 656–660.

26. Dreier,B., Beerli,R.R., Segal,D.J., Flippin,J.D. and Barbas,C.F.3rd
(2001) Development of zinc finger domains for recognition of the
50-ANN-30 family of DNA sequences and their use in the
construction of artificial transcription factors. J. Biol. Chem., 276,
29466–29478.

27. Segal,D.J., Dreier,B., Beerli,R.R. and Barbas,C.F.3rd (1999)
Toward controlling gene expression at will: selection and
design of zinc finger domains recognizing each of the 50-GNN-30

DNA target sequences. Proc. Natl Acad. Sci. USA, 96,
2758–2763.

28. Greisman,H.A. and Pabo,C.O. (1997) A general strategy for
selecting high-affinity zinc finger proteins for diverse DNA target
sites. Science, 275, 657–661.

29. Wu,H., Yang,W.P. and Barbas,C.F. 3rd (1995) Building zinc
fingers by selection: toward a therapeutic application. Proc. Natl
Acad. Sci. USA, 92, 344–348.

30. Ramirez,C.L., Foley,J.E., Wright,D.A., Muller-Lerch,F.,
Rahman,S.H., Cornu,T.I., Winfrey,R.J., Sander,J.D., Fu,F.,
Townsend,J.A. et al. (2008) Unexpected failure rates for modular
assembly of engineered zinc fingers. Nat. Methods, 5, 374–375.

31. Kim,H.J., Lee,H.J., Kim,H., Cho,S.W. and Kim,J.S. (2009)
Targeted genome editing in human cells with zinc finger nucleases
constructed via modular assembly. Genome Res., 19, 1279–1288.

32. Joung,J.K., Voytas,D.F. and Cathomen,T. (2010) Reply to
‘‘Genome editing with modularly assembled zinc-finger nucleases’’.
Nat. Methods, 7, 91–92.

33. Fu,F., Sander,J.D., Maeder,M., Thibodeau-Beganny,S.,
Joung,J.K., Dobbs,D., Miller,L. and Voytas,D.F. (2009) Zinc
Finger Database (ZiFDB): a repository for information on C2H2
zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res.,
37, D279–D283.

34. Maeder,M.L., Thibodeau-Beganny,S., Sander,J.D., Voytas,D.F.
and Joung,J.K. (2009) Oligomerized pool engineering (OPEN): an
‘open-source’ protocol for making customized zinc-finger arrays.
Nat. Protoc., 4, 1471–1501.

35. Sander,J.D., Zaback,P., Joung,J.K., Voytas,D.F. and Dobbs,D.
(2009) An affinity-based scoring scheme for predicting
DNA-binding activities of modularly assembled zinc-finger
proteins. Nucleic Acids Res., 37, 506–515.

36. Dreier,B., Fuller,R.P., Segal,D.J., Lund,C.V., Blancafort,P.,
Huber,A., Koksch,B. and Barbas,C.F. 3rd (2005) Development of
zinc finger domains for recognition of the 50-CNN-30 family DNA
sequences and their use in the construction of artificial
transcription factors. J. Biol. Chem., 280, 35588–35597.

37. Peisach,E. and Pabo,C.O. (2003) Constraints for zinc finger linker
design as inferred from X-ray crystal structure of tandem
Zif268-DNA complexes. J. Mol. Biol., 330, 1–7.

38. Smith,J., Bibikova,M., Whitby,F.G., Reddy,A.R.,
Chandrasegaran,S. and Carroll,D. (2000) Requirements for
double-strand cleavage by chimeric restriction enzymes with zinc
finger DNA-recognition domains. Nucleic Acids Res., 28,
3361–3369.

39. Bibikova,M., Carroll,D., Segal,D.J., Trautman,J.K., Smith,J.,
Kim,Y.G. and Chandrasegaran,S. (2001) Stimulation of
homologous recombination through targeted cleavage by chimeric
nucleases. Mol. Cell. Biol., 21, 289–297.

40. Handel,E.M., Alwin,S. and Cathomen,T. (2009) Expanding or
restricting the target site repertoire of zinc-finger nucleases: the

Nucleic Acids Research, 2010, Vol. 38, Web Server issue W467



inter-domain linker as a major determinant of target site
selectivity. Mol. Ther., 17, 104–111.

41. Elrod-Erickson,M., Benson,T.E. and Pabo,C.O. (1998)
High-resolution structures of variant Zif268-DNA complexes:
implications for understanding zinc finger-DNA recognition.
Structure, 6, 451–464.

42. Wright,D.A., Thibodeau-Beganny,S., Sander,J.D., Winfrey,R.J.,
Hirsh,A.S., Eichtinger,M., Fu,F., Porteus,M.H., Dobbs,D.,
Voytas,D.F. et al. (2006) Standardized reagents and protocols for
engineering zinc finger nucleases by modular assembly.
Nat. Protoc., 1, 1637–1652.

W468 Nucleic Acids Research, 2010, Vol. 38, Web Server issue


