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Abstract

Despite extensive preventive efforts, falls continue to be a major source of morbidity and mortality among elderly. Real-time
detection of falls and their urgent communication to a telecare center may enable rapid medical assistance, thus increasing
the sense of security of the elderly and reducing some of the negative consequences of falls. Many different approaches
have been explored to automatically detect a fall using inertial sensors. Although previously published algorithms report
high sensitivity (SE) and high specificity (SP), they have usually been tested on simulated falls performed by healthy
volunteers. We recently collected acceleration data during a number of real-world falls among a patient population with
a high-fall-risk as part of the SensAction-AAL European project. The aim of the present study is to benchmark the
performance of thirteen published fall-detection algorithms when they are applied to the database of 29 real-world falls. To
the best of our knowledge, this is the first systematic comparison of fall detection algorithms tested on real-world falls. We
found that the SP average of the thirteen algorithms, was (mean6std) 83.0%630.3% (maximum value = 98%). The SE was
considerably lower (SE = 57.0%627.3%, maximum value = 82.8%), much lower than the values obtained on simulated falls.
The number of false alarms generated by the algorithms during 1-day monitoring of three representative fallers ranged
from 3 to 85. The factors that affect the performance of the published algorithms, when they are applied to the real-world
falls, are also discussed. These findings indicate the importance of testing fall-detection algorithms in real-life conditions in
order to produce more effective automated alarm systems with higher acceptance. Further, the present results support the
idea that a large, shared real-world fall database could, potentially, provide an enhanced understanding of the fall process
and the information needed to design and evaluate a high-performance fall detector.
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Introduction

Despite extensive preventive efforts, falls continue to be a major

source of morbidity and mortality among older adults. Falls often

lead to serious injuries such as hip fractures, hospitalization and

death. Even when no serious injury occurs, the resultant fear of

falling and self-imposed restrictions in mobility and function may

contribute to nursing home admission [1] and lead to a loss of

personal autonomy that directly affects the quality of life of

subjects.

Falls among older people remain a very important public

healthcare issue.

Real-time detection of falls allows for the immediate commu-

nication of these adverse events to a telecare center so that medical

assistance can be supplied quickly. Such assistance is needed to

promote the sense of security of older adults, especially among

those who are living alone, and to reduce fear of falling and the

subsequent negative impact of falls. Indeed, one of the serious

consequences of falling is the ‘‘long-lie’’ condition, where a faller is

unable to get up and remains on the ground for several hours.

‘‘Long-lies’’, and falls, in general, are associated with social

isolation, fear of falling, muscle damage, pneumonia, pressure

sores, dehydration and hypothermia [2–5]. Half of the elderly

people who experience a ‘long-lie’ die within 6 months [6], even if

no direct injury from the fall has occurred. The ‘long-lie’ occurs in

more than 20% of elderly people admitted to hospital as a result of

a fall [7] and up to 47% of non-injured fallers are unable to get up

off the floor without assistance [8]. Detection of a fall, either

through automatic fall detection or through a personal emergency

response system, might reduce the consequences of the ‘long-lie’

by reducing the time between the fall and the arrival of medical

attention [9]. If an older person living alone experiences a fall at

home, he or she may not be able to get to the phone or press an

alarm button due to sustained injuries or loss of consciousness [10].

Moreover, some elderly people do not activate their personal

emergency response systems, even when they have the ability to do

so [11].
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For these reasons, a variety of different methods were developed

over the last decade to automatically detect falls. These have been

based on video-cameras [12–17], acoustic [18–21] or inertial

sensors [22–44], and mobile phone technology [45–47].

Several of these studies focused on the monitoring of activities of

daily living (ADL) and fall detection using wearable sensors.

Compared to traditional movement analysis systems, wearable

sensors offer advantages in terms of cost, size, weight, power

consumption, ease of use and, most importantly, portability. With

wearable sensors, data collection is no longer confined to

a laboratory environment, thus leading to ubiquitous health

monitoring.

Many different approaches have been explored to solve the fall

detection problem using only accelerometers or an inertial

measurement unit (both gyroscopes and accelerometers) [28–

35,38–40]. The analysis of accelerometer and/or gyroscope

outputs allows for detecting specific events, such as voluntary

(e.g., walking, sitting, lying) or involuntary (e.g., fall) activities of

daily living, based on statistical or threshold-based algorithms.

The inertial sensor-based fall detection algorithms usually

provide: i) a definition of a set of parameters related to the

accelerometer and gyroscopes outputs, used for the characteriza-

tion of the movement, ii) impact detection, using a threshold-based

method, iii) orientation detection, e.g., using the vertical acceler-

ometer output or angular rate measurements, and iv) fall alarm,

which occurs when all the test conditions are true.

Published algorithms have generally been tested only on

simulated falls. Most authors have used simulations with healthy

volunteers [29,30,32–34,38,41,42,44,45] or martial arts students

[28] as a surrogate for real-world falls [48]. To the best of our

knowledge, there is a lack of published inertial measurement-based

real-world fall data of older people measured in a real-world

environment.

Although the rate of falls is quite high (approximately 30% of

persons over 65 years fall at least once per year), it is very difficult

to capture real-world fall data. This largely is a result of the

relatively short measurement intervals allowed by commercially

available sensors. As an example, to capture 100 real-world falls, it

would be necessary to record approximately 100,000 days of

physical activity (300 person years). If the battery lifetime is limited

to 10 days, 10,000 measurement cycles would be needed.

Additionally, compliance problems may arise with long measure-

ment periods. As far as we know, most international studies have

failed to gather sufficient numbers of fall events. Recently, Kangas

et al. [49] collected acceleration data of 5 real-world falls during

a six-month test period in older people.

To address the challenges of capturing real-world falls, we

began to collect acceleration data during a number of real-world

falls as part of a European project (SensAction-AAL) that studied

a population with a high-risk of falling. Based on these data,

a recent study [50] compared acceleration signals, measured using

a tri-axial accelerometer placed on the waist of the subjects, from

simulated falls and these real-world falls and found large

differences between them, even though a relatively simple example

of falling backward to the ground was selected.

Several problems are associated with the simulation approach

including the anticipation of the volunteer that a fall will occur and

the choice of the floor material to reduce the impact of the falls for

safety reasons. These findings underline the importance of

gathering real-world fall data for designing accurate algorithms.

With the limitations of simulated falls in mind, the aim of the

present study is to benchmark, for the first time, the performance

of 13 different published algorithms as applied to the database of

29 real-world falls collected during the SensAction-AAL project.

In order to compare the performance in the same test conditions

as our real-world fall data, only algorithms based on waist or trunk

accelerometer measurements were investigated. Algorithms based

on gyroscopes measurements or on more than one sensor are not

considered in this paper.

Materials and Methods

1. The real-world fall database
Acceleration signals of 32 falls from 15 subjects were collected

during the SensAction-AAL project and clinical routine assess-

ments. 30 falls from 9 subjects (7 women, 2 men, age: 66.466.2
years, height: 1.6368.68 m, weight: 77.2611.5 kg) were recorded
within a cross-sectional study of patients suffering from progressive

supra-nuclear palsy (PSP) [51] and from an intervention study to

investigate the feasibility of audio-biofeedback to improve balance

[52]. PSP is an atypical Parkinson’s syndrome with a prevalence of

5 per 100,000 [53]. Postural instability and falls are common and

are the most disabling features of the disease [54,55]. A 48-h

activity measurement was conducted on 29 subjects as part of the

assessment in the cross-sectional study and during days without

intervention. A fall was defined as ‘‘an unexpected event in which the
participant comes to rest on the ground, floor, or lower level’’ [56]. Patients
or their proxies reported the time, the place and the circumstances

of the falls.

Two additional falls were recorded from one subject within

a cross-sectional study in community-dwelling older people. All of

these falls were recorded during daily physical activity measure-

ment using an ambulatory device based on accelerometers

(DynaportH MiniMod, McRoberts, The Hague, NL). For the

sake of the present study, for each fall, we extracted, from the

24 hour recording, a 60 second time-window centered around the

fall event. The falls were characterized with respect to location,

pre-fall phase, fall direction, and impact spot (Table 1). The

MiniModH, composed of a tri-axial seismic acceleration sensor

(LIS3LV02DQ STMicroelectronics, Agrate Brianza, Italy), was

fixed by a belt at the lower back. The orientation of the axes are

x= vertical, y =medio-lateral (left/right), and z= anterior-posteri-

or (forward/backward). The sensor has a resolution of 12 bit and

a sampling frequency of fc~100 Hz. The published fall detection

algorithms were usually based on measurements carried out by

accelerometers with a sampling frequency varying from 50 Hz to
250 Hz and a range of 610 g or 612 g. We recorded 14 falls with

a sensor’s range of 66 g, the remaining 18 falls with a sensor’s

range of 62 g. When the acceleration exceeds the threshold 62 g,
the so-called ‘‘clipping effect’’ (or saturation) produces a cut-off of

the signal. Since this could affect the results of the analysis, three

falls that show saturation effects are not included in the analysis.

Therefore, the total number of falls considered in this study was

29. Raw data were stored for off-line analysis on a SD card.

2. The algorithms
The algorithms used are summarized here; additional details

can be found in the literature [28–32]. Table S1 summarizes the

parameters, thresholds and the phases of a fall event that are

considered: beginning of the fall, falling velocity, fall impact and

orientation after the fall. The outputs of the tri-axial accelerometer

are Ax(k),Ay(k),Az(k), with k = 1,…,n where n is the number of

samples.

Chen et al. [28] used a tri-axial accelerometer worn on the waist

of two martial arts students, who performed some common fall

motions over 10 trials. If the root sum vector (SV) of the three

squared accelerometer outputs exceeds a threshold, it is possible

that a fall has occurred (IMPACT DETECTION). Additionally,

Fall Detection Algorithms on Real-World Falls
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the orientation is calculated over 1 second before the first impact

and 2 second after the last impact using the dot product of the

acceleration vectors (CHANGE IN ORIENTATION). The angle

change that constitutes a change in orientation can be set

arbitrarily based on empirical data, as suggested by the authors.

We set this threshold to 20u in order to have the best sensitivity

and specificity. No results are reported in the paper, but the

authors point out the benefits due to the evaluation of change in

orientation.

Kangas et al. [29] attached a tri-axial accelerometer to the waist,

wrist and head of three healthy middle-aged volunteers, who

performed three standardized types of falls (forward, backward,

and lateral) towards a mattress. Examples of activities of daily

living (ADL) were collected from two healthy subjects, represent-

ing dynamic activities (e.g., walking, walking on the stairs, picking

up objects from the floor). Four different detection algorithms,

Kangas1a to Kangas1d, with increasing complexity were in-

vestigated. The thresholds are related to the waist measurement.

These four algorithms had in common IMPACT DETECTION +
POSTURE MONITORING. They were based on the detection

of the impact by threshold on the sum vector (SV ), the dynamic

sum vector (SVD) related to the high-pass filtered (HPF)

accelerometer outputs, the sliding sum vector (SVMaxMin) and

the vertical acceleration (X2), respectively, followed by monitoring

of the subject’s posture. The posture was detected 2 seconds after

the impact from the low-pass filtered (LPF) vertical signal, based

on the average acceleration in a 0.4 second time interval, with

a signal value of 0.5 g or lower considered to be a lying posture.

Two further algorithms, Kangas2a and Kangas2b, were

considered from Kangas et al. [29] based on START OF FALL

+ IMPACT DETECTION + POSTURE MONITORING.

These algorithms detected the start of the fall by monitoring SV
lower than a threshold of 0.6 g, followed by the detection of the

impact within a time frame of 1 s by a threshold value of SV or

X2, followed by posture monitoring.

Three further algorithms, Kangas3a to Kangas3c, based on

START OF FALL + VELOCITY + IMPACT DETECTION +
POSTURE MONITORING were considered from [29]. These

algorithms detected the start of the fall, followed by detection of

the velocity v0 (calculated by integrating the area of SV from the

trough (see Fig. 1), at the beginning of the fall, until the impact,

where the signal value is lower than 1 g) exceeding the threshold,

followed by the detection of the impact within a time frame of 1 s
by a threshold value of SV or X2, followed by posture monitoring.

The fall detection sensitivity, declared by the authors [29], of the

different eight algorithms at the waist varied from 76% to 97%

and the specificity was 100%.

Bourke et al. [30] fixed two tri-axial accelerometers to the trunk

(at the sternum) and the thigh. Ten young subjects were involved

in simulated falls onto large crash mats. Ten community-dwelling

elderly subjects performed ADL in their own homes (e.g., sit to

stand, lying, walking). In these algorithms (Bourke1a and

Bourke1b), the SV of the three signals was evaluated from the

sternum and thigh accelerometer outputs and a fall was detected

when the SV is over the upper (UFT) threshold (3.52 g) or under

than the lower (LFT) threshold (0.41 g). Declared specificity is

100% for the upper threshold and 91.25% for the lower threshold,

related to the trunk sensor. In this paper, as suggested by the

authors [30], the thresholds were set according with the falls

database. The UFT and LFT were set at the level of the smallest

magnitude upper fall peak (Bourke1a) and at the level of the

biggest magnitude lower fall peak (Bourke1b), respectively. Based

on the accelerometer data of the 29 falls, we set the two thresholds

to 1.79 g (UFT) and 0.73 g (LFT). Exceeding any individual limit

would indicate a fall.

Bourke et al. [31] developed a second fall detection system using

a tri-axial accelerometer to detect impacts. The algorithm (Bourke

2), considered the SV of the accelerometer outputs, and monitor

posture, assuming a lying posture if the vertical accelerometer

signal value is between 20.5 g and 0.5 g. The sensor was attached

to a custom designed vest. Two teams of 5 elderly subjects tested

the algorithm. Over 833 hours of monitoring, no actual falls were

recorded, although the system registered a total of 42 false alarms

(i.e., false positives).

Recently, Bourke et al. [32] evaluated 21 fall-detection

algorithms of varying degrees of complexity for a waist-mounted

accelerometer based system. The algorithms were tested against

a comprehensive data-set recorded from 10 young healthy

volunteers performing 240 simulated falls and 120 ADL and 10

elderly healthy volunteers performing 240 scripted ADL and 52.4

waking hours of continuous unscripted normal ADL. Here, we

evaluated the algorithm (Bourke3) VELOCITY+IMPACT+POS-

TURE that achieved 100% sensitivity and specificity and with the

lowest false-positive rate (0.6 false positive per day) when applied

to simulated falls and tested it on the real-world falls database. The

algorithm is based on the detection of the four distinct phases of

a fall [48] (pre-fall, critical phase, post-fall phase and recovery)

when the SV exceeds the LFT (0.65 g) and the UFT (2.8 g)
thresholds. Two temporal features and their related thresholds are

considered: the falling-edge time, tFE , is from the SV signal last

going below the LFT until it exceeds the UFT (threshold set to

600 ms), and the rising-edge time, tRE , is the last time when the

LFT is exceeded until the UFT is exceeded (threshold set to

350 ms). The vertical velocity is further considered as an indicator

of a fall when it overcomes the threshold VT (20.7 m/s). It is

evaluated through the numerical integration of the SV signal with

the gravity component subtracted. The post-fall posture is

determined taking the dot product of the gravity vector gREF
and the current gravity vector estimated relative to the body

segment gSEG(t). Lying is detected if the waist posture, q(t), from
t+1 s to t+3 s exceeds 60u for more than 75% of the duration.

As summarized in Table S1, the SV is a common feature among

all the algorithms. An example of prototypical signal of the SV is

shown in Fig. 1. The signal reflects a forward real-world fall in

Table 1. Description of real-world falls (n = 32).

Number of falls per condition

Location Indoor (n=30), outdoor (n= 2)

Activity before the fall Standing (n= 16), walking forward (n= 8), walking backward (n= 1), sit-to-stand (n= 5), stand-to-sit (n =2)

Reported direction of fall Forward (n = 8), backward (n =18), sideward (n = 6)

Impact spot Floor (n= 23), against wall/locker before hitting the floor (n =4), bed/sofa (n = 4), desk (n=1)

doi:10.1371/journal.pone.0037062.t001

Fall Detection Algorithms on Real-World Falls
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which the subject fell directly on the floor while bending to pick up

an object. The typical trough before the impact, the impact and

the maximum magnitude due to the impact are also indicated.

The 29 accelerometer fall recordings were used to test the

performance of the algorithms in terms of sensitivity (SE,

percentage of falls correctly detected as such). Further signal

analysis was performed in order to evaluate the specificity (SP,

percentage of ADL correctly identified as non-falls).

Previous studies tested the specificity of ADL performed in the

laboratory environment by the same subjects who simulated falls

(generally healthy young subjects) or community-dwelling elderly

subjects. These data could be biased, since subjects are forced to

perform activities, which are typically spontaneous. To avoid

biased results for specificity, we extracted ADL based on the

individual physical activity recordings from each subject excluding

the 60 second fall-time-windows. The remaining observation time

was also separated into 60 second time-windows.

The recordings of 8 of the 15 fallers were carried out using the

sensor with range 62 g and therefore were excluded from the

specificity evaluation. We collected, for the remaining 7 subjects,

168 h of accelerometer recordings, i.e., 10,050 time-windows of

60 seconds (the 29 time-windows related to falls were excluded).

These time windows could be related to resting periods. In all

these cases, the fall detection algorithms correctly identify 100% of

ADL as not-falls. Thus, the SP will show high values because of the

high number of time windows with inactivity included in the

analysis. According to these considerations, the time windows

related to resting periods were excluded and those related to

activity periods were considered in the study according with

a simple procedure. We assumed that an activity is performed if

the dynamics of the signal (the difference between the maximum

and the minimum value) in a 60 second time window overcomes

a fixed threshold TH. This was selected from the following steps:

– the difference Mi~max(SVi){min(SVi) (i = 1,…, 10,050)

was evaluated from the accelerometer outputs for each of the

10,050 time-windows;

– the 10,050 time-windows were tested by the 13 algorithms;

– if the k-th time window was wrongly identified as fall, the value

Mk was allocated in a vector M;

– after testing the 13 algorithms, the minimum element ofM was

considered as the threshold TH for discriminating resting from

activity periods.

All the time-windows with MiwTH were considered as ADL

and thus selected for the analysis. The threshold evaluated by the

procedure was TH=1.01 g. The total number of time-windows

considered was 1,170.

The accuracy (ACC, the ratio between the number of correct

assessments, falls and ADL, and the number of all assessments), the

positive predictive value (PPV, the probability that a time window

with a positive test result, fall detected, really does have the

condition for which the test was conducted) and the negative

predictive value (NPV, the probability that a time window with

a negative result, fall undetected, really does have the condition for

which the test was conducted) were evaluated for each algorithm.

Moreover, the performance of the tested algorithms were

evaluated on 24 hour accelerometer recordings for three of the

PSP fallers, in order to evaluate the number of false alarms (ADL

detected as falls) generated by the different algorithms.

Data analysis was performed using MATLAB 7.9.0 (R2009B).

Results

In order to show an example of real-world fall signals, the sum

vector of a backward fall and its detail is reported in Fig. 2(a). The

sum vector related to one of the randomly extracted ADL is shown

in Fig. 2(b).

Figure 1. Prototypical acceleration sum vector of a fall. This real-world example illustrates components that are common to many falls.
doi:10.1371/journal.pone.0037062.g001
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The SE and SP of the tested algorithms for fallers are shown in

Fig. 3. The SP is over 94% for all the algorithms, except for

Bourke2 and Bourke1(a, b), which have the best performance in

terms of SE (the thresholds are set to hit this mark) and the worst

in terms of SP, as one would expect. The SE is low

(SE= 57.0%627.3%, maximum value= 82.8%). Although

a trade-off is achieved with the Chen and Bourke3 algorithms

(SE= 75.9%–82.8%, SP= 94.2%–96.7%, respectively), the results

are considerably worse than those previously reported in

laboratory environments.

The ACC, the PPV and the NPV are reported in Table 2 for

each algorithm.

The number of false alarms generated in 24 hours is shown in

Fig. 4 for three fallers. Bourke1(a, b) shows the highest number of

false alarms, although it has the maximum value of sensitivity.

Kangas’ algorithms generated less than 9 false alarms, but

sensitivity was lower than 55% (Fig. 3).

Discussion

The aim of this study was to compare different accelerometer-

based fall detection algorithms on a database of real-world falls.

Consistent with our previous work which demonstrated marked

differences between real-world and simulated falls [50], we find

Figure 2. Sum vector of (a) backward fall and detail and (b) example of selected ADL (walking).
doi:10.1371/journal.pone.0037062.g002

Fall Detection Algorithms on Real-World Falls
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that algorithms that were successful at detecting simulated falls did

not perform well when attempting to detect real-world falls.

To our knowledge, no other studies in the literature have

evaluated fall detection algorithms based on a relatively large

dataset of real-world falls. Fifteen older patients (age 67618 years)
assessed as having a high risk of falling were involved in an 18-day

study [31]. Unfortunately only four falls were recorded and the

data were not analyzed. Recently, Kangas et al. [49] collected

accelerometer data for 5 real-world falls during a 6 month test

period in older adults and compared some features (SV, pre-fall

velocity) of real-world falls with simulated falls. They suggested

that there are important differences between real and simulated

falls.

Based on a data-set with recorded real-world falls, our study

evaluated thirteen accelerometer-based algorithms for fall de-

tection which have been previously evaluated on simulated falls

only. SE and SP of these algorithms (Fig. 3) show how the

sensitivity and specificity obtained by the authors (often declared

to be 100%) are different when the algorithms are tested on real-

world falls.

By analyzing the main drawbacks of the presented algorithms,

we noted that several factors affect the difference between

simulated and real-world falls. Thresholds are usually calibrated

on simulated fall signals and are not suitable for real-world fall

signals. For instance, the SV is considered to be a feature for

impact detection in all the presented algorithms, but each author

used a different threshold to detect the impact. Our results are

consistent with the considerations of Kangas [49] who found that

some fall phases detected in experimentally simulated falls were

not detectable in acceleration signals from heterogeneous real-

world falls.

Nevertheless, all the algorithms have low computational cost

and low-complexity, allowing them to be easily implemented in

a microcontroller for real-time applications. This approach is

commendable because it helps to increase the security of the

subject, hopefully reducing the number and severity of falls. The

use of the sum vector of the three accelerometer outputs as the

main parameter provides robustness against the incorrect position

of the sensor.

Chen’s algorithm [28] provides a good trade-off in terms of SE

(76%) and SP (94%). Since the high threshold for impact detection

allows for reduction of false positives, some ‘‘low-magnitude’’ falls

are not detected due to their maximum peak values. Despite the

efforts of the authors to pay attention to orientation change, this

parameter does not provide an optimal discrimination between

real-world falls and ADL. Since we set a low angle orientation

threshold, in many conditions the subject’s orientation does not

show a significant change before and after the fall (e.g., falling on

the knees).

Figure 3. Sensitivity and Specificity for the tested algorithms.
doi:10.1371/journal.pone.0037062.g003

Table 2. Accuracy (ACC), positive (PPV) and negative (NPV)
predictive values of the tested algorithms.

Algorithm ACC [%] PPV [%] NPV [%]

Chen 93,7 24,4 99,4

Kangas1a 92,9 16,7 98,7

Kangas1b 93,7 18,9 98,7

Kangas1c 94,5 23,2 98,8

Kangas1d 96,4 18,2 97,9

Kangas2a 93,3 17,7 98,7

Kangas2b 95,3 22,4 98,4

Kangas3a 95,8 23,1 98,3

Kangas3b 96,7 29,6 98,2

Bourke1a 21,3 3,0 100,0

Bourke1b 13,0 2,7 100,0

Bourke2 86,8 12,3 99,2

Bourke3 96,3 38,1 99,6

doi:10.1371/journal.pone.0037062.t002

Fall Detection Algorithms on Real-World Falls
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Kangas et al. [29] investigated three different algorithms with

increasing complexity. Since the threshold values allow detection

of most impacts, the posture monitoring test fails against several

types of falls. The LPF vertical signal rarely reaches values under

0.5 g, which is considered to be a lying posture [35,36]. In our falls

database, subjects who fell on their buttocks, knees, or against

a table or the walker, did not lie on the floor. However, the lying

posture detection is very important to detect falls in which the

subject lies on the floor for a long time. Moreover, according to the

SE values shown in Fig. 3, the more complex the algorithm, the

more assumptions about thresholds have to be satisfied and so the

less likely it is to detect a fall. As discussed previously, these

thresholds are calibrated on simulated fall signals and their values

should be reconsidered on real-world fall signals. The algorithms

related to the vertical acceleration X2 (Kangas1d, Kangas2b,

Kangas3b) provide the lowest sensitivity values due to the high

threshold set for this parameter. Kangas3(a, b) show the worst

results: the velocity before the impact is often lower than the

predetermined thresholds.

Results of Bourke’s algorithm [30] require additional discussion.

The authors suggest setting the two thresholds according to the

falls database in order to have 100% of SE. Nevertheless, the

Bourke1(a, b) algorithms provide the worst results in terms of SP

(19.3% and 11.9%, respectively). This offline method is not

recommended for several reasons. First, the two thresholds, UFT

(1.79 g) and LFT (0.73 g), are set according to the real-world fall

database and therefore have to be tuned every time a new fall

occurs. Consequently, the predictive ability of the fall detection

algorithm is impaired: if the fall detector is used in real-life

conditions, falls with a maximum peak lower than UFT or the

minimum peak greater than LFT are not detected. The Bourke1b

algorithm, based on the LFT algorithm, provides the lowest SP.

The majority of real-world falls we collected provide a trough

before the impact related to the free-fall phase. However some

ADL (e.g., sitting on a chair or on a bed) show values of the sum

vector lower than the LFT=0.73 g, due to the phenomenon of

weightlessness. This explains why the lowest specificity was found

for Bourke’s algorithm. Moreover, as shown in Fig. 4, the high

number of false alarms during 24 h recordings, from 22 to 85 for

the three fallers for Bourke1a, and from 27 to 84 for Bourke1b, is

unacceptable (more than 2 false alarms per hour). The major

reason for failure is rejection by monitoring services due to a high

number of false alarms [57], [58]. This weak point is more evident

in the Bourke LFT algorithm as compared to the other algorithms,

since these have fewer than ten false alarms.

The second algorithm suggested by Bourke et al. [31] provides

results similar to Chen’s algorithm. Since the threshold, which is

the same as Bourke1b, ensures detection of several impacts, the SP

is higher than Bourke1(a,b) because the algorithm provides posture

monitoring after fall. The subject’s ‘‘long-lie’’ condition (vertical

accelerometer signal value between 20.5 g and 0.5 g) allows

increasing the SP but this did not occur in all falls. The Bourke2

algorithm emphasizes the drawbacks of the Bourke1 algorithms,

which are based on thresholds lacking considerations of posture

monitoring after a fall. Adding information about posture after the

impact can improve the results in terms of SP. As shown in Fig. 4,

the number of false alarms is reduced threefold from Bourke1

(mean of 61–65 false alarms) to Bourke2 (20 false alarms).

Bourke’s recently proposed algorithm (Bourke3) [32] provides

the best trade-off in terms of SE (83%) and SP (97%) but the

results are still different from those obtained by the authors on

their simulated-falls database (100% sensitivity and specificity).

The algorithm fails to detect falls with low impact magnitude

(mainly forward falls, falling on bed/sofa, against the wall) which

are common, since more than half of all in-patient falls in elderly

people in acute care settings occurred at bedside, during transfer

or while getting up [59,60]. Moreover, Kangas et al. [49] also

found differences between simulated and real-world falls on beds

in terms of low impact magnitude. Despite of this, the number of

false alarms is considerably lower than with other Bourke’s

algorithms (about 5 false alarms per day).

Table 2 provides results related to PPV and NPV, which are

usually stable characteristics of diagnostic tests when the preva-

lence of disease is high among the population of interest (in this

Figure 4. False alarms generated in 24 h recordings for three fallers.
doi:10.1371/journal.pone.0037062.g004
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study prevalence of disease is equivalent to fall risk). The same

diagnostic test will have varying predictive values in different

populations. As mentioned in the Methods section, the recorded

ADL, used for testing the algorithms, are related to the PSP and

geriatric rehabilitation unit patients, both with a high risk of

falling.

Since the results for NPVs (98.9%60.7%) indicate that with

these algorithms there is a high probability that when an event is

not detected as a fall it is not really a fall, the PPVs (19.3%69.7%)

are low, i.e., there is a low probability that when a fall is detected it

is really a fall. This means that some events incorrectly detected as

falls are activities of daily living.

Furthermore, since the number of real-world falls (29) is small

compared with the total number of time-windows tested (1170),

the SP is affected by these differences and does not provide useful

information for the evaluation of the algorithms (e.g., Bourke3 has

97% specificity i.e. 39 false positives). From a more practical point

of view, if the fall detector is connected to a tele-alarm system, the

robustness of the fall detection algorithm should be evaluated in

terms of high sensitivity and small number of false alarms

generated. For example, consider a recording of 48 h, i.e. 2880
time windows of 60 s. If the algorithm incorrectly detects 100 ADL

as falls, the SP will be 96%. This is an acceptable value for a test

but if we imagine that the fall detector could trigger an alarm

when a fall is detected, 100 false positive results within 48 h means

that about 2 false alarms per hour are generated.

The weaknesses of the tested algorithms enable us to understand

certain complex aspects of a fall but could also be a starting point

for future development of an accurate fall detector. The tested

algorithms set a fixed threshold for features extracted by

accelerometer signals but are tested on individuals with different

mass, age, clinical history and diseases. These factors could affect

the accelerometer data and the algorithms could fail; a fixed

threshold may not be the optimal strategy compared to a subject-

specific threshold. Inertial sensors-based fall detection algorithms

could be designed not only to automatically detect a fall but also to

provide additional information regarding direction of falls in order

to better understand injuries and to offer a prevention in-

tervention. Since results are related to the thresholds provided

by the authors, the performance of the tested algorithms could be

optimized by using the Receiving Operating Characteristic (ROC)

in order to identify the threshold with the best trade-off between

sensitivity and specificity. Despite this, the results presented in this

paper showed the importance of testing algorithms in real-world

situations. The main limitation of the study is that the recorded

real-falls were from a rare disease population, but conclusions may

be generalized to the older population at large. Moreover, the

tested algorithms are based only on waist or trunk accelerometer

measurements and therefore did not represent an exhaustive set of

all published fall detection algorithms.

The development of a larger shared real-world fall database

should provide additional data and deepen our knowledge of the

fall process in general. The FARSEEING European project,

which started in January 2012, aims to build the world’s largest fall

repository of long-term analysis of the behavioral and physiological

data collected using smartphones, wearable and environmental

sensors. This project could provide the necessary data to design an

accurate, portable and high-performance fall detector and a more

valid model of falling. The present paper represents a preliminary

study in this direction.
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