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Abstract

State-of-the-art next-generation sequencing, transcriptomics, proteomics and other high-throughput ‘omics’ technologies en-
able the efficient generation of large experimental data sets. These data may yield unprecedented knowledge about molecular
pathways in cells and their role in disease. Dimension reduction approaches have been widely used in exploratory analysis of
single omics data sets. This review will focus on dimension reduction approaches for simultaneous exploratory analyses of
multiple data sets. These methods extract the linear relationships that best explain the correlated structure across data sets,
the variability both within and between variables (or observations) and may highlight data issues such as batch effects or out-
liers. We explore dimension reduction techniques as one of the emerging approaches for data integration, and how these can
be applied to increase our understanding of biological systems in normal physiological function and disease.
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Introduction

Technological advances and lower costs have resulted in stud-
ies using multiple comprehensive molecular profiling or omics
assays on each biological sample. Large national and interna-
tional consortia including The Cancer Genome Atlas (TCGA) and
The International Cancer Genome Consortium have profiled

thousands of biological samples, assaying multiple different
molecular profiles per sample, including mRNA, microRNA,
methylation, DNA sequencing and proteomics. These data have
the potential to reveal great insights into the mechanism of dis-
ease and to discover novel biomarkers; however, statistical
methods for integrative analysis of multi-omics (or multi-assay)
data are only emerging.
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Exploratory data analysis (EDA) is an important early step in
omics data analysis [1]. It summarizes the main characteristics of
data and may identify potential issues such as batch effects [2]
and outliers. Techniques for EDA include cluster analysis and di-
mension reduction. Both have been widely applied to transcrip-
tomics data analysis [1], but there are advantages to dimension
reduction approaches when integrating multi-assay data. While
cluster analysis generally investigates pairwise distances between
objects looking for fine relationships, dimension reduction or la-
tent variable methods consider the global variance of the data set,
highlighting general gradients or patterns in the data [3].

Biological data frequently have complex phenotypes and de-
pending on the subset of variables analyzed, multiple valid clus-
tering classifications may co-exist. Dimension reduction
approaches decompose the data into a few new variables (called
components) that explain most of the differences in observa-
tions. For example, a recent dimension reduction analysis of
bladder cancers identified components associated with batch
effects, GC content in the RNA sequencing data, in addition to
seven components that were specific to tumor cells and three
components associated with tumor stroma [4]. By contrast,
most clustering approaches are optimized for discovery of dis-
crete clusters, where each observation or variable is assigned to
only one cluster. Limitations of clustering were observed when
the method, cluster-of-cluster assignments, was applied to
TCGA pan-cancer multi-omics data of 3527 specimens from 12
cancer type sources [5]. Tumors were assigned to one cluster,
and these clusters grouped largely by anatomical origin and
failed to identify clusters associated with known cancer path-
ways [5]. However, a dimension reduction analysis across 10 dif-
ferent cancers, identified novel and known cancer-specific
pathways, in addition to pathways such as cell cycle, mitochon-
dria, gender, interferon response and immune response that
were common among different cancers [4].

Overlapping clusters have been identified in many tumors
including glioblastoma and serous ovarian cancer [6, 7].
Gusenleitner and colleagues [8] found that k-means or hierarch-
ical clustering failed to identify the correct cluster structure in
simulated data with multiple overlapping clusters. Clustering
methods may also falsely discover clusters in unimodal data.
For example, Senbabaoğlu et al. [7] applied consensus clustering
to randomly generated unimodal data and found it divided the
data into apparently stable clusters for a range of K, where K is a
predefined number of clusters. However, principal component
analysis (PCA) did not identify these clusters.

In this article, we first introduce linear dimension reduction of
a single data set, describing the fundamental concepts and ter-
minology that are needed to understand its extensions to mul-
tiple matrices. Then we review multivariate dimension reduction
approaches, which can be applied to the integrative exploratory
analysis of multi-omics data. To demonstrate the application of
these methods, we apply multiple co-inertia analysis (MCIA) to
EDA of mRNA, miRNA and proteomics data of a subset of 60 cell
lines studied at the National Cancer Institute (NCI-60).

Introduction to dimension reduction

Dimension reduction methods arose in the early 20th century
[9, 10] and have continued to evolve, often independently in
multiple fields, giving rise to a myriad of associated termin-
ology. Wikipedia lists over 10 different names for PCA, the most
widely used dimension reduction approach. Therefore, we
provide a glossary (Table 1) and tables of methods (Tables 2–4)
to assist beginners to the field. Each of these are dimension

reduction techniques, whether they are applied to one (Table 2)
or multiple (Tables 3 and 4) data sets. We start by introducing
the central concepts of dimension reduction.

We denote matrices with boldface uppercase letters. The
rows of a matrix contain the observations, while the columns
hold the variables. In an omics study, the variables (also
referred to as features) generally measure tissue or cell attri-
butes including abundance of mRNAs, proteins and metabol-
ites. All vectors are columns vectors and are denoted with
boldface lowercase letters. Scalars are indicated by italic letters.

Given an omics data set, X, which is an n�p matrix, of n
observations and p variables, it can be represented by:

X ¼ x1;x2; :::;xp
� �

(1)

where x are vectors of length n, and are measurements of
mRNA or other biological variables for n observations (samples).
In a typical omics study, p ranges from several hundred to mil-
lions. Therefore, observations (samples) are represented in large
dimensional spaces Rp. The goal of dimension reduction is to
identify a (set of) new variable(s) using a linear combination of
the original variables, such that the number of new variables is
much smaller than p. An example of such a linear combination
is shown in Equation (2);

f ¼ q1x1 þ q2x2 þ . . . þ qpxp (2)

or expressed in a matrix form:

f ¼ Xq (3)

In Equations (2) and (3), f is a new variable, which is often called
a latent variable or a component. Depending on the scientific
field, f may also be called principal axis, eigenvector or latent
factor. q¼(q1, q2, . . . , qp)T is a p-length vector of coefficients of
scalar values in which at least one of the coefficients is different
from zero. These coefficients are also called ‘loadings’.
Dimension reduction analysis introduces constraints to obtain
a meaningful solution; we find the set of q’s that maximize the
variance of components f’s. In doing so, a smaller number of
variables, f, capture most of the variance in the data. Different
optimization and constraint criteria distinguish between differ-
ent dimension reduction methods. Table 2 provides a nonex-
haustive list of these methods, which includes PCA, linear
discriminant analysis and factor analysis.

Principal component analysis

PCA is one of the most widely used dimension reduction
methods [20]. Given a column centered and scaled (unit variance)
matrix X, PCA finds a set of new variables fi¼Xqi where i is the ith
component and qi is the variable loading for the ith principal
component (PC; superscript denotes the component or the di-
mension). The variance of fi is maximized, that is:

arg maxqi varðXqiÞ (4)

with the constraints that jjqijj ¼ 1 and each pair of components
(f i,f j) are orthogonal to each other (or uncorrelated, i.e. f iTf j ¼ 0
for j = i).
PCA can be computed using different algorithms including
eigen analysis, latent variable analysis, factor analysis, singular
value decomposition (SVD) [21] or linear regression [3]. Among
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them, SVD is the most widely used approach. Given X, an n�p
matrix, with rank r (r <¼min[n, p]), SVD decomposes X into
three matrices:

X ¼ USQTsubject to the constraint that UTU ¼ QTQ ¼ I (5)

where U is an n�r matrix and Q is a p�r matrix. The columns of
U and Q are the orthogonal left and right singular vectors, re-
spectively. S is an r�r diagonal matrix of singular values, which
are proportional to the standard deviations associated with r
singular vectors. The singular vectors are ordered such that

their associated variances are monotonically decreasing.
In a PCA of X, the PCs comprise an n�r matrix, F, which is
defined as:

F ¼ US ¼ USQTQ ¼ XQ (6)

where the columns of matrix F are the PCs and the matrix Q is
called the loadings matrix and contains the linear combination
coefficients of the variables for each PC (q in Equation (3)).
Therefore, we represent the variance of X in lower dimension r.
The above formula also emphasizes that Q is a matrix that

Table 1. Glossary

Term Definition

Variance The variance of a random variable measures the spread (variability) of its realizations (values of the random vari-
able). The variance is always a positive number. If the variance is small, the values of the random variable are
close to the mean of the random variable (the spread of the data is low). A high variance is equivalent to widely
spread values of the random variable. See [11].

Standard deviation The standard deviation of a random variable measures the spread (variability) of its realizations (values of the ran-
dom variable). It is defined as the square root of the variance. The standard deviation will have the same units as
the random variable, in contrast to the variance. See [11].

Covariance The covariance is an unstandardized measure about the tendency of two random variables to vary together. See
[12].

Correlation The correlation of two random variables is defined by the covariance of the two random variables normalized by
the product between their standard deviations. It measures the linear relationship between the two random
variables. The correlation coefficient ranges between �1 and þ1. See [12].

Inertia Inertia is a measure for the variability of the data. The inertia of a set of points relative to one point P is defined by
the weighted sum of the squared distances between each considered point and the point P. Correspondingly, the
inertia of a centered matrix (mean is equal to zero) is simply the sum of the squared matrix elements. The inertia
of the matrix X defined by the metrics L and D is the weighted sum of its squared values. The inertia is equal the
total variance of X when X is centered, L is the Euclidean metric and D is a diagonal matrix with diagonal elements
equal to 1/n. See [13].

Co-inertia The co-inertia is a global measure for the co-variability of two data sets (for example, two high-dimensional random
variables). If the data sets are centered, the co-inertia is the sum of squared covariances. When coupling a pair of
data sets, the co-inertia between two matrices, X and Y, is calculated as trace (XLXTDYRYTD). See [13].

Orthogonal Two vectors are called orthogonal if they form an angle that measures 90 degrees. Generally, two vectors are orthog-
onal if their inner product is equal to zero. Two orthogonal vectors are always linearly independent. See [12].

Independent In linear algebra, two vectors are called linearly independent if their liner combination is equal to zero only when all
constants of the linear combination are equal to zero. See [14]. In statistics, two random variables are called statis-
tically independent if the distribution of one of them does not affect the distribution of the other. If two independ-
ent random variables are added, then the mean of the sum is the sum of the two mean values. This is also true for
the variance. The covariance of two independent variables is equal to zero. See [11].

Eigenvector, eigenvalue An eigenvector of a matrix is a vector that does not change its direction after a linear transformation. The vector v is
an eigenvector of the matrix A if: Av ¼ kv. k is the eigenvalue associated with the eigenvector v and it reflects the
stretch of the eigenvector following the linear transformation. The most popular way to compute eigenvectors
and eigenvalues is the SVD. See [14].

Linear combination Mathematical expression calculated through the multiplication of variables with constants and adding the individ-
ual multiplication results. A linear combination of the variables x and y is ax þ by where a and b are the constants.
See [15].

Omics The study of biological molecules in a comprehensive fashion. Examples of omics data types include genomics,
transcriptomics, proteomics, metabolomics and epigenomics [16].

Dimension reduction Dimension reduction is the mapping of data to a lower dimensional space such that redundant variance in the data
is reduced or discarded, enabling a lower-dimensional representation without significant loss of information.
See [17].

Exploratory data analysis EDA is the application of statistical techniques that summarize the main characteristics of data, often with visual
methods. In contrast to statistical hypothesis testing (confirmatory data analysis), EDA can help to generate
hypotheses. See [18].

Sparse vector A sparse vector is a vector in which most elements are zero. A sparse loadings matrix in PCA or related methods
reduce the number of features contributing to a PC. The variables with nonzero entries (features) are the ‘selected
features’. See [19].
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projects the observations in X onto the PCs. The sum of squared
values of the columns in U equals 1 (Equation (5)), therefore, the
variance of the ith PC, di2 , can be calculated as

di2 ¼ si2

n� 1
(7)

where si is the ith diagonal element in S. The variance reflects
the amount of information (underling structure) captured by
each PC. The squared correlations between PCs and the original

variables are informative and often illustrated using a correl-
ation circle plot. These can be calculated by:

C ¼ QD (8)

where D ¼ (d1, d2, . . . , dr)T is a diagonal matrix of the standard
deviation of the PCs.

In contrast to SVD, which calculates all PCs simultaneously,
PCA can also be calculated using the Nonlinear Iterative Partial
Least Squares (NIPALS) algorithm, which uses an iterative

Table 2. Dimension reduction methods for one data set

Method Description Name of R function {R package}

PCA Principal component analysis prcomp{stats}, princomp{stats}, dudi.pca{ade4}, pca{vegan},
PCA{FactoMineR}, principal{psych}

CA, COA Correspondence analysis ca{ca}, CA{FactoMineR}, dudi.coa{ade4}
NSC Nonsymmetric correspondence analysis dudi.nsc{ade4}
PCoA, MDS Principal co-ordinate analysis/multiple dimensional

scaling
cmdscale{stats} dudi.pco{ade4} pcoa{ape}

NMF Nonnegative matrix factorization nmf{nmf}
nmMDS Nonmetric multidimensional scaling metaMDS{vegan}
sPCA, nsPCA, pPCA Sparse PCA, nonnegative sparse PCA, penalized PCA.

(PCA with feature selection)
SPC{PMA}, spca{mixOmics}, nsprcomp{nsprcomp},

PMD{PMA}
NIPALS PCA Nonlinear iterative partial least squares analysis (PCA

on data with missing values)
nipals{ade4} pca{pcaMethods}a nipals{mixOmics}

pPCA, bPCA Probabilistic PCA, Bayesian PCA pca{pcaMethods}a

MCA Multiple correspondence analysis dudi.acm{ade4}, mca{MASS}
ICA Independent component analysis fastICA{FastICA}
sIPCA Sparse independent PCA (combines sPCA and ICA) sipca{mixOmics} ipca{mixOmics}
plots Graphical resources R packages including scatterplot3d, ggordb, ggbiplotc,

plotlyd, explor

aAvailable in Bioconductor.
bOn github: devtools::install_github (‘fawda123/ggord’).
cOn github: devtools::install_github (‘ggbiplot’, ‘vqv’).
dOn github: devtools::install_github (‘ropensci/plotly’).

Table 3. Dimension reduction methods for pairs of data sets

Method Description Feature
selection

R Function {package}

CCAa Canonical correlation analysis. Limited to n>pa No cc{cca} CCorA{vegan},
CCAa Canonical correspondence analysis is a constrained correspondence

analysis, which is popular in ecologya

No cca{ade4} cca{vegan} cancor{stats}

RDA Redundancy analysis is a constrained PCA. Popular in ecology No rda{vegan}
Procrutes Procrutes rotation rotates a matrix to maximum similarity with a tar-

get matrix minimizing sum of squared differences
No procrustes{vegan} procuste{ade4}

rCCA Regularized canonical correlation No rcc{cca}
sCCA Sparse CCA Yes CCA{pma}
pCCA Penalized CCA Yes spCCA{spCCA} supervised version
WAPLS Weighted averaging PLS regression No WAPLS{rioja}, wapls{paltran}
PLS Partial least squares of K-tables (multi-block PLS) No mbpls{ade4}, plsda{caret}
sPLS pPLS Sparse PLS Penalized PLS Yes spls{spls} spls{mixOmics} ppls{ppls}
sPLS-DA Sparse PLS-discriminant analysis Yes splsda{mixOmics}, splsda{caret}
cPCA Consensus PCA No cpca{mogsa}
CIA Coinertia analysis No coinertia{ade4} cia{made4}

aA source for confusion, CCA is widely used as an acronym for both Canonical ‘Correspondence’ Analysis and Canonical ‘Correlation’ Analysis. Throughout this article

we use CCA for canonical ‘correlation’ analysis. Both methods search for the multivariate relationships between two data sets. Canonical ‘correspondence’ analysis is

an extension and constrained form of ‘correspondence’ analysis [22]. Both canonical ‘correlation’ analysis and RDA assume a linear model; however, RDA is a con-

strained PCA (and assumes one matrix is the dependent variable and one independent), whereas canonical correlation analysis considers both equally. See [23] for

more explanation.

Dimension reduction techniques | 631

Deleted Text: Since 
Deleted Text:  


regression procedure to calculate PCs. Computation can be per-
formed on data with missing values and it is faster than SVD
when applied to large matrices. Furthermore, NIPALS may be
generalized to discover the correlated structure in more than
one data set (see sections on the analysis of multi-omics data
sets). Please refer to the Supplementary Information for add-
itional details on NIPALS.

Visualizing and interpreting results of
dimension reduction analysis

We present an example to illustrate how to interpret results of a
PCA. PCA was applied to analyze mRNA gene expression data of
a subset of cell lines from the NCI-60 panel; those of melanoma,
leukemia and central nervous system (CNS) tumors. The results
of PCA can be easily interpreted by visualizing the observations
and variables in the same space using a biplot. Figure 1A is a
biplot of the first (PC1) and second PC (PC2), where points and
arrows from the plot origin, represent observations and genes,
respectively. Cell lines (points) with correlated gene expression
profiles have similar scores and are projected close to each
other on PC1 and PC2. We see that cell lines from the same ana-
tomical location are clustered.

Both the direction and length of the mRNA gene expression
vectors can be interpreted. Gene expression vectors point in the
direction of the latent variable (PC) to which it is most similar
(squared correlation). Gene vectors with the same direction (e.g.
FAM69B, PNPLA2, PODXL2) have similar gene expression pro-
files. The length of the gene expression vector is proportional to
the squared multiple correlation between the fitted values for
the variable and the variable itself.

A gene expression vector and a cell line projected in the same
direction from the origin are positively associated. For example in
Figure 1A, FAM69B, PNPLA2, PODXL2 are active (have higher gene
expression) in melanoma cell lines. Similarly, genes DPPA5 and
RPL34P1 are among those genes that are highly expressed in
most leukemia cell lines. By contrast, genes WASL and HEXB
point in the opposite direction to most leukemia cell lines indicat-
ing low association. In Figure 1B it is clear that these genes are
not expressed in leukemia cell lines and are colored blue in the
heatmap (these are colored dark gray in grayscale).

The sum of the squared correlation coefficients between a
variable and all the components (calculated in equation 8)
equals 1. Therefore, variables are often shown within a correl-
ation circle (Figure 1C). Variables positioned on the unit circle
represent variables that are perfectly represented by the two di-
mensions displayed. Those not on the unit circle may require
additional components to be represented.

In most analyses, only the first few PCs are plotted and
studied, as these explain the most variant trends in the data.
Generally, the selection of components is subjective and
depends on the purpose of the EDA. An informal elbow test may
help to determine the number of PCs to retain and examine [24,
25]. From the scree plot of PC eigenvalues in Figure 1D, we might
decide to examine the first three PCs because the decrease in
PC variance becomes relatively moderate after PC3. Another
approach that is widely used is to include (or retain) PCs that
cumulatively capture a certain proportion of variance; for ex-
ample, 70% of variance is modeled with three PCs. If a parsi-
mony model is preferred, the variance proportion cutoff can be
as low as 50% [24]. More formal tests, including the Q2 statistic,
are also available (for details, see [24]). In practice, the first com-
ponent might explain most of the variance and the remaining
axes may simply be attributed to noise from technical or biolo-
gical sources in a study with low complexity (e.g. cell line repli-
cates of controls and one treatment condition). However, a
complex data set (for example, a set of heterogeneous tumors)
may require multiple PCs to capture the same amount of
variance.

Different dimension reduction approaches are
optimized for different data

There are many dimension reduction approaches related to PCA
(Table 2), including principal co-ordinate analysis (PCoA), cor-
respondence analysis (CA) and nonsymmetrical correspond-
ence analysis (NSCA). These may be computed by SVD, but
differ in how the data are transformed before decomposition
[21, 26, 27], and therefore, each is optimized for specific data
properties. PCoA (also known as Classical Multidimensional
Scaling) is versatile, as it is a SVD of a distance matrix that can
be applied to decompose distance matrices of binary, count or

Table 4. Dimension reduction methods for multiple (more than two) data sets

Method Description Feature
selection

Matched
cases

R Function {package}

MCIA Multiple coinertia analysis No No mcia{omicade4}, mcoa{ade4}
gCCA Generalized CCA No No regCCA{dmt}
rGCCA Regularized generalized CCA No No regCCA{dmt} rgcca{rgcca}

wrapper.rgcca{mixOmics}
sGCCA Sparse generalized canonical

correlation analysis
Yes No sgcca{rgcca} wrapper.sgcca{mixOmics}

STATIS Structuration des Tableaux �a
Trois Indices de la Statistique
(STATIS). Family of methods which
include X-statis

No No statis{ade4}

CANDECOMP/
PARAFAC /
Tucker3

Higher order generalizations of SVD
and PCA. Require matched
variables and cases.

No Yes CP{ThreeWay}, T3{ThreeWay}, PCAn{PTaK},
CANDPARA{PTaK}

PTA Partial triadic analysis No Yes pta{ade4},
statico Statis and CIA (find structure

between two pairs of K-tables)
No No statico{ade4}
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continuous data. It is frequently applied in the analysis of
microbiome data [28].

PCA is designed for the analysis of multi-normal distributed
data. If data are strongly skewed or extreme outliers are pre-
sent, the first few axes may only separate those objects with ex-
treme values instead of displaying the main axes of variation. If
data are unimodal or display nonlinear trends, one may see dis-
tortions or artifacts in the resulting plots, in which the second
axis is an arched function of the first axis. In PCA, this is called
the horseshoe effect and it is well described, including illustra-
tions, in Legendre and Legendre [3]. Both nonmetric Multi-
Dimensional Scaling (MDS) and CA perform better than PCA in
these cases [26, 29]. Unlike PCA, CA can be applied to sparse
count data with many zeros. Although designed for contingency
tables of nonnegative count data, CA and NSCA, decompose
a chi-squared matrix [30, 31], but have been successfully
applied to continuous data including gene expression and pro-
tein profiles [32, 33]. As described by Fellenberg et al. [33], gene

and protein expression can be seen as an approximation of the
number of corresponding molecules present in the cell during a
certain measured condition. Additionally, Greenacre [27]
emphasized that the descriptive nature of CA and NSCA allows
their application on data tables in general, not only on count
data. These two arguments support the suitability of CA and
NSCA as analysis methods for omics data. While CA investi-
gates symmetric associations between two variables, NSCA cap-
tures asymmetric relations between variables. Spectral map
analysis is related to CA, and performs comparably with CA,
each outperforming PCA in the identification of clusters of leu-
kemia gene expression profiles [26]. All dimension reduction
methods can be formulated in terms of the duality diagram.
Details on this powerful framework are included in the
Supplementary Information.

Nonnegative matrix factorization (NMF) [34] forces a positive
or nonnegative constraint on the resulting data matrices and,
similar to Independent Component Analysis (ICA) [35], there is no

Figure 1. Results of a PCA analysis of mRNA gene expression data of melanoma (ME), leukemia (LE) and central nervous system (CNS) cell lines from the NCI-60 cell

line panel. All variables were centered and scaled. Results show (A) a biplot where observations (cell lines) are points and gene expression profiles are arrows; (B) a

heatmap showing the gene expression of the same 20 genes in the cell lines; red to blue scale represent high to low gene expression (light to dark gray represent high

to low gene expression on the black and white figure); (C) correlation circle; (D) variance barplot of the first ten PCs. To improve the readability of the biplot, some labels

of the variables (genes) in (A) have been moved slightly. A colour version of this figure is available online at BIB online: http://bib.oxfordjournals.org.
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requirement for orthogonality or independence in the compo-
nents. The nonnegative constraint guarantees that only the addi-
tive combinations of latent variables are allowed. This may be
more intuitive in biology where many biological measurements
(e.g. protein concentrations, count data) are represented by posi-
tive values. NMF is described in more detail in the Supplemental
Information. ICA was recently applied to molecular subtype dis-
covery in bladder cancer [4]. Biton et al. [4] applied ICA to gene
expression data of 198 bladder cancers and examined 20 compo-
nents. ICA successfully decomposed and extracted multiple
layers of signal from the data. The first two components were
associated with batch effects but other components revealed new
biology about tumor cells and the tumor microenvironment.
They also applied ICA to non-bladder cancers and, by comparing
the correlation between components, were able to identify a set
of bladder cancer-specific components and their associated
genes.

As omics data sets tend to have high dimensionality (p � n)
it is often useful to reduce the number of variables. Several re-
cent extensions of PCA include variable selection, often via a
regularization step or L-1 penalization (e.g. Least Absolute
Shrinkage and Selection Operator, LASSO) [36]. The NIPALS algo-
rithm uses an iterative regression approach to calculate the
components and loadings, which is easily extended to have a
sparse operator that can be included during regression on the
component [37]. A cross-validation approach can be used to de-
termine the level of sparsity. Sparse, penalized and regularized
extensions of PCA and related methods have been described
recently [36, 38–41].

Integrative analysis of two data sets

One-table dimension reduction methods have been extended to
the EDA of two matrices and can simultaneously decompose
and integrate a pair of matrices that measure different variables
on the same observations (Table 3). Methods include general-
ized SVD [42], Co-Inertia Analysis (CIA) [43, 44], sparse or penal-
ized extensions of Partial Least Squares (PLS), Canonical
Correspondence analysis (CCA) and Canonical Correlation
Analysis (CCA) [36, 45–47]. Note both canonical correspondence
analysis and canonical correlation analysis are referred to by
the acronym CCA. Canonical correspondence analysis is a con-
strained form of CA that is widely used in ecological statistics
[46]; however, it is yet to be adopted by the genomics commu-
nity in analysis of pairs of omics data. By contrast, several
groups have applied extensions of canonical correlation ana-
lysis to omics data integration. Therefore, in this review, we use
CCA to describe canonical correlation analysis.

Canonical correlation analysis

Two omics data sets X (dimension n�px) and Y (dimension n�py)
can be expressed by the following latent component decompos-
ition problem:

X ¼ FxQT
x þ Ex

Y¼ FyQT
y þ Ey

(9)

where Fx and Fy are n�r matrices, with r columns of compo-
nents that explain the co-structure between X and Y. The col-
umns of Qx and Qy are variable loading vectors for X and Y,
respectively. Ex and Ey are error terms.

Proposed by Hotelling in 1936 [47], CCA searches for associ-
ations or correlations among the variables of X and Y [47], by
maximizing the correlation between Xqx

i and Yqy
i:

for the ith component : arg maxqi
xqi

y
corðXqi

x; Yqi
yÞ (10)

In CCA, the components Xqx
i and Yqy

i are called canonical vari-
ates and their correlations are the canonical correlations.

Sparse canonical correlation analysis

The main limitation of applying CCA to omics data is that it
requires an inversion of the correlation or covariance matrix
[38, 49, 50], which cannot be calculated when the number of
variables exceeds the number of observations [46]. In high-
dimensional omics data where p� n, application of these meth-
ods requires a regularization step. This may be accomplished by
adding a ridge penalty, that is, adding a multiple of the identity
matrix to the covariance matrix [51]. A sparse solution of the
loading vectors (Qx and Qy) filters the number of variables and
simplifies the interpretation of results. For this purpose, penal-
ized CCA [52], sparse CCA [53], CCA-l1 [54], CCA elastic net (CCA-
EN) [45] and CCA-group sparse [55] have been introduced and
applied to the integrative analysis of two omics data sets.
Witten et al. [36] provided an elegant comparison of various CCA
extensions accompanied by a unified approach to compute both
penalized CCA and sparse PCA. In addition, Witten and
Tibshirani [54] extended sparse CCA into a supervised frame-
work, which allows the integration of two data sets with a
quantitative phenotype; for example, selecting variables from
both genomics and transcriptomics data and linking them to
drug sensitivity data.

Partial least squares analysis

PLS is an efficient dimension reduction method in the analysis
of high-dimensional omics data. PLS maximizes the covariance
rather than the correlation between components, making it
more resistant to outliers than CCA. Additionally, PLS does not
suffer from the p � n problem as CCA does. Nonetheless, a
sparse solution is desired in some cases. For example, Le Cao
et al. [56] proposed a sparse PLS method for the feature selection
by introducing a LASSO penalty for the loading vectors. In a re-
cent comparison, sPLS performed similarly to sparse CCA [45].
There are many implementations of PLS, which optimize differ-
ent objective functions with different constraints, several of
which are described by Boulesteix et al. [57].

Co-Inertia analysis

CIA is a descriptive nonconstrained approach for coupling pairs
of data matrices. It was originally proposed to link two ecolo-
gical tables [13, 58], but has been successfully applied in integra-
tive analysis of omics data [32, 43]. CIA is implemented and
formulated under the duality diagram framework
(Supplementary Information). CIA is performed in two steps: (i)
application of a dimension reduction technique such as PCA,
CA or NSCA to the initial data sets depending on the type of
data (binary, categorical, discrete counts or continuous data)
and (ii) constraining the projections of the orthogonal axes such
that they are maximally covariant [43, 58]. CIA does not require
an inversion step of the correlation or covariance matrix; thus,
it can be applied to high-dimensional genomics data without
regularization or penalization.
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Though closely related to CCA [49], CIA maximizes the
squared covariance between the linear combination of the pre-
processed matrix, that is,

for the ith dimension : argmaxqi
xqi

y
cov2ðXqi

x;Yqi
yÞ: (11)

Equation (11) can be decomposed as:

cov2 Xqx
i;Yqy

i
� �

¼ cor2 Xqx
i;Yqy

i
� �

� var Xqx
i

� �
� var Xqy

i
� �

(12)

CIA decomposition of covariance maximizes the variance
and the correlation between matrices and, thus is less sensitive
to outliers. The relationship between CIA, Procrustes analysis
[13] and CCA have been well described [49]. A comparison be-
tween sCCA (with elastic net penalty), sPLS and CIA is provided
by Le Cao et al. [45]. In summary, CIA and sPLS both maximize
the covariance between eigenvectors and efficiently identify
joint and individual variance in paired data. In contrast, CCA-
EN maximizes the correlation between eigenvectors and will
discover effects present in both data sets, but may fail to dis-
cover strong individual effects [45]. Both sCCA and sPLS are
sparse methods that select similar subsets of variables, whereas
CIA does not include a feature selection step; thus, in terms of
feature selection, results of CIA are more likely to contain re-
dundant information in comparison with sparse methods [45].

Similar to classical dimension reduction approaches, the
number of dimensions to be examined needs to be considered
and can be visualized using a scree plot (similar to Figure 1D).
Components may be evaluated by their associated variance [25],
the elbow test or Q2 statistics, as described previously. For
example, the Q2 statistic was applied to select the number of
dimensions in the predictive mode of PLS [56]. In addition,
when a sparse factor is introduced in the loading vectors, cross-
validation approaches may be used to determine the number of
variables selected from each pair of components. Selection of
the number of components and optimization of these param-
eters is still an open research question and is an active area of
research.

Integrative analysis of multi-assay data

There is a growing need to integrate more than two data sets in
genomics. Generalizations of dimension reduction methods to
three or more data sets are sometimes called K-table methods
[59–61], and a number of them have been applied to multi-assay
data (Table 4). Simultaneous decomposition and integration of
multiple matrices is more complex than an analysis of a single
data set or paired data because each data set may have different
numbers of variables, scales or internal structure and thus have
different variance. This might produce global scores that are
dominated by one or a few data sets. Therefore, data are prepro-
cessed before decomposition. Preprocessing is often performed
on two levels. On the variable levels, variables are often cen-
tered and normalized so that their sum of squared values or
variance equals 1. This procedure enables all the variables to
have equal contribution to the total inertia (sum of squares of
all elements) of a data set. However, the number of variables
may vary between data sets, or filtering/preprocessing steps
may generate data sets that have a higher variance contribution
to the final result. Therefore, a data set level normalization is
also required. In the simplest K-table analysis, all matrices have
equal weights. More commonly, data sets are weighted by their
expected contribution or expected data quality, for example, by

the square root of their total inertia or by the square root of the
numbers of columns of each data set [62]. Alternatively, greater
weights can be given to smaller or less redundant matrices,
matrices that have more stable predictive information or those
that share more information with other matrices. Such weight-
ing approaches are implemented in multiple-factor analysis
(MFA), principal covariates regression [63] and STATIS.

The simplest multi-omics data integration is when the data
sets have the same variables and observations, that is, matched
rows and matched columns. In genomics, these could be pro-
duced when variables from different multi-assay data sets are
mapped to a common set of genomic coordinates or gene iden-
tifiers, thus generating data sets with matched variables and
matched observations. Alternatively, a repeated analysis, or
longitudinal analysis of the same samples and the same vari-
ables, could produce such data (one should note that these
dimension reduction approaches do not model the time correla-
tion between different datasets). There is a history of such ana-
lyses in ecology where counts of species and environment
variables are measured over different seasons [49, 64, 65] and in
psychology where different standardized tests are measured
multiple times on study populations [66, 67]. Analysis of such
variables x samples x time data are called a three-mode decom-
position, triadic, cube or three-way table analysis, tensor de-
composition, three-way PCA, three-mode PCA, three-mode
Factor Analysis, Tucker-3 model, Tucker3, TUCKALS3, multi-
block analysis, among others (Table 4). The relationship be-
tween various tensor or higher decompositions for multi-block
analysis are reviewed by Kolda and Bader [68].

More frequently, we need to find associations in multi-assay
data that have matched observations but have different and
unmatched numbers of variables. For example, TCGA generated
miRNA and mRNA transcriptome (RNAseq, microarray), DNA
copy number, DNA mutation, DNA methylation and proteomics
molecular profiles on each tumor. The NCI-60 and the Cancer
Cell Line Encyclopedia projects have measured pharmacological
compound profiles in addition to exome sequencing and tran-
scriptomic profiles. Methods that can be applied to EDA of
K-table of multi-assay data with different variables include
MCIA, MFA, Generalized CCA (GCCA) and Consensus PCA
(CPCA).

The K-table methods can be generally expressed by the fol-
lowing model:

X1 ¼ FQT
1 þ E1

..

.

Xk ¼ FQT
k þ Ek

..

.

XK ¼ FQT
K þ EK

(13)

where there are K matrices or omics data sets X1,. . .,XK. For con-
venience, we assume that the rows of Xk share a common set of
observations but the columns of Xk may each have different
variables. F is the ‘global score’ matrix. Its columns are the PCs
and are interpreted similarly to PCs from a PCA of a single data
set. The global score matrix, which is identical in all decompos-
itions, integrates information from all data sets. Therefore, it is
not specific to any single data set, rather it represents the com-
mon pattern defined by all data sets. The matrices Qk, with k
ranging from 1 to K, are the loadings or coefficient matrices.
A high positive value indicates a strong positive contribution of
the corresponding variable to the ‘global score’. While the above
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methods are formulated for multiple data sets with different
variables but the same observations, most can be similarly for-
mulated for multiple data sets with the same variables but dif-
ferent observations [69].

Multiple co-inertia analysis

MCIA is an extension of CIA which aims to analyze multiple
matrices through optimizing a covariance criterion [60, 70].
MCIA simultaneously projects K data sets into the same dimen-
sional space. Instead of maximizing the covariance between
scores from two data sets as in CIA, the optimization problem
used by MCIA is as following:

argmaxqi
1 ::q

i
k
::qi

K

XK

k¼1

cov2ðXi
kqi

k;X
iqiÞ (14)

for dimension i with the constraints that jjqk
ijj ¼ var (Xiqi) ¼ 1,

where X ¼ (X1j . . . jXkj . . . jXK) and qi holds the corresponding
loading values (‘global’ loading vector) [60, 69, 70].

MCIA derives a set of ‘block scores’ Xk
iqk

i using linear com-
binations of the original variables from each individual matrix.
The global score Xiqi is then further defined as the linear com-
bination of ‘block scores’. In practice, the global scores represent
a correlated structure defined by multiple data sets, whereas
the concordance and discrepancy between these data sets may
be revealed by the block scores (for detail see ‘Example case
study’ section). MCIA may be calculated with the ad hoc exten-
sion of the NIPALS PCA [71]. This algorithm starts with an ini-
tialization step in which the global scores and the block
loadings for the first dimension are computed. The residual
matrices are calculated in an iterative step by removing the
variance induced by the variable loadings (the ‘deflation’ step).
For higher order solutions, the same procedure is applied to the
residual matrices and re-iterated until the desired number of di-
mensions is reached. Therefore, the computation time strongly
depends on the number of desired dimensions. MCIA is imple-
mented in the R package omicade4 and has been applied to the
integrative analysis of transcriptomic and proteomic data sets
from the NCI-60 cell lines [60].

Generalized canonical correlation analysis

GCCA [71] is a generalization of CCA to K-table analysis [73–75].
It has also been applied to the analysis of omics data [36, 76].
Typically, MCIA and GCCA will produce similar results (for a
more detailed comparison see [60]). GCCA uses a different defla-
tion strategy than MCIA: it calculates the residual matrices by
removing the variance with respect to the ‘block scores’ (instead
of ‘variable loadings’ used by MCIA or ‘global scores’ used by
CPCA; see later). When applied to omics data where p � n, a
variable selection step is often integrated within the GCCA ap-
proach, which cannot be done in case of MCIA. In addition, as
block scores are better representations of a single data set (in
contrast to the global score), GCCA is more likely to find com-
mon variables across data sets. Witten and Tibshirani [54]
applied sparse multiple CCA to analyze gene expression and
Copy Number Variation (CNV) data from diffuse large B-cell
lymphoma patients and successfully identified ‘cis interactions’
that are both up-regulated in CNV and mRNA data.

Consensus PCA

CPCA is closely related to GCCA and MCIA, but has had less expos-
ure to the omics data community. CPCA optimizes the same criter-
ion as GCCA and MCIA and is subject to the same constraints as
MCIA [71]. The deflation step of CPCA relies on the ‘global score’. As
a result, it guarantees the orthogonality of the global score only
and tends to find common patterns in the data sets. This charac-
teristic makes it is more suitable for the discovery of joint patterns
in multiple data sets, such as the joint clustering problem.

Regularized generalized canonical correlation analysis

Recently, Tenenhaus and Tenenhaus [69, 74] proposed regular-
ized generalized CCA (RGCCA), which provides a unified frame-
work for different K-table multivariate methods. The RGCCA
model introduces some extra parameters, particularly a shrink-
age parameter and a linkage parameter. The linkage parameter
is defined so that the connection between matrices may be cus-
tomized. The shrinkage parameter ranges from 0 to 1. Setting
this parameter to 0 will force the correlation criterion (criterion
used by GCCA), whereas a shrinkage parameter of 1 will apply
the covariance criterion (used by MCIA and CPCA). A value be-
tween 0 and 1 leads to a compromise between the two options.
In practice, the correlation criterion is better in explaining the
correlated structure across data sets, while discarding the vari-
ance within each individual data set. The introduction of the
extra parameters make RGCCA highly versatile. GCCA, CIA and
CPCA can be described as special cases of RGCCA (see [69] and
Supplementary Information). In addition, RGCCA also integrates
a feature selection procedure, named sparse GCCA (SGCCA).
Tenenhaus et al. [76] applied SGCCA to combine gene expres-
sion, comparative genomic hybridization and a qualitative
phenotype measured on a set of 53 children with glioma. Sparse
multiple CCA [54] and SGCCA [76] are available in the R pack-
ages PMA and RGCCA, respectively. Similarly, a higher order
implementation of spare PLS is described in Zhao et al. [77].

Joint NMF

NMF has also been extended to jointly factorize multiple matri-
ces. In joint NMF, the values in the global score F and in the co-
efficient matrices (Q1, . . . ,QK) are nonnegative and there is no
explicit definition of the block loadings. An optimization algo-
rithm is applied to minimize an objective function, typically the

sum of squared errors, i.e.
XK

k¼1
Ek

2. This approach can be con-

sidered to be a nonnegative implementation of PARAFAC, al-
though it has also been implemented using the Tucker model
[78–80]. Zhang et al. [81] apply joint NMF to a three-way analysis
of DNA methylation, gene expression and miRNA expression
data to identify modules in each of these regulatory layers that
are associated with each other.

Advantages of dimension reduction when
integrating multi-assay data

Dimension reduction or latent variable approaches provide
EDA, integrate multi-assay data, highlight global correlations
across data sets, and discover outliers or batch effects in indi-
vidual data sets. Dimension reduction approaches also facilitate
down-stream analysis of both observations and variables
(genes). Compared with cluster analysis of individual data sets,
cluster analysis of the global score matrix (F matrix) is robust, as
it aggregates observations across data sets and is less likely to
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reflect a technical or batch effect of a single data set. Similarly,
dimension reduction of multi-assay data facilities downstream
gene set, pathway and network analysis of variables. MCIA
transforms variables from each data set onto the same scale,
and their loadings (Q matrix) rank the variables by their contri-
bution to the global data structure (Figure 2). Meng et al. report
that pathway or gene set enrichment analysis (GSEA) of the
transformed variables is more sensitive than GSEA of each indi-
vidual data set. This is both because of the re-weighting and
transformation of variables, but also because GSEA on the com-
bined data has greater coverage of variables (genes) thus com-
pensating for missing or unreliable information in any single
data set. For example, in Figure 2B, we integrate and transform
mRNA, proteomics and miRNA data on the same scale, allowing
us to extract and study the union of all variables.

Example case study

To demonstrate the integration of multi-data sets using dimen-
sions reduction, we applied MCIA to analyze mRNA, miRNA and
proteomics expression profiles of melanoma, leukemia and CNS

cells lines from the NCI-60 panel. The graphical output from
this analysis, a plot of the sample space, variable space and
data weighting space are provided in Figure 2A, B and E. The
eigenvalues can be interpreted similarly to PCA, a higher eigen-
value contributes more information to the global score. As with
PCA, researchers may be subjective in their selection of the
number of components [24]. The scree plot in Figure 2D shows
the eigenvalues of each global score. In this case, the first two
eigenvalues were significantly larger, so we visualized the cell
lines and variables on PC1 and PC2.

In the observation space (Figure 2A), assay data (mRNA,
miRNA and proteomics) are distinguished by shape. The coord-
inates of each cell line (Fk in Figure 2A) are connected by lines to
the global scores (F). Short lines between points and cell line
global scores reflect high concordance in cell line data. Most cell
lines have concordant information between data sets (mRNA,
miRNA, protein) as indicated by relatively short lines. In add-
ition, the RV coefficient [82, 83], which is a generalized Pearson
correlation coefficient for matrices, may be used to estimate the
correlation between two transformed data sets. The RV coeffi-
cient has values between 0 and 1, where a higher value

Figure 2. MCIA of mRNA, miRNA and proteomics profiles of melanoma (ME), leukemia (LE) and central nervous system (CNS) cell lines. (A) shows a plot of the first two

components in sample space (sample ‘type’ is coded by the point shape; circles for mRNAs, triangles for proteins and squares for miRNAs). Each sample (cell line) is

represented by a “star”, where the three omics data for each cell line are connected by lines to a center point, which is the global score (F) for that cell line, the shorter

the line, the higher the level of concordance between the data types and the global structure. (B) shows the variable space of MCIA. A variable that is highly expressed

in a cell line will be projected with a high weight (far from the origin) in the direction of that cell line. Some miRNAs with a large distance from the origin are labeled, as

these miRNAs are the strongly associated with cancer tissue of origin. (C) shows the correlation coefficients of the proteome profiling of SR with other cell lines. The

proteome profiling of SR cell line is more correlated with melanoma cell line. There may be a technical issue with the LE.SR proteomics data. (D) A scree plot of the

eigenvalues and (E) a plot of data weighting space. A colour version of this figure is available online at BIB online: http://bib.oxfordjournals.org.
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indicates higher co-structure. In this example, we observed rela-
tively high RV coefficients between the three data sets, ranging
from 0.78 to 0.84. It was recently reported that the RV coefficient
is biased toward large data sets, and a modified RV coefficient
has been proposed [84].

In this analysis (Figure 2A), cell lines originating from the
same anatomical source are projected close to each other and
converge in clusters. The first PC separates the leukemia cell
lines (positive end of PC1) from the other two cell lines (negative
end of PC1), and PC2 separates the melanoma and CNS cell
lines. The melanoma cell line LOX-IMVI, which lacks the mela-
nogenesis, is projected close to the origin, away from the mel-
anoma cluster. We were surprised to see that the proteomics
profile of leukemia cell line SR was projected closer to melan-
oma rather than leukemia cell lines. We examined within
tumor type correlations to the SR cell line (Figure 2C). We
observed that the SR proteomics data had higher correlation
with melanoma compared with to leukemia cell lines. Given
that the mRNA and miRNA profiles of LE_SR are closer to the
leukemia cell lines, it suggests that there may have been a tech-
nical error in generating the proteomics data on the SR cell line
(Figure 2A and C).

MCIA projects all variables into the same space. The variable
space (Q1, . . . , QK) is visualized in Figure 2B. Variables and sam-
ples projected in the same direction are associated. This allows
one to select the variables most strongly associated with spe-
cific observations from each data set for subsequent analysis. In
our previous study [85], we have shown that the genes and pro-
teins highly weighted on the melanoma side (positive end of se-
cond dimension) are enriched with melanogenesis functions,
and genes/proteins highly weighted on the protein side are
highly enriched in T-cell or immune-related functions.

We examined the miRNA data to extract the miRNAs with
the most extreme weights on the first two dimensions. miR-142
and miR-223, which are active and expressed in leukemia [82,
83, 86–88], had high weights on the positive end of both the
first and second axis (close to the leukemia cell lines sample
space, Figure 2A). miR-142 plays an essential role in T-lympho-
cyte development. miR-223 is regulated by the Notch and
NF-kB signaling pathways in T-cell acute lymphoblastic leuke-
mia [89].

The miRNA with strongest association to CNS cell lines was
miR-409. This miRNA is reported to promote the epithelial-to-
mesenchymal transition in prostate cancer [90]. In the NCI-60
cell line data, CNS cell lines are characterized more by a pro-
nounced mesenchymal phenotype, which is consistent with
high expression of this miRNA. On the positive end of the se-
cond axis and negative end of the first axis (which corresponds
to melanoma cell lines in the sample space, Figure 2A), we
found miR-509, miR-513 and miR-506 strongly associated with
melanoma cell lines, which are reported to initiate melanocyte
transformation and promote melanoma growth [85].

Challenges in integrative data analysis

EDA is widely used and well accepted in the analysis of single
omics data sets, but there is an increasing need for methods
that integrate multi-omics data, particularly in cancer research.
Recently, 20 leading scientists were invited to a meeting organ-
ized by Nature Medicine, Nature Biotechnology and the Volkswagen
Foundation. The meeting identified the need to simultaneously
characterize DNA sequence, epigenome, transcriptome, protein,
metabolites and infiltrating immune cells in both the tumor
and the stroma [91]. The TCGA pan-cancer project plans to

comprehensively interrogate multi-omics data across 33 human
cancers [92]. The data are biologically complex. In addition to
tumor heterogeneity [91] there may be technical issues, batch
effects and outliers. EDA approaches for complex multi-omics
data are needed.

We describe emerging applications of multivariate
approaches to omics data analysis. These are descriptive
approaches that do not test a hypothesis or generate a P-value.
They are not optimized for variable or biomarker discovery,
although the introduction of sparsity in variable loadings may
help in the selection of variables for downstream analysis. Few
comparisons of different methods exist, and the numbers of
components and the sparsity level have to be optimized. Cross-
validation approaches are potentially useful but this still
remains an open area of research.

Another limitation of these methods is that, although vari-
ables may vary among data sets, the observations need to be
matchable. Therefore, researchers need to have careful experi-
mental design in the early stage of a study. There is an exten-
sion of CIA for the analysis of unmatched samples [93], which
combines a Hungarian algorithm with CIA to iteratively pair
samples that are similar but not matched. Multi-block and
multi-group methods (data sets with matched variables) have
been reviewed recently by Tenenhaus and Tenenhaus [69].

The number of variables in genomics data is a challenge to
traditional EDA visualization tools. Most visualization
approaches were designed for data sets with fewer variables.
Within R, new packages including ggord are being developed.
Dynamic data visualization is possible using ggvis, plotly, explor
and other packages. However, interpretation of long lists of bio-
logical variables (genes, proteins, miRNAs) is challenging. One
way to gain more insight into lists of omics variables is to per-
form a network, gene set enrichment or pathway analysis [94].
An attractive feature of decomposition methods is that variable
annotation, such as Gene Ontology or Reactome, can be pro-
jected into the same space, to determine a score for each gene
set (or pathway) in that space [32, 33, 60].

Conclusion

Dimension reduction methods have a long history. Many simi-
lar methods have been developed in parallel by multiple fields.
In this review, we provided an overview of dimension reduction
techniques that are both well-established and maybe new to
the multi-omics data community. We reviewed methods for
single-table, two-table and multi-table analysis. There are sig-
nificant challenges in extracting biologically and clinically ac-
tionable results from multi-omics data, however, the field may
leverage the varied and rich resource of dimension reduction
approaches that other disciplines have developed.

Key Points

• There are many dimension-reduction methods, which
can be applied to exploratory data analysis of a single
data set, or integrated analysis of a pair or multiple
data sets. In addition to exploratory analysis, these
can be extended to clustering, supervised and discrim-
inant analysis.

• The goal of dimension reduction is to map data onto
a new set of variables so that most of the variance (or
information) in the data is explained by a few new
(latent) variables.
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• Multi-data set methods such as multiple co-inertia
analysis (MCIA), multiple factor analysis (MFA) or ca-
nonical correlations analysis (CCA) identify correlated
structure between data sets with matched observa-
tions (samples). Each data set may have different vari-
ables (genes, proteins, miRNA, mutations, drug
response, etc).

• MCIA, MFA, CCA and related methods provide a visu-
alization of consensus and incongruence in and
between data sets, enabling discovery of potential out-
liers, batch effects or technical errors.

• Multi-dataset methods transform diverse variables
from each data set onto the same space and scale,
facilitating integrative variable selection, gene set
analysis, pathway and downstream analyses.

R Supplement

R code to re-generate all figures in this article is available as
a Supplementary File. Data and code are also available on the
github repository https://github.com/aedin/NCI60Example.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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